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NEW STABILITY RESULTS FOR A LINEAR THERMOELASTIC

BRESSE SYSTEM WITH SECOND SOUND

M. AFILAL, A. GUESMIA AND A. SOUFYANE

Abstract. In this paper, we consider a linear one-dimensional thermoelastic

Bresse system with second sound consisting of three hyperbolic equations and

two parabolic equations coupled in a certain manner under mixed homogeneous
Dirichlet-Neumann boundary conditions, where the heat conduction is given

by Cattaneo’s law. Only the longitudinal displacement is damped via the

dissipation from the two parabolic equations, and the vertical displacement
and shear angle displacement are free. We prove the well-posedness of the

system and some exponential, non exponential and polynomial stability results

depending on the coefficients of the equations and the smoothness of initial
data. Our method of proof is based on the semigroup theory and a combination

of the energy method and the frequency domain approach.

Keywords: Bresse system, Heat conduction, Well-posedness, Asymptotic
behavior, Semigroup theory, Energy method, Frequency domain approach.
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1. Introduction

In this paper, we consider the following linear Bresse system with second sound:
(1.1)

ρ1ϕtt − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) = 0 in (0, 1)× (0,∞) ,

ρ2ψtt − bψxx + k (ϕx + ψ + l w) = 0 in (0, 1)× (0,∞) ,

ρ1wtt − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) + δθx = 0 in (0, 1)× (0,∞) ,

ρ3θt + qx + δwxt = 0 in (0, 1)× (0,∞) ,

τqt + βq + θx = 0 in (0, 1)× (0,∞)

with the initial data

(1.2)



ϕ (x, 0) = ϕ0 (x) , ϕt (x, 0) = ϕ1 (x) in (0, 1) ,

ψ (x, 0) = ψ0 (x) , ψt (x, 0) = ψ1 (x) in (0, 1) ,

w (x, 0) = w0 (x) , wt (x, 0) = w1 (x) in (0, 1) ,

θ (x, 0) = θ0 (x) , q (x, 0) = q0 (x) in (0, 1)

and mixed homogeneous Dirichlet-Neumann boundary conditions

(1.3)

{
ϕ (0, t) = ψx (0, t) = wx (0, t) = θ (0, t) = 0 in (0,∞) ,

ϕx (1, t) = ψ (1, t) = w (1, t) = q (1, t) = 0 in (0,∞) ,

where ρ1, ρ2, ρ3, b, k, k0, τ, β, δ and l are positive constants, the initial data ϕ0,
ϕ1, ψ0, ψ1, w0, w1, θ0 and q0 belong to a suitable Hilbert space, and the unknowns
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of (1.1)− (1.3) are the following variables:

(ϕ,ψ,w, θ, q) : (0, 1)× (0,∞)→ R5.

The Bresse system [3] is consisting of three coupled hyperbolic equations

(1.4)


ρ1ϕtt − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) = F1 in (0, L)× (0,∞) ,

ρ2ψtt − bψxx + k (ϕx + ψ + l w) = F2 in (0, L)× (0,∞) ,

ρ1wtt − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) = F3 in (0, L)× (0,∞) ,

where L > 0,

Fi : (0, L)× (0,∞)→ R

are the external forces (controllers) and w, ϕ and ψ represent, respectively, the
longitudinal, vertical and shear angle displacements. For more details, we refer to
[14] and [15].

For the last few years, many researchers studied the well-posedness and the
stability of Bresse systems (1.4). Under different types of controls Fi, various
stability results have been obtained depending on the nature and the number of
controls, the regularity of initial data and the following parameters:

(1.5) s1 =
k

ρ1
, s2 =

b

ρ2
and s3 =

k0

ρ1
;

for this purpose, we refer the reader to [1], [2], [4], [7], [20], [23], [24], [25] and [26] in
case of (local or global, linear or nonlinear) frictional damping, and [5], [9], [10] and
[11] in case of memories. In some papers, it was proved that, when each equation
of (1.4) is directly damped; that is

F1F2F3 6= 0,

the stability of (1.4) holds regardless to s1, s2 and s3. However, when at least one
equation in (1.4) is free; that is

F1F2F3 = 0 and (F1, F2, F3) 6= (0, 0, 0),

system (1.4) is still stable depending on the relation between the coefficients s1, s2

and s3 like:

si = sj , i, j ∈ {1, 2, 3}.

When

(F1, F2, F3) = (0, 0, 0),

system (1.4) is conservative, which means that the energy is conserved and equal
to the energy of initial data along the trajectory of solutions.

When the Bresse system is indirectly damped via the coupling (in a certain
manner) with other equations, we mention here the work [17], where the authors
studied the stability of a thermoelastic Bresse system consisting of the following
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equations:
(1.6)

ρ1ϕtt − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) + lδθ = 0 in (0, L)× (0,∞) ,

ρ2ψtt − bψxx + k (ϕx + ψ + l w) + δqx = 0 in (0, L)× (0,∞) ,

ρ1wtt − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) + δθx = 0 in (0, L)× (0,∞) ,

ρ3θt − θxx + β (wx − lϕ)t = 0 in (0, L)× (0,∞) ,

ρ3qt − qxx + βψxt = 0 in (0, L)× (0,∞)

with homogeneous Dirichlet-Neumann-Neumann boundary conditions

(1.7) ϕ(x, t) = ψx(x, t) = wx(x, t) = θ(x, t) = q(x, t) = 0, x = 0, L, t ∈ (0,∞)

or homogeneous Dirichlet-Dirichlet-Dirichlet boundary conditions

(1.8) ϕ(x, t) = ψ(x, t) = w(x, t) = θ(x, t) = q(x, t) = 0, x = 0, L, t ∈ (0,∞) .

They proved that the norm of solutions in the energy space decays exponentially
to zero at infinity if

(1.9) s1 = s2 = s3.

Otherwise, the norm of solutions decays polynomially to zero with rates depending
on the regularity of the initial data. For the classical solutions, these rates were
t−

1
4 +ε in case (1.7), and t−

1
8 +ε in case (1.8), where ε is an arbitrary positive constant.

In [8], the authors considered the following coupled Bresse system with only one
heat equation:

(1.10)



ρ1ϕtt − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) = 0 in (0, L)× (0,∞) ,

ρ2ψtt − bψxx + k (ϕx + ψ + l w) + δθx = 0 in (0, L)× (0,∞) ,

ρ1wtt − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) = 0 in (0, L)× (0,∞) ,

ρ3θt − θxx + (βψt)x = 0 in (0, L)× (0,∞)

with (1.7) or (1.8). They proved that the exponential stability of (1.10) is equivalent
to (1.9). On the other hand, when (1.9) is not satisfied, the obtained decay rate in

[8] for classical solutions is t−
1
6 +ε in general, and t−

1
3 +ε when s1 6= s2 and s1 = s3.

The results of [8] were extended in [19] to the case where the thermal dissipation is
locally distributed; that is δ and β are non negative functions on x such that theirs
minimums on some open interval I ⊂ (0, L) are positive. Moreover, when (1.9) is
not satisfied, the authors of [19] improved the polynomial stability estimates of [8]

by getting the decay rates t−
1
4 and t−

1
2 instead of t−

1
6 +ε and t−

1
3 +ε, respectively.

In [13], the authors considered the following coupled system:

(1.11)



ρ1ϕtt − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) = 0 in (0, 1)× (0,∞) ,

ρ2ψtt − bψxx + k (ϕx + ψ + l w) + δθx = 0 in (0, 1)× (0,∞) ,

ρ1wtt − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) = 0 in (0, 1)× (0,∞) ,

ρ3θt + qx + δψxt = 0 in (0, 1)× (0,∞) ,

τqt + βq + θx = 0 in (0, 1)× (0,∞) .
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They proved that (1.11) is exponentially stable if

s1 = s3,
(ρ1

k
− ρ2

b

)(
1− τkρ3

ρ1

)
=
τδ2

b
and l small,

and (1.11) is not exponentially stable if

s1 6= s3 or
(ρ1

k
− ρ2

b

)(
1− τkρ3

ρ1

)
6= τδ2

b
.

Moreover, when

s1 = s3,
(ρ1

k
− ρ2

b

)(
1− τkρ3

ρ1

)
6= τδ2

b
and l small,

the polynomial stability for (1.11) was proved in [13] with the decay rate t−
1
2 .

In (1.6) and (1.10), the heat equations are governed by Fourier’s law of heat
conduction. However, the heat conduction in (1.1) and (1.11) is given by Cattaneo’s
law (for more details, see [13]).

In [6], the author considered the following coupled system:

(1.12)


ρ1ϕtt − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) = 0,
ρ2ψtt − bψxx + k (ϕx + ψ + l w) + δθx = 0,
ρ1wtt − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) = 0,
ρ3θt − k1

∫∞
0
g(s)θxx(t− s)ds+ γψxt = 0,

with homogeneous Dirichlet-Neumann boundary conditions

(1.13) ϕ(x, t) = ψx(x, t) = wx(x, t) = θ(x, t) = 0, x = 0, L, t ∈ (0,∞)

He proved that (1.12) is exponentially stable if and if

(1.14) k = k0, (
ρ1

ρ3k
− 1

g(0)k1
)(
ρ1

k
− ρ2

b
).− 1

g(0)k1

ρ1γ
2

ρ3kb
= 0.

On the other hand if (1.14) is not satisfied no decay rates was derived in [6]. We
need to mention here, that the coupling (through the second equation) and the
boundary conditions considered in [6] are not the same as the one considered in
this paper. Notice that, when the three hyperbolic equations in Bresse system are
(all or some of them) directly damped; that is

(F1, F2, F3) 6= (0, 0, 0),

system (1.4) is dissipative. However, systems (1.1), (1.6), (1.10) and (1.11) are
consisting of coupled conservative three hyperbolic equations with one or two par-
abolic equations, so the stability of the overall system is preserved thanks to the
dissipation generated by the parabolic equations. On the other hand, we remark
that in (1.6), the second and third hyperbolic equations are indirectly damped by
the coupling with the heat equations, and the first hyperbolic one is only weakly
damped through the coupling with the second and the third hyperbolic equations.
On the other hand, in (1.10) and (1.11), only the second hyperbolic equation is
effectively damped by the dissipation coming from the parabolic equations.

In our case (1.1), only the third hyperbolic equation is indirectly damped through
the coupling with the heat equations. Our objective, first is to consider (1.1)−(1.3),
we prove the well-posedness and we establish some decay rates for the solutions (like:
exponential stability, non exponential stability and polynomial stability) depending
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on the relationship between the coefficients of (1.1) and the smoothness of the initial
data.

Without loss of generality, we consider the domain (0, 1) instead of (0, L). The
proof of the well-posedness is based on the semigroup theory. However, the stability
results are proved using the energy method combining with the frequency domain
approach.

