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NEW STABILITY RESULTS FOR A LINEAR THERMOELASTIC
BRESSE SYSTEM WITH SECOND SOUND

M. AFILAL, A. GUESMIA AND A. SOUFYANE

ABSTRACT. In this paper, we consider a linear one-dimensional thermoelastic
Bresse system with second sound consisting of three hyperbolic equations and
two parabolic equations coupled in a certain manner under mixed homogeneous
Dirichlet-Neumann boundary conditions, where the heat conduction is given
by Cattaneo’s law. Only the longitudinal displacement is damped via the
dissipation from the two parabolic equations, and the vertical displacement
and shear angle displacement are free. We prove the well-posedness of the
system and some exponential, non exponential and polynomial stability results
depending on the coefficients of the equations and the smoothness of initial
data. Our method of proof is based on the semigroup theory and a combination
of the energy method and the frequency domain approach.

Keywords: Bresse system, Heat conduction, Well-posedness, Asymptotic
behavior, Semigroup theory, Energy method, Frequency domain approach.

AMS Classification: 35B40, 35145, 74H40, 93D20, 93D15.

1. INTRODUCTION

In this paper, we consider the following linear Bresse system with second sound:

(1.1)
p1ow — k(oo + 0 +1lw), —lko (wy —lp) =0 in

(0,1) x (0, 00)
p2et — bue + K (9 + 9 +1w) =0 in (0,1) x (0, 00)
prwee — ko (we — ), + Uk (0z + P +1w) +350, =0 in (0,1) x (0,00),
P30t + Gz + dwyy =0 in (0,1) x (0,00)

(0,1) x (0, 00)

Tq + Bq+ 0, =0 in
with the initial data

4 (:E, 0) = %o (.’E) )y Pt (LU, 0) =¥ ((E) in (07 ]-)7
(1 2) ¢($,0) =¢0 (I‘)7 wt (.13,0) =¢1 ($) mn (071)a
. w(x,0) = wg (), w (£,0) =wy () in (0,1),

0(x,0) = by (), q(z,0) = go ()  in (0,1)
and mixed homogeneous Dirichlet-Neumann boundary conditions
©(0,t) = v, (0,t) = w, (0,¢£) =6(0,t) =0 in (0,00),
{ po (Lt) = ¢ (1,t) = w(l,t) =¢q(1,t) =0 in (0,00),
where p1, p2, p3, b, k, ko, 7, 8, 6 and [ are positive constants, the initial data g,

v1, Yo, Y1, wo, wi, 6y and gy belong to a suitable Hilbert space, and the unknowns
1

(1.3)
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of (1.1) — (1.3) are the following variables:

(¢, 9,w,0,9) : (0,1) x (0,00) =+ R,
The Bresse system [3] is consisting of three coupled hyperbolic equations

pros — k (pz + 0 +1lw), —lky (wy —lp) =F1 in (0,L) x (0,00),
(14) p2¢tt—b¢xx+k(<px+w+lw) :F2 in (O,L) X (0,00),
prwee — ko (wg — 1), + 1k (pz + ¢ +1w)=F; in (0,L) x (0,00),

where L > 0,
F;,:(0,L) x (0,00) = R

are the external forces (controllers) and w, ¢ and v represent, respectively, the
longitudinal, vertical and shear angle displacements. For more details, we refer to
[14] and [15].

For the last few years, many researchers studied the well-posedness and the
stability of Bresse systems (1.4). Under different types of controls F;, various
stability results have been obtained depending on the nature and the number of
controls, the regularity of initial data and the following parameters:

k b k
(1~5) §1=—, S3=— and s3= —O;

P1 P2 P1
for this purpose, we refer the reader to [1], [2], [4], [7], [20], [23], [24], [25] and [26] in
case of (local or global, linear or nonlinear) frictional damping, and [5], [9], [10] and
[11] in case of memories. In some papers, it was proved that, when each equation
of (1.4) is directly damped; that is

FiFyFs #£ 0,

the stability of (1.4) holds regardless to s1, s2 and s3. However, when at least one
equation in (1.4) is free; that is

FiFF3 =0 and (Fp, Fy, Fs) #(0,0,0),
system (1.4) is still stable depending on the relation between the coefficients s, so
and s3 like:
s =sj, 14,5 €{1,2,3}.
When
(F1, Fo, F3) = (0,0,0),

system (1.4) is conservative, which means that the energy is conserved and equal
to the energy of initial data along the trajectory of solutions.

When the Bresse system is indirectly damped via the coupling (in a certain
manner) with other equations, we mention here the work [17], where the authors
studied the stability of a thermoelastic Bresse system consisting of the following
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equations:

(1.6)
prow —k (pr + 9 +1w), — lko (wy —lp) +160 =0 in (0,L) x (0,00),
pothiy — e + k (pp + 0+ lw) + g, =0 in (0,L) x (0,00),
prwee — ko (wg — 1), + 1k (pz +9 +1w) +60, =0 in (0,L) x (0,00),
P30 — Ogz + B (wy — ), =0 in (0,L) x (0,00),
P3qt — Qzz + ﬂq/jart =0 in (OvL) X (Oa OO)

with homogeneous Dirichlet-Neumann-Neumann boundary conditions

(1.7) oz, t) = Y (x,t) = we(x,t) = 0(x,t) = q(x,t) =0, x=0,L,te(0,00)
or homogeneous Dirichlet-Dirichlet-Dirichlet boundary conditions

(1.8)  p(x,t) =¢(x,t) =w(x,t) =0(x,t) = q(x,t) =0, z=0,L,te(0,00).

They proved that the norm of solutions in the energy space decays exponentially
to zero at infinity if

(19) S§1 = SS9 = S3.

Otherwise, the norm of solutions decays polynomially to zero with rates depending
on the regularity of the initial data. For the classical solutions, these rates were
t~3%¢in case (1.7), and ¢~ 5 +€ in case (1.8), where € is an arbitrary positive constant.

In [8], the authors considered the following coupled Bresse system with only one
heat equation:

p1pe — k (r + 0 +1w), — ko (w, —1p) =0 in (0,L) x (0,00),
(1.10) p2tbie — ey + K (0r + 0 +1lw) + 50, =0 in (0,L) x (0,00),
prwge — ko (we — 1), + 1k (e + ¢ +1w) =0 in (0,L) x (0,00),
P30y — Oz + (Boe)s =0 in (0,L) x (0,00)

with (1.7) or (1.8). They proved that the exponential stability of (1.10) is equivalent
0 (1.9). On the other hand, when (1.9) is not satisfied, the obtained decay rate in
[8] for classical solutions is t=5+€ in general, and +=3%¢ when S1 # So and s1 = s3.
The results of [8] were extended in [19] to the case where the thermal dissipation is
locally distributed; that is 6 and S are non negative functions on x such that theirs
minimums on some open interval I C (0, L) are positive. Moreover, when (1.9) is
not satisfied, the authors of [19] improved the polynomial stability estimates of [8]
by getting the decay rates t=% and ¢~ 2 instead of £~ 57 and t*%“, respectively.

In [13], the authors considered the following coupled system:
p1oee — k (pz + ¥ +1lw), —lko (wy —lp) =0 in (0,1) x (0, 00)
P2ttt — bae + K (0o + ¥ +1w) + 66, =0 in (0,1) x (0,00)
(1.11) prwge — ko (wz —lp), + 1k (0 +9 +1lw) =0 in (0,1) x (0,00),
P30t + gz + 0hye =0 in (0,1) x (0,00)
T+ B8q+60,=0 in (0,1) x (0,00)
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They proved that (1.11) is exponentially stable if

_ pr_p2\ (y_Thes) _76?
$1 = S3, (k: b) (1 . )— 5 and [ small,

and (1.11) is not exponentially stable if

pL P2 Tkps 76°
U N (R icl AR
sL7 83 or (k b)( o1 >7é b

Moreover, when

k 52
$1 = 83, (&,@) 1 Thps #T— and [ small,
k b P1 b

the polynomial stability for (1.11) was proved in [13] with the decay rate t~2.

In (1.6) and (1.10), the heat equations are governed by Fourier’s law of heat
conduction. However, the heat conduction in (1.1) and (1.11) is given by Cattaneo’s
law (for more details, see [13]).

