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Abstract. In this paper, we consider a viscoelastic plate equation with a

velocity-dependent material density and a logarithmic nonlinearity. Using the

Faedo-Galaerkin approximations and the multiplier method, we establish the
existence of the solutions of the problem and we prove an explicit and gen-

eral decay rate result. These results extend and improve many results in the

literature.

1. Introduction

In this paper, we deal with the existence and decay of solutions of the following
plate problem:
|ut|ρutt + ∆2u+ ∆2utt −

∫ t
0
g(t− s)∆2u(s)ds = ku ln |u|, in Ω× (0,∞),

u(x, t) = ∂u
∂ν (x, t) = 0, in ∂Ω× (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,

(1.1)
where Ω is a bounded domain of R2, with a smooth boundary ∂Ω, ν is the unit
outer normal to ∂Ω and ρ and k are positive constants. The kernel g is satisfying
some conditions to be specified later.

1.1. Problems with a velocity-dependent material density. Cavalcanti et
al. [6] considered
|ut|ρutt −∆u−∆utt +

∫ t
0
g(t− s)∆u(s)ds− γ∆ut = 0, in Ω× (0,∞),

u(x, t) = 0, in ∂Ω× (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,

(1.2)
1
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where Ω is a bounded domain in Rn, n ≥ 1, with a smooth boundary ∂Ω, ρ is a
positive real number satisfying some conditions and g is a positive exponentially
decaying function. They established a global existence result when the constant
γ ≥ 0, and an exponential decay result for the case γ > 0. Messaoudi and Tatar
[33] extended this decay result to the case where a source term is competing with the
viscoelastic and the strong damping. In the absence of the strong damping (γ = 0),
Messaoudi and Tatar [34, 35] studied (1.2) and showed that the viscoelastic damping
is strong enough to drive the system uniformly to rest. Precisely, they showed that
the energy of the solution decays exponentially (resp. polynomially) if g decays
exponentially (resp. polynomially). Later, Han and Wang [18] considered (1.2) for
γ = 0 and with a relaxation function of more general decay type and established,
similarly to the work of Messaoudi [30, 31], a general decay result in which the usual
exponential and the polynomial decay are only special cases. Liu [27] considered
(1.2), for γ = 0, and in the presence of a source term. He established a general
decay result similar to the one in [18]. In [28], Liu studied the problem
|ut|ρutt −∆u−∆utt +

∫ t
0
g(t− s)∆u(s)ds+ α(t)h(ut) = b|u|p−2u, in Ω× (0,∞),

u(x, t) = 0, in ∂Ω× (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,

(1.3)
and proved, without imposing growth conditions on h, a general decay result which
depends on the behavior of g, α and h. Messaoudi and Mustafa [36] studied (1.2)
for relaxation functions satisfying

g′(t) ≤ −H(g(t)), (1.4)

where H ∈ C1(R+), with H(0) = 0 and H is linear or strictly increasing and strictly
convex function C2 near the origin. They obtained an explicit and general relation
between the decay rate for the energy and that of the relaxation function g without
imposing restrictive assumptions on the behavior of g at infinity. Recently, Caval-
canti et al. [8] considered (1.2), with γ = 0, and a relaxation function satisfying
(1.4). In addition, they required

lim inf
x→0+

{x2H ′′(x)− xH ′(x) +H(x)} ≥ 0

and some other condition and proved that the energy uniformly decays to zero with
the rate that is determined from the solutions of the ODE quantifying the behavior
of g(t).

Very recently, Messaoudi and Al-Khulaifi [32] considered (1.2), with γ = 0, where
the relaxation function satisfies (2.2) below and established an optimal and general
decay result.

1.2. Plate Problems. Concerning the study of plates, Lagnese [23] studied a vis-
coelastic plate equation and showed that the energy decays to zero as time goes
to infinity by intorducing a dissipative mechanism on the boundary of the system.
Rivera et al. [37] proved that the first and second order energy, associated with
the solutions of the viscoelastic plate equation, decay exponentially provided that
the kernel of the memory also decays exponentially. Komornik [21] investigated
the energy decay of a plate model under weak growth assumptions on the feedback
function. Messaoudi [29] studied the following problem:
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
utt + ∆2u+ |ut|m−2ut = |u|p−2u, in QT = Ω× (0, T ),

u = ∂u
∂ν = 0, on ΓT = ∂Ω× (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,

(1.5)

and established an existence result and showed that the solution continues to exist
globally if m ≥ p, and blows up in finite time if m < p and the initial energy is
negative. This result was later improved by Chen and Zhou [11].

For boundary damping, Santos and Junior [38] studied the stability of the following
problem: 

utt + ∆2u = 0, in Ω× (0,∞),

u = ∂u
∂ν = 0, on Γ0 × (0,∞),

−u+
∫ t

0
g1(t− s)β1u(s)ds = 0, on Γ1 × (0,∞),

∂u
∂ν +

∫ t
0
g2(t− s)β2u(s)ds = 0, on Γ2 × (0,∞),

u(0, x) = u0(x), ut(0, x) = u1(x), in Ω,

(1.6)

where

β1u = ∆u+ (1− µ)B1u and β2u =
∂∆u

∂µ
+ (1− µ)

∂B2u

∂η

with

B1u = 2ν1ν2uxy − ν2
1uyy − ν2

2uxx and B2u = (ν1 − ν2)uxy + ν1ν2 (uyy − uxx) .

For more results in this direction, see [3, 16, 19, 22, 25].

1.3. Problems with Logarithmic Nonlinearity. The logarithmic nonlinearity
is of much interest in physics, since it appears naturally in inflation cosmology
and supersymmetric filed theories, quantum mechanics and nuclear physics [1, 12].
This type of problems has applications in many branches of physics such as nuclear
physics, optics and geophysics [2, 4, 13]. Birula and Mycielski [4, 5] studied the
following problem:

utt − uxx + u− εu ln |u|2 = 0, in [a, b]× (0, T ),

u(a, t) = u(b, t) = 0, in (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in [a, b],

(1.7)

which is a relativistic version of logarithmic quantum mechanics and can also be
obtained by taking the limit p → 1 for the p-adic string equation [14, 39]. In [9],
Cazenave and Haraux considered

utt −∆u = u ln |u|k, in R3 (1.8)

and established the existence and uniqueness of the solution for the Cauchy prob-
lem. Gorka [13] used some compactness arguments and obtained the global exis-
tence of weak solutions, for all

(u0, u1) ∈ H1
0 ([a, b])× L2([a, b]),

to the initial-boundary value problem (1.8) in the one-dimensional case. Bartkowski
and Gorka [2] proved the existence of classical solutions and investigated the weak
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solutions for the corresponding one-dimensional Cauchy problem for equation (1.8).
Hiramatsu et al. [20] introduced the following equation:

utt −∆u+ u+ ut + |u|2u = u ln |u| (1.9)

to study the dynamics of Q-ball in theoretical physics and presented a numerical
study. However, there was no theoretical analysis for the problem. In [17], Han
proved the global existence of weak solutions, for all

(u0, u1) ∈ H1
0 (Ω)× L2(Ω),

to the initial boundary value problem (1.9) in R3.

In this paper, we are concerned with the well-posedness and stability of the plate
problem (1.1) with kernels g having an arbitrary growth at infinity (condition (2.2)
below). The obtained stability results improve and generalize many results in the
literature.

This paper is organized as follows. In section 2, we present some notations and
material needed for our work. In section 3, we establish the local existence of the
solutions of the problem. The global existence and the decay results are presented
in section 4 and section 5, respectively.

2. Preliminaries

In this section, we present some material needed for the proof of our results. We
use the standard Lebesgue space L2(Ω) and Sobolev space H2

0 (Ω) with their usual
scalar products and norms. Throughout this paper, c is used to denote a generic
positive constant.