The paper is organized as follows. In section 2, we prove the well-posedness of
(1.1) − (1.3). In sections 3 and 4, we show, respectively, our non exponential and
exponential stability results for (1.1) − (1.3). The proof of our polynomial decay
for (1.1)− (1.3) is proved in section 5.

2. Well-posedness of (1.1)− (1.3)

In this section, we prove the existence, uniqueness and smoothness of solutions
for (1.1)− (1.3) using the semigroup theory. In order to transform (1.1)− (1.3) into
a first order evolution system on a suitable Hilbert space, we introduce the vector
functions

Φ =
(
ϕ, ϕ̃, ψ, ψ̃, w, w̃, θ, q

)T
and Φ0 = (ϕ0, ϕ1, ψ0, ψ1, w0, w1, θ0, q0)

T
,

where ϕ̃ = ϕt, ψ̃ = ψt and w̃ = wt. System (1.1) with initial data (1.2) can be
written as

(2.1)

{
Φt = AΦ in (0,∞) ,

Φ (0) = Φ0,

where A is a linear operator defined by

(2.2) AΦ =



ϕ̃

k

ρ1
(ϕx + ψ + l w)x +

lk0

ρ1
(wx − lϕ)

ψ̃

b

ρ2
ψxx −

k

ρ2
(ϕx + ψ + l w)

w̃

k0

ρ1
(wx − lϕ)x −

lk

ρ1
(ϕx + ψ + l w)− δ

ρ1
θx

− 1

ρ3
qx −

δ

ρ3
w̃x

−β
τ
q − 1

τ
θx



.

Now, we introduce the following spaces:

H1
∗ (0, 1) =

{
f ∈ H1 (0, 1) : f (0) = 0

}
,

∼
H1
∗ (0, 1) =

{
f ∈ H1 (0, 1) : f (1) = 0

}
,

H2
∗ (0, 1) = H2 (0, 1) ∩H1

∗ (0, 1) ,

∼
H2
∗ (0, 1) = H2 (0, 1) ∩

∼
H1
∗ (0, 1)
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and the energy space is given by

H = H1
∗ (0, 1)× L2 (0, 1)×

∼
H1
∗ (0, 1)× L2 (0, 1)×

∼
H1
∗ (0, 1)×

(
L2 (0, 1)

)3
equipped with the inner product, for Φj = (ϕj , ϕ̃j , ψj , ψ̃j , wj , w̃j , θj , qj)

T ∈
H, j = 1, 2,

〈Φ1,Φ2〉H = k 〈(ϕ1x + ψ1 + l w1) , (ϕ2x + ψ2 + l w2)〉L2(0,1) + b 〈ψ1x, ψ2x〉L2(0,1)

+k0 〈(w1x − lϕ1) , (w2x − lϕ2)〉L2(0,1) + ρ1 〈ϕ̃1, ϕ̃2〉L2(0,1)

+ρ2〈ψ̃1, ψ̃2〉L2(0,1) + ρ1 〈w̃1, w̃2〉L2(0,1) + ρ3 〈θ1, θ2〉L2(0,1) + τ 〈q1, q2〉L2(0,1) ,

and the corresponding norm in the energy space will be given by

‖Φ‖2H = k ‖ϕx + ψ + l w‖2L2(0,1) + b ‖ψx‖2L2(0,1) + k0 ‖wx − lϕ‖2L2(0,1)

+ρ1 ‖ϕ̃‖2L2(0,1) + ρ2‖ψ̃‖2L2(0,1) + ρ1 ‖w̃‖2L2(0,1) + ρ3 ‖θ‖2L2(0,1) + τ ‖q‖2L2(0,1) .

The domain of the operator A will be

D (A) = {Φ ∈ H | AΦ ∈ H, ϕx (1) = ψx (0) = wx (0) = 0} .

Based on the definition of A and H, one can see that

D (A) =

 Φ ∈ H | ϕ ∈ H2
∗ (0, 1) ; ψ, w ∈

∼
H2
∗ (0, 1) ; ϕ̃, θ ∈ H1

∗ (0, 1) ;

ψ̃, w̃, q ∈
∼
H1
∗ (0, 1) ; ϕx (1) = ψx (0) = wx (0) = 0

 .

Since the homogeneous Dirichlet-Neumann boundary conditions in (1.3) are in-

cluded in the definition of H1
∗ (0, 1),

∼
H1
∗ (0, 1) and D (A), it follows that, if Φ ∈

D (A) and satisfies (2.1), then (1.1)− (1.3) holds.

It is clear from the homogeneous Dirichlet boundary conditions in H1
∗ (0, 1) and

∼
H1
∗ (0, 1) that, if (ϕ,ψ,w) ∈ H1

∗ (0, 1)×
∼
H1
∗ (0, 1)×

∼
H1
∗ (0, 1) satisfying

k ‖(ϕx + ψ + l w)‖2L2(0,1) + b ‖ψx‖2L2(0,1) + k0 ‖(wx − lϕ)‖2L2(0,1) = 0,

then

ψ = 0, ϕ = −c sin (lx) and w = c cos (lx),

where c is a constant such that c = 0 or l = π
2 +mπ, for some m ∈ N. Furthermore,

we get ϕ = ψ = w = 0 if

(2.3) l 6= π

2
+mπ, ∀m ∈ N.

Here and after we assume that (2.3) is satisfied. Thus, H is a Hilbert space and
D (A) is dense in H. If the domain (0, 1) is replaced by (0, L), then (2.3) becomes

lL 6= π

2
+mπ, ∀m ∈ N.

Now, we prove that the operator A generates a C0 semigroup of contractions on
H. For this purpose, it is sufficient to prove that A is maximal monotone. A direct
calculation gives

(2.4) 〈AΦ,Φ〉H = −β ‖q‖2L2(0,1) ≤ 0.
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Hence, A is dissipative in H. On the other hand, it is easy to show that 0 ∈ ρ (A);
that is, for any F = (f1, · · · , f8)T ∈ H, there exists Z = (z1, · · · , z8)T ∈ D (A)
satisfying

(2.5) AZ = F.

Indeed, from the first, third and fifth equations in (2.5), we get

(2.6) z2 = f1, z4 = f3 and z6 = f5,

and then

(2.7) z2 ∈ H1
∗ (0, 1) and z4, z6 ∈

∼
H1
∗ (0, 1) .

Substituting z2 into the seventh equation in (2.5), we conclude from the last two
equations in (2.5) that

(2.8) z7x = −βz8 − τf8 and z8x = −δf5x − ρ3f7.

By a direct integration, we see that (2.8) has a unique solution satisfying

(2.9) z7 ∈ H1
∗ (0, 1) and z8 ∈

∼
H1
∗ (0, 1) .

Finally, the second, fourth and sixth equations in (2.5) become

(2.10)


k (z1x + z3 + l z5)x + lk0 (z5x − lz1) = ρ1f2,

bz3xx − k (z1x + z3 + l z5) = ρ2f4,

k0 (z5x − lz1)x − lk (z1x + z3 + l z5) = δz7x + ρ1f6.

To prove that (2.10) admits a solution satisfying

(2.11) z1 ∈ H2
∗ (0, 1) , z3, z5 ∈

∼
H2
∗ (0, 1) and z1x(1) = z3x(0) = z5x(0) = 0,

we define the following bilinear form:

G1 ((v1, v2, v3) , (w1, w2, w3)) = k 〈v1x + v2 + lv3, w1x + w2 + lw3〉L2(0,1)

+b 〈v2x, w2x〉L2(0,1)+k0 〈v3x − lv1, w3x − lw1〉L2(0,1) ,

∀ (v1, v2, v3)
T
, (w1, w2, w3)

T ∈ H0 ×H0,

and the following linear form:

G2 (v1, v2, v3) = 〈v1, ρ1f2〉L2(0,1) + 〈v2, ρ2f4〉L2(0,1)

+ 〈v3, δz7x + ρ1f6〉L2(0,1) , ∀ (v1, v2, v3)
T ∈ H0,

where

H0 = H1
∗ (0, 1)×

∼
H1
∗ (0, 1)×

∼
H1
∗ (0, 1)

Thus, the variational formulation of (2.10) is given by

(2.12) G1 ((z1, z3, z5) , (w1, w2, w3)) = G2 (w1, w2, w3) , ∀ (w1, w2, w3)
T ∈ H0.

From Lax-Milgram theorem, it follows that (2.12) has a unique solution

(z1, z3, z5) ∈ H0.

Therefore, using classical elliptic regularity arguments, we conclude that (z1, z3, z5)
solves (2.10) and satisfies the regularity and boundary conditions (2.11). This
proves that (2.5) has a unique solution Z ∈ D (A). By the resolvent identity, we
have λI−A is surjective, for any λ > 0 (see [18]), where I denotes the identity oper-
ator. Consequently, the Lumer-Phillips theorem implies that A is the infinitesimal
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generator of a linear C0 semigroup of contractions on H. Thus, the well-posedness
result for (2.1) is stated in the following (see [21]):

Theorem 2.1. Assume that (2.3) holds. For any p ∈ N and Φ0 ∈ D(Ap), system
(2.1) admits a unique solution

(2.13) Φ ∈ ∩pj=0C
p−j (R+;D

(
Aj
))
,

where D
(
Aj
)

is endowed by the graph norm ‖·‖D(Aj) =
∑j
r=0 ‖Ar·‖H.

In the next three sections, we will show some exponentiel, non exponential and
polynomial stability results for (2.1). The proof of these results is based on the
following frequency domain theorems:

Theorem 2.2. ([12] and [22]) A C0 semigroup of contractions on a Hilbert space
H generated by an operator A is exponentially stable if and only if

(2.14) iR ⊂ ρ (A) and sup
λ∈R

∥∥∥(iλI −A)
−1
∥∥∥
L(H)

<∞.

Theorem 2.3. ([16]) If a bounded C0 semigroup etA on a Hilbert space H generated
by an operator A satisfies, for some j ∈ N∗,

(2.15) iR ⊂ ρ (A) and sup
|λ|≥1

1

λj

∥∥∥(iλI −A)
−1
∥∥∥
L(H)

<∞.

Then, for any p ∈ N∗, there exists a positive constant cp such that

(2.16)
∥∥etAz0

∥∥
H ≤ cp ‖z0‖D(Ap)

(
ln t

t

)p
j

ln t, ∀z0 ∈ D (Ap) , ∀t > 0.

3. Lack of exponential stability of (1.1)− (1.3)

Our objective here is to show that the semigroup associated with our Bresse sys-
tem with second sound (2.1) is not exponentially stable depending on the following
relations:

(3.1) (k − k0)
(
ρ3 −

ρ1

τk

)
− δ2 = bρ1 − kρ2 = 0

and

(3.2) l2 6= ρ2k0 + ρ1b

ρ2k0

(π
2

+mπ
)2

+
ρ1k

ρ2 (k + k0)
, ∀m ∈ Z.

