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A GENERAL DECAY AND OPTIMAL DECAY RESULT IN A HEAT SYSTEM WITH A VISCOELASTIC TERM *
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We consider a quasilinear heat system in the presence of an integral term and establish a general and optimal decay result from which improves and generalizes several stability results in the literature.

Introduction

In this work, we consider the following problem:

           A(t)|u t | m-2 u t -∆u + t 0 g(t -s)∆u(x, s)ds = 0 Ω × (0, +∞), u(x, t) = 0 ∂Ω × R + , u(x, 0) = u 0 (x) Ω, (1.1) 
where m ≥ 2, Ω is a bounded domain of R n , n ∈ N * := {1, 2, • • • }, with a smooth boundary ∂Ω, g : R + → R + is a positive nonincreasing function, and

A : R + → M n (R)
is a bounded square matrix satisfying A ∈ C(R + ) and, for some positive constant c 0 ,

(A(t)v, v) ≥ c 0 |v| 2 , ∀t ∈ R + , ∀v ∈ R n , (1.2) 
where (•, •) and | • | are the inner product and the norm, respectively, in R n . The equation in consideration arises from various mathematical models in engineering and physics. For instance, in the study of heat conduction in materials with memory, the classical Fourier law is replaced by the following form (cf. [START_REF] Nohel | Nonlinear Volterra equations for the heat flow in materials with memory//Integral and Functional Differential Equations[END_REF]):

q = -d∇u - t -∞ ∇ (k(x, t)u(x, τ )) dτ,
where u is the temperature, d the diffusion coefficient and the integral term represents the memory effect in the material. This type of problems has considered by a number of researchers; see [START_REF] Da Prato | Existence and regularity for a class of integro-differential equations of parabolic type[END_REF][START_REF] Nohel | Nonlinear Volterra equations for the heat flow in materials with memory//Integral and Functional Differential Equations[END_REF][START_REF] Yin | On parabolic Volterra equations in several space dimensions[END_REF] and the references therein. From a mathematical point of view, we expect that the integral term would be dominated by the leading term in the equation, so that the theory of parabolic equation can be applied. In fact, this has been confirmed by the work of Yin [START_REF] Yin | On parabolic Volterra equations in several space dimensions[END_REF] , in which he considered a general equation of the form

u t = divA(x, t, u, u x ) + a(x, t, u, u x ) + t 0 divB(x, t, τ, u, u x )dτ
and proved the existence of a unique weak solution under suitable conditions on A, B and a.

See more results concerning global existence and asymptotic behavior in Nakao and Ohara [START_REF] Nakao | Gradient estimates for a quasilinear parabolic equation of the mean curvature type[END_REF], Nakao and Chen [START_REF] Nakao | Global existence and gradient estimates for the quasilinear parabolic equations of m-Laplacian type with a nonlinear convection term[END_REF], and Engler et al. [START_REF] Englern | Gradient estimates for solutions of parabolic equations and systems[END_REF]. Pucci and Serrin [START_REF] Pucci | Asymptotic stability for nonlinear parabolic systems[END_REF] discussed the following system:

A(t)|u t | m-2 u t = ∆u -f (x, u),
for m > 1 and f satisfying (f (x, u), u) ≥ 0 and showed that strong solutions tend to the rest state as t → +∞, however, no rate of decay has been given. Berrimi and Messaoudi [START_REF] Berrimi | A decay result for a quasilinear parabolic system[END_REF] showed that, if A satisfies (1.2), then solutions with small initial energy decay exponentially for m = 2 and polynomially if m > 2. Messaoudi and Tellab [START_REF] Messaoudi | A general decay result in a quasilinear parabolic system with viscoelastic term[END_REF] considered (1.1), under condition (1.2) and for relaxation function g satisfying a general decay condition of the form

g ′ (t) ≤ -ξ(t)g(t), ∀t ∈ R + ,
for some nonincreasing differentiable function ξ : R + → R + , and established a general decay result, from which the exponential and polynomial decay rates of [START_REF] Berrimi | A decay result for a quasilinear parabolic system[END_REF] are only special cases. Recently, Liu and Chen [4] investigated (1.1), with a nonlinear source term, and established a general decay result under suitable conditions on g and the nonlinear source term. They also proved a blow-up result for the solution with both positive and negative initial energy.