In [6], the author considered the following coupled system:
prow — k(o + ¢ +lw), — ko (wa — 1) =0,
prwy — ko (we — lp), + 1k (0z + 1 +1lw) =0,
p30s — k1 fo 9(8)0z2(t — 8)ds + yihue = 0,
with homogeneous Dirichlet-Neumann boundary conditions
(1.13) o(x,t) = (2, t) = we(z,t) = 0(x,t) =0, x=0,L,te(0,00)

He proved that (1.12) is exponentially stable if and if

(1.12)

p1 1 p1 P2 1 piy?
— ) ). — =

psk g0k’ kb’ g(0)ky pakb

On the other hand if (1.14) is not satisfied no decay rates was derived in [6]. We
need to mention here, that the coupling (through the second equation) and the
boundary conditions considered in [6] are not the same as the one considered in
this paper. Notice that, when the three hyperbolic equations in Bresse system are
(all or some of them) directly damped; that is

(FlaF27F3) 7é (anao)v

system (1.4) is dissipative. However, systems (1.1), (1.6), (1.10) and (1.11) are
consisting of coupled conservative three hyperbolic equations with one or two par-
abolic equations, so the stability of the overall system is preserved thanks to the
dissipation generated by the parabolic equations. On the other hand, we remark
that in (1.6), the second and third hyperbolic equations are indirectly damped by
the coupling with the heat equations, and the first hyperbolic one is only weakly
damped through the coupling with the second and the third hyperbolic equations.
On the other hand, in (1.10) and (1.11), only the second hyperbolic equation is
effectively damped by the dissipation coming from the parabolic equations.

(1.14) k=ko (

In our case (1.1), only the third hyperbolic equation is indirectly damped through
the coupling with the heat equations. Our objective, first is to consider (1.1)—(1.3),
we prove the well-posedness and we establish some decay rates for the solutions (like:
exponential stability, non exponential stability and polynomial stability) depending
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on the relationship between the coefficients of (1.1) and the smoothness of the initial
data.

Without loss of generality, we consider the domain (0, 1) instead of (0, L). The
proof of the well-posedness is based on the semigroup theory. However, the stability
results are proved using the energy method combining with the frequency domain
approach.

The paper is organized as follows. In section 2, we prove the well-posedness of
(1.1) — (1.3). In sections 3 and 4, we show, respectively, our non exponential and
exponential stability results for (1.1) — (1.3). The proof of our polynomial decay
for (1.1) — (1.3) is proved in section 5.

2. WELL-POSEDNESS OF (1.1) — (1.3)

In this section, we prove the existence, uniqueness and smoothness of solutions
for (1.1) — (1.3) using the semigroup theory. In order to transform (1.1) — (1.3) into
a first order evolution system on a suitable Hilbert space, we introduce the vector
functions

~ T
o = (907 557 7/)7 1/% w, ’Lba 93 Q) and Dy = (9003 ¥1, 77/}0, 77/11, Wo, Wi, 003 QO)Tv

where ¢ = ¢y, 1) = ¢, and @ = w;. System (1.1) with initial data (1.2) can be
written as

2.1) { o, = AP in (0,00),

D (0) = P,
where A is a linear operator defined by
@
k lk
= (pa+h+Lw), + — (w, — )
p1 P1

(4

b k
— Yy — — (@x+w+lw)
P2 P2

(2.2) AD = .

k k )
= (we — lp), — — (0 + ¥ +1w) = —0,
P1 p1 p1

1 [

—— 4y — —Wg
P3 P3
1
_éq - 79x
T T

Now, we introduce the following spaces:
H}(0,1)={feH"(0,1): f(0) =0},

~

HI(0,1)={fe€H"(0,1): f(1) =0},
H2(0,1) = H2(0,1) N H (0,1),

~

H2(0,1) = H? (0,1) N H! (0,1)
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and the energy space is given by
M= H!(0,1) x L>(0,1) x H' (0,1) x L*(0,1) x H! (0,1) x (L?(0,1))°

equipped with the inner product, for ®;, = (¢;, ¢;, ¥;, 1[)j, wj, Wy, 05, ¢;)T €
H? .j = 17 27

(@1, Pa)yy =k ((p10 + 01 +1w1), (P20 + V2 +1w2)) 2(o1) + 0 (V1as Y2u) 20,1
+ho (w1 — lp1) , (W2e = 192)) 1201y T P1 (1, P2) 2(01)
+02<?L1,1/;2>L2(0,1) + p1 (W1, W2) 20,1) + P3 (01, 02) 12(0.1) + T (1, 42) 20,1y »
and the corresponding norm in the energy space will be given by
H(I)H?-[ =kllpz +9+ le;(o,U +b ||¢x”i2(0,1) + ko [lwe — l‘PHQL?(OJ)

~12 = -2 2 2
+p1 ||90||L2(0,1) + p2H¢”%2(0,1) + ||w||L2(o,1) +p3 ||9||L2(0,1) +7 ||Q||L2(o,1) :
The domain of the operator A will be

D(A):{(I)EH| .A(I)EH,(pm(l)zll)m(O):wz(O):O}.

Based on the definition of A and H, one can see that

PeH|pe H2(0,1); ¢, we HZ(0,1); ¢, 0 € HE (0,1);
1/;, w, q € Hi(oal)v (pm(l):ﬁ)z(o):wm(o)zo
Since the homogeneous Dirichlet-Neumann boundary conditions in (1.3) are in-

cluded in the definition of H} (0,1), H! (0,1) and D (A), it follows that, if ® €
D (A) and satisfies (2.1), then (1.1) — (1.3) holds.

It is clear from the homogeneous Dirichlet boundary conditions in H} (0,1) and

H1 (0,1) that, if (¢,v,w) € H} (0,1) x H1 (0,1) x H1 (0,1) satisfying

kll(pe +v +lw)||L2(o,1) +0 ||¢x||L2(071) + ko [[(we — Z‘P)HL2(071) =0,

D (A) =

then
=0, ¢=—csin(lz) and w = ccos(lx),
where c is a constant such that ¢ = 0 or [ = § +mm, for some m € N. Furthermore,
we get p=v =w=0if
(2.3) 1 # g +mm, ¥meN.

Here and after we assume that (2.3) is satisfied. Thus, #H is a Hilbert space and
D (A) is dense in H. If the domain (0, 1) is replaced by (0, L), then (2.3) becomes

1L¢g+mw, Vm € N.

Now, we prove that the operator A generates a Cy semigroup of contractions on
‘H. For this purpose, it is sufficient to prove that A is maximal monotone. A direct
calculation gives

(2.4) (AD, @), = =Bl 720 <O
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Hence, A is dissipative in . On the other hand, it is easy to show that 0 € p (A);
that is, for any F = (fi,---, fs)T € H, there exists Z = (21, -+ ,23)T € D(A)
satisfying

(2.5) AZ = F.

Indeed, from the first, third and fifth equations in (2.5), we get
(2.6) z=f1, za=/f; and 2= f;,

and then

(2.7) 29 € HI(0,1) and 24, 26 € H! (0,1).

Substituting 25 into the seventh equation in (2.5), we conclude from the last two
equations in (2.5) that

(28) Zrp = _628 — ng and Z8r = _6f5:1: — p3f7.

By a direct integration, we see that (2.8) has a unique solution satisfying

(2.9) 2z € H}(0,1) and zg€ fZ} (0,1).
Finally, the second, fourth and sixth equations in (2.5) become
k(z1z + 23 +125), + ko (250 — l21) = p1fa,
(2.10) bzspr — Kk (212 + 23 + 1 25) = pafa,
ko (252 —l21), — lk (210 + 23 + 1 25) = 0270 + p1 fe.
To prove that (2.10) admits a solution satisfying

(211) 2 € H2(0,1), 252 € H2(0,1) and z1,(1) = 23,(0) = 25,(0) = 0,
we define the following bilinear form:
Gy ((v1, vo, v3), (w1, wa, w3)) = k (V14 + vo + lvg, Wi, + wo + lw3>L2(071)
+b (v2g, Waw) 20,1y Hho (Vse — lv1, W3e — lw1) 201 5
Y (v1, v, vg)T, (w1, wa, wg)T € Ho x Ho,
and the following linear form:
G (v1, v2, v3) = <U1,P1f2>Lz(0,1) + (Uz,p2f4>Lz(0,1)
+ (vs, 027, + p1f6>L2(071) , Y (v1, v, 113)T € Ho,

where N N
Ho = H} (0,1) x H!(0,1) x H}(0,1)
Thus, the variational formulation of (2.10) is given by
(2.12) G1 ((#1, 23, 25) , (w1, wa, ws)) = Ga (w1, wa, wsz), ¥V (wy, wa, ’LU3)T € Hop.
From Lax-Milgram theorem, it follows that (2.12) has a unique solution
(21, 23, 25) € Ho.