Theorem 3.1. We assume that (2.3) holds, and (3.1) or (3.2) does not hold. Then
the semigroup associated with (2.1) is not exponentially stable.

Proof. We use Theorem 2.2 by proving that the first or second condition in (2.14) is
not satisfied. First, we prove that the first condition in (2.14) is equivalent to (3.2).
Note that, according to the fact that 0 ∈ ρ (A) (see section 2), A−1 is bounded and
it is a bijection between H and D(A). Since D(A) has a compact embedding into
H, so it follows that A−1 is a compact operator, which implies that the spectrum
of A is discrete. Let λ ∈ R∗. We will prove that the unique

Φ =
(
ϕ, ϕ̃, ψ, ψ̃, w, w̃, θ, q

)T
∈ D(A)
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satisfying

(3.3) AΦ = i λΦ

is Φ = 0 if and only if (3.2) holds; that is the fact that iλ is not an eigenvalue of A
is equivalent to (3.2). But equation (3.3) is equivalent to

(3.4)



ϕ̃ = iλϕ, ψ̃ = iλψ, w̃ = iλw,

k

ρ1
(ϕx + ψ + l w)x +

lk0

ρ1
(wx − lϕ) = iλϕ̃,

b

ρ2
ψxx −

k

ρ2
(ϕx + ψ + l w) = iλψ̃,

k0

ρ1
(wx − lϕ)x −

lk

ρ1
(ϕx + ψ + l w)− δ

ρ1
θx = iλw̃,

− 1

ρ3
qx −

δ

ρ3
w̃x = iλθ, −β

τ
q − 1

τ
θx = iλq.

Using (2.4), we find

−β ‖q‖2L2(0,1) = Re 〈AΦ,Φ〉H = Re 〈iλΦ,Φ〉H = Re iλ ‖Φ‖2H = 0.

Then

(3.5) q = 0.

Taking into account that θ ∈ H1
∗ (0, 1), using (3.5) and the eight equation in (3.4),

we deduce that

(3.6) θ = 0.

Inserting (3.5) and (3.6) into the seventh equation in (3.4), we find

(3.7) w̃x = 0.

Then, the third equation in (3.4), implies that

(3.8) wx = 0.

As w ∈
∼
H1
∗ (0, 1), we have

(3.9) w = w̃ = 0.

Using (3.5), (3.6) and (3.9), then the system (3.4) is reduced into:

(3.10)



ϕ̃ = iλϕ, ψ̃ = iλψ,

k (ϕx + ψ)x − l2k0ϕ = −ρ1λ
2ϕ,

bψxx − k (ϕx + ψ) = −ρ2λ
2ψ,

−k0ϕx − k (ϕx + ψ) = 0,

which is equivalent to ϕ̃ = iλϕ, ψ̃ = iλψ and

(3.11)


(
l2k0 − ρ1λ

2
)
ϕ− k (ϕx + ψ)x = 0,

−ρ2λ
2ψ − bψxx + k (ϕx + ψ) = 0,

ϕx + ψ = −k0

k
ϕx.
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By deriving (3.11)3 and combining with (3.11)1, we see that ϕ satisfy the following
equation:

(3.12) ϕxx + αϕ = 0,

where α = l2k0−ρ1λ2

k0
. At this stage, we distinguish three cases.

Case 1: λ2 = l2k0
ρ1

. Then

ϕ(x) = c1x+ c2,

for c1, c2 ∈ C. Using the boundary conditions

(3.13) ϕ (0) = ϕx (1) = 0,

we find

(3.14) ϕ = 0,

which implies that, using the first two equations in (3.10) and the last one in (3.11),

(3.15)
∼
ϕ = 0

and

(3.16) ψ =
∼
ψ = 0.

Consequently, we get

(3.17) Φ = 0.

Case 2: λ2 > l2k0
ρ1

. Then

ϕ(x) = c1e
√
−αx + c2e

−
√
−αx.

Using again the boundary conditions (3.13), we find (3.14), and similarly as before,
we arrive at (3.17).

Case 3: λ2 < l2k0
ρ1

. Then

ϕ(x) = c1 cos
(√
αx
)

+ c2 sin
(√
αx
)
.

Using the boundary conditions (3.13), we deduce that c1 = 0, and

(3.18) c2 = 0 or ∃m ∈ Z : α =
(π

2
+mπ

)2

.

If c2 = 0, then (3.14) holds, and as before, we find (3.17).

If c2 6= 0, then, by (3.18),

(3.19) ∃m ∈ Z :
l2k0 − ρ1λ

2

k0
=
(π

2
+mπ

)2

.

Therefore, (3.11)3 is equivalent to

(3.20) ψ(x) = −c2
(

1 +
k0

k

)√
α cos

(√
αx
)
,

and then the first two equations in (3.11) are reduced to

(3.21) λ2 =
k0

[
kk0 + bl2 (k + k0)

]
(k + k0) (k0ρ2 + bρ1)

.
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We see that (3.19) and (3.21) lead to

∃m ∈ Z : l2 =
ρ2k0 + ρ1b

ρ2k0

(π
2

+mπ
)2

+
ρ1k

ρ2 (k + k0)
;

that is (3.2) does not hold. So, if (3.2) holds, we get a contradiction, and hence,
c2 = 0 and, as before, we find (3.17).

If (3.2) does not hold, then, for λ ∈ R satisfying (3.21), the function

Φ(x) = c2

(
sin
(√
αx
)
, iλ sin

(√
αx
)
,−
(

1 +
k0

k

)√
α cos

(√
αx
)
,

−iλ
(

1 +
k0

k

)√
α cos

(√
αx
)
, 0, 0, 0, 0

)T
is a solution of (3.3), for any c2 ∈ C, and then iλ /∈ ρ (A). Thus, we proved that
iR ⊂ ρ (A) is equivalent to (3.2).

Now, we show that the second condition in (2.14) does not hold if (3.1) is not
satisfied, i.e. we assume that (3.1) is not satisfied and we will prove that there
exists a sequence (λn)n ⊂ R such that∥∥∥(λnI −A)

−1
∥∥∥
L(H)

−→∞,

which is equivalent to prove that there exists (Fn)n ⊂ H with ‖Fn‖H ≤ 1, for which
we have

(3.22) ||(λnI −A)
−1
Fn︸ ︷︷ ︸

Φn

||H −→∞,

therefore, we have

(3.23) λnΦn −AΦn = Fn.

Our objective is to show that the solution Φn is not bounded when Fn is bounded
in H. The equation (3.23) implies that

(3.24)



iλnϕn −
∼
ϕn = f1n,

iλnρ1
∼
ϕn − k (ϕnx + ψn + l wn)x − lk0 (wnx − lϕn) + δθnx = ρ1f2n,

iλnψn −
∼
ψn = f3n,

iλnρ2

∼
ψn − bψnxx + k (ϕnx + ψn + l wn) = ρ2f4n,

iλnwn −
∼
wn = f5n,

iλnρ1
∼
wn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + l wn) = ρ1f6n,

iλnτqn + βqn + θnx = τf7n,

iλnρ3θn + qnx + δ
∼
wnx = ρ3f8n.

We will show that, for all n ∈ N, given c4 ∈ C∗ and

Fn(x) = (0, 0, 0, c4 cos (Nx), 0, 0, 0, 0)T ,

where N = (2n+1)π
2 , there exists λn ∈ R and Φn = (iλn − A)−1Fn ∈ D(A) such

that

lim
λn→∞

‖Φn‖H =∞.
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The system (3.24) will be written as

(3.25)



iλnϕn −
∼
ϕn = 0, iλnψn −

∼
ψn = 0, iλnwn −

∼
wn = 0,

−λ2
nρ1ϕn − k (ϕnx + ψn + l wn)x − lk0 (wnx − lϕn) = 0,

−λ2
nρ2ψn − bψnxx + k (ϕnx + ψn + l wn) = ρ2c4 cos (Nx),

−λ2
nρ1wn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + l wn) + δθnx = 0,

iλnρ3θn + qnx + δ
∼
wnx = 0,

iλnτqn + βqn + θnx = 0.

Because of the boundary conditions, one can take the following solution:

(3.26)

{
ϕn(x) = α1 sin (Nx), ψn(x) = α2 cos (Nx), wn(x) = α3 cos (Nx),
θn(x) = α4 sin (Nx), qn(x) = α5 cos (Nx),

where the constants α1, α2, α3, α4 and α5 are the solution of the following system:
(3.27)

(−λ2
nρ1 +N2k + l2k0)α1 + kNα2 + (k + k0)l Nα3 = 0,

kNα1 + (−λ2
nρ2 + bN2 + k)α2 + kl α3 = ρ2c4,

(k0 + k)lNα1 + lkα2 + (−λ2
nρ1 + k0N

2 + l2k + δ(iλnτ+β)δλnN
2

(iλ2
nρ3τ+λnρ3β−iN2) )α3 = 0,

(iλ2
nρ3τ + λnρ3β − iN2)α5 + δλnα3N

2 = 0,
(iλnτ + β)α5 = −α4N.

We distinguish two cases.