We consider the following hypotheses:

(A1) g : R+ → R+ is a C1- nonincreasing function satisfying

g(0) > 0, 1−
∫ ∞

0

g(s)ds = ` > 0. (2.1)

(A2) There exist a nonincreasing differentiable function ξ : R+ → R+, with
ξ(0) > 0, and a constant 1 ≤ p < 3

2 such that

g′(t) ≤ −ξ(t)gp(t), ∀t ∈ R+. (2.2)

(A3) The constant k in (1.1) is such that

0 < k < k0 =
2π`e3

cp
, (2.3)

where cp is the smallest positive number satisfying

‖∇u‖22 ≤ cp‖∆u‖22, ∀u ∈ H2
0 (Ω),

where ‖.‖2 = ‖.‖L2(Ω).

The energy functional associated with problem (1.1) is

E(t) =
1

ρ+ 2
‖ut‖ρ+2

ρ+2 +
1

2

((
1−

∫ t

0

g(s)ds

)
‖∆u‖22 + ‖∆ut‖22 − k

∫
Ω

u2 ln |u|dx
)

+
k

4
‖u‖22 +

1

2
(go∆u),

(2.4)
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where

(go∆u)(t) =

∫ t

0

g(t− s)‖∆u(s)−∆u(t)‖22ds.

Direct differentiation of (2.4), using (1.1), leads to

E′(t) =
1

2
(g′o∆u)(t)− 1

2
g(t)‖∆u‖22 ≤

1

2
(g′o∆u)(t) ≤ 0. (2.5)

Lemma 2.1. [10, 15] (Logarithmic Sobolev inequality) Let u be any function in
H1

0 (Ω) and a > 0 be any number. Then∫
Ω

u2 ln |u|dx ≤ 1

2
‖u‖22 ln ‖u‖22 +

a2

2π
‖∇u‖22 − (1 + ln a)‖u‖22. (2.6)

Corollary 2.2. Let u be any function in H2
0 (Ω) and a > 0 be any number. Then∫

Ω

u2 ln |u|dx ≤ 1

2
‖u‖22 ln ‖u‖22 +

cpa
2

2π
‖∆u‖22 − (1 + ln a)‖u‖22. (2.7)

Lemma 2.3. [9] (Logarithmic Gronwall inequality) Let C > 0, γ ∈ L1(0, T ;R+)
and assume that the function w : [0, T ]→ [1,∞) satisfies

w(t) ≤ C
(

1 +

∫ t

0

γ(s)w(s) ln (w(s))ds

)
, ∀t ∈ [0, T ]. (2.8)

Then

w(t) ≤ C exp

(
C

∫ t

0

γ(s)ds

)
, ∀t ∈ [0, T ]. (2.9)

Lemma 2.4. Let ε0 ∈ (0, 1). Then there exists dε0 > 0 such that

s| ln s| ≤ s2 + dε0s
1−ε0 , ∀s > 0. (2.10)

Proof. Let r(s) = sε0 (| ln s| − s). Notice that r is continuous on (0,∞) and its limit
at 0+ is 0+, and its limit at ∞ is −∞. Then r has a maximum dε0 on (0,∞), so
(2.10) holds. �

3. Local existence

In this section, we state and prove the local existence result for problem (1.1).

Definition 3.1. Let T > 0. A function

u ∈ C1([0, T ], H2
0 (Ω))

is called a weak solution of (1.1) on [0, T ] if
∫

Ω
|ut|ρutt(x, t)w(x)dx+

∫
Ω

∆u(x, t)∆w(x)dx+
∫

Ω
∆utt∆wdx

−
∫

Ω
∆w(x)

∫ t
0
g(t− s)∆u(s)dsdx = k

∫
Ω
w(x)u(x, t) ln |u(x, t)|dx, ∀w ∈ H2

0 (Ω),

u(x, 0) = u0(x), ut(x, 0) = u1(x).

(3.1)

Theorem 3.2. Assume that (A1)− (A3) hold and let (u0, u1) ∈ H2
0 (Ω)×H2

0 (Ω).
Then problem (1.1) has a weak solution on [0, T ].
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Proof. To establish the existence of a solution to problem (1.1), we use the Faedo-
Galerkin approximations. Let {wj}∞j=1 be an orthogonal basis of the ”separable”

space H2
0 (Ω). Let Vm = span{w1, w2, ..., wm} and let the projections of the initial

data on the finite dimensional subspace Vm be given by

um0 (x) =

m∑
j=1

ajwj(x), um1 (x) =

m∑
j=1

bjwj(x),

where

um0 → u0 in H2
0 (Ω) and um1 → u in H2

0 (Ω), as m→∞. (3.2)

We search for an approximate solution

um(x, t) =

m∑
j=1

hmj (t)wj(x)

of the approximate problem in Vm

∫
Ω

(
|umt |ρumttw + ∆um∆w + ∆umtt∆w −

∫ t
0
g(t− s)∆um(s)∆wds

)
dx

= k
∫

Ω
wum ln |um|dx, ∀w ∈ Vm,

um(0) = um0 =
∑m
j=1(u0, wj)wj ,

umt (0) = um1 =
∑m
j=1(u1, wj)wj .

(3.3)

This leads to a system of ODEs for unknown functions hmj (t). Based on standard
existence theory for ODE, one can obtain functions

hj : [0, tm)→ R, j = 1, 2, ...,m,

which satisfy (3.3) in a maximal interval [0, tm), tm ∈ (0, T ]. Next, we show that
tm = T and that the local solution is uniformly bounded independently of m and
t. For this purpose, let w = umt in (3.3) and integrate by parts to obtain

d

dt
Em(t) ≤ 1

2
(g′o∆um) ≤ 0, (3.4)

where

Em(t) =
1

ρ+ 2
‖umt ‖

ρ+2
ρ+2 +

1

2

(
‖∆umt ‖22 +

(
1−

∫ t

0

g(s)ds

)
‖∆um‖22 + (go∆um)(t)

)
+
k

4
‖um‖22 −

k

2

∫
Ω

|um|2 ln |um|dx.

(3.5)
From (3.4), we have

Em(t) ≤ Em(0), ∀t ≥ 0.

The last inequality together with the Logarithmic Sobolev inequality leads to

‖umt ‖
ρ+2
ρ+2 + ‖∆umt ‖22 +

(
`− ka2cp

2π

)
‖∆um‖22 +

[
k

2
+ k (1 + ln a)

]
‖um‖22 + go∆um

≤ C + ‖um‖22 ln ‖um‖22,
(3.6)

where C = 2Em(0). Choosing

e−
3
2 < a <

√
2π`

kcp
(3.7)
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will make

`− ka2cp
2π

> 0

and
k

2
+ k (1 + ln a) > 0.

This selection is possible thanks to (A3). So, we get

‖umt ‖
ρ+2
ρ+2 + ‖∆umt ‖22 + ‖∆um‖22 + ‖um‖22 + go∆um ≤ c

(
1 + ‖um‖22 ln ‖um‖22

)
.

(3.8)
Let us note that

um(., t) = um(., 0) +

∫ t

0

∂um

∂s
(., s)ds.

Then, using Cauchy-Schwarz’ inequality, we get

‖um(t)‖22 ≤ 2‖um(0)‖22 + 2

∣∣∣∣∣
∣∣∣∣∣
∫ t

0

∂um

∂s
(s)ds

∣∣∣∣∣
∣∣∣∣∣
2

2

≤ 2‖um(0)‖22 + 2T

∫ t

0

‖umt (s)‖22ds,

(3.9)

hence, inequality (3.8) gives

‖um‖22 ≤ 2‖um(0)‖22 + 2Tc

(
1 +

∫ t

0

‖um‖22 ln ‖um‖22ds
)
. (3.10)

If we put C1 = max {2Tc, 2‖u(0)‖22}, (3.10) leads to

‖um‖22 ≤ 2C1

(
1 +

∫ t

0

‖um‖22 ln
(
‖um‖22

)
ds

)
.

