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Introduction

In this paper, we deal with the existence and decay of solutions of the following plate problem:

     |u t | ρ u tt + ∆ 2 u + ∆ 2 u tt - t 0 g(t -s)∆ 2 u(s)ds = ku ln |u|,
in Ω × (0, ∞), u(x, t) = ∂u ∂ν (x, t) = 0, in ∂Ω × (0, ∞), u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), in Ω, (1.1) where Ω is a bounded domain of R 2 , with a smooth boundary ∂Ω, ν is the unit outer normal to ∂Ω and ρ and k are positive constants. The kernel g is satisfying some conditions to be specified later.

1.1. Problems with a velocity-dependent material density. Cavalcanti et al. [START_REF] Cavalcanti | Existence and uniform decay for nonlinear viscoelastic equation with strong damping[END_REF] considered

     |u t | ρ u tt -∆u -∆u tt + t 0 g(t -s)∆u(s)ds -γ∆u t = 0,
in Ω × (0, ∞), u(x, t) = 0, in ∂Ω × (0, ∞), u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), in Ω, (1.2)
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where Ω is a bounded domain in R n , n ≥ 1, with a smooth boundary ∂Ω, ρ is a positive real number satisfying some conditions and g is a positive exponentially decaying function. They established a global existence result when the constant γ ≥ 0, and an exponential decay result for the case γ > 0. Messaoudi and Tatar [