Case 1:
b

ρ2
=
k0

ρ1
and [k − k0]

[
ρ3 −

ρ1

τk

]
− δ2 6= 0. Let λ2

n =
k

ρ1
N2 +A, where

A is a constant to be chosen later. Then form (3.27) we have
(3.28)((

(k0 − k) ρ2

ρ1
N2 + (k −Aρ2)

)(
l2k0 −Aρ1

)
− k2N2

)
α1

= −ρ2kNc4 −
(
l (k + k0) (k0 − k) ρ2

ρ1
N3 + +

(
kk0 −Aρ2 (k + k0)− k2

)
Nl

)
α3,((

(k0 − k) ρ2

ρ1
N2 + (k −Aρ2)

)(
l2k0 −Aρ1

)
− k2N2

)
α2

= ρ2

[
l2k0 −Aρ1

]
c4 +

(
l (k + k0) kN2 − kl

(
l2k0 −Aρ1

))
α3
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and α3 must satisfy
(3.29)

([
l2k0 −Aρ1

]
(k0 − k) ρ2

ρ1
− k2 − l2 (k + k0)

2
ρ2

ρ1

)
(k0 − k)N4

+


(
l2k −Aρ1

) [
l2k0 −Aρ1

]
(k0 − k) ρ2

ρ1
−
(
l2k −Aρ1

)
k2

+ (k −Aρ2)
[
l2k0 −Aρ1

]
(k0 − k)− (k −Aρ2) l2 (k + k0)

2
+ l2k2 (k + k0)

N2

+lk2N +
[
l2k0 −Aρ1

] (
l2k −Aρ1

)
(k −Aρ2)− l2k2

[
l2k0 −Aρ1

]


α3

([
(k0 − k) ρ2

ρ1
N2 + (k −Aρ2)

]
[l2k0 −Aρ1]− k2N2

)

+

δ2N2

[
−τk
ρ1
N2 −Aτ + iβN

√(
k

ρ1
+

A

N2

)]
[(

1− τρ3k

ρ1

)
N2 −Aτρ3 + iρ3βN

√(
k

ρ1
+

A

N2

)]α3

= −
[
l2k0 −Aρ1 − (k + k0)N2

]
ρ2kl([

(k0 − k) ρ2

ρ1
N2 + (k −Aρ2)

]
[l2k0 −Aρ1]− k2N2

)c4.
Now, we distinguish four subcases.

k0 − k = 0 and 1− τρ3k

ρ1
6= 0, then, from (3.28) and (3.29), we have

(3.30){ (
(k −Aρ2)

[
l2k0 −Aρ1

]
− k2N2

)
α1 = −ρ2kNc4 −

[
kk0 − k2 −Aρ2 (k + k0)

]
lN α3,(

(k −Aρ2)
[
l2k0 −Aρ1

]
− k2N2

)
α2 = ρ2

[
l2k0 −Aρ1

]
c4 +

(
l (k + k0) kN2 − kl

[
l2k0 −Aρ1

])
α3

and α3 satisfies
(3.31)( [

l2k2 (k + k0)−
(
l2k −Aρ1

)
k2 − (k −Aρ2) l2 (k + k0)

2
]
N2

+lk2N +
[
l2k0 −Aρ1

] (
l2k −Aρ1

)
(k −Aρ2)− l2k2

[
l2k0 −Aρ1

] )α3

((k −Aρ2) [l2k0 −Aρ1]− k2N2)

+

δ2N2

[
−τk
ρ1
N2 −Aτ + iβN

√(
k

ρ1
+

A

N2

)]
[(

1− τρ3k

ρ1

)
N2 −Aτρ3 + iρ3βN

√(
k

ρ1
+

A

N2

)]α3

= −
[
l2k0 −Aρ1 − (k + k0)N2

]
([k −Aρ2] [l2k0 −Aρ1]− k2N2)

ρ2klc4.

We choose A so that

(3.32) A =

[
kρ1 + ρ2l

2k0

]
+N

√
4ρ2ρ1k2 +

[
kρ1 + ρ2l

2k0

]2
N2

2ρ2ρ1
' Nk
√
ρ2ρ1

,

then with (3.32), we have

(3.33) (k −Aρ2)
[
l2k0 −Aρ1

]
− k2N2 = l2kk0,
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since, our concern is the asymptotic behavior of the constants, so, for N large
enough, we obtain

Aρ1k
2 +Aρ2l

2 (k + k0)
2 − A3

N2
ρ2

1ρ2 + l2k2 (k + k0)

((k −Aρ2) [l2k0 −Aρ1]− k2N2)

− τkδ2(
1− τρ3k

ρ1

)
ρ1

N
2α3

(3.34) ' −
[
l2k0 −Aρ1 − (k + k0)N2

]
([k −Aρ2] [l2k0 −Aρ1]− k2N2)

ρ2klc4.

By using (3.32), we have

α3 '
√
ρ2ρ1

l (k + k0)N
c4

and

α2 '
ρ1k

l2k0 (k + k0)
c4,

so, we deduce with expression of α2 that

‖Φn‖H −→∞.

k0 − k = 0 and 1− τρ3k

ρ1
= 0, then we have from (3.28), (3.29) and (3.33)

(3.35)



(
(k −Aρ2)

[
l2k0 −Aρ1

]
− k2N2

)
α1

= −ρ2kNc4 − l
[
kk0 −Aρ2 (k + k0)− k2

]
Nα3,(

(k −Aρ2)
[
l2k0 −Aρ1

]
− k2N2

)
α2

= ρ2

[
l2k0 −Aρ1

]
c4 +

(
l (k + k0) kN2

−kl
[
l2k0 −Aρ1

] )α3

and

(3.36)

( (
−
(
l2k −Aρ1

)
k2 − (k −Aρ2) l2 (k + k0)

2
+ l2k2 (k + k0)

)
N2

+lk2N +
[
l2k0 −Aρ1

] (
l2k −Aρ1

)
(k −Aρ2)− l2k2

[
l2k0 −Aρ1

] )α3

l2kk0

+

δ2N2

[
−τk
ρ1
N2 −Aτ + iβN

√(
k

ρ1
+

A

N2

)]
[
−Aτρ3 + iρ3βN

√(
k

ρ1
+

A

N2

)] α3 = −
[
l2k0 −Aρ1 − (k + k0)N2

]
l2kk0

ρ2klc4.
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Using 1− τρ3k

ρ1
= 0, (3.32), (3.35) and (3.36) when N large enough, we deduce that



α3 '
2

[
−√ρ2ρ1 + iρ2ρ3β

√
k

ρ1

]
l

[
−
(

4k +
δ2

ρ3

)
+ 4i

β
√
ρ2k

τ

]
N

c4,

α2 '

δ2

ρ3

√
ρ2ρ1

l2k

[
−
(

4k +
δ2

ρ3

)
+ 4i

β
√
ρ2k

τ

]Nc4,
so, we obtain

‖Φn‖H −→∞.

k0 − k 6= 0 and 1− τρ3k

ρ1
= 0, then we have from (3.28) and (3.29)

 (k0 − k) ρ2

ρ1
N2

+ (k −Aρ2)

 [l2k0 −Aρ1

]
− k2N2

α1 = −ρ2kNc4−

 l (k + k0) (k0 − k) ρ2

ρ1
N3

+
[
kk0 −Aρ2 (k + k0)− k2

]
Nl

α3

and (k0 − k) ρ2

ρ1
N2

+ (k −Aρ2)

 [l2k0 −Aρ1

]
− k2N2

α2 = ρ2

[
l2k0 −Aρ1

]
c4+

(
l (k + k0) kN2

−kl
[
l2k0 −Aρ1

] )α3.

Also, we have
(3.37)

([
l2k0 −Aρ1

]
(k0 − k) ρ2

ρ1
− k2 − l2 (k + k0)

2
ρ2

ρ1

)
(k0 − k)N4

+


(
l2k −Aρ1

) [
l2k0 −Aρ1

]
(k0 − k) ρ2

ρ1
−
(
l2k −Aρ1

)
k2

+ (k −Aρ2)
[
l2k0 −Aρ1

]
(k0 − k)− (k −Aρ2) l2 (k + k0)

2
+ l2k2 (k + k0)

N2

+lk2N +
[
l2k0 −Aρ1

] (
l2k −Aρ1

)
(k −Aρ2)− l2k2

[
l2k0 −Aρ1

]


α3

([
(k0 − k) ρ2

ρ1
N2 + (k −Aρ2)

]
[l2k0 −Aρ1]− k2N2

)

+

δ2N2

[
−τk
ρ1
N2 −Aτ + iβN

√(
k

ρ1
+

A

N2

)]
[
−Aτρ3 + iρ3βN

√(
k

ρ1
+

A

N2

)] α3

= −
[
l2k0 −Aρ1 − (k + k0)N2

]([
(k0 − k) ρ2

ρ1
N2 + (k −Aρ2)

]
[l2k0 −Aρ1]− k2N2

)ρ2klc4,
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Here we choose A as follow:

A =


[
(k0 − k) ρ2N

2 − kρ1 − ρ2l
2k0

]
+

√
[(k0 − k) ρ2N2 − (kρ1 + ρ2l2k0)]

2 − 4ρ2ρ1

[
l2k0 (k0 − k) ρ2

ρ1
− k2

]
N2


2ρ2ρ1

(3.38) ' (k0 − k)N2

ρ1
,

then we have

(3.39)

[
(k0 − k) ρ2

ρ1
N2 + k −Aρ2

] [
l2k0 −Aρ1

]
− k2N2 = l2kk0,

therefore, for N large enough and using (3.37), (3.38) and (3.39), we have

(3.40)


α3 ' −

2lk0ρ2

(k0 − k)
2
N2

c4,

α2 ' −
ρ2 (k0 − k)

l2kk0
N2c4,


so, we deduce that

‖Φn‖H −→∞.

k0 − k 6= 0 and 1 − τρ3k

ρ1
6= 0, then, using (3.28), (3.29) and (3.39), we obtain

the same result as before

(3.41)


α3 ' −

2lk0ρ2

(k0 − k)
2
N2

c4,

α2 ' −
ρ2 (k0 − k)

l2kk0
N2c4,

so, we get

‖Φn‖H −→∞.

Case 2:
b

ρ2
6= k0

ρ1
. Let λ2

n =
k

ρ1
N2 +A, then from (3.25) we have

(3.42)



[
−Aρ1 + l2k0

]
α1 + kNα2 + l (k + k0)Nα3 = 0,

kNα1 +

[(
b− ρ2k

ρ1

)
N2 −Aρ2 + k

]
α2 + kl α3 = ρ2c4,[

(k0 − k)N2 −Aρ1 + l2k
]
α3 + l (k + k0)Nα1 + lkα2 + δNα4 = 0,

α4 =

δN

[
−τk
ρ1
N2 −Aτ + iβN

√(
k

ρ1
+

A

N2

)]
[(

1− τρ3k

ρ1

)
N2 − τρ3A+ iρ3βN

√(
k

ρ1
+

A

N2

)]α3,

α5 = − iδλnN
2

[N2 − τρ3λ2
n + iρ3βλn]

α3,
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then we obtain
(3.43)
 (b− ρ2k

ρ1

)
N2

+ (k −Aρ2)

(l2k0 −Aρ1

)
−k2N2

α2 = ρ2

(
l2k0 −Aρ1

)
c4+

[
(k + k0)N2

−
(
l2k0 −Aρ1

) ] klα3,

(3.44)

 (b− ρ2k

ρ1

)
N2

+ (k −Aρ2)

(l2k0 −Aρ1

)
− k2N2

α1

= −ρ2kNc4 −

 (k + k0)

[(
b− ρ2k

ρ1

)
N2 + (k −Aρ2)

]
−k2

 lN α3

and(k0 − k)N2 −Aρ1 + l2k +

 − [(k + k0)

[(
b− ρ2k

ρ1

)
N2 + k −Aρ2

]
− k2

]
l2 (k + k0)N2

+
[
(k + k0)N2 −

(
l2k0 −Aρ1

)]
k2l2


[(
b− ρ2k

ρ1

)
N2 + k −Aρ2

]
(l2k0 −Aρ1)− k2N2

α3

+

δ2N2

[
−τk
ρ1
N2 −Aτ + iβN

√
k

ρ1
+

A

N2

]
(

1− τρ3k

ρ1

)
N2 − τρ3A+ iρ3βN

√
k

ρ1
+

A

N2

α3

(3.45) = −
lkρ2

(
l2k0 −Aρ1

)
c4 − ρ2kNl (k + k0)Nc4[(

b− ρ2k

ρ1

)
N2 + k −Aρ2

]
(l2k0 −Aρ1)− k2N2

.