Because C1 ≥ 0, we get

‖um‖22 ≤ 2C1

(
1 +

∫ t

0

(
C1 + ‖um‖22

)
ln
(
C1 + ‖um‖22

)
ds

)
.

Applying the Logarithmic Gronwall inequality to the last inequality, we obtain the
following estimate:

‖um‖22 ≤ 2C1e
2C1T = C2.

Hence, from inequality (3.8) it follows that

(go∆um)(t) + ‖umt ‖
ρ+2
ρ+2 + ‖∆umt ‖22 + ‖∆um‖22 + ‖um‖22 ≤ c(1 + C2 lnC2) = C3.

This implies

sup
t∈(0,tm)

[
(go∆um)(t) + ‖umt ‖

ρ+2
ρ+2 + ‖∆umt ‖22 + ‖∆um‖22 + ‖um‖22

]
≤ C3. (3.11)

So, the approximate solution is uniformly bounded independent of m and t. There-
fore, we can extend tm to T .
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Substituting w = umtt in (3.3) and using Young’s and Cauchy-Schwarz’ inequalities,
we obtain∫

Ω

|umt |ρ|umtt |2dx+ ‖∆umtt ‖22 = −
∫

Ω

∆um∆umttdx+

∫
Ω

∫ t

0

g(t− s)∆um(s)∆umtt (t)dsdx

+ k

∫
Ω

umttu
m ln |um|dx

≤ δ‖∆umtt ‖22 +
1

4δ

(∫ t

0

g(t− s)‖∆um(s)‖2ds
)2

+ δ‖∆umtt ‖

+
1

4δ
‖∆um(t)‖2 + k

∫
Ω

umttu
m ln |um|dx.

(3.12)
To estimate the last term in the right-hand side of (3.12), we apply (2.10) with ε0 =
1
2 and use repeatedly Young’s, Cauchy-Schwarz’ and the embedding inequalities as
follows

k

∫
Ω

umttu
m ln |um|dx ≤ c

∫
Ω

umtt

(
|um|2 + d2

√
um
)
dx

≤ c
(
δ

∫
Ω

|umtt |2dx+
1

4δ

∫
Ω

(
|um|2 + d2

√
um
)2

dx

)
≤ cδ‖∆umtt ‖22 +

c

4δ

(∫
Ω

|um|4dx+

∫
Ω

|um|dx
)

≤ cδ‖∆umtt ‖22 +
c

4δ

(
‖∆um‖42 + ‖um‖2

)
.

(3.13)

Combining (3.12) and (3.13) to have∫
Ω

|umt |ρ|umtt |2dx+ (1− cδ)‖∆umtt ‖22 ≤
1

4δ

(∫ t

0

g(t− s)‖∆um(s)‖2ds
)2

+
1

4δ
‖∆um‖2 +

c

δ

(
‖∆um‖42 + ‖um‖22

)
.

(3.14)

Integrate the last inequality on (0, T ) and use (2.1) and (3.11), we obtain∫ T

0

∫
Ω

|umt |ρ|umtt |2dxdt+ (1− cδ)
∫ T

0

‖∆umtt ‖22dt

≤ c

δ

∫ T

0

[
(go∆um)(t) + ‖∆um‖22 + ‖∆um‖42 + ‖um‖22

]
dt.

(3.15)

From the last inequality, choosing δ > 0 small enough and using (3.11), we get the
following, for some positive constant C4 not depending neither on m nor on t:∫ T

0

‖∆umtt ‖22dt ≤ C4. (3.16)

From (3.11) and (3.16), we have
(um) is uniformly bounded in L∞(0, T ;H2

0 (Ω)),

(umt ) is uniformly bounded in L∞(0, T ;Lρ+2(Ω)) ∩ L∞(0, T ;H2
0 (Ω)),

(umtt ) is uniformly bounded in L2(0, T ;H2
0 (Ω)),

(3.17)



EXISYENCE AND STABILITY FOR A VISCOELASTIC PLATE EQUATION 9

which implies that there exists a subsequence of (um) (still denoted by (um)), such
that 

um⇀u weakly * in L∞(0, T ;H2
0 (Ω)),

umt ⇀ut weakly * in L∞(0, T ;Lρ+2(Ω)) ∩ L∞(0, T ;H2
0 (Ω)),

um⇀u weakly in L2(0, T ;H2
0 (Ω)),

umt ⇀ut weakly in L2(0, T ;Lρ+2(Ω)) ∩ L2(0, T ;H2
0 (Ω)),

umtt⇀
wutt in L2(0, T ;H2

0 (Ω)).

(3.18)

Analysis of the non-linear terms

(1) Term um ln |um|: using (3.17), we have (um) is bounded in L∞(0, T ;H2
0 (Ω))

which implies, using the embedding of H2
0 (Ω) in L∞(Ω) (Ω ⊂ R2), the

boundedness of (um) in L2(Ω × (0, T )). Similarly; (umt ) is bounded in
L2(Ω× (0, T )). Then, making use of Aubin-Lions’ theorem, we find, up to
a subsequence, that

um → u strongly in L2(Ω× (0, T ))

and

um → u a.e. in Ω× (0, T ).

Since the maps s → ks ln |s| is continuous, we have the following conver-
gence:

kum ln |um| → ku ln |u| a.e. in Ω× (0, T ). (3.19)

Using the embedding ofH2
0 (Ω) in L∞(Ω) (Ω ⊂ R2), it is clear that k(um ln |um|)

is bounded in L∞(Ω × (0, T )). Next, taking into account the Lebesgue
bounded convergence theorem (Ω is bounded), we get

kum ln |um| → ku ln |u| strongly in L2(0, T ;L2(Ω)). (3.20)

(2) Term |umt |ρumt : using (3.16), we have (umt ) is uniformly bounded in L∞(0, T ;H2
0 (Ω))

which implies the boundedness of (umt ) in L∞(Ω×(0, T )), and so in L2(Ω×
(0, T )). Using (3.16), we see that (umtt ) is bounded in L2((0, T );H2

0 (Ω))
which implies that (umtt ) is bounded in L2(Ω × (0, T )). Now, using Aubin-
Lions theorem, there exists a subsequence, still denoted by (umt ), such that

umt → ut strongly in L2(0, T ;L2(Ω))

and

|umt |ρumt → |ut|ρut a.e. in Ω× (0, T ). (3.21)

Using (3.11) and the embedding theorems, we have

‖|umt |ρut‖2L2(0,T ;L2(Ω)) =

∫ T

0

‖umt ‖
2(ρ+1)
2(ρ+1)dt

≤ c
∫ T

0

‖∆umt (t)‖2(ρ+1)
2 dt ≤ cTCρ+1

3 ,

(3.22)

which implies that (|umt |ρumt ) is bounded in L2(Ω × (0, T )). Combining
(3.21) and (3.22) and using Lions’ lemma, see Lions ([26], pp. 12), we
obtain

|umt |ρumt ⇀|ut|ρut weakly in L2(0, T ;L2(Ω)). (3.23)
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Now, we integrate (3.3) over (0, t) to obtain, for every w ∈ Vm,

1

ρ+ 1

∫
Ω

|umt |ρumt wdxds−
1

ρ+ 1

∫
Ω

|um1 |um1 wdx+

∫ t

0

∫
Ω

∆um(s)∆wdxds

+

∫
Ω

∆umt ∆wdxds−
∫

Ω

∆um1 ∆wdx−
∫

Ω

∫ t

0

(∫ τ

0

g(τ − s)∆um(s)

)
∆wdsdτdx

= k

∫ t

0

∫
Ω

wum(s) ln |um(s)|dxds.