In this work, we discuss (1.1) when g is of a more general decay, and establish a general and optimal decay result, which improves those of Berrimi and Messaoudi [START_REF] Berrimi | A decay result for a quasilinear parabolic system[END_REF], Liu and Chen [START_REF] Liu | Global and blow-up of solutions for a quasilinear parabolic system with viscoelastic and source terms[END_REF], and Messaoudi and Tellab [START_REF] Messaoudi | A general decay result in a quasilinear parabolic system with viscoelastic term[END_REF].

Preliminaries

In this section, we present some material needed in the proof of our result. For the relaxation function g we assume that (G1) The function g : R + → R + is a differentiable function satisfying g(0) > 0 and 1 -+∞ 0 g(s)ds = l > 0.

(G2) There exist a constant p ∈ [1, 3/2) and a nonincreasing differentiable function ξ :

R + → R + satisfying g ′ (t) ≤ -ξ(t)g p (t), ∀t ∈ R + .
(G3) We also assume that

2 ≤ m ≤ 2n n -2 if n ≥ 3, m ≥ 2 if n = 1, 2.
Remark 2.1 There are many functions satisfying (G1) and (G2). Examples of such functions are, for b > 0, α > 0, ν > 1, and a > 0 small enough,

g 1 (t) = ae -b(t+1) α and g 2 (t) = a (1 + t) ν .
We will also be using the embedding H 1 0 (Ω) ֒→ L q (Ω), L r (Ω) ֒→ L q (Ω), for 2 ≤ q ≤ r < +∞, and Poincaré's inequality. The same embedding constant C * will be used, and C denotes a generic positive constant.

We introduce the following:

E(t) = 1 2 (g • ∇u)(t) + 1 2 1 - t 0 g(s)ds ||∇u(t)|| 2 2 , ∀t ∈ R + , (2.1) 
where || • || q = || • || (L q (Ω)) n , for 1 ≤ q < +∞, and

(g • ∇u)(t) = t 0 g(t -τ )||∇u(•, t) -∇u(•, τ )|| 2 2 dτ, ∀t ∈ R + . (2.2)
Similarly to [START_REF] Pucci | Asymptotic stability for nonlinear parabolic systems[END_REF], we give the definition of a strong solution of (1.1).

Definition 2.2 A strong solution of (1.1) on [0, T ] is a function u ∈ C [0, T ); (H 1 0 (Ω)) n ∩ C 1 ((0, T ); (L m (Ω)) n ) which satisfies t 0 Ω ∇u(x, s) - s 0 g(s -τ )∇u(x, τ )dτ • ∇φ(x, s)dxds + t 0 A(s)|u t | m-2 u t (x, s) • φ(x, s)dxds = 0, for all t in [0, T ) and all φ in C [0, T ); (H 1 0 (Ω)) n . Remark 2.3
Similarly to [START_REF] Pucci | Asymptotic stability for nonlinear parabolic systems[END_REF], we assume the existence of a solution. For the linear case (m = 2), one can easily establish the existence of a weak solution by the Galerkin method. In the one-dimensional case (n = 1), the existence is established in a more general setting by Yin [START_REF] Yin | On parabolic Volterra equations in several space dimensions[END_REF] .

Finally, we state an important lemma [START_REF] Messaoudi | General and optimal decay for a quasilinear viscoelastic equation[END_REF].

Lemma 2.4 Assume that g satisfies (G1) and (G2) and u is the solution of (1.1), then there exists a positive constant k 0 such that

ξ(t)(g • ∇u)(t) ≤ k 0 (-E ′ (t)) 1 2p-1 , ∀t ∈ R + , (2.3) 
where E ′ is given in (3.1) below.

We also recall the following particular case of the well-known Jensen inequality which will be of essential use in obtaining our result: let f : Ω → R + and h : Ω → R + be integrable functions on Ω such that

Ω h(x)dx = k > 0.
Then, for any p > 1, we have

1 k Ω (f (x)) 1 p h(x)dx ≤ 1 k Ω f (x)h(x)dx 1 p
.