Now, we choose A such that

A =


[
ρ1

(
b− ρ2k

ρ1

)
N2 + ρ2l

2k0 + kρ1

]
+

√[
ρ1

(
b− ρ2k

ρ1

)
N2 + ρ2l2k0 + kρ1

]2

− 4ρ1ρ2

([(
b− ρ2k

ρ1

)
l2k0 − k2

]
N2 −B

)


2ρ1ρ2

(3.46) '

(
b− ρ2k

ρ1

)
N2

ρ2
,

where B is another constant to be chosen later. So, by using (3.46), we have

(3.47)

[(
b− ρ2k

ρ1

)
N2 + (k −Aρ2)

] (
l2k0 −Aρ1

)
− k2N2 = l2kk0 +B.
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From (3.45) and by using (3.47), we have
[
(k0 − k)N2 −Aρ1 + l2k

]

+

 − [(k + k0)

[(
b− ρ2k

ρ1

)
N2 + (k −Aρ2)

]
− k2

]
l2 (k + k0)N2

+
[
(k + k0)N2 −

(
l2k0 −Aρ1

)]
k2l2


(l2kk0 +B)

α3

+

δ2N2

[
−τk
ρ1
N2 −Aτ + iβN

√(
k

ρ1
+

A

N2

)]
(

1− τρ3k

ρ1

)
N2 − τρ3A+ iρ3βN

√(
k

ρ1
+

A

N2

)α3

(3.48) = −
lkρ2

(
l2k0 −Aρ1

)
c4 − ρ2kNl (k + k0)Nc4

l2kk0 +B
.

From (3.48) and by using (3.46), we deduce, for N large enough, the following:[k0 −
b

ρ2
ρ1

]
N2 +

(
k0 +

bρ1

ρ2

)
(l2kk0 +B)

k2l2N2

α3−

bτδ2

ρ2[(
1− τρ3b

ρ2

)
N2 + iρ3βN

√
b

ρ2

]N4α3

(3.49) = −−Aρ1 − (k + k0)N2

(l2kk0 +B)
lkρ2c4.

Here, we distinguish two subcases.

1− τρ3b

ρ2
= 0, then we have

(3.50) α3 = −i

 lkρ2ρ3β

(
b

ρ2
ρ1 + k0

)√
ρ2

b

τδ2 (l2kk0 +B)N

 c4
and

α2 = − ρ1b− kρ2

l2kk0 +B
N2c4.

By choosing B = 0, we deduce that

‖Φn‖H −→∞.

1− τρ3b

ρ2
6= 0, then, from (3.48), we have

(3.51)

k0 −
b

ρ2
ρ1 +

k0 +
bρ1

ρ2

l2kk0 +B
k2l2 −

bτδ2

ρ2

1− τρ3b

ρ2

N2α3

=

k0 +
ρ1b

ρ2

l2kk0 +B
lkρ2N

2c4,
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here, we choose B such that

(3.52) B =
ρ2

bτδ2

(
k0 +

bρ1

ρ2

)(
1− τρ3b

ρ2

)
k2l2 − l2kk0,

so, by (3.52), we obtain

k0 +
bρ1

ρ2

l2kk0 +B
k2l2 =

bτδ2

ρ2

1− τρ3b

ρ2

,

then we deduce from (3.48) and (3.52) that

α3 =
bτδ2ρ2

ρ2kl

(
1− τρ3b

ρ2

)[
k0 −

b

ρ2
ρ1

]c4
and

α1 = − bτδ2

ρ2

(
k0 +

bρ1

ρ2

)(
1− τρ3b

ρ2

)
k2l2

ρ2k +
k0bτδ

2(
1− τρ3b

ρ2

)[
k0 −

b

ρ2
ρ1

]
Nc4,

thus we have

wnx(x)− lϕn(x) =
k0τ

2b2δ4

ρ2k2l

(
1− τρ3b

ρ2

)2 [
k0 −

b

ρ2
ρ1

](
k0 +

bρ1

ρ2

)Nc4 sin (Nx),

hence

‖Φn‖H −→∞.
The proof of our theorem is then completed. �

4. Exponential stability of (1.1)− (1.3)

In this section, we use again Theorem 2.2 to prove that the semigroup associated
with (2.1) is exponentially stable provided that (2.3), (3.1) and (3.2) hold.

Theorem 4.1. We assume that (2.3), (3.1) and (3.2) hold. Then the semigroup
associated with (2.1) is exponentially stable.

Proof. In section 3, we have proved that the first condition in (2.14) is equivalent
to (3.2). Now, by contradiction, we will prove the second condition in (2.14). So,
we assume that the second condition in (2.14) is false, then there exist sequences
(Φn)n ⊂ D (A) and (λn)n ⊂ R satisfying

(4.1) ‖Φn‖H = 1, ∀n ≥ 0,

(4.2) lim
n→∞

|λn| =∞

and

(4.3) lim
n→∞

‖(i λn I − A) Φn‖H = 0,
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which implies that
(4.4)

iλnϕn −
∼
ϕn −→ 0 in H1

∗ (0, 1) ,

iλnρ1
∼
ϕn − k (ϕnx + ψn + lwn)x − lk0 (wnx − lϕn) −→ 0 in L2 (0, 1) ,

iλnψn −
∼
ψn −→ 0 in

∼
H1
∗ (0, 1) ,

iλnρ2

∼
ψn − bψnxx + k (ϕnx + ψn + lwn) −→ 0 in L2 (0, 1) ,

iλnwn −
∼
wn −→ 0 in

∼
H1
∗ (0, 1) ,

iλnρ1
∼
wn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + lwn) + δθnx −→ 0 in L2 (0, 1) ,

iλnρ3θn + qnx + δ
∼
wnx −→ 0 in L2 (0, 1) ,

iλnτqn + βqn + θnx −→ 0 in L2 (0, 1) ,


where the notation −→ means the limit when n goes to infinity. In the following,
we will check the second condition in (2.14) by finding a contradiction with (4.1).
Our proof is divided into several steps.

Step 1. Taking the inner product of (i λn I − A) Φn with Φn in H and using
(2.4), we get

(4.5) Re 〈(i λn I − A) Φn,Φn〉H = β ‖qn‖2L2(0,1) .

Using (4.1) and (4.3), we deduce that

(4.6) qn −→ 0 in L2 (0, 1) .

Step 2. Applying triangle inequality, we have∥∥∥∥θnxλn
∥∥∥∥
L2(0,1)

≤ 1

|λn|
‖iλnτqn + βqn + θnx‖L2(0,1) +

∥∥∥∥i τ qn +
β

λn
qn

∥∥∥∥
L2(0,1)

.

By (4.2), (4.4)8 and (4.6), we get

(4.7)
θnx
λn
−→ 0 in L2 (0, 1) .

Multiplying (4.4)1, (4.4)3 and (4.4)5 by 1
λn

, and using (4.1) and (4.2), we deduce
that

(4.8)


ϕn −→ 0 in L2 (0, 1) ,

ψn −→ 0 in L2 (0, 1) ,

wn −→ 0 in L2 (0, 1) .

 .

Step 3. Taking the inner product of (4.4)7 with
iθn
λn

in L2 (0, 1), integrating by

parts and using the boundary conditions, we get

ρ2 ‖θn‖2L2(0,1) −
〈
qn,

iθnx
λn

〉
L2(0,1)

− δ
〈
∼
wn,

iθnx
λn

〉
L2(0,1)

−→ 0,

then, from (4.1) and (4.7), we get

(4.9) θn −→ 0 in L2 (0, 1) .
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Applying triangle inequality, we have∥∥∥∥wnxxλn

∥∥∥∥
L2(0,1)

≤ 1

k0 |λn|

∥∥∥iλnρ1
∼
wn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + lwn) + δθnx

∥∥∥
L2(0,1)

+
1

k0

∥∥∥∥iρ1
∼
wn +

lk0

λn
ϕnx +

lk

λn
(ϕnx + ψn + lwn) + δ

θnx
λn

∥∥∥∥
L2(0,1)

.

Then, by (4.1), (4.2), (4.4)6 and (4.7), we deduce that

(4.10)

(
1

λn
wnxx

)
n

is uniformly bounded in L2 (0, 1) .

Step 4. Taking the inner product of (4.4)7 with
iwnx
λn

in L2 (0, 1), integrating

by parts and using the boundary conditions, we get

ρ3 〈θn, wnx〉L2(0,1)−
〈
qn,

iwnxx
λn

〉
L2(0,1)

−δ
〈(

iλnwnx −
∼
wnx

)
,
iwnx
λn

〉
L2(0,1)

+δ ‖wnx‖2L2(0,1) −→ 0.

Using (4.1), (4.2), (4.4)5, (4.6), (4.9) and (4.10), we deduce that

(4.11) wnx −→ 0 in L2 (0, 1) ,

and from (4.4)5, we have

(4.12)

∼
wnx
λn
−→ 0 in L2 (0, 1) .

As
∼
wn in

∼
H1
∗ (0, 1) and by using (4.12), we obtain

(4.13)

∼
wn
λn
−→ 0 in L2 (0, 1) .

Step 5. Taking the inner product of (4.4)6 with
i
∼
wn
λn

in L2 (0, 1), integrating by

parts and using the boundary conditions, we get

ρ1

∥∥∥∼wn∥∥∥2

L2(0,1)
+ k0

〈
(wnx − lϕn) ,

i
∼
wnx
λn

〉
L2(0,1)

+lk

〈
(ϕnx + ψn + lwn) ,

i
∼
wn
λn

〉
L2(0,1)

+ δ

〈
θnx
λn

, i
∼
wn

〉
L2(0,1)

−→ 0.

Using (4.1), (4.7), (4.12) and (4.13), we obtain

(4.14)
∼
wn −→ 0 in L2 (0, 1) ,

and with (4.4)5, we find

(4.15) λnwn −→ 0 in L2 (0, 1) .