(3.24)
Convergences (3.2), (3.18), (3.20) and (3.23) are sufficient to pass to the limit in
(3.24) as m→∞, and get, for any w ∈ Vm and m ≥ 1,

1

ρ+ 1

∫ t

0

∫
Ω

|us|ρuswdxds =
1

ρ+ 1

∫
Ω

|um1 |um1 wdx−
∫ t

0

∫
Ω

∆u(s)∆wdxds

−
∫

Ω

∆ut∆wdxds+

∫
Ω

∆um1 ∆wdx+

∫
Ω

∫ t

0

(∫ τ

0

g(τ − s)∆u(s)

)
∆wdsdτdx

+ k

∫ t

0

∫
Ω

wu(s) ln |u(s)|dxds,

(3.25)
which implies that (3.25) is valid for any w ∈ H2

0 (Ω). Using the fact that the terms
in the right-hand side of (3.25) are absolutely continuous (since they are functions
of t defined by integrals over (0, t)), then (3.25) is differentiable for a.e. t ∈ R+.
Thus, differentiating (3.25), we obtain, for a.e. t ∈ (0, T ) and w ∈ H2

0 (Ω),∫
Ω

|ut|ρuttwdxds+

∫
Ω

∆u(t)∆wdx

+

∫
Ω

∆utt∆wdx−
∫

Ω

(∫ t

0

g(t− s)∆u(s)

)
∆wdsdx

= k

∫
Ω

wu(t) ln |u(t)|dxds.

(3.26)

This ends the proof of Theorem 3.2. �

4. Global Existence

In this section, we state and prove a global existence result under smallness
conditions on the initial data (u0, u1). For this purpose, we introduce the following
functionals:

J(t) =
1

2

((
1−

∫ t

0

g(s)ds

)
‖∆u‖22 + ‖∆ut‖22 + go∆u− k

∫
Ω

u2 ln |u|dx
)

+
k

4
‖u‖22

(4.1)

and

I(t) =

(
1−

∫ t

0

g(s)ds

)
‖∆u‖22 + ‖∆ut‖22 + go∆u− 3k

∫
Ω

u2 ln |u|dx. (4.2)
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Lemma 4.1. The following inequalities hold:

− kd0

√
|Ω|c3∗‖∆u‖

3
2
2 ≤ k

∫
Ω

u2 ln |u|dx ≤ kc3∗‖∆u‖32, ∀u ∈ H2
0 (Ω), (4.3)

where d0 = sup0<s<1

√
s| ln s| = 2

e , |Ω| is the Lesbegue measure of Ω and c∗ is the
smallest embedding constant(∫

Ω

|u|3dx
) 1

3

≤ c∗‖∆u‖2, ∀u ∈ H2
0 (Ω) (4.4)

(c∗ exists thanks to the embedding of H2
0 (Ω) in L∞(Ω) and Ω ⊂ R2).

Proof. Let

Ω1 = {x ∈ Ω : |u(x)| > 1} and Ω2 = {x ∈ Ω : |u(x)| ≤ 1}.
So, using (4.4), we have

k

∫
Ω

u2 ln |u|dx = k

∫
Ω2

u2 ln |u|dx+ k

∫
Ω1

u2 ln |u|dx

≤ k
∫

Ω1

u2 ln |u|dx ≤ k
∫

Ω1

|u|3dx ≤ k
∫

Ω

|u|3dx ≤ kc3∗‖∆u‖32.

On the other hand, using Hölder’s inequality and (4.4), we find

− k
∫

Ω

u2 ln |u|dx = −k
∫

Ω2

u2 ln |u|dx− k
∫

Ω1

u2 ln |u|dx

≤ −k
∫

Ω2

u2 ln |u|dx = k

∫
Ω2

u2| ln |u||dx

≤ kd0

∫
Ω

|u| 32 dx ≤ kd0

√
|Ω|
(∫

Ω

|u|3dx
) 1

2

≤ kd0

√
|Ω|c3∗‖∆u‖

3
2
2 ,

which implies the left inequality in (4.3). �

Lemma 4.2. Assume that (A1)− (A3). Let (u0, u1) ∈ H2
0 (Ω)×H2

0 (Ω) such that

I(0) > 0 and
√

54kc3∗

(
E(0)

`

) 1
2

< `. (4.5)

Then
I(t) > 0, ∀t ∈ [0, T ). (4.6)

Proof. From (4.2), we have

k

∫
Ω

u2 ln |u|dx =
1

3

(
1−

∫ t

0

g(s)ds

)
‖∆u‖22 +

1

3
‖∆ut‖22 +

1

3
go∆u− 1

3
I(t). (4.7)

Substitute (4.7) in (4.1), we find

J(t) =
1

3

[(
1−

∫ t

0

g(s)ds

)
‖∆u‖22 + ‖∆ut‖22 + go∆u

]
+
k

4
‖u‖22 +

1

6
I(t). (4.8)

Since I(0) > 0 and I is continuous on [0, T ], there exists t0 ∈ (0, T ] such that
I(t) > 0, for all t ∈ [0, t0). Let us denote by t0 the largest real number in (0, T ]
such that I > 0 on [0, t0). If t0 = T , then (4.6) is satisfied.
We assume by contradiction that t0 ∈ (0, T ). Thus I(t0) = 0 and

‖∆u(t)‖22 ≤
6

`
J(t) ≤ 6

`
E(t) ≤ 6

`
E(0), ∀t ∈ [0, t0). (4.9)
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If ‖∆u(t0)‖22 = 0, then (4.3) and (4.4) give

0 = I(t0) =

(
1−

∫ t0

0

g(s)ds

)
‖∆u(t0)‖22 + ‖∆ut(t0)‖22 + go∆u(t0)

− 3k

∫
Ω

u2(t0) ln |u(t0)|dx

≤ c‖∆u(t0)‖22 + go∆u(t0)

=

∫ t0

0

g(s)‖∆u(s)‖22ds.

(4.10)

Consequently, if g > 0 on [0, t0), we get

‖∆u(s)‖2 = 0, ∀s ∈ [0, t0).

Then

I(t) = 0, ∀t ∈ [0, t0),

which is not true since I > 0 on [0, t0). If g 6= 0 on [0, t0), then let t1 ∈ [0, t0)
the smallest real number such that g(t1) = 0. Because g(0) > 0 and g is positive,
nonincreasing and continuous on R+ (condition (A1)), then t1 > 0 and g = 0 on
[t1,∞). Therefore, from (4.10), we deduce that

0 =

∫ t0

0

g(s)‖∆u(s)‖22ds =

∫ t1

0

g(s)‖∆u(s)‖22ds,

then ‖∆u(s)‖2 = 0, for any s ∈ [0, t1), which implies that I(t) = 0, for any
t ∈ [0, t1). As in above, this is a contraduction with the fact that I > 0 on [0, t0).
Then we conclude that ‖∆u(t0)‖22 > 0. On the other hannd, we have

I(t0) ≥ `‖∆u(t0)‖22 − 3k

∫
Ω

u(t0)2 ln |u(t0)|dx.

By using (4.9) and Lemma 4.1, we have

I(t0) ≥

[
`− 3kc3∗

(
6E(0)

`

) 1
2

]
‖∆u(t0)‖22.

By recalling (4.5), we arrive at I(t0) > 0, which contradicts the assumption I(t0) =
0. Hence, t0 = T and then

I(t) > 0, ∀t ∈ [0, T ).

�

5. Stability

In this section, we state and prove our stability result. We start by establishing
several lemmas needed for the proof of our main result.