(2.4)

Decay Result

In this section, we state and prove our main result. We start with a lemma.

Lemma 3.1 Let u be the solution of (1.1). Then the energy satisfies

E ′ (t) = - Ω A(t)|u t | m dx - 1 2 g(t)||∇u(t)|| 2 2 + 1 2 (g ′ • ∇u)(t) ≤ 0, ∀t ∈ R + . (3.1)
Proof By multiplying the first equation in (1.1) by u t , integrating over Ω we get (3.1), after routine manipulations. Lemma 3.2 Let u be a solution of problem (1.1). Then, for any δ > 0, we have

∇u(t) 2 2 ≤ c 4 δE(t) - C δ c 0 E ′ (t) + c 5 (g • ∇u)(t), ∀t ∈ R + , (3.2) 
where c 0 is introduced in (1.2), c 4 and c 5 are two positive constants, and C δ is a positive constant depending on δ.

Proof Multiplying the first equation in (1.1) by u and integrating over Ω, we get

∇u(t) 2 2 = - Ω A(t)|u t | m-2 u t u(x, t)dx + Ω t 0 g(t -s)∇u(x, s) • ∇u(x, t)dsdx. (3.3) 
Now, we estimate the right-hand side of (3.3). By using Young's and Poincaré's inequalities, the boundedness of A, conditions (G1) and (G3), and the fact that

E(t) ≤ E(0),
we find, for any δ > 0,

- Ω A(t)|u t | m-2 u t udx ≤ δ u(•, t) m m + C δ u t (•, t) m m ≤ δC m * ∇u(•, t) m 2 + C δ u t (•, t) m m ≤ δC m * 2E(0) l m-2 2 2 l E(t) + C δ u t (•, t) m m .
On the other hand, using condition (1.2) and identity (3.1), we have

u t (•, t) m m = Ω |u t | m 2 2 dx ≤ 1 c 0 Ω A(t)|u t | m dx ≤ -1 c 0 E ′ (t).
By combining the above two inequalities, we conclude that 

- Ω A(t)|u t | m-2 u t udx ≤ c 1 δE(t) - C δ c 0 E ′ (t). ( 3 
≤ (1 + η) Ω t 0 g(t -s)|∇u(t)|ds 2 dx + 1 + 1 η Ω t 0 g(t -s)|∇u(s) -∇u(t)|ds 2 dx ≤ (1 + η)(1 -l) 2 ∇u(•, t) 2 2 + 1 + 1 η (1 -l)(g • ∇u)(t). (3.6) 
Substuting (3.6) in (3.5), we get

Ω ∇u(x, t) t 0 g(t -s)∇u(x, s)dsdx ≤ 1 2 1 + (1 + η)(1 -l) 2 ∇u(•, t) 2 2 + 1 2 1 + 1 η (1 -l)(g • ∇u)(t). (3.7) 
Combining (3.3), (3.4) and (3.7), we find

∇u(•, t) 2 2 ≤ c 1 δE(t) - C δ c 0 E ′ (t) + 1 2 1 + (1 + η)(1 -l) 2 ∇u(•, t) 2 2 + 1 2 1 + 1 η (1 -l)(g • ∇u)(t). (3.8)
We then choose 0

< η < l(2 -l)/(1 -l) 2 , which makes c 2 = 1 2 1 + (1 + η)(1 -l) 2 < 1,
and, therefore, (3.8) takes the form

∇u(•, t) 2 2 ≤ c 1 δE(t) - C δ c 0 E ′ (t) + c 2 ∇u(•, t) 2 2 + c 3 (g • ∇u)(t),
where

c 3 = 1 2 (1 + 1 η )(1 -l).
This yields (3.2) with c 4 = c1 1-c2 and c 5 = c3 1-c2 . Theorem 3.3 Let u be the solution of (1.1). Then, there exist strictly two positive constants λ 0 and λ 1 such that the energy satisfies, for all t ∈ R + ,