Therefore, using classical elliptic regularity arguments, we conclude that (z1, 23, 25)
solves (2.10) and satisfies the regularity and boundary conditions (2.11). This
proves that (2.5) has a unique solution Z € D (A). By the resolvent identity, we
have A\ — A is surjective, for any A > 0 (see [18]), where I denotes the identity oper-
ator. Consequently, the Lumer-Phillips theorem implies that A is the infinitesimal
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generator of a linear Cy semigroup of contractions on H. Thus, the well-posedness
result for (2.1) is stated in the following (see [21]):

Theorem 2.1. Assume that (2.3) holds. For any p € N and ®g € D(AP), system
(2.1) admits a unique solution

(2.13) ®ent_ O (Ry; D (A)),
where D (A7) is endowed by the graph norm Il peasy = f-:o A" ||, -
In the next three sections, we will show some exponentiel, non exponential and

polynomial stability results for (2.1). The proof of these results is based on the
following frequency domain theorems:

Theorem 2.2. ([12] and [22]) A Cy semigroup of contractions on a Hilbert space
‘H generated by an operator A is exponentially stable if and only if

, , -1
(2.14) iIRCp(A) and ilelﬁ (iX — A) HL(H) < 0.

Theorem 2.3. ([16]) If a bounded Cy semigroup e on a Hilbert space H generated
by an operator A satisfies, for some j € N*,

(2.15) iRCp(A) and sup i
Az1 A

(-7 <o
L(H)

Then, for any p € N*, there exists a positive constant c, such that

p
Int\ 4
(2.16) HetAonH < ¢ [[20ll pary (t) Jnt, Vz e D(AP), Vt>0.

3. LACK OF EXPONENTIAL STABILITY OF (1.1) — (1.3)

Our objective here is to show that the semigroup associated with our Bresse sys-
tem with second sound (2.1) is not exponentially stable depending on the following
relations:

ko) (o= PLY — 62 — by — hipy —
(3.1) (k ko) (p3 Tk) ) bp1 k‘pg 0
and
ko + p1b (7 2 p1k
3.2 12 p2o T P10 —+mr) +—————, VmeZ.
(3:2) ’ p2ko (2 ) p2 (k + ko)

Theorem 3.1. We assume that (2.3) holds, and (3.1) or (3.2) does not hold. Then
the semigroup associated with (2.1) is not exponentially stable.

Proof. We use Theorem 2.2 by proving that the first or second condition in (2.14) is
not satisfied. First, we prove that the first condition in (2.14) is equivalent to (3.2).
Note that, according to the fact that 0 € p (A) (see section 2), A~! is bounded and
it is a bijection between H and D(.A). Since D(A) has a compact embedding into
H, so it follows that A~! is a compact operator, which implies that the spectrum
of A is discrete. Let A € R*. We will prove that the unique

o= (<p,¢,¢,z;,w,w,9,q)T e D(A)
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satisfying
(3.3) AdP=iAd

is ® = 0 if and only if (3.2) holds; that is the fact that i)\ is not an eigenvalue of A
is equivalent to (3.2). But equation (3.3) is equivalent to

P =1i\p, Y=1i\p, W =i\w,
k Ik -
— (pu + 0 +1w), + — (w, —lp) = iXp,
P1 P1
iw —ﬁ( + 4 1lw) =iXg
(3-4) P2 o P2 i ’
k -
p—(l) (we —lp), — — (Yo + ¥+ 1w) — —1995 =\,
0
—pl—qu p—gﬁ)r =10, féq — =0, =i\

Using (2.4), we find

—Blgll72(01) = Re (A®, @), = Re (iA®, @), = Rei [ ®|3, = 0.
Then
(3.5) qg=0.

Taking into account that § € H}! (0,1), using (3.5) and the eight equation in (3.4),
we deduce that

(3.6) 6 = 0.

Inserting (3.5) and (3.6) into the seventh equation in (3.4), we find
(3.7) Wy = 0.

Then, the third equation in (3.4), implies that

(3.8) wy = 0.

Asw e H! (0,1), we have
(3.9) w =1 = 0.
Using (3.5), (3.6) and (3.9), then the system (3.4) is reduced into:

¢ =1iXp, =i\,
k(o + 1), — Phop = —p1 %0,
Wow — k(0o + 1) = —p2A*Y,
—kopa — k (0z + 1) =0,
which is equivalent to ¢ = i\p, zﬁ =i\ and
((Pko — p1A%) o — k(9o + ), =0,
(3.11) —p2 A2 — b + K (P2 + ) =0,

(3.10)

ko
P + 1/} = 7?@%-
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By deriving (3.11), and combining with (3.11),, we see that ¢ satisfy the following
equation:

(3.12) Yz +ap =0,

2 2
where o = %. At this stage, we distinguish three cases.

Case 1: \2 = lzlfo. Then

p(r) = 1z + co,
for ¢1, co € C. Using the boundary conditions
(3.13) ¢ (0) = ¢, (1) =0,
we find
(3.14) o =0,
which implies that, using the first two equations in (3.10) and the last one in (3.11),
(3.15) Y=

and

(3.16) b =1=0.
Consequently, we get

(3.17) ® =0.
Case 2: \2 > %. Then

o(x) =18V + e VT,

Using again the boundary conditions (3.13), we find (3.14), and similarly as before,
we arrive at (3.17).

2
Case 3: \2 < %. Then

o(z) = ¢1 cos (Vax) + ¢z sin (Vaz) .

Using the boundary conditions (3.13), we deduce that ¢; = 0, and
2
(3.18) co=0 or HmGZ:az(g—me) .

If ¢; = 0, then (3.14) holds, and as before, we find (3.17).
If ¢ # 0, then, by (3.18),

ko — p A2 2
(3.19) Imez: P — (2 omr)
ko 2
Therefore, (3.11), is equivalent to
k
3.20 W)= —co [ 1+ -2 ) \Jacos (Vaz),
k

and then the first two equations in (3.11) are reduced to

o ko [kko +bl® (k+ ko)

(3.21) — (k+ ko) (kopa +bp1)
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We see that (3.19) and (3.21) lead to

ImeZ: l2:p2k0+p1b (3 p1k

2
+mm)
p2ko 2 ) p2 (k + ko)
that is (3.2) does not hold. So, if (3.2) holds, we get a contradiction, and hence,
¢ = 0 and, as before, we find (3.17).
If (3.2) does not hold, then, for A € R satisfying (3.21), the function

b(z) = co (sin (Vaz) ,ixsin (Vaz), — (1 + I;:) Vacos (Vaz),

‘ ko T
—iA 1+? Vacos ( a:c),0,0,0,0)

is a solution of (3.3), for any ¢ € C, and then i\ ¢ p(A). Thus, we proved that
iR C p(A) is equivalent to (3.2).

Now, we show that the second condition in (2.14) does not hold if (3.1) is not
satisfied, i.e. we assume that (3.1) is not satisfied and we will prove that there
exists a sequence (A, ), C R such that

H(A"I B A)_lua(m oo

which is equivalent to prove that there exists (F3,),, C H with || F,|[,, < 1, for which
we have

(3.22) NI — A) " Byl lp — o0,
— —m——
<I>'n,

therefore, we have
(3.23) @, — AD, = F,.

Our objective is to show that the solution ®,, is not bounded when F,, is bounded
in H. The equation (3.23) implies that

iIAnPn — &n = fin,

iAnPl‘Pn -k (‘in + Yy + lwn)aC —lko (wnw - l@n) + 60, = p1.fon,
’L)\nw’ﬂ - wn = f3’ﬂ7

(3.24) iAn P2y, — Wnax + k (Pne + Y + Lwn) = p2 fan,

7'An'wn — Wp = fSna

Z>\7’Lp17:\[)'n - kO (wn:r - l‘pn)r +lk ((Pn:v + wn +1 wn) - plfGnv
IAMTqn + Ban + Onz = T frn,

We will show that, for all n € N; given ¢4 € C* and
F,(x) = (0,0,0,c4 cos (Nx),0,0,0,0)7,

where N = (2";1)”, there exists A, € R and ®,, = (i\, — A)"'F, € D(A) such
that

li (0] = 00.
)\nlglooH n”y o0
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The system (3.24) will be written as

iAnn = @ = 0, idnthn = 1, = 0, iAWy — Wy =0,
_A%plwn —k (‘pnm + ’(/Jn + lwn)z - lkO (wn:r - l‘pn) = 07
(3.25) =2 p2¥n — bbnae + k (Pna + tn + Lwy) = pacy cos (Nx),
AT qn + Bqn + Oy = 0.