Lemma 5.1. Assume that g satisfies (A1). Then, for u ∈ H2
0 (Ω), we have∫

Ω

(∫ t

0

g(t− s)(u(t)− u(s))ds

)2

dx ≤ c(go∆u)(t)

and ∫
Ω

(∫ t

0

g′(t− s)(u(t)− u(s))ds

)2

dx ≤ −c(g′o∆u)(t).
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Proof.∫
Ω

(∫ t

0

g(t− s)(u(t)− u(s))ds

)2

dx =

∫
Ω

(∫ t

0

√
g(t− s)

√
g(t− s)(u(t)− u(s))ds

)2

dx.

By applying Cauchy-Schwarz’ and Poincaré’s inequalities, we can show that∫
Ω

(∫ t

0

g(t− s)(u(t)− u(s))ds

)2

dx

≤
∫

Ω

(∫ t

0

g(t− s)ds
)(∫ t

0

g(t− s)(u(t)− u(s))2ds

)
dx

≤ (1− `)c(go∆u)(t)

≤ c(go∆u)(t).

(5.1)

Similarly, the second inequality in Lemma 5.1 can be proved. �

Lemma 5.2. Assume that g satisfies (A1) and (A2). Then∫ ∞
0

ξ(t)g1−σ(t)dt <∞, ∀σ < 2− p. (5.2)

Proof. Using (A1) and (A2), we easily see that, for any σ < 2− p,
ξ(t)g1−σ(t) = ξ(t)g1−σ(t)gp(t)g−p(t) ≤ −g′(t)g1−σ−p(t).

Integrate the last inequality over (0,∞), we obtain∫ ∞
0

ξ(t)g1−σ(t)dt ≤ −
∫ ∞

0

g′(t)g1−σ−p(t)dt =

[
−g

2−p−σ(t)

2− p− σ

]∞
0

<∞.

�

Similar to Cavalcanti and Oquendo [7], we can easily have the following lemma:

Lemma 5.3. Assume that (A1)− (A3) and (4.5) hold and u is a solution of (1.1).
Then, for any 0 < σ < 1, we have

(go∆u)(t) ≤ c
[(∫ t

0

g1−σ(t)dt

)
E(0)

] p−1
p−1+σ

(gpo∆u)
σ

p−1+σ .

By taking σ = 1
2 , we get

(go∆u)(t) ≤ c
(∫ t

0

g
1
2 (s)ds

) 2p−2
2p−1

(gpo∆u)
1

2p−1 (t) (5.3)

and, for any ε0 ∈ (0, 1),

(go∆u)
1

1+ε0 (t) ≤ c
1

1+ε0

(∫ t

0

g
1
2 (s)ds

) 2p−2
(2p−1)(1+ε0)

(gpo∆u)
1

(2p−1)(1+ε0) (t). (5.4)

Corollary 5.4. Assume that (A1) − (A3) and (4.5) hold and u is a solution of
(1.1). Then

ξ(t)(go∆u)(t) ≤ c (−E′(t))
1

2p−1 (5.5)

and, for any ε0 ∈ (0, 1),

ξ(t)(go∆u)
1

1+ε0 (t) ≤ cε0 (−E′(t))
1

(2p−1)(1+ε0) . (5.6)
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Proof. Multiply both sides of (5.3) by ξ(t) and use (5.2) and (2.5) to obtain

ξ(t)(go∆u)(t) ≤ cξ
2p−2
2p−1 (t)

(∫ t

0

g
1
2 (s)ds

) 2p−2
2p−1

ξ
1

2p−1 (t)(gpo∆u)
1

2p−1 (t)

≤ c
(∫ t

0

ξ(s)g
1
2 (s)ds

) 2p−2
2p−1

(ξgpo∆u)
1

2p−1 (t)

≤ c
(∫ ∞

0

ξ(s)g
1
2 (s)ds

) 2p−2
2p−1

(−g′o∆u)
1

2p−1 (t)

≤ c (−E′(t))
1

2p−1 .

(5.7)

For the proof of (5.6), using (5.5) and because ξ is nonnegative and nonincreasing,
we obtain

ξ(t)(go∆u)
1

1+ε0 (t) = ξ
ε0

1+ε0 (t) (ξ(t)(go∆u)(t))
1

1+ε0 ≤ cε0 (−E′(t))
1

(2p−1)(1+ε0) .

�

Lemma 5.5. Under the assumptions (A1)− (A3) and (4.5), the functional

ψ(t) :=
1

ρ+ 1

∫
Ω

|ut|ρutudx+

∫
Ω

∆u∆utdx

satisfies, along the solution of (1.1), the estimate

ψ′(t) ≤ − `
2

∫
Ω

|∆u|2dx+

∫
Ω

|∆ut|2dx+
1

ρ+ 1

∫
Ω

|ut|ρ+2
dx+ c(go∆u)(t)

+ k

∫
Ω

u2 ln |u|dx.
(5.8)

Proof. Direct differentiation of ψ, using (1.1), yields

ψ′(t) = −
∫

Ω

|∆u|2dx+

∫
Ω

∆u(t)

∫ t

0

g(t− s)∆u(s)dsdx

+

∫
Ω

|∆ut|2dx+
1

ρ+ 1

∫
Ω

|ut|ρ+2
dx+ k

∫
Ω

u2 ln |u|dx.
(5.9)

We then estimate the second term on the right side of (5.9). We have, using (2.1),∫
Ω

∆u(t)

∫ t

0

g(t− s)∆u(s)dsdx =

∫
Ω

∆u(t)

∫ t

0

g(t− s) (∆u(s)−∆u(t) + ∆u(t)) dsdx

≤ (1− `)
∫

Ω

|∆u|2dx−
∫

Ω

(∫ t

0

g(t− s) (∆u(t)−∆u(s)) ds

)
dx.

By exploiting Lemma 5.1 and

ab ≤ 1

2η
a2 +

η

2
b2, ∀a, b ≥ 0,∀η > 0,
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we arrive at∫
Ω

∆u(t)

∫ t

0

g(t− s)∆u(s)dsdx

≤ (1− `)
∫

Ω

|∆u|2dx+
1

2η

∫
Ω

(∫ t

0

g(t− s)|∆u(t)−∆u(s)|ds
)2

dx

+
η

2

∫
Ω

|∆u|2dx

≤
(

1− `+
η

2

)∫
Ω

|∆u|2dx+
c

η
(go∆u)(t).

By taking η = `, we find∫
Ω

∆u(t)

∫ t

0

g(t− s)∆u(s)dsdx ≤ 2− `
2

∫
Ω

|∆u|2dx+ c(go∆u)(t). (5.10)

Inserting (5.10) in (5.9), estimate (5.8) is established. �

Lemma 5.6. Under the assumptions (A1)− (A3) and (4.5), the functional

χ(t) := −
∫

Ω

(
∆2ut +

1

ρ+ 1
|ut|ρut

)∫ t

0

g(t− s)(u(t)− u(s))dsdx

satisfies, along the solution of (1.1) and for any δ, δ1, δ2 > 0, the estimate

χ′(t) ≤
[
(1 + 2(1− `)2)δ1 +

δ

4

] ∫
Ω

|∆u|2dx− 1

ρ+ 1

(∫ t

0

g(s)ds

)∫
Ω

|ut|ρ+2
dx

+ c

(
δ1 +

1

δ1
+

1

δ

)
(go∆u)(t)− c

δ2
(g′o∇u)(t)

+

[
δ2 + cδ2 (E(0))

ρ −
∫ t

0

g(s)ds

] ∫
Ω

|∆ut|2dx+ cε0,δ(go∆u)
1

1+ε0 (t).