Step 6. Taking the inner product of k (ϕnx + ψn + lwn) with θnx in L2 (0, 1),
integrating by parts and using the boundary conditions, we get

k 〈(ϕnx + ψn + lwn) , θnx〉 = −k 〈(ϕnx + ψn + lwn)x , θn〉L2(0,1)

=
〈(
iλnρ1

∼
ϕn − k (ϕnx + ψn + lwn)x − lk0 (wnx − lϕn) , θn

)〉
L2(0,1)
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−λnρ1

〈
i
∼
ϕn, θn

〉
L2(0,1)

+ lk0 〈(wnx − lϕn) , θn〉L2(0,1) ,

then, by using (4.1), (4.4)2 and (4.9),

(4.16) k 〈(ϕnx + ψn + lwn) , θnx〉L2(0,1) + λnρ1

〈
i
∼
ϕn, θn

〉
L2(0,1)

−→ 0.

Taking the inner product of (ϕnx + ψn + lwn) with iλn
∼
wn in L2 (0, 1), integrating

by parts and using the boundary conditions, we get〈
(ϕnx + ψn + lwn) , iλn

∼
wn

〉
L2(0,1)

= −
〈
iλnϕnx,

∼
wn

〉
L2(0,1)

−
〈
iλnψn,

∼
wn

〉
L2(0,1)

− l
〈
iλnwn,

∼
wn

〉
L2(0,1)

−
〈
∼
ψn,

∼
wn

〉
L2(0,1)

− l
〈(
iλnwn −

∼
wn

)
,
∼
wn

〉
L2(0,1)

− l
∥∥∥∼wn∥∥∥2

L2(0,1)

= −
〈(
iλnϕnx −

∼
ϕnx

)
,
∼
wn

〉
L2(0,1)

+
〈
∼
ϕn,

∼
wnx

〉
L2(0,1)

−
〈(

iλnψn −
∼
ψn

)
,
∼
wn

〉
L2(0,1)

−
〈
∼
ψn,

∼
wn

〉
L2(0,1)

− l
〈(
iλnwn −

∼
wn

)
,
∼
wn

〉
L2(0,1)

− l
∥∥∥∼wn∥∥∥2

L2(0,1)
.

Then, by using (4.1), (4.4)1, (4.4)3, (4.4)5 and (4.14), we deduce that

(4.17)
〈

(ϕnx + ψn + lwn) , iλn
∼
wn

〉
L2(0,1)

−
〈
∼
ϕn,

∼
wnx

〉
L2(0,1)

−→ 0.

Taking the inner product of
∼
ϕn with

∼
wnx in L2 (0, 1), we get〈

∼
ϕn,

∼
wnx

〉
L2(0,1)

=
〈
∼
ϕn,

(
∼
wnx −

∼
ϕn

)〉
L2(0,1)

+
∥∥∥ ∼ϕn∥∥∥2

L2(0,1)

= −
〈
∼
ϕn,

(
iλnwnx −

∼
wnx

)〉
L2(0,1)

+
〈
∼
ϕn,

(
iλnϕn −

∼
ϕn

)〉
L2(0,1)

+
〈
∼
ϕn, iλn (wnx − ϕn)

〉
L2(0,1)

+
∥∥∥ ∼ϕn∥∥∥2

L2(0,1)
,

then, by (4.1), (4.4)1 and (4.4)5, we have

(4.18) λn

〈
∼
ϕn, i (wnx − ϕn)

〉
L2(0,1)

−
〈
∼
ϕn,

∼
wnx

〉
L2(0,1)

+
∥∥∥ ∼ϕn∥∥∥2

L2(0,1)
−→ 0.

Taking the inner product of (4.4)2 with (wnx − lϕn) in L2 (0, 1), integrating by
parts and using the boundary conditions, we get〈

iλnρ1
∼
ϕn, (wnx − lϕn)

〉
L2(0,1)

+ k 〈(ϕnx + ψn + lwn) , (wnx − lϕn)x〉L2(0,1)

−lk0 ‖(wnx − lϕn)‖2L2(0,1) −→ 0,

which implies that

λnρ1

〈
i
∼
ϕn, (wnx − lϕn)

〉
L2(0,1)

− k

k0

〈
(ϕnx + ψn + lwn) ,

[
iλnρ1

∼
wn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + lwn) + δθnx

]〉
L2(0,1)

+
kρ1

k0

〈
(ϕnx + ψn + lwn) , iλn

∼
wn

〉
L2(0,1)

+
lk2

k0
‖(ϕnx + ψn + lwn)‖2L2(0,1)



STABILITY FOR A BRESSE SYSTEM WITH SECOND SOUND 23

+
δk

k0
〈(ϕnx + ψn + lwn) , θnx〉L2(0,1) − lk0 ‖(wnx − lϕn)‖2L2(0,1) −→ 0.

Using (4.1), (4.4)6, (4.8) and (4.11), we get

(4.19) −λnρ1

〈
∼
ϕn, i (wnx − lϕn)

〉
L2(0,1)

+
kρ1

k0

〈
(ϕnx + ψn + lwn) , iλn

∼
wn

〉
L2(0,1)

+
lk2

k0
‖(ϕnx + ψn + lwn)‖2L2(0,1) +

δk

k0
〈(ϕnx + ψn + lwn) , θnx〉L2(0,1) −→ 0,

then, by (4.16), (4.17), (4.18) and (4.19), we obtain

(4.20)

(
k

k0
− 1

)
ρ1

〈
∼
ϕn,

∼
wnx

〉
L2(0,1)

− δ

k0
λnρ1

〈
i
∼
ϕn, θn

〉
L2(0,1)

+
lk2

k0
‖(ϕnx + ψn + lwn)‖2L2(0,1) + ρ1

∥∥∥ ∼ϕn∥∥∥2

L2(0,1)
−→ 0.

Step 7. Taking the inner product of (4.4)8 with (ϕnx + ψn + lwn) in L2 (0, 1),
we get

〈iλnτqn , ϕnx〉L2(0,1) − τ 〈qn, iλnψn〉L2(0,1) − lτ 〈qn, iλnwn〉L2(0,1)

+ 〈βqn, (ϕnx + ψn + lwn)〉L2(0,1) + 〈θnx , (ϕn,x + ψn + lwn)〉L2(0,1) −→ 0,

then

〈iλnτqn, ϕnx〉L2(0,1) − τ
〈
qn,

(
iλnψn −

∼
ψn

)〉
L2(0,1)

− τ
〈
qn ,

∼
ψn

〉
L2(0,1)

−lτ
〈
qn ,

(
iλnwn −

∼
wn

)〉
L2(0,1)

− lτ
〈
qn,
∼
wn

〉
L2(0,1)

+ 〈βqn, (ϕnx + ψn + lwn)〉L2(0,1) + 〈θnx, (ϕnx + ψn + lwn)〉L2(0,1) −→ 0.

By using (4.1), (4.4)3, (4.4)5, (4.6) and (4.16), we have

〈iλnτqn, ϕnx〉L2(0,1) −
λnρ1

k

〈
θn, i

∼
ϕn

〉
L2(0,1)

−→ 0,

integrating by parts and using the boundary conditions, we obtain

−λnτ 〈iqnx, ϕn〉L2(0,1) −
λnρ1

k

〈
θn, i

∼
ϕn

〉
L2(0,1)

−→ 0,

therefore

−λnτ
〈
i
(
iλnρ3θn + qnx + δ

∼
wnx

)
, ϕn

〉
L2(0,1)

− λnτ 〈λnρ3θn , ϕn〉L2(0,1)

+λnτδ
〈
i
∼
wnx, ϕn

〉
L2(0,1)

− λnρ1

k

〈
θn, i

∼
ϕn

〉
L2(0,1)

−→ 0,

hence

τ
〈(
iλnρ3θn + qnx + δ

∼
wnx

)
,
(
iλnϕn −

∼
ϕn

)〉
L2(0,1)

+τ
〈(
iλnρ3θn + qnx + δ

∼
wnx

)
,
∼
ϕn

〉
L2(0,1)

−λnτ
〈
iρ3θn,

(
iλnϕn −

∼
ϕn

)〉
L2(0,1)

− λnτ
〈
iρ3θn,

∼
ϕn

〉
L2(0,1)

+τδ
〈
∼
wn,

(
iλnϕn −

∼
ϕn

)
x

〉
L2(0,1)

−τδ
〈
∼
wnx,

∼
ϕn

〉
L2(0,1)

−λnρ1

k

〈
θn, i

∼
ϕn

〉
L2(0,1)

−→ 0,

so, using (4.1), (4.4)1, (4.4)7, we get

(4.21)
(
τρ3 −

ρ1

k

)
λn

〈
θn, i

∼
ϕn

〉
L2(0,1)

− τδ
〈
∼
wnx,

∼
ϕn

〉
L2(0,1)
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−λnτ
〈
iρ3θn,

(
iλnϕn −

∼
ϕn

)〉
L2(0,1)

−→ 0.

On the other hand, integrating by parts and using the boundary conditions, we find
that

λn

〈
iρ3θn,

(
iλnϕn −

∼
ϕn

)〉
L2(0,1)

=
〈(
iλnρ3θn + qnx + δ

∼
wnx

)
,
(
iλnϕn −

∼
ϕn

)〉
L2(0,1)

−
〈
qnx,

(
iλnϕn −

∼
ϕn

)〉
L2(0,1)

− δ
〈
∼
wnx,

(
iλnϕn −

∼
ϕn

)〉
L2(0,1)

=
〈(
iλnρ3θn + qnx + δ

∼
wnx

)
,
(
iλnϕn −

∼
ϕn

)〉
L2(0,1)

+
〈
qn,
(
iλnϕnx −

∼
ϕnx

)〉
L2(0,1)

+ δ
〈
∼
wn,

(
iλnϕnx −

∼
ϕnx

)〉
L2(0,1)

,

so, by using (4.4)1, (4.4)7, (4.6) and (4.14), we deduce that

(4.22) λn

〈
iρ3θn,

(
iλnϕn −

∼
ϕn

)〉
L2(0,1)

−→ 0,

therefore, (4.21) and (4.22) give

(4.23)
(
τρ3 −

ρ1

k

)
λn

〈
i
∼
ϕn, θn

〉
L2(0,1)

− τδ
〈
∼
ϕn,

∼
wnx

〉
L2(0,1)

−→ 0,

and then, multiplying (4.23) by ρ1
τδ

(
k
k0
− 1
)

and adding (4.20), we obtain

ρ1λn
k0δ

[
(k − k0)

(
ρ3 −

ρ1

τk

)
− δ2

] 〈
i
∼
ϕn, θn

〉
L2(0,1)

+
lk2

k0
‖(ϕnx + ψn + lwn)‖2L2(0,1)+ρ1

∥∥∥ ∼ϕn∥∥∥2

L2(0,1)
−→ 0.