Because of the boundary conditions, one can take the following solution:

on(z) = ay sin (Nz), () = ag cos (Nz), w,(z) = azcos (Nx),
0. (x) = aygsin (Nx), gn(z) = a5 cos (Nz),

(3.26) {

where the constants «q, as, as, ay and as are the solution of the following system:
(3.27)

(=A2p1 + N2k + ?ko)oq + kNag + (k + ko)l Naz = 0,

ENay + (=A% pg + bN? + k)as + kl az = pacy,

S(iAnT+B)IN, N?

(ko + k)INay + lkag + (=A2p1 + koN? + 12k + ozt 200 8o yag = 0,

(iX2 37 + A\pp3fBB — iN?)as + dA,az3 N2 = 0,

(Z)\nT + ﬂ)a5 = 70[4N.

We distinguish two cases.

bk k
Case 1: — = — and [k — ko) {,03 — &} — 62 #0. Let A2 = —N? + A, where
p2 P Tk p1
A is a constant to be chosen later. Then form (3.27) we have

(3.28)
((UCO—WW + (k- Am)) (ko — Ap1) — k2N2> o

P1
l k —
= —pok Ney — Uk + 0)p(k0 k) P2N3 4 4 (kko — Apz (k + ko) — k?) Nl) a3,
1
(<(k0 “K)P2 N2 4 (— apy) (ko — Ap1) — K2N? ) as
P1

= P2 [12]{30 — Apl] cq + (l (k’ + ko) kEN? -kl <l2k‘0 — Apl)) a3
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and ag must satisfy

(3.29)
ko — Ap1| (ko — k 2 2
([ o — Ap1] (ko )p2_k2_l(/€+ko) P2} (o — k) N*
P1 P1
I’k — A 1%kg — A ko — k
N ( Pl) [ 0 P1]( 0 ) p2 B (lzk—Apl) 12 as

N2
P1

+ (k — Apa) [IPko — Ap1] (ko — k) — (k — Ap2) 12 (k + ko)® + 12k (k + ko) )
+lkj2N + [12]{,‘0 — Apl] (ZQk‘ — Apl) (k‘ — Apg) — l2l€2 [l2k‘0 — Apl]

d(kok)”m - Apg)} ko — Apy] — k2N2>

P1
§2N? [—Tkj\ﬂ — AT +iN (k + AQ>
p1 pr N
as
A
l(l - Tp3k> N2 — Atps +ip3SN (k + 2)]
P1 p1 N

[12ko — Apy — (k + ko) N?] pakl

- ({(kopf)@N2+(kAp2)} [12ko — Ap1] k2N2>

Cy.

Now, we distinguish four subcases.
Tpgk'
P1

ko—k=0and 1—

(3.30)
{ E(k‘ - Apg) PQk‘O — Ale — kJQNQ; a1 = —po2kNcy — [kko — k% - Apg (k‘ + ko)] IN ag,

# 0, then, from (3.28) and (3.29), we have

(k — Apa) [Pko — Ap1| — K2N?) ag = py [I?ko — Ap1] ca + (1 (k + ko) kN? — kl [I?ko — Ap1]) o3
and «g3 satisfies
(3.31)

(282 (k4 ko) = (12 = Ap ) B2 = (k= Apo) 2 (k 4+ ko)*| N2
RN + [12ko — Apy) (12 — Apy) (k — Apy) — I2K2 [I%ko — Apy] )
((k = Apz) [IPkg — Ap] — k2N?)

N2—A7+iﬁN1/<k+A>

62N2 _ﬁ
P1

k k A
(1 _ TPsE ) N2 — Atps +ipsBN ( + 2)
P1 P1 N

_ [1Pko — Ap1 — (k + ko) N?|

= — kley.
([ — Apa] [I2ko — Apy] — k2NZ) P2

‘We choose A so that

pr - N2

as

2
[kpl + p2l2/€0]
[kpr + palko] + N\/ Apppir + EAZEEL

2p2p1 V2T

(3.32) A=

then with (3.32), we have
(3.33) (k— Ap2) [Pko — Ap1] — kK2 N? = IPkky,
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since, our concern is the asymptotic behavior of the constants, so, for NV large
enough, we obtain

A3
Aprk? + Apal? (k + ko)® = S5 0800 + PR (k + ko)
((k — Ap2) [Iko —2A.01] — k2N?)

o Th®
sk
(1_ TP3 >p1
P1

[lzko — Apl - (k + ko) N2]
34 ~ — .
(339 (e = Apa] [Pk — Apr] — FZNZ)2Hics

2
NO(3

By using (3.32), we have

v~ vV P2P1 .
ST i+ ko) N!
and
p1k
o)

= ko (k + ko) b

so, we deduce with expression of ap that
[®nlq — oo

Tpsk
P1

ko—k=0and 1-— = 0, then we have from (3.28), (3.29) and (3.33)
((k — Apz) [l2k0 — Apl] — k2N2) o
= —pokNcy — 1 [kko — Aps (ki + k‘o) — kJQ} Nas,

(335) (k — Apg) [szo — Apl] — ]{32N2) (65

1 (k+ ko) kN?
= p2 [I’ko — Ap1] ca + ( —k(l [l2k:00)— Ap] >a3

and

+“€2N + [lzk() - Apl] (l2k - Apl) (k - Apg) — leZ [lzko — Apl
12kkg

( (= (k= Ap1) K2 = (k= Ap2) 12 (k + Ko)® + 22 (k + ho) ) N ) o
(3.36) )

Tk
62N2 [ ke e

N2 — A7 +iBN (k+A>
P1 P1

[ZQk‘o — Apy — (]4} + k‘o) NQ]
a3 = — l2k‘k0 p2]€lC4.

. k A
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Tpsk

0, (3.32), (3.35) and (3.36) when N large enough, we deduce that

2 {m + ipapgﬂ\/pﬂ

Using 1 —
P1

g~ 5 C4,
! [— <4k+ 5) 44 pr"k} N
p3 T
2
g P21
g =~ ) NC4,
12k {— <4k + 5) + 41'5”’2”“]
P3 T

so, we obtain

1@nll3 — o0

ko —k #0and 1 — 723K

<_ (k‘o—k‘)PzN2 |

o 0, then we have from (3.28) and (3.29)
1

L(k + ko) (ko — k) P2 zr3
[Pko — Ap1] — K*N? | oy = —p2kNea— P1 as

P1
+(k*A,02) + [kko —Ap2 (k+k0) _kQ] NI
and
[ (o —K)p2 o | L (k + ko) kN?
P1 [ZQICO — Ap1] — K2N? Qg = P2 [12]{70 - Apl] ca+ 2 0 as.
+(k— Apa) —kl [Pko — Api]
Also, we have
(3.37)
2
< [ZQko — Ap1] (ko — k) p2 2 12(k+ ko) po (ko — k) N
f1 P1
l2k‘ — Apl l2k0 — Apl (]{50 — ]{/‘) P2
+( ( )[ o ] —(le—Apl)k2 >N2 a3
+ (k — Apa) [12ko — Apa] (ko — k) — (k — Apa) 12 (k + ko)? + 122 (k + ko)

+Ik?N + [Iko — Ap1] (1%k — Apy) (k — Ap2) — 12k [I%ko — Ap1

({(ko;f)”zvz + (k- Apg)} ko — Apy] — k2N2>

52N2 [_7%

N2 — Ar +iBN <k+A>
p1 1

N2

a3

. k A
—Atps +ipsfN (pl + N2)

[12]{() — Ap1 — (]f + k()) N2}

- — kalc4a
({(kopk)pﬁv? + (k- Apg)} [12ko — Apy] — k2N2>
1
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Here we choose A as follow:
[(ko — k) paN? — kpy — pal®ko]

ko (ko — k
+\/[(ko — k) paN2 — (kpy + pal2ko)]* — 4papr o(;))l)pz — k2| N2
A
2p2m
ko — k) N?
(3.38) ~ M,
P1
then we have
ko — k
(3.39) (Op)”QN2 +k— Aps| [Pk — Ap1] — K> N? = IPkky,
1
therefore, for N large enough and using (3.37), (3.38) and (3.39), we have
N 21lko p2 .
3 — 5 —C4,
(3.40) (ko — k)* N
o 7MN264
27 Pkko ’

so, we deduce that

|@nll5, — oo

Tpgk

ko —k # 0 and 1 —
P1

the same result as before

# 0, then, using (3.28), (3.29) and (3.39), we obtain

N 2lkop2 .
38— 5 5 C4
(3.41) (Ko — k)" N2
NiPQ(koik)NQC
2 — l2kk0 45
so, we get

|@nll5, — oo.