(5.11)

Proof. Differentiating χ with respect to t and making use of (1.1), we find

χ′(t) =

∫
Ω

∆u(t)

∫ t

0

g(t− s)(∆u(s)−∆u(t))dsdx

−
∫

Ω

(∫ t

0

g(t− s)∆u(s)ds

)(∫ t

0

g(t− s)(∆u(s)−∆u(t))ds

)
dx

−
(∫ t

0

g(s)ds

)∫
Ω

|∆ut|2dx−
∫

Ω

∆ut(t)

∫ t

0

g′(s)(∆u(s)−∆u(t))dsdx

− 1

ρ+ 1

∫
Ω

|ut|ρut
∫ t

0

g′(t− s)(u(s)− u(t))dsdx

− 1

ρ+ 1

(∫ t

0

g(s)ds

)∫
Ω

|ut|ρ+2
dx− k

∫
Ω

u ln |u|
∫ t

0

g(t− s) (u(t)− u(s)) dsdx.

(5.12)
Now we proceed, using repeatedly Cauchy-Schwarz’ inequality, Young’s inequality
and Lemma 5.1, to estimate each term in the right-hand side of (5.12). The first
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term may be estimated as follows∫
Ω

∆u(t)

∫ t

0

g(t− s)(∆u(s)−∆u(t))dsdx

≤ δ1
∫

Ω

|∆u|2dx+
c

δ1
(go∆u)(t), ∀δ1 > 0.

(5.13)

For the second term, we recall (2.1) and the fact that (a+ b)2 ≤ 2(a2 + b2) to get,
for any δ1 > 0,

−
∫

Ω

(∫ t

0

g(t− s)∆u(s)ds

)(∫ t

0

g(t− s)(∆u(s)−∆u(t))ds

)
dx

≤ δ1
∫

Ω

∣∣∣∣ ∫ t

0

g(t− s)∆u(s)ds

∣∣∣∣2dx+
1

4δ1

∫
Ω

∣∣∣∣ ∫ t

0

g(t− s)(∆u(s)−∆u(t))ds

∣∣∣∣2dx
≤ δ1

∫
Ω

(∫ t

0

g(t− s)
(∣∣∣∣ ∆u(s)−∆u(t)

∣∣∣∣ +|∆u(t)|
)
ds

)2

dx+
c

δ1
(go∆u)(t)

≤ c
(
δ1 +

1

δ1

)
(go∆u)(t) + 2δ1(1− `)2

∫
Ω

|∆u|2dx.

(5.14)
For the fourth term, it is easy to see that, for any δ2 > 0,

−
∫

Ω

∆ut

∫ t

0

g′(t− s)(∆u(s)−∆u(t))dsdx

≤ δ2
∫

Ω

|∆ut|2dx+
c

δ2

∫
Ω

∫ t

0

(−g′(t− s)) |∆u(s)−∆u(t)|2dsdx.
(5.15)

The fifth term may be handled similarly

− 1

ρ+ 1

∫
Ω

|ut|ρut
∫ t

0

g′(t− s)(u(s)− u(t))dsdx

≤ 1

ρ+ 1

[
δ2

∫
Ω

|ut|2(ρ+1)
dx+

c

δ2

∫
Ω

∫ t

0

(−g′(t− s)) |∆u(s)−∆u(t)|2dsdx
]
.

(5.16)
Using (2.4), (2.5), (4.1), (4.6) and (4.8), we have

E(0) ≥ E(t) = J(t) +
1

ρ+ 2
‖ut‖ρ+2

ρ+2 ≥ J(t) ≥ 1

6
‖∆ut‖22,

which gives

‖∆ut‖22 ≤ 6E(0). (5.17)

By exploiting the Sobolev embedding

H1
0 (Ω) ↪→ L2(ρ+1)(Ω), (5.18)

and (5.17), we obtain ∫
Ω

|ut|2(ρ+1)
dx ≤ c(E(0))ρ‖∆ut‖22. (5.19)
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Therefore (5.16) takes the form

− 1

ρ+ 1

∫
Ω

|ut|ρut
∫ +∞

0

g′(s)(u(t− s)− u(t))dsdx

≤ cδ2(E(0))ρ‖∆ut‖22 −
c

δ2
(g′o∆u)(t).

(5.20)

Applying (2.10) for s = |u|, using the embedding ofH2
0 (Ω) in L∞(Ω) and performing

the same calulactions as before, we get, for any δ3 > 0 and any ε0 ∈ (0, 1),

− k
∫

Ω

u ln |u|
∫ t

0

g(t− s)(u(t)− u(s))dsdx

≤ k
∫

Ω

(
u2 + dε0 |u|1−ε0

) ∣∣∣∣∫ t

0

g(t− s)(u(t)− u(s))dsdx

∣∣∣∣
≤ c

∫
Ω

|u|2
∣∣∣∣∫ t

0

g(t− s)(u(t)− u(s))ds

∣∣∣∣ dx+ δ3

∫
Ω

u2dx

+ cε0,δ3

∫
Ω

∣∣∣∣∫ t

0

g(t− s)(u(t)− u(s))ds

∣∣∣∣
2

1+ε0

dx

≤ cδ3||∆u||22 +
c

δ3

∫
Ω

∣∣∣∣∫ t

0

g(t− s)(u(t)− u(s))ds

∣∣∣∣2 dx
+ cε0,δ3

∫
Ω

∣∣∣∣∫ t

0

g(t− s)(u(t)− u(s))ds

∣∣∣∣
2

1+ε0

dx,

then, puting δ
4 = cδ3 and using Holder’s inequality and Lemma 5.1, we find

− k
∫

Ω

u ln |u|
∫ t

0

g(t− s)(u(t)− u(s))dsdx ≤ δ

4
||∆u||22 +

c

δ
(go∆u)(t)

+ cε0,δ(go∆u)
1

1+ε0 (t).

(5.21)

Combining (5.12)-(5.15), (5.20) and (5.21), estimate (5.11) is established. �

Lemma 5.7. Assume that (A1)− (A3) and (4.5) hold and let ε0 ∈ (0, 1). Assume
that

0 < E(0) <
e`π

4cp
. (5.22)

Then, for k small enough, there exist positive constants ε and N such that the
functional

L = NE + εψ + χ

satisfies

L ∼ E (5.23)

and, for any t0 > 0, there exists a positive constant m such that

L′(t) ≤ −mE(t) + c(go∆u)(t) + cε0(go∆u)
1

1+ε0 (t), ∀t ≥ t0. (5.24)
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Proof. To prove (5.23), we use Young’s inequality, the Sobolev embeddingH1
0 (Ω) ↪→

Lρ+2(Ω), (4.6), (4.8), (5.17) and (5.19) to obtain

|L(t)−NE(t)| ≤ ε

ρ+ 2
||ut||ρ+2

ρ+2 +
ε

(ρ+ 1)(ρ+ 2)
||u||ρ+2

ρ+2 +
ε

2
||∆ut||22

+
ε

2
||∆u||22 +

1

2(ρ+ 1)
||ut||2(ρ+1)

2(ρ+1) +
1− `

2(ρ+ 1)
cp(go∆u)(t)

+
1

2
||∆ut||22 +

1− `
2

(go∆u)(t)

≤ εE(t) + ε
cρ+2

(ρ+ 1)(ρ+ 2)

(
6

`
E(0)

)1+ ρ
2

E(t) + 3εE(t)

+
3ε

`
E(t) +

3c

(ρ+ 1)
(E(0))ρE(t) +

3(1− `)
(ρ+ 1)

cpE(t)

+ 3E(t) + 3(1− `)E(t)

≤ c(1 + ε)E(t);

(5.25)
that is

[N − c(1 + ε)]E(t) ≤ L(t) ≤ [N + c(1 + ε)]E(t).

By fixing N large enough so that N > c(1 + ε), we obtain the desired result (5.23).
For the proof of (5.24), since g is positive and g(0) > 0 then, for any t0 > 0, we
have

∫ t

0

g(s)ds ≥
∫ t0

0

g(s)ds = g0 > 0, ∀t ≥ t0.