E(t) ≤ λ 0 e -λ1 t 0 ξ(s)ds if p = 1,
(3.9)

E(t) ≤ λ 0 1 + t 0 ξ 2p-1 (s)ds -1 2p-2 if p > 1. (3.10) Moreover, if ξ and p in (G 2 ) satisfy +∞ 0 1 + t 0 ξ 2p-1 (s)ds -1 2p-2
dt < +∞, (3.11) then, for all t ∈ R + , Proof From (3.1) and for any κ > 0, we have

E(t) ≤ λ 0 1 + t 0 ξ p (s)ds -1 p-1 if p > 1. ( 3 
E ′ (t) ≤ 0 = -κE(t) + κE(t) ≤ -κE(t) + κ 1 2 (g • ∇u)(t) + 1 2 1 - t 0 g(s)ds ∇u(•, t) 2 2 ≤ -κE(t) + κ 2 (g • ∇u)(t) + κ 2 ∇u(•, t) 2 2 . Recalling Lemma 3.2, we get E ′ (t) ≤ -κE(t) + κ 2 (g • ∇u)(t) + κ 2 c 4 δE(t) - C δ c 0 E ′ (t) + c 5 (g • ∇u)(t) ≤ -κ 1 - c 4 2 δ E(t) - κC δ 2c 0 E ′ (t) + κ(1 + c 5 ) 2 (g • ∇u)(t).
Then we have

1 + κC δ 2c 0 E ′ (t) ≤ -κ 1 - c 4 2 δ E(t) + κ(1 + c 5 ) 2 (g • ∇u)(t).
By choosing δ small enough, we obtain, for two positive constants λ and γ,

E ′ (t) ≤ -λE(t) + γ(g • ∇u)(t). (3.14) 
Case of p = 1 Multiplying (3.14) by ξ(t) and exploiting (G 2 ), we get

ξ(t)E ′ (t) ≤ -λξ(t)E(t) + γ(ξg • ∇u)(t) ≤ -λξ(t)E(t) -γ(g ′ • ∇u)(t) ≤ -λξ(t)E(t) -γE ′ (t). (3.15) 
We then set L = (ξ + γ)E ∼ E to obtain, from (3.15),

L ′ (t) ≤ -λξ(t)E(t) ≤ -λ 1 ξ(t)L(t). (3.16) 
A simple integration of (3.16) leads to

L(t) ≤ Ce -λ1 t 0 ξ(s)ds .
This gives (3.9), by virtue of L ∼ E.

Case of p > 1 To establish (3.10), we again consider (3.14) and use Lemma 2.1 to get

ξ(t)E ′ (t) ≤ -λξ(t)E(t) + C (-E ′ (t)) 1 2p-1 .
Multiplication of the last inequality by ξ α E α (t), where α = 2p -2 > 0, gives

1 α + 1 ξ α+1 d dt E α+1 (t) ≤ -λξ α+1 (t)E α+1 (t) + c (ξE) α (t) (-E ′ (t)) 1 α+1 .
Use of Young's inequality, with q = α + 1 and q * = α+1 α , yields, for any ε > 0,

1 α + 1 ξ α+1 d dt E α+1 (t) ≤ -λξ α+1 (t)E α+1 (t) + C εξ α+1 (t)E α+1 (t) -C ε E ′ (t) = -(λ -εC)ξ α+1 (t)E α+1 (t) -C ε E ′ (t).
We then choose 0 < ε < λ C and recall that ξ ′ ≤ 0, to obtain, for c 6 > 0,

ξ α+1 E α+1 (t) ′ (t) ≤ ξ α+1 d dt E α+1 (t) ≤ -c 6 ξ α+1 (t)E α+1 (t) -CE ′ (t); which implies ξ α+1 E α+1 + CE ′ (t) ≤ -c 6 ξ α+1 (t)E α+1 (t). Let W = ξ α+1 E α+1 + CE ∼ E. Then W ′ (t) ≤ -Cξ α+1 (t)W α+1 (t) = -Cξ 2p-1 (t)W 2p-1 (t).
Integrating over (0, t) and using the fact that W ∼ E, we obtain, for some λ 0 > 0,

E(t) ≤ λ 0 t 0 ξ 2p-1 (s)ds + 1 -1 2p-2
; so (3.10) holds To establish (3.12), we put 

η(t) = t 0 ∇u(t) -∇u(t -s)

.