bk k
Case 2: — # —2. Let A2 = —N2 + A, then from (3.25) we have
P2 1

p1
[—Apl + ZQko} a1 +kNag + 1 (k‘ + ]410) Nas =0,
kNal—l—[ b—pka N? — Aps + k| ag + Kl az = pacy,
1

[(ko*k)N27Ap1+l2k] Oég+l(k+k0)NOél+lk042+5NOé4:0,

k k A
SN [—Tj\ﬂ — AT +iBN, | ( + 2)
P1 N
Qy = as,

[(1 - Tpgk) N2 —1p3A+ipsSN <k + A2>
1 P1 N

10\, N?
[N2 — Tp3A2 4+ ip3BA,]

(3.42)

a5 = — ag,
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then we obtain

(3.43)

(b — p2k> N2 ( ) )

p1 Pko — Apr _ 2, (k + ko) N
(k- Ap2)2 | o = pa (Pko — Ap1) cat+| (2ko — Ap1) klas,
—k“N
_ @ N2
(344) P1 (Z2]€0 — Apl) — ]<J2N2 a1
+ (k — Ap2)
(et ko) | (5= P25 ) N2 4t — Apy)
= —pakNey — 0 P 2) 1IN ay
k2

and

- {(k—i—ko) Kb—mk N2+ k— Apa| — k| 1% (k + ko) N?
P1
+ [k + ko) N2 — (ko — Ap1)] k212

(ko — k) N? — Apy + 1Pk + ( o

[(b— /jjk) N2 +k —Apz] (ko — Ap1) — k2 N?
1

§2N? {—TkNQ _Ar 4N, E %
P1 P1 N
<1 - w) N2 — rpgA+ipsN, |2 4 %
P1 P1 N
”Cpg (ZQ]{O — Apl) Cq — ka‘Nl (k‘ + ko) NC4

Kb - pz’“) N2+ k— Apg] (12kg — Ap1) — k2N2
1

+ Q3

(3.45) =

Now, we choose A such that

k
[m (b - ”;) N2 4 pol2ko + km}
1

2
+\/[p1 (b - p;k) N2 + p2l2k‘0 + k‘p1:| — 4[)1[)2 (|:<b — p2k> l2k‘0 — k‘2:| N2 — B)
1 P1

2p1p2

(b - M) N2
(3.46) ~N PL)

- )

P2

where B is another constant to be chosen later. So, by using (3.46), we have

(3.47) Kb - p;k> N+ (k- Apg)] (Pko — Ap1) — k*N? = I’kko + B.
1
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From (3.45) and by using (3.47), we have
[(ko — k) N — Apy + 12k]
—[(k+k0)[(b—’0p21k N2+ (k— Apa) | — k2| 12 (k + ko) N? o
+ [(k + ko) N2 — (1%ko — Apy)] K212
(Ikko + B)

52N? [—TkN2 — Ar+iBN (k + A)
P1 P1
+ Qs

A
(1 - 7'p3k‘> N2 —1p3A+ip3sN (k + )

P1 P1 N2

_lkpg (lzko — A,Ol) Cq — pgkNl (k + ko) NC4
12kko+ B '
From (3.48) and by using (3.46), we deduce, for N large enough, the following:

(3.48) =

b 2
{ . (ko n :1) bré
]CQ - p1:| N2 + 72]6212]\[2 az3— P2 N4O{3
2kko + B b b
& (ko + B) {(1”’3 >N2+z‘p36N,/]
P2 P2

—Apy — (k + ko) N?

3.49 =— Ik .
( ) (lgk_ko +B) P2C4
Here, we distinguish two subcases.

b
1- P30 _ 0, then we have
P2

b
lkpapsf <P1 + ko) r
P2 b

(3.50) ST e @kk, rB)N |

and

_ pib—kpy
12kko + B

By choosing B = 0, we deduce that

Qg = N2C4.

b
1- 1P # 0, then, from (3.48), we have
P2
b bré?
ko + % ;
ko — — P2 g2z P2 | N2
0" P T Pk + B _Tesb |
(3.51) b e
ko + pio

P2 2
=2 jkpN
Bkko+ B P20
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here, we choose B such that
P2 bp1 Tp3b\ 22 o
3.52 B= ko+— ) (1——=)kI* - I“kk
( ) b752(0+,02>< P2> -
so, by (3.52), we obtain
b bré?
b+ 201 bré?
P2 g2 P2
12kko + B 17703b7
P2
then we deduce from (3.48) and (3.52) that
b’7'52p2
a3 = Cq
b b
pokl (1 _ 1P ) {ko - m]
P2 P2
and
bré? kobr6?
ar=- b : " P2k + T bOT b Nea,
) e ) e
P2 P2 P2 P2
thus we have
koT2b%5%
wnz(I) *l@n(flf) = b 207— b b Ney sin (N$),
p2k?1 <1 -1 ) [ko - Pl] (ko + P1>
P2 P2 P2
hence
®nly — oo.
The proof of our theorem is then completed. O

4. EXPONENTIAL STABILITY OF (1.1) — (1.3)

In this section, we use again Theorem 2.2 to prove that the semigroup associated

with (2.1) is exponentially stable provided that (2.3), (3.1) and (3.2) hold.

Theorem 4.1. We assume that (2.3), (3.1) and (3.2) hold. Then the semigroup

associated with (2.1) is exponentially stable.

Proof. In section 3, we have proved that the first condition in (2.14) is equivalent
to (3.2). Now, by contradiction, we will prove the second condition in (2.14). So,
we assume that the second condition in (2.14) is false, then there exist sequences

(®r),, € D(A) and (A\,),, C R satisfying

(4.1) [@nlly =1, Vn >0,
(4.2) nILH;O [An] = o0

and

(4.3) lim [[(i A, I — A) Oyl = 0,

n—oo
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which implies that
(4.4)
iAnPn — Pn — 0in H!(0,1),

iIMp1Pn — K (Pna + Un + lwy), — ko (Wne — lpn) — 0 in L2(0,1),

Intbn — b — 0 in HI (0,1),

iAnp2tn — Bnas + K (Pna + a + lwy) — 0in L2(0,1),

iAWy, — Wy, — 0 in I;,} (0,1),

A p1Wy, — ko (Wng — Lpn), + Uk (Onz + Py + lwy) + 605, — 0in L2(0,1),

Z.>\np39n + qne + 677}71:5 — 0 in L? (O, 1) )
iMTqn + Bqn + One — 01in L2 (0,1),

where the notation — means the limit when n goes to infinity. In the following,
we will check the second condition in (2.14) by finding a contradiction with (4.1).
Our proof is divided into several steps.

Step 1. Taking the inner product of (¢ A\, I — A) ®,, with ®,, in H and using
(2.4), we get

(45) Re((iAn] = A) @n, ®n)yy = BllanllZ2(0,1) -
Using (4.1) and (4.3), we deduce that
(4.6) ¢n — 0in L*(0,1).

Step 2. Applying triangle inequality, we have
~N < >\7 7 0
’ An L20,1) [Anl liAn7an + Ban + m”L"’(OJ) +
By (4.2), (4.4)4 and (4.6), we get
QTLZL’ .
(4.7) 2 5 0in L*(0,1).
An

Multiplying (4.4),, (4.4), and (4.4); by i7 and using (4.1) and (4.2), we deduce
that

. B
ZTQn"‘)T an
n

12(0,1)

on — 0in L%(0,1),
(4.8) ¥, — 0in L2(0,1),

wy, — 0in L?(0,1).

0 . : .
Step 3. Taking the inner product of (4.4), with Z}\— in L2 (0, 1), integrating by
parts and using the boundary conditions, we get "

o2 1620 1y — <qn, > s <w > 0,
Lo An /2001 An /20,1

then, from (4.1) and (4.7), we get
(4.9) 0,, — 0in L*(0,1).
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Applying triangle inequality, we have

w ~
nzo gi‘un W — ko (Wng — lon), + 1k (Png + n + lwy) + 00,
H n 11L2(0,1) ko | Anl o ol #n) (e ) L2(0,1)
1 ~ Ik lk Ona
+— ||liprwn + 7090711 + — (@nm + Y + lwn) +o— .
ko An )\n )\n LZ(O,I)

Then, by (4.1), (4.2), (4.4), and (4.7), we deduce that

1
(4.10) ()\wnng) is uniformly bounded in L? (0,1).