By using (2.5), (5.8) and (5.11) then, for t ≥ t0, we have

L′(t) ≤
(
N

2
− c

δ2

)
(g′o∆u)(t)− g0 − ε

ρ+ 1

∫
Ω

|ut|ρ+2
dx

−
[
ε
`

2
− (1 + 2(1− `)2)δ1 −

δ

4

]
‖∆u‖22

− [g0 − ε− δ2 − cδ2(E(0))ρ] ‖∆ut‖22

+ c

(
ε+ δ1 +

1

δ1
+

1

δ

)
(go∆u)(t)

+ cε0,δ(go∆u)
1

1+ε0 (t) + εk

∫
Ω

u2 ln |u|dx.

(5.26)
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Using the definition of E(t), we obtain, for any m > 0,

L′(t) ≤ −mE(t) +

(
N

2
− c

δ2

)
(g′o∆u)(t)−

(
g0 − ε
ρ+ 1

− m

ρ+ 2

)∫
Ω

|ut|ρ+2
dx

−
[
ε
`

2
− (1 + 2(1− `)2)δ1 −

δ

4
− m(1− g0)

2

]
‖∆u‖22

−
[
g0 − ε− δ2 − cδ2(E(0))ρ − m

2

]
‖∆ut‖22

+

[
c

(
ε+ δ1 +

1

δ1
+

1

δ

)
+
m

2

]
(go∆u)(t)

+ cε0,δ(go∆u)
1

1+ε0 (t) +
mk

4
‖u‖22

+
(
ε− m

2

)
k

∫
Ω

u2 ln |u|dx.

(5.27)
Using the Logarithmic Sobolev inequality (2.7), we get, for 0 < m < 2ε,

L′(t) ≤ −mE(t) +

[
N

2
− c

δ2

]
(g′o∆u)(t)−

(
g0 − ε
ρ+ 1

− m

ρ+ 2

)∫
Ω

|ut|ρ+2
dx

−
[
ε
`

2
− (1 + 2(1− `)2)δ1 −

δ

4
− m(1− g0)

2
−
(
ε− m

2

) kcpa2

2π

]
‖∆u‖22

−
(
g0 − ε− δ2 − cδ2(E(0))ρ − m

2

)
‖∆ut‖22

+

[
c

(
ε+ δ1 +

1

δ1
+

1

δ

)
+
m

2

]
(go∆u)(t) + cε0,δ(go∆u)

1
1+ε0 (t)

−
(
ε− m

2

) k
2

(
2(1 + ln a)− ln ‖u‖22

)
‖u‖22 +

mk

4
‖u‖22.

(5.28)
At this point, we choose our constant carefully. First, we pick 0 < ε < g0, then δ1,
δ2 and δ small enough so that

k1 := ε
`

2
− (1 + 2(1− `)2)δ1 −

δ

4
> 0

and

k2 := g0 − ε− δ2 − cδ2(E(0))ρ > 0.

Then, N sufficiently large so that

N > c(1 + ε) and
N

2
− c

δ2
≥ 0.
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Consequently, we get

L′(t) ≤ −mE(t)−
(
g0 − ε
ρ+ 1

− m

ρ+ 2

)∫
Ω

|ut|ρ+2
dx

−
[
k1 −

m(1− g0)

2
−
(
ε− m

2

) kcpa2

2π

]
‖∆u‖22

−
(
k2 −

m

2

)
‖∆ut‖22 +

(
c+

m

2

)
(go∆u)(t)

+ cε0(go∆u)
1

1+ε0 (t) +
mk

4
‖u‖22

−
(
ε− m

2

) k
2

(
2(1 + ln a)− ln ‖u‖22

)
‖u‖22.

(5.29)

Finally, we choose m and k small enough so that m ≤ ε (so mk
4 ≤

(
ε− m

2

)
k
2 ),

g0 − ε
ρ+ 1

− m

ρ+ 2
> 0,

k1 −
m(1− g0)

2
−
(
ε− m

2

) kcpa2

2π
> 0

and

k2 −
m

2
> 0,

we get

L′(t) ≤ −mE(t) + c(go∆u)(t) + cε0(go∆u)
1

1+ε0 (t)

−
(
ε− m

2

) k
2

(
1 + 2 ln a− ln ‖u‖22

)
‖u‖22.

(5.30)

Using (2.4), (2.5), (4.1), (4.6), (4.8) and (5.22), we have

ln ‖u‖22 ≤ ln

(
4

k
J(t)

)
≤ ln

(
4

k
E(t)

)
≤ ln

(
4

k
E(0)

)
≤ ln

(
e`π

kcp

)
. (5.31)

By taking a satisfying

max

{
e−

3
2 ,

√
`π

kcp

}
< a <

√
2`π

kcp

(so (3.7) is satisfied), we guarantee

1 + 2 ln a− ln ‖u‖22 ≥ 0.

Which completes the proof of (5.24). �

Remarks 5.8. Using (2.1), (2.4), (4.1), (4.6) and (4.8), we have

E(t) = J(t) +
1

ρ+ 2
‖ut‖ρ+2

ρ+2 ≥ J(t) ≥ l

6
‖∆u(t)‖22,

then, using (2.5),

‖∆u(t)‖22 ≤
6

l
E(t) ≤ 6

l
E(0). (5.32)
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So, from (2.5) and using Young’s inequality, we get

|E′(t)| = 1

2
g(t)‖∆u(t)‖22 −

1

2
(g′o∆u)(t)

≤ 1

2
g(t)‖∆u(t)‖22 −

∫ t

0

g′(t− s)
(
‖∆u(t)‖22 + ‖∆u(s)‖22

)
ds

≤ 6

l

(
1

2
g(t) + 2g(0)− 2g(t)

)
E(0)

≤ cE(0).

(5.33)

Theorem 5.9. Let (u0, u1) ∈ H2
0 (Ω)×H2

0 (Ω), ε ∈ (0, 2p− 1) and t0 > 0. Assume
that (A1)− (A3) and (4.5) hold. Then, for k small enough, there exists a positive
constant K such that the solution of (1.1) satisfies

E(t) ≤ K
(

1 +

∫ t

t0

ξ2p−1+ε(s)ds

) −1
2p−2+ε

, ∀t ≥ t0. (5.34)

Moreover, if there exist ε1 ∈ (0, 2p− 1) and t0 > 0 such that∫ ∞
t0

(
1 +

∫ t

t0

ξ2p−1+ε1(s)ds

) −1
2p−2+ε1

dt <∞, (5.35)

then, for any r ∈ (0, p) and t0 > 0, there exists a positive constant K such that the
solution of (1.1) satisfies

E(t) ≤ K
(

1 +

∫ t

t0

ξp+r(s)ds

) −1
p−1+r

, ∀t ≥ t0. (5.36)

Remarks 5.10. Using (5.34) and (5.35), we can easily show that∫ +∞

0

E(t)dt < +∞. (5.37)

Proof. We multiply (5.24) by ξ(t) and use Corollary 5.4 and (5.33) to get, for any
t ≥ t0,

ξ(t)L′(t) ≤ −mξ(t)E(t) + c (−E′(t))
1

2p−1 + c (−E′(t))
1

(2p−1)(1+ε0)

≤ −mξ(t)E(t) + c (−E′(t))
ε0

(2p−1)(1+ε0) (−E′(t))
1

(2p−1)(1+ε0) + c (−E′(t))
1

(2p−1)(1+ε0)

≤ −mξ(t)E(t) + c (−E′(t))
1

(2p−1)(1+ε0) , ∀t ≥ t0.
(5.38)

Multiply the last inequality by ξγ(t)Eγ(t), where γ = (2p − 1)(1 + ε0) − 1, and
notice that ξ′ ≤ 0 to obtain

ξγ+1(t)Eγ(t)L′(t) ≤ −mξγ+1(t)Eγ+1(t) + c (ξE)
γ

(t) (−E′(t))
1
γ+1 , ∀t ≥ t0.