This completes the proof of our main result.

The following examples illustrate our result and show the optimal decay rate in the polynomial case: 2p-2 dt < +∞, and hence, by (3.12), we get

E(t) ≤ C(1 + t) -1 p-1 = C(1 + t) -ν ,
which is the optimal decay.

Example 3.6 Let g(t) = ae -(1+t) ν , where 0 < ν ≤ 1, and a > 0 is chosen so that (3.20) holds. Then g ′ (t) = -aν(1 + t) ν-1 e -(1+t) ν .

Therefore (G2) holds with p = 1 and ξ(t) = ν(1 + t) ν-1 . Consequentely, we can use (3.9) to deduce E(t) ≤ Ce -λ(1+t) ν .

Example 3 . 5

 35 Let g(t) = a(1 + t) -ν , where ν > 2, and a > 0 so that +∞ 0 g(t)dt < 1.(3.20)We haveg ′ (t) = -aν(1 + t) -ν-1 = -b a(1 + t) -ν ν+1 ν, where b = νa -1 ν . Then (G2) holds with ξ(t) = b and p = ν+1 ν ∈

  (3.19) by ξ α (t)E α (t), for α = p -1, and repeating the same computations as in above, we arrive at, for some λ 0 > 0,

	Therefore, using (3.17) we obtain						
	p (t) ξ p-1 (0) ξ(t)E ′ (t) ≤ -λξ(t)E(t) + γη 1-1	0	t	ξ(s)g p (s) ∇u(t) -∇u(t -s) 2 2 ds	1 p
	≤ -λξ(t)E(t) + C(-g ′ • ∇u)	1 p (t),
	and then								
		ξ(t)E ′ (t) ≤ -λξ(t)E(t) + C(-E ′ (t))	1 p .	(3.19)
	If η(t) = 0, then s → ∇u(s) is a constant function on [0, t]. Therefore
							(g • ∇u)(t) = 0,
	and hence we have, from (3.14),						
							E ′ (t) ≤ -λE(t),
	which implies (3.19).								
	Now, multiplying E(t) ≤ λ 0			t	ξ p (s)ds + 1	-1 p-1
									0
										2 2 ds.
	Using Remark 3.1, we have								
			t						
	η(t) ≤ 2	0	∇u(t) 2 2 + ∇u(t -s) 2 2 ds
	≤	4 1 -l	0	t	(E(t) + E(t -s)) ds
	=	8 1 -l	0	t	E(s)ds <	8 1 -l	0	+∞	E(s)ds < +∞.
	This implies that								
						sup	η 1-1 p (t) < +∞.	(3.17)
					t∈R +		
	Assume that η(t) > 0. Then, from (3.14), we find
	ξ(t)E ′ (t) ≤ -λξ(t)E(t) + γξ(t)(g • ∇u)(t)
	= -λξ(t)E(t) + γ	η(t) η(t)	0	t	(ξ p (s)g p (s))	1 p	∇u(t) -∇u(t -s) 2 2 ds.	(3.18)
	Applying Jensen's inequality (2.4) for the second term of the right-hand side of (3.18), with
	Ω = [0, t], f (s) = ξ p (s)g p (s) and h(s) = ∇u(t) -∇u(t -s) 2 2 ,
	to get								
	ξ(t)E ′ (t) ≤ -λξ(t)E(t) + γη(t)	1 η(t)	0	t	ξ p (s)g p (s) ∇u(t) -∇u(t -s) 2 2 ds	1 p	.

Acknowledgements The authors thank KFUPM and Lorraine-Metz uinversity for their continuous support. This work has been finalized during the visit of the third author to KFUPM in December 2016 and during the scholarship of the first author in Lorraine-Metz in 2016-2017.

This work has been partially funded by KFUPM under Project # IN161006.