Wy

Step 4. Taking the inner product of (4.4), with in L?(0,1), integrating

n
by parts and using the boundary conditions, we get

ZwTLII

. ~ zwnx 2
3 (On, wnr>L2(O,1)_<qn’ )\> —0 < (z)‘”wnz - wnf) " > +0 HwanLz(O,l) — 0.
n /[ L2(0,1) n /[ L2(0,1)

Using (4.1), (4.2), (4.4)5, (4.6), (4.9) and (4.10), we deduce that
(4.11) Wne — 0in L2 (0,1),

and from (4.4), we have

~

wnz

(4.12) 3

— 0in L*(0,1).

As w,, in H! (0,1) and by using (4.12), we obtain

(4.13) % —0in L2(0,1).
Step 5. Taking the inner product of (4.4), with M;—n in L2 (0,1), integrating by
parts and using the boundary conditions, we get "

2 W
k n *l nj)o
L2 o <(w l o) An >L2(0 1)

‘NTL enz ~
L2(0,1) L2(0,1)

P1 Hwn

n n

Using (4.1), (4.7), (4.12) and (4.13), we obtain

(4.14) w, — 0in L?(0,1),
and with (4.4);, we find
(4.15) A, — 0 in L2 (0,1).

Step 6. Taking the inner product of k (©nz + ¥y + lwy,) with 6, in L?(0,1),
integrating by parts and using the boundary conditions, we get

k <((pna: + ’(/}n + lwn) 3 9na:> =—k <((in + wn + lwn)z 79n>L2(0’1)

= <(i/\np1<,0Nn — k (@na + ¢n + lwn), — lko (Wna — lpn) ’0") >L2(0,1)
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_)\npl <i§0na 9n>L2(071) + lkO <(wnm - l@n) ) 9n>L2(0,1) )

then, by using (4.1), (4.4), and (4.9),

(416)  k((pna+ Yn+ 10n) ne) ooy + Anpr (i0,00) =0,

Taking the inner product of (@ns + ¥y, + lwy,) With iX,w, in L? (0,1), integrating
by parts and using the boundary conditions, we get

nxT n l n 7‘)\n~n>
(P + ton + L) D .

= - >\n nr;~n> *<>\n n,~n> *l<)\n naNn>
<Z Yoo, W L2(0,1) Anton, w L2(0,1) A Wn, 10 L2(0,1)

~ . ~ ~ ~ 2
- <wn7wn>L2(o,1) ! <(M"w" a wn) ’wn>L2(0,1) ! Hwn‘ L2(0,1)

= - Z)\n nr — :Lx) 7H)n> + Nnvﬂ)nx> _<<'L)\n n Nn> 7ﬂjn>
<( ¥ L £2(0,1) <SD L2(0,1) Y =¥ £2(0.1)

~ ~ ~ ~ ~ 2
<wn7wn> 7Z<(1/\nwn*wn> awn> *len’
L2(0.1) £2(0,1)

£2(0,1)
Then, by using (4.1), (4.4),, (4.4)5, (4.4); and (4.14), we deduce that
4.1 < nT n l n)o )\n~n> - < Nna an>
(4.17) (Pne + U + lwy) , i w e Oy W e —0

Taking the inner product of ¢, with w,,, in L?(0,1), we get

<<Pn, wm>L2(0,1) - <S0n’ (wm B SO”)>L2(O,1) + Hsﬁn‘ L2(0,1)

= - Nna )\n na:_Nn;E)> <Nn;<.An n Nn>>
<<P (’L w v L2(0,1) T\ An® 14 L2(0,1)

2

o~ 2
+ <<’O"’ iAn (Wna — (pn)>L2(0,l) + H@n‘ £2(0,1)
then, by (4.1), (4.4), and (4.4),, we have
2
418) A (i e —n)) = (Gone) ]
( 8) An { @n Z(wnx @n) L2(0,1) Pns Wne L2(0.1) + {|¢n L2(0.1)

Taking the inner product of (4.4), with (wn, —le,) in L?(0,1), integrating by
parts and using the boundary conditions, we get

<i)\np1<PNna (wnw - l@n)> +k <(90na: + 'L/)n + lwn) 5 (wnw - l@n)I>L2(071)

L2(0,1)

2
—lko || (wna — lon)ll2(0,1) — 0,
which implies that

Anp1 <Z¢~m (wna — w")>L2(0,1)

ko
ko 12

+k770 <(§0mc + wn + lwn) ) i)\an>L2(O,1) + FO H(‘pnx + Yy + lwn)HiQ(O,l)

_k <(som Fy + lwy) [Mnmﬁn — o (Wng — 1pn), + Uk (@ng + b + L) + 59m]>

£2(0,1)
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ok 2
+k70 <(90nx + Pn + lwn) ) 9nm>L2(0,1) — lko H(wnz - l‘Pn)HL2(0,1) — 0.

Using (4.1), (4.4)4, (4.8) and (4.11), we get

(4.19) —Anp1 <<p~n,i (Wna — l%)> | o <(<an + Py + lwy) 7i>‘nu7n>

L2(0,1) ?0 L2(0,1)

1k? ok
+ H(Qpnx + Y + lwn)”iz(o,l) + = <(90nz + Y + lwn) venr>L2 0,1 > 0,
ko ko (0,1)
then, by (4.16), (4.17), (4.18) and (4.19), we obtain

(4.20) (:0 - 1> P1 <<PNm INU7wc>L2(O,1) - kio)‘"pl <i<‘;”’9">L2(0,1)

1k?

+k7 ||((p’ru + wn + lwn)Hi?(O’l) + P1 ‘
0

Step 7. Taking the inner product of (4.4)g with (¢ns + ¥ + lwy,) in L?(0,1),
we get

2

n

L2(0,1)

<Z)\n7_Qn 5 Qonx>L2(O,1) - T <Qn, i/\n7/1n>L2(071) —Ir <Qn; Z‘)\nfU-)n>Lz(O,1)
+ <6Qn7 (@nw + Yy + lwn)>L2(071) + <9nx , (‘pn,x + Yy + lwn)>L2(071) — 0,

then
<i>\nTQH7 <;0nm>L2(071) - T <qn7 (ZAnwn - 1Z)n> > - T <qn a¢n>
L2(0,1) L2(0,1)

i <q" ’ (M"w” B w”) >L2(o,1) —ir <q"’ w”>L2(o,1)
+ <ﬂQn7 (Sonm + Py + lwn»Lz(O’l) + <0nra (Sanm + U + lw")>L2(O,1) — 0.
By using (4.1), (4.4)5, (4.4)5, (4.6) and (4.16), we have

. )\npl .~
R e S L P

integrating by parts and using the boundary conditions, we obtain

. )\npl .~
_)\nT <'anz7 SDn>L2(O71) - T <0n7 Z@n>L2(O 1) — 07

therefore
_)\nT <Z (l)\np39n + gnz + 5wna:) 7<pn>L2(0,1) - )\nT <)\np39n 790n>L2(071)
+An76 (s on ) _ dnir (Busin) —
’ L2(0,1) k ’ L2(0,1) ’

hence

- < (i)\np;;@n + na + 617%) 7 (M,M - Jn) >L2(0’1)+T < (angen F oo + &TJM) ,$n>
M (st (npn =G0 ) ) o= T it )

~ . ~ ~ ~ )\npl .~
+74 <wna ('L/\nQOn - @n)m>L2(071)_7'5 <wn3ca (Pn>L2(O’1)_ & <0na Z@7L>L2(071) — 0,

so, using (4.1), (4.4),, (4.4),, we get

£2(0,1)

L2(0,1)

~

P1 L~ ~
(421) (7',03 - ?) An <0na Z@H>L2(O,1) —T70 <wn3?7 <)07L>L2(071)
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_>\n < 9717()\1'7, n - Nn)>
7#p30n, \PAnn =@ ) ) oo

On the other hand, integrating by parts and using the boundary conditions, we find
that

Mo (ipstus (Anon — ¢0) >L2(0’1) = ((Anps0n + Gus + 50na ) (IAnpn = 60 )

- nT; An n - Nn>> _6<Nnm;<An n - Nn>>
<q (Z L4 14 L£2(0,1) v Wind 4 L2(0,1)