Use of Young’s inequality, with q = γ + 1 and q∗ = γ+1
γ , gives, for any ε′ > 0,

ξγ+1(t)Eγ(t)L′(t) ≤ −mξγ+1(t)Eγ+1(t) + c
(
ε′ξγ+1(t)Eγ+1 − cε′E′(t)

)
= −(m− ε′c)ξγ+1(t)Eγ+1 − cE′(t), ∀t ≥ t0.

We then choose 0 < ε′ < m
c and recall that ξ′ ≤ 0 and E′ ≤ 0, to get, for

c1 = m− ε′c,(
ξγ+1EγL

)′
(t) ≤ ξγ+1(t)Eγ(t)L′(t) ≤ −c1ξγ+1(t)Eγ+1(t)− cE′(t), ∀t ≥ t0,
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which implies (
ξγ+1EγL+ cE

)′
(t) ≤ −c1ξγ+1(t)Eγ+1(t), ∀t ≥ t0.

Let F = ξγ+1EγL+ cE. Then F ∼ E (thanks to (5.23)) and

F ′(t) ≤ −cξγ+1(t)F γ+1(t) = −cξ(2p−1)(1+ε0)(t)F (2p−1)(1+ε0)(t), ∀t ≥ t0.

Integrating over (t0, t) and using the fact that F ∼ E, we obtain (5.34) with
ε = (2p− 1)ε0.

To establish (5.36), we use the idea of Messaoudi and Al-Khulaifi [32]. Let

η(t) =

∫ t

0

‖∆u(t)−∆u(t− s)‖22ds.

Using (5.34), (5.32), (5.35) and (5.37), we have

η(t) ≤ 2

∫ t

0

(
‖∆u(t)‖22 + ‖∆u(t− s)‖22

)
ds

≤ 12

l

∫ t

0

(E(t) + E(t− s)) ds

≤ 24

l

∫ t

0

E(s)ds <
24

l

∫ ∞
0

E(s)ds <∞.

This implies that

sup
t>0

η1− 1
p (t) <∞. (5.39)

Assume that η(t) > 0. Then, because ξ is nonincreasing, we find

ξ(t)(g ◦∆u)(t) ≤ η(t)

η(t)

∫ t

0

(ξp(s)gp(s))
1
p ‖∆u(t)−∆u(t− s)‖22ds.

Applying Jensen’s inequality to get

ξ(t)(g ◦∆u)(t) ≤ η(t)

(
1

η(t)

∫ t

0

ξp(s)gp(s)‖∆u(t)−∆u(t− s)‖22 ds
) 1
p

.

Therefore, using (A2) and (5.39) we obtain

ξ(t)(g ◦∆u)(t) ≤ η1− 1
p (t)

(
ξp−1(0)

∫ t

0

ξ(s)gp(s)‖∆u(t)−∆u(t− s)‖22ds
) 1
p

≤ c(−g′ ◦∆u)
1
p (t),

and then, according to (2.5),

ξ(t)(g ◦∆u)(t) ≤ c(−E′(t))
1
p . (5.40)

So, since ξ is nonincreasing,

ξ(t)(g ◦∆u)
1

1+ε0 (t) = (ξε0(t)ξ(t)(g ◦∆u)(t))
1

1+ε0

≤ (ξε0(0)ξ(t)(g ◦∆u)(t))
1

1+ε0

≤ c (ξ(t)(g ◦∆u)(t))
1

1+ε0

≤ c(−E′(t))
1

p(1+ε0) .

(5.41)
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If η(t) = 0, then s→ ∆u(s) is a constant function on [0, t]. Therefore

(g ◦∆u)(t) = 0,

and hence (5.40) and (5.41) hold.

Now, multiplying (5.24) by ξ(t) and using (5.33), (5.40) and (5.41) to find, for
any t ≥ t0 (as for (5.38)),

ξ(t)L′(t) ≤ −mξ(t)E(t) + c (−E′(t))
1
p + c (−E′(t))

1
p(1+ε0)

≤ −mξ(t)E(t) + c (−E′(t))
ε0

p(1+ε0) (−E′(t))
1

p(1+ε0) + c (−E′(t))
1

p(1+ε0)

≤ −mξ(t)E(t) + c (−E′(t))
1

p(1+ε0) , ∀t ≥ t0.
(5.42)

Inequality (5.38) with 2p − 1 replaced by p is exactely (5.42). Then, the proof of
(5.36) can be completed as for the one of (5.34) (by taking γ = p(1 + ε0) − 1 and
ε = pε0). This completes the proof of our main result. �

Remarks 5.11. We note here that 2p− 2 + ε and p− 1 + ε can be arbitrary close
to 2p−2 and p−1, respectively, since ε can be arbitrary close to zero. On the other
hand, in the absence of the logarithmic ”forcing” term (k = 0), the estimates (2.10)
and (5.21) drop out and, consequently, (5.24) takes the form

L′(t) ≤ −mE(t) + c(go∆u)(t), ∀t ≥ t0. (5.43)

In this case, we obtain the following result:

Theorem 5.12. Let (u0, u1) ∈ H2
0 (Ω) ×H2

0 (Ω) and t0 > 0. Assume that (A1) −
(A2) hold. Then, there exists a positive constant K such that the solution of (1.1)
satisfies, for all t ≥ t0,

E(t) ≤ Ke−λ
∫ t
t0
ξ(s)ds

if p = 1 (5.44)

and

E(t) ≤ K
(

1 +

∫ t

t0

ξ2p−1(s)ds

) −1
2p−2

if 1 < p <
3

2
. (5.45)

Moreover, if 1 < p < 3
2 and

∫ ∞
0

(
1 +

∫ t

t0

ξ2p−1(s)ds

) −1
2p−2

dt <∞, (5.46)

then

E(t) ≤ K
(

1 +

∫ t

t0

ξp(s)ds

) −1
p−1

, ∀t ≥ t0. (5.47)
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vsky, Bull. Belg. Math. Soc., 5, 583-594 (1998).
[17] Han X., Global existence of weak solutions for a logarithmic wave equation arising from

Q-ball dynamics. Bull. Korean Math. Soc., 50(1), 275-283 (2013).

[18] Han X. and Wang M., General decay of energy for a viscoelastic equation with nonlinear
damping, Math. Methods Appl. Sci., 32 (3), 346-358 (2009).

[19] Han X. and Wang M., General Decay Estimate of Energy for the Second Order Evolution

Equations with Memory, Act Appl. Math., 110, 194-207 (2010).
[20] Hiramatsu T., Kawasaki M. and Takahashi F., Numerical study of Q-ball formation in gravity

mediation, Journal of Cosmology and Astroparticle Physics, no. 6, 008 (2010).
[21] Komornik V., On the nonlinear boundary stabilization of Kirchoff Plates, NoDEA, 1, 323-337

(1994).
[22] Lagnese J., Boundary Stabilization of Thin Plates, SIAM, Philadelphia, 1989.
[23] Lagnese J., Asymptotic energy estimates for Kirchhoff plates subject to weak viscoelastic

damping, International Series of Numerical Mathematics, vol. 91. Birhauser: Verlag, Bassel,

(1989).
[24] Lasiecka I. and Tataru D., Uniform boundary stabilization of semilinear wave equation with

nonlinear boundary damping, Differential Integral Equations, 6 (6), 507-533 (1993).
[25] Lasiecka I., Exponential decay rates for the solutions of Euler–Bernoulli moments only, J.

Differential Equations 95, 169-182 (1992).

[26] Lions J., Quelques methods de resolution des probléms aux limites non lineaires, Dunod
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