Here we use the fact that (k − k0)
(
ρ3 −

ρ1

τk

)
− δ2 = 0 (condition (3.1)), we deduce

that
lk2

k0
‖(ϕnx + ψn + lwn)‖2L2(0,1) + ρ1

∥∥∥ ∼ϕn∥∥∥2

L2(0,1)
−→ 0,

then, from (4.8), we have

(4.24) ϕnx −→ 0 in L2 (0, 1)

and

(4.25)
∼
ϕn −→ 0 in L2 (0, 1) ,

and using (4.2), (4.4)1 and (4.25), we have

(4.26) λnϕn −→ 0 in L2 (0, 1)

and

(4.27)

∼
ϕnx
λn
−→ 0 in L2 (0, 1) .

Step 8. Taking the inner product of (4.4)4 with (ϕnx + ψn + lwn) in L2 (0, 1),
integrating by parts and using the boundary conditions, we get〈

iλnρ2

∼
ψn, ϕnx

〉
L2(0,1)

+

〈
iλnρ2

∼
ψn, ψn

〉
L2(0,1)

+ l

〈
iλnρ2

∼
ψn, wn

〉
L2(0,1)

+b 〈ψnx, (ϕnx + ψn + lwn)x〉L2(0,1)
+ k ‖(ϕnx + ψn + lwn)‖2L2(0,1) −→ 0,
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then

−λnρ2

〈
∼
ψn, iϕnx

〉
L2(0,1)

− ρ2

〈
∼
ψn,

(
iλnψn −

∼
ψn

)〉
L2(0,1)

− ρ2

∥∥∥∥ ∼ψn∥∥∥∥2

L2(0,1)

−lρ2

〈
∼
ψn,

(
iλnwn −

∼
wn

)〉
L2(0,1)

− lρ2

〈
∼
ψn,

∼
wn

〉
L2(0,1)

− b
k

〈
ψnx,

[
iλnρ1

∼
ϕn − k (ϕnx + ψn + lwn)x − lk0 (wnx − lϕn)

]〉
L2(0,1)

+
b

k

〈
ψnx, iλnρ1

∼
ϕn

〉
L2(0,1)

− lk0b

k
〈ψnx, (wnx − lϕn)〉L2(0,1)+k ‖ϕnx + ψn + lwn‖2L2(0,1) −→ 0,

using (4.1), (4.4)2, (4.4)3, (4.4)5, (4.8), (4.11), (4.14) and (4.24), we get

(4.28) −λnρ2

〈
∼
ψn, iϕnx

〉
L2(0,1)

−ρ2

∥∥∥∥ ∼ψn∥∥∥∥2

L2(0,1)

+
bρ1

k
λn

〈
ψnx, i

∼
ϕn

〉
L2(0,1)

−→ 0.

Now, we use that

λn

〈
ψnx, i

∼
ϕn

〉
L2(0,1)

= −
〈(

iλnψnx −
∼
ψnx

)
,
∼
ϕn

〉
L2(0,1)

−
〈
∼
ψnx,

∼
ϕn

〉
L2(0,1)

,

and by integrating by parts and using the boundary conditions, we have

λn

〈
ψnx, i

∼
ϕn

〉
L2(0,1)

= −
〈
iλnψnx −

∼
ψnx,

∼
ϕn

〉
L2(0,1)

+

〈
∼
ψn,

∼
ϕnx

〉
L2(0,1)

= −
〈(

iλnψnx −
∼
ψnx

)
,
∼
ϕn

〉
L2(0,1)

−
〈
∼
ψn,

(
iλnϕnx −

∼
ϕnx

)〉
L2(0,1)

+

〈
∼
ψn, iλnϕnx

〉
L2(0,1)

,

therefore, from (4.1), (4.4)1 and (4.4)3, we see that

(4.29) λn

〈
ψnx, i

∼
ϕn

〉
L2(0,1)

− λn
〈
∼
ψn, iϕnx

〉
L2(0,1)

−→ 0,

so, inserting (4.29) into (4.28), we obtain

(4.30)
λn
k

(bρ1 − kρ2)
〈
ψnx, i

∼
ϕn

〉
L2(0,1)

− ρ2

∥∥∥∥ ∼ψn∥∥∥∥2

L2(0,1)

−→ 0.

At this stage, we use the fact that bρ1 − kρ2 = 0 (condition (3.1)), then we have
from (4.30)

(4.31)
∼
ψn −→ 0 in L2 (0, 1) ,

and by (4.4)3, we deduce that

(4.32) λnψn −→ 0 in L2 (0, 1) .

Step 9. Taking the inner product of (4.4)4 with ψn in L2 (0, 1), integrating by
parts and using the boundary conditions, we get

−ρ2

〈
∼
ψn, iλnψn

〉
L2(0,1)

+ b ‖ψnx‖2L2(0,1) + k 〈(ϕnx + ψn + lwn) , ψn〉L2(0,1) −→ 0,

and by using (4.8), (4.24), (4.31) and (4.32), we obtain

(4.33) ψnx −→ 0 inL2 (0, 1) .
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A combination of (4.6), (4.8), (4.9), (4.11), (4.14), (4.24), (4.25), (4.31) and (4.33)
leads to

‖Φn‖H −→ 0,

which is a contradiction with (4.1). Hence, the proof of Theorem 4.1 is completed.
�

5. Polynomial stability of (1.1)− (1.3)

In this section, we prove the polynomial decay of the solutions of (2.1) using
Theorem 2.3. Our main result is stated as follow:

Theorem 5.1. We assume that (2.3) and (3.2) hold. Then, for each p ∈ N∗, there
exists a constant cp > 0 such that

(5.1) ∀Φ0 ∈ D (Ap) , ∀t > 0,
∥∥etAΦ0

∥∥
H ≤ cp ‖Φ0‖D(Ap)

(
ln t

t

)p
8

ln t.

Proof. In section 3, we have proved that the first condition in (2.15) is satisfied if
(3.2) holds. Now, we need to show that

(5.2) sup
|λ| ≥ 1

1

λ8

∥∥∥(iλI −A)
−1
∥∥∥
H
<∞.

We establish (5.2) by contradiction. So, if (5.2) is false, then there exist sequences
(Φn)n ⊂ D (A) and (λn)n ⊂ R satisfying

(5.3) ‖Φn‖H = 1, ∀n ∈ N,

(5.4) lim
n→∞

|λn| =∞

and

(5.5) lim
n→∞

λ8
n ‖(iλn I − A) Φn‖H = 0,

which implies that
(5.6)

λ8
n

(
iλnϕn −

∼
ϕn

)
→ 0 in H1

∗ (0, 1) ,

λ8
n

[
iλnρ1

∼
ϕn − k (ϕnx + ψn + lwn)x − lk0 (wnx − lϕn)

]
→ 0 in L2 (0, 1) ,

λ8
n

(
iλnψn −

∼
ψn

)
→ 0 in

∼
H1
∗ (0, 1) ,

λ8
n

[
iλnρ2

∼
ψn − bψnxx + k (ϕnx + ψn + lwn)

]
→ 0 in L2 (0, 1) ,

λ8
n

(
iλnwn −

∼
wn

)
→ 0 in

∼
H1
∗ (0, 1) ,

λ8
n

[
iλnρ1

∼
wn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + lwn) + δθnx

]
→ 0 in L2 (0, 1) ,

λ8
n

(
iλnρ3θn + qnx + δ

∼
wnx

)
→ 0 in L2 (0, 1) ,

λ8
n (iλnτqn + βqn + θnx)→ 0 in L2 (0, 1) .



.
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Our goal is to derive ‖Φn‖H → 0 as a contradiction with (5.3). This will be
established through several steps.

Step 1. Taking the inner product of λ8
n (i λn I − A) Φn with Φn in H, we get

(as for (4.5))

Re
(〈
λ8
n (i λn I − A) Φn,Φn

〉
L2(0,1)

)
= β

∥∥λ4
nqn
∥∥2

L2(0,1)
,

so we have

(5.7) λ4
nqn −→ 0 in L2 (0, 1) .

Step 2. Applying triangle inequality, we obtain∥∥λ3
nθnx

∥∥
L2(0,1)

≤
∥∥λ3

n (iλnτqn + βqn + θnx)
∥∥
L2(0,1)

+
∥∥iλ4

nτqn + βλ3
nqn
∥∥
L2(0,1)

,

then, using (5.4), (5.6)8 and (5.7), we have

(5.8) λ3
nθnx −→ 0 in L2 (0, 1) .

Knowing that θn in H1
∗ (0, 1), then we have

(5.9) λ3
nθn −→ 0 in L2 (0, 1) .

Step 3. Using (5.3), (5.4), (5.6)1, (5.6)3 and (5.6)5, we obtain

(5.10)

{
ϕn, ψn wn −→ 0 in L2 (0, 1) ,

(λnϕn)n , (λnψn)n , (λnwn)n are uniformly bounded in L2 (0, 1) .

}
.

Step 4. By triangle inequality, we have∥∥∥∥wnxxλn

∥∥∥∥ ≤ ∥∥∥∥ 1

k0λn

[
iλnρ1

∼
wn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + lwn) + δθnx

]∥∥∥∥
L2(0,1)

+
1

k0

∥∥∥∥iρ1
∼
wn + lk0

ϕnx
λn

+
lk

λn
(ϕnx + ψn + lwn) +

δ

λn
θnx

∥∥∥∥
L2(0,1)

,

then we deduce from (5.3), (5.4), (5.6)6 and (5.8) that

(5.11)

(
wnxx
λn

)
n

is uniformly bounded in L2 (0, 1) .

integrating by parts and using the boundary conditions, we have∥∥λ2
nwnx

∥∥2

L2(0,1)
= λ4

n 〈wnx, wnx〉L2(0,1)

= λ3
n

〈
iwnx,

(
iλnwnx −

∼
wnx

)〉
L2(0,1)

+ λ3
n

〈
iwnx,

∼
wnx

〉
L2(0,1)

=
〈
iwnx, λ

3
n

(
iλnwnx −

∼
wnx

)〉
L2(0,1)

+
1

δ

〈
iwnx, λ

3
n

(
iλnρ3θn + qnx + δ

∼
wnx

)〉
L2(0,1)

+
ρ3

δ

〈
λnwn, λ

3
nθnx

〉
L2(0,1)

+
1

δ

〈
i
wnxx
λn

, λ4
nqn

〉
L2(0,1)

,

then, by using (5.3), (5.4), (5.6)5, (5.6)7, (5.7), (5.8), (5.10) and (5.11), we find

(5.12) λ2
nwnx → 0 in L2 (0, 1) .

As wn in
∼
H1
∗ (0, 1), we deduce from (5.12) that

(5.13) λ2
nwn → 0 in L2 (0, 1) ,
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and using (5.4) and (5.6)5, we see that

(5.14) λn
∼
wnx → 0 in L2 (0, 1)

and

(5.15) λn
∼
wn −→ 0 in L2 (0, 1) .

Also, dividing (5.6)6 by λ8
n and using (5.3), (5.4), (5.8) and (5.15), we deduce that

(5.16) (wnxx)n is uniformly bounded in L2 (0, 1) .