= ((Anps0n + Gus + 8n ) (PAnpn — 60 ) )

L2(0,1)

12(0,1)

n An nI_N )> 6<Nn7(>\n nw_N )> )
+ <q (z ® Pra) ) a0 + 0 Wn, (1Anp Pz ) ) 200
so, by using (4.4),, (4.4),, (4.6) and (4.14), we deduce that

(4.22) A ipstos (ngn = Gn) ) o =0
therefore, (4.21) and (4.22) give

~

P1 L~ ~
423 ( - *) )\n< n79n> - 6< ns na:> —>07
( ) P k ¥ L2(0,1) TO\Pn W L2(0,1)

and then, multiplying (4.23) by 25 (% — 1) and adding (4.20), we obtain

2
¥n L2(0,1)

pin [ _ Y el s 1k 2 |
k05 |:(k kO) (p3 Tk) 0 :| <Z<Pn7 9n>L2(0’1) + kO ||(<pnx + wn + lwn)||L2(O,1)+p1

Here we use the fact that (k — ko) (pg - f—;) — 42 = 0 (condition (3.1)), we deduce
that
1k? 2 ~ |2
o Wona 4 9+ b agoy + o 0 =0
then, from (4.8), we have
(4.24) @ne — 0in L?(0,1)
and
(4.25) @, — 0in L?(0,1),
and using (4.2), (4.4), and (4.25), we have
(4.26) An@n — 0 in L?(0,1)
and
(4.27) Pz 0in L7 (0,1).

An

Step 8. Taking the inner product of (4.4), with (s + ¥ + lwy,) in L? (0,1),
integrating by parts and using the boundary conditions, we get

<i)\np2wn7 (pnzzz> + <Z’)\np2¢n7 ¢n> +1 <Z’)\np2¢n7 wn>
L2(0,1) L2(0,1) L2(0,1)

+b <wnz7 (Qpnm + djn + lwn)z>L2(071) +k ||(SOTLCE + Ql}n + lwn)“i?(o,l) — 07
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then

*AnPQ <wn7 Z<Pm> — P2 <7/}n> (ZAnd)n - wn> > — P2
L2(0,1) L2(0,1)

—102 <'(/]n7 (Z)\nwn - u’;n)> - lp2 <’(/}n7 Jn>
L2(0,1) L2(0,1)

2 (i [Aupr — k(P + 00+ ), — ko (s — b))

b . ~ lkob 2
+ <¢nz, Z)\npl(Pn>L2(07l)_T (Ynas (Wna = 1on)) r2(0,1) K [|9na + ¥n + lwnl[72(9,1) — 0,

using (4.1), (4.4),, (4.4)5, (4.4)5, (4.8), (4.11), (4.14) and (4.24), we get

2

~

Un

£2(0,1)

£2(0,1)

~ 112
Un

o Loy <¢M, i$n> —0.

4.2 — Nn ) nx -
(4.28) —App2 <1/J ) 1P > P2 L L2(0,1)

L2(0,1)

Now, we use that

< >L2(0)1) L2(0,1) L2(0,1)

and by integrating by parts and using the boundary conditions, we have

< L2(0.1) L2(0,1) L2(0,1)

= - <(Z)\nwnm - Z/Jm) 7$n> _<'L/}na (Z)\nwnw - ()angg>> +<¢n, Z/\n@nz> )
L2(0,1) L2(0,1) L2(0,1)

therefore, from (4.1), (4.4), and (4.4),, we see that

4.29 )\n wna:;Z Nn - )\n < Nn;i nz> 0)
(4.29) < v >L2(0,1) Un, ip von
so, inserting (4.29) into (4.28), we obtain

A ~ I
4.30 2 (bpy — K s, 1 — n — 0.
(4.30) . (bo1 p2) <¢ Z<Pn>L2(O’1) p2 ||¥ .

At this stage, we use the fact that bp; — kpe = 0 (condition (3.1)), then we have
from (4.30)

(4.31) b — 0in L2(0,1),
and by (4.4),, we deduce that
(4.32) At — 0in L?(0,1).

Step 9. Taking the inner product of (4.4), with ¢, in L? (0, 1), integrating by
parts and using the boundary conditions, we get

2 <wn,wwn> oy Py e ) ) 0
L2(0,1

and by using (4.8), (4.24), (4.31) and (4.32), we obtain

(4.33) Ve — 0in L2 (0,1).
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A combination of (4.6), (4.8), (4.9), (4.11), (4.14), (4.24), (4.25), (4.31) and (4.33)
leads to

[®nll3 — 0,

which is a contradiction with (4.1). Hence, the proof of Theorem 4.1 is completed.
O

5. POLYNOMIAL STABILITY OF (1.1) — (1.3)

In this section, we prove the polynomial decay of the solutions of (2.1) using
Theorem 2.3. Our main result is stated as follow:

Theorem 5.1. We assume that (2.3) and (3.2) hold. Then, for each p € N*, there
exists a constant ¢, > 0 such that
p
A Int\§
(5.1) VP € D (AP), ¥t >0, [ Do]|,, < ¢ [P0l pany — )" Int.

Proof. In section 3, we have proved that the first condition in (2.15) is satisfied if
(3.2) holds. Now, we need to show that

(5.2) sup
[Al>1

@ - A)_lHH < o0,

We establish (5.2) by contradiction. So, if (5.2) is false, then there exist sequences
(®n), C D(A) and (A\,), C R satisfying

(5.3) | ®nll;; = 1, VneN,
(5.4) n11_>nr010|)\ | =00
and
. 8 . _ _
(5.5) nh_}n;O Mo A I — A) @], = 0,

which implies that
(5.6)
A8 (i)\n@n - Zan) S 0in H! (0,1),
[ nplcpn k (ona + tn + lwy,), — lko (Wne — lapn)] —0in L%(0,1),
A8 <z)\n¢n - n) — 0in H}(0,1),
8 |:i/\np21/1n — bnge + k (Pna + U + an)] —01in L2(0,1),
A8 (z nwn—&n) 5 0in H! (0,1),
8 [z nplwn — ko (Wne — lon), + 1k (Onz + Yn +lwp) + 065, | — 0 in L?(0,1),

A3 + e + &NUW) S 0in L2(0,1),

A
A (iAuTqn + Bgn + Onz) — 0in L2 (0,1).
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Our goal is to derive || ®,|l,, — 0 as a contradiction with (5.3). This will be
established through several steps.

Step 1. Taking the inner product of A8 (i A\, I — A) ®,, with ®,, in H, we get
(as for (4.5))

8 (; _ 4 2
Re (<A1’L (’L >\’ﬂ I - ‘A) (I)’ﬂ? ¢H>L2(071)> - 5 H)\nanL2(O,1) ’
so we have
(5.7) Mg, — 0in L?(0,1).
Step 2. Applying triangle inequality, we obtain
||>\;519anL2(0)1) < ||)‘§L (i/\nTQn + Ban + anm)HL?(OJ) + ||Z/\iTQH + ﬂA?anH[ﬁ(oJ) )
then, using (5.4), (5.6)g and (5.7), we have

(5.8) A0, — 0in L?(0,1).
Knowing that 6,, in H! (0, 1), then we have
(5.9) N6, — 0in L?(0,1).

Step 3. Using (5.3), (5.4), (5.6),, (5.6)5 and (5.6);, we obtain

©On, p wy — 0in L?(0,1),
(5.10) .
(Anen), > Antn), . (Anwy), are uniformly bounded in L? (0,1).

Step 4. By triangle inequality, we have

H w. < ‘ S [z)\nplwn — ko (Wne — lgpn)z + Ik (onz + Yn + lwy) + (59711}
An koAn L2(0,1)
1 ~ ne Lk 1)
+—— ||iprwn + lko ? + (‘pnm + Pn + lwn) + O s
ko A An An L2(0,1)
then we deduce from (5.3), (5.4), (5.6)4 and (5.8) that
(5.11) (w;m) is uniformly bounded in L? (0,1).
n n
integrating by parts and using the boundary conditions, we have
2 2 4
H)‘nwnir HLZ(OJ) =\, <wn17 wnw>L2(0,1)
L2(0,1) L2(0,1)
. ) ~ 1. ) ~
= <an;c7 Ai (Z/\nwnx - wnw) >L2(0,1)+g <anw7 )‘i (Z/\np?)en + Gna + 6wn£) >L2(0,1)

P3 3 1 . Wnzax 4
= (AnWn, Ap O = s Andn 5
- 4 (it Xy >L2(0’1) - o <Z An nd >L2(0,1)
then, by using (5.3), (5.4), (5.6)5, (5.6),, (5.7), (5.8), (5.10) and (5.11), we find
(5.12) N, — 0in L?(0,1).