Step 5. Taking the inner product of (5.6)7 with
iwnx
λ4
n

in L2 (0, 1), integrating

by parts and using the boundary conditions, we get

−ρ3

〈
iλ3
nθnx, λ

2
nwn

〉
L2(0,1)

− δ
〈
λ4
n

(
iλnwnx −

∼
wnx

)
, iwnx

〉
L2(0,1)

−
〈
λ4
nqn, iwnxx

〉
L2(0,1)

+ δλ5
n ‖wnx‖

2
L2(0,1) → 0.

Using (5.3), (5.4), (5.6)5, (5.7), (5.8), (5.13) and (5.16), we obtain

(5.17) |λn|
5
2wnx → 0 in L2 (0, 1) ,

and from (5.6)5, we get

(5.18) |λn|
3
2
∼
wnx → 0 in L2 (0, 1) .

Step 6. Applying again triangle inequality, we have∥∥∥∥ϕnxxλn

∥∥∥∥
L2(0,1)

≤ 1

k

∥∥∥∥ 1

λn

[
iλnρ1

∼
ϕn − k (ϕnx + ψn + lwn)x − lk0 (wnx − lϕn)

]∥∥∥∥
L2(0,1)

+
1

k

∥∥∥∥iρ1
∼
ϕn −

k

λn
(ψnx + lwnx)− lk0

λn
(wnx − lϕn)

∥∥∥∥
L2(0,1)

,

and using (5.3), (5.4) and (5.6)2, we deduce that

(5.19)

(
ϕnxx
λn

)
n

is uniformly bounded in L2 (0, 1) .

Taking the inner product of (5.6)6 with
ϕnx
λ8
n

in L2 (0, 1), integrating by parts and

using the boundary conditions, we obtain

ρ1

〈
iλn
∼
wn, ϕnx

〉
L2(0,1)

+ k0

〈
λnwnx,

ϕnxx
λn

〉
L2(0,1)

+ l (k + k0) ‖ϕnx‖2L2(0,1)

+lk 〈(ψn + lwn) , ϕnx〉L2(0,1) + δ 〈θnx, ϕnx〉L2(0,1) −→ 0,

then, from (5.3), (5.4), (5.8), (5.10), (5.12), (5.15) and (5.19), we have

(5.20) ϕnx −→ 0 in L2 (0, 1) .

Step 7. Taking the inner product of (5.6)6 with
ϕnx
λ7
n

in L2 (0, 1), integrating by

parts and using the boundary conditions, we get

−ρ1

〈
∼
wn, λn

(
iλnϕnx −

∼
ϕnx

)〉
L2(0,1)

+ ρ1

〈
λn
∼
wnx,

∼
ϕn

〉
L2(0,1)

+k0

〈
λ2
nwnx,

ϕnxx
λn

〉
L2(0,1)

+ l (k + k0)λn ‖ϕnx‖2L2(0,1)
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+lk 〈λn (ψn + lwn) , ϕnx〉L2(0,1) + δ 〈λnθnx, ϕnx〉L2(0,1) −→ 0,

hence, using (5.3), (5.4), (5.6)1, (5.8), (5.10), (5.12), (5.19) and (5.20), we obtain

(5.21) λn ‖ϕnx‖2L2(0,1) −→ 0.

Taking the inner product of (5.6)2 with
ϕn
λ7
n

in L2 (0, 1), integrating by parts and

using the boundary conditions, we get

−ρ1λn

〈
∼
ϕn,

(
iλnϕn −

∼
ϕn

)〉
L2(0,1)

− ρ1λn

∥∥∥∼ϕn∥∥∥2

L2(0,1)

+kλn 〈(ϕnx + ψn + lwn) , ϕnx〉L2(0,1) − lk0λn 〈(wnx − lϕn) , ϕn〉L2(0,1) −→ 0,

which implies

−ρ1

〈
∼
ϕn, λn

(
iλnϕn −

∼
ϕn

)〉
L2(0,1)

− ρ1λn

∥∥∥∼ϕn∥∥∥2

L2(0,1)

+kλn ‖ϕnx‖2L2(0,1) + k 〈(λnψn + lλnwn) , ϕnx〉L2(0,1)

−lk0 〈(λnwnx − lλnϕn) , ϕn〉L2(0,1) −→ 0,

so, using (5.3), (5.4), (5.6)1, (5.10), (5.12) and (5.21), we deduce that

(5.22) λn

∥∥∥∼ϕn∥∥∥2

L2(0,1)
−→ 0,

and from (5.6)1, we obtain that

(5.23) λ3
n ‖ϕn‖

2 −→ 0.

Step 8. Multiplying (5.6)2 by
1

|λn|
1
2 λ8

n

, we get

i
λn
|λn|

ρ1 |λn|
1
2
∼
ϕn−k

ϕnxx

|λn|
1
2

−k ψnx

|λn|
1
2

−l (k + k0)
wnx

|λn|
1
2

+l2k0
ϕn

|λn|
1
2

−→ 0 in L2 (0, 1) ,

then, using (5.3), (5.4) and (5.22), we deduce that

(5.24)
ϕnxx

|λn|
1
2

−→ 0 in L2 (0, 1) .

On the other hand, by integrating by parts and using the boundary conditions, we
see that

λn 〈wnxx, iλnϕnx〉L2(0,1) = λ2
n 〈iwnx, ϕnxx〉L2(0,1)

=
〈
λn

(
iλnwnx −

∼
wnx

)
, ϕnxx

〉
L2(0,1)

+ λn

〈
∼
wnx, ϕnxx

〉
L2(0,1)

=

〈
λ2
n

(
iλnwnx −

∼
wnx

)
,
ϕnxx
λn

〉
L2(0,1)

+

〈
λn |λn|

1
2
∼
wnx,

ϕnxx

|λn|
1
2

〉
L2(0,1)

,

then, using (5.4), (5.6)5, (5.18) and (5.24), we obtain

(5.25) λn 〈wnxx, iλnϕnx〉L2(0,1) −→ 0.

Furthermore, integrating by parts and using the boundary conditions,

λn

〈
(ϕnx + ψn + lwn)x ,

∼
ϕn

〉
L2(0,1)

= −λn
〈

(ϕnx + ψn + lwn) ,
∼
ϕnx

〉
L2(0,1)
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= − 1

lk

〈
λ2
n

[
iλnρ1

∼
wn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + lwn) + δθnx

]
,

∼
ϕnx
λn

〉
L2(0,1)

− 1

lk

〈(
iλnρ1

∼
wn + δθnx

)
, λn

(
iλnϕnx −

∼
ϕnx

)〉
L2(0,1)

+
k0

lk

〈
(wnx − lϕn)x , λn

(
iλnϕnx −

∼
ϕnx

)〉
L2(0,1)

− λ3
n

lk

〈
iρ1
∼
wnx, iϕn

〉
L2(0,1)

+
δ

lk

〈
λ2
nθnx, iϕnx

〉
L2(0,1)

− k0λn
lk
〈wnxx, iλnϕnx〉L2(0,1) −

k0λ
2
n

k
i ‖ϕnx‖2L2(0,1) ,

then, using (5.6)1, (5.6)6, (5.8), (5.15), (5.16), (5.18), (5.23) and (5.25), we find

(5.26) λn

〈
(ϕnx + ψn + lwn)x ,

∼
ϕn

〉
L2(0,1)

+
k0

k
i ‖λnϕnx‖2L2(0,1) −→ 0.

Taking the inner product of (5.6)2 with

∼
ϕn
λ7
n

in L2 (0, 1), we get

ρ1i
∥∥∥λn∼ϕn∥∥∥2

L2(0,1)
−kλn

〈
(ϕnx + ψn + lwn)x ,

∼
ϕn

〉
L2(0,1)

−lk0

〈
(λnwnx − lλnϕn) ,

∼
ϕn

〉
L2(0,1)

−→ 0,

then, using (5.26), we obtain

ρ1i
∥∥∥λn∼ϕn∥∥∥2

L2(0,1)
+ ik0 ‖λnϕnx‖2L2(0,1) − lk0

〈
(λnwnx − lλnϕn) ,

∼
ϕn

〉
L2(0,1)

−→ 0,

and from (5.3), (5.4), (5.6)1, (5.12), (5.22) and (5.23), we deduce that

(5.27) λn
∼
ϕn −→ 0 in L2 (0, 1)

and

(5.28) λnϕnx −→ 0 in L2 (0, 1) .

Step 9. Multiplying (5.6)4 by
1

λ9
n

, we obtain

iρ2

∼
ψn − b

ψnxx
λn

+
k

λn
(ϕnx + ψn + lwn)→ 0 in L2 (0, 1) .

By triangle inequality, we deduce from (5.3) and (5.4) that

(5.29)

(
ψnxx
λn

)
n

is uniformly bounded in L2 (0, 1) .

Taking the inner product of (5.6)2 with
ψnx
λ8
n

in L2 (0, 1), we get

ρ1

〈
iλn
∼
ϕn, ψnx

〉
L2(0,1)

− k 〈ϕnxx, ψnx〉L2(0,1) − k ‖ψnx‖
2
L2(0,1)

−l(k + k0) 〈wnx, ψnx〉L2(0,1) + l2k0 〈ϕn, ψnx〉L2(0,1) → 0,

then, integrating by parts and using the boundary conditions, we obtain

ρ1

〈
iλn
∼
ϕn, ψnx

〉
L2(0,1)

+ k

〈
λnϕnx,

ψnxx
λn

〉
L2(0,1)

− k ‖ψnx‖2L2(0,1)

−l(k + k0) 〈wnx, ψnx〉L2(0,1) + l2k0 〈ϕn, ψnx〉L2(0,1) → 0,

so, using (5.3), (5.4), (5.10), (5.12), (5.27), (5.28) and (5.29), we deduce that

(5.30) ψnx −→ 0 in L2 (0, 1) .
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Taking the inner product of (5.6)4 with
ψn
λ8
n

in L2 (0, 1), integrating by parts and

using the boundary conditions, we get

−ρ2

〈
∼
ψn,

(
iλnψn −

∼
ψn

)〉
L2(0,1)

− ρ2

∥∥∥∥∼ψn∥∥∥∥2

L2(0,1)

+ b ‖ψnx‖2L2(0,1)

+ 〈k (ϕnx + ψn + lwn) , ψn〉L2(0,1) −→ 0,

hence, using (5.3), (5.4), (5.6)3, (5.10) and (5.30), we get

(5.31)
∼
ψn −→ 0 in L2 (0, 1) .

A combination of (5.4) and all the above convergence leads to

‖Φn‖H −→ 0,

which is a contradiction with (5.3). Consequently, the proof of our Theorem 5.1 is
completed. �
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