As w,, in H!(0,1), we deduce from (5.12) that
(5.13) M, — 0in L?(0,1),
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and using (5.4) and (5.6),, we see that

(5.14) A, — 0 in L2(0,1)

and

(5.15) A, — 0 in L2 (0,1).

Also, dividing (5.6)5 by A} and using (5.3), (5.4), (5.8) and (5.15), we deduce that
(5.16) (Wnaz),, is uniformly bounded in L? (0,1).

LWy

An

in L?(0,1), integrating

Step 5. Taking the inner product of (5.6), with

by parts and using the boundary conditions, we get

. 3 2 4 . ~ .
—ps3 <z/\n0m, /\nw">L2(0,1) -0 <)\n (z)\nwm — wm) ,zwm>L2(0’1)

- </\;17,QTL7iwnmm>L2(071) + 6)‘?7, me||2L2(o,1) — 0.
Using (5.3), (5.4), (5.6);, (5.7), (5.8), (5.13) and (5.16), we obtain

(5.17) An|® wne — 0 in L2 (0,1),
and from (5.6),, we get
(5.18) An|2 e — 0 in L2(0,1).

Step 6. Applying again triangle inequality, we have
H(p < Z||l— [z)\nplcpn —k (Ona + 0 +lwy), — ko (Wne — l(pn)}

An L2(0,1) k|| An L2(0,1)

1. ~ k Uk
+% 1Py — )\7 (wnz + lwmr) - )\70 (wnac - l‘pn) )
n n L2(0,1)

and using (5.3), (5.4) and (5.6),, we deduce that
(5.19) <(p;:m> is uniformly bounded in L? (0,1).

(’i:;m in L? (0,1), integrating by parts and

n

Taking the inner product of (5.6), with

using the boundary conditions, we obtain

P1 <7/)\na}nv (Pnz> + ko <>\nwnm7 <an> +1 (k + kO) ||90na:||2LQ(O,1)
£2(0,1)

An

+lk <(¢n + lwn) s Son:r>L2(071) +90 <0nz7 (pn:v>L2(071) — 0,
then, from (5.3), (5.4), (5.8), (5.10), (5.12), (5.15) and (5.19), we have
(5.20) One — 0in L?(0,1).
4'[;\7;% in L2 (0,1), integrating by

n

12(0,1)

Step 7. Taking the inner product of (5.6), with

parts and using the boundary conditions, we get

—pP1 <7~7)n7 An (Z/\n(pnx - SO:L$>> +p </\n17)n:c7 Jn>
£2(0,1)

o (N0 BEE) 1ok o) el
n L2(0,1)

L2(0,1)
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+lk </\n (% + lwn) 7‘an>L2(071) +0 <)‘n0mca QDWC>L2(O,1) — 0,
hence, using (5.3), (5.4), (5.6);, (5.8), (5.10), (5.12), (5.19) and (5.20), we obtain

2
(5.21) An ll@nallz20,0) — 0-

Taking the inner product of (5.6), with % in L?(0,1), integrating by parts and
using the boundary conditions, we get "

—p1An <9~0m (D\nSﬁn - ‘aNOn) >L2(0,1) — p1An

~ 112
Pn

L2(0,1)

+k>\n <(30n:v + wn + lwn) ) Sonr>L2(0,1) - lkO)\n <(wniv - lgﬁn) 750n>L2(071) — 07
which implies
~ . ~ ~ |12
—P1 <§0na An (Z)\n@n - 9077,) >L2(0,1) - pl)\n On

£2(0,1)

+kAn H‘in||i2(o,1) + E{(Anthn + IApwn) , <Pnz>L2(0,1)
—lkg <(/\nwn:c - l/\n@n) 7()0n>L2(071) — 0,
so, using (5.3), (5.4), (5.6),, (5.10), (5.12) and (5.21), we deduce that

o2
5.22 An 0,
(5.22) 12 P
and from (5.6),, we obtain that
(5.23) A lleall® — 0.
Step 8. Multiplying (5.6), by ||718, we get
Anl2 A8

Pnas g Une (g ko) 2R 2P0 £2(0,1),
MalZ al? Anl? [Anl?

then, using (5.3), (5.4) and (5.22), we deduce that

A 1~
i o l® B

(5.24) Pnet (0 in L2(0,1).
|/\n|§

On the other hand, by integrating by parts and using the boundary conditions, we
see that

>\n <wnzwa i)‘n(pnz>L2(O’1) = )\i <anw7 (pnwz>L2(071)

< LA W w © 120,1) + Wng, P

n /[ L2(0,1) 12/ 201

L2(0,1)

|An

then, using (5.4), (5.6);, (5.18) and (5.24), we obtain
(525) An <wnmc7 i)‘n@nI>L2(0,1) — 0.

Furthermore, integrating by parts and using the boundary conditions,

An <(s0m + P+ lwy), <?5n> = -\ <(<ﬂm + P + lwy,) 7<an>

L2(0,1) L2(0,1)
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n

__ 1 <Ai [anlﬂjn — ko (W — lpn), + 1k (P + o + ) + 59m] , ‘im>
L2(0,1)

*i <(i/\np1i7)n + 60m) An (i)\ngonz — ;;m,)>
+];72 <(wnz —1on)y s An (Z')\n@nz - QNOnm)>L2(O,1) — % <z’p1a;m”i(pn>
koAn leo 2

) . . . 2
+E <)\ienwa Z‘an>L2(0)1) - Ik <wnwz7 Z)\nﬁpnw>[‘2(071) - 2 ? ||(in||L2(071) s
then, using (5.6),, (5.6)4, (5.8), (5.15), (5.16), (5.18), (5.23) and (5.25), we find

(5.26) Ao { (Pna +n + 1), B )

L2(0,1)

L2(0,1)

ko . 2
£2(0,1) + % PAnenalliz,) — 0

Pn
A

Taking the inner product of (5.6), with in L?(0,1), we get

M ~tho (Ot = D) 31 )

2 ~
prt ‘ L2(0,1)_k)\n <(<,0m + ¥+ L), 7<'0">

L2(0,1) L2(0,1)

then, using (5.26), we obtain

i M+ b0 sl = o (Otins = Do) B L =0,
and from (5.3), (5.4), (5.6), (5.12), (5.22) and (5.23), we deduce that

(5.27) A, — 0in L%(0,1)

and

(5.28) Mnz — 0in L2 (0,1).

1
Step 9. Multiplying (5.6), by o Ve obtain
n

~ k
ipath,, — bw;” + o (Ona + Up + lwy,) — 0 in L2 (0,1).

By triangle inequality, we deduce from (5.3) and (5.4) that

(5.29) <1/);\Lm> is uniformly bounded in L?(0,1).

Vna
A%

Taking the inner product of (5.6), with in L2 (0,1), we get

p1 <i>\n&n’ ¢nw>

_l(k + kO) <wn:r7 7/’n1:>L2(071) + l2k0 <80n7 1/1m>L2(0,1) — 0,
then, integrating by parts and using the boundary conditions, we obtain

. ~ wnxz 2
>\n s Una k )\n n —k nx
01 <z Py P >L2(0’1) + < () N, o) ll% HL2(0,1)

_l(k + kO) <wn:1:7 ¢nw>L2(071) + leO <80n7 wnr>L2(071) — 0,
so, using (5.3), (5.4), (5.10), (5.12), (5.27), (5.28) and (5.29), we deduce that

(5.30) Yy — 0in L2(0,1).

2
£2(0,1) -k <90nxa:7 wnz>L2(0,1) —k ||¢nz||L2(0’1)
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Taking the inner product of (5.6), with ¥n in L? (0,1), integrating by parts and

— 1
8
)‘n

using the boundary conditions, we get

2

~

Vn

—pP2 <1/)na (i)\n¢7z - ¢n)> — P2 +b ||¢nz||i2(0’1)
£2(0,1) L2(0,1)

+ <k (Qonm + wn + lwn) 7'¢)n>L2(0,1) — 0,

hence, using (5.3), (5.4), (5.6)5, (5.10) and (5.30), we get

(5.31) Y, — 0in L?(0,1).
A combination of (5.4) and all the above convergence leads to
which is a contradiction with (5.3). Consequently, the proof of our Theorem 5.1 is
completed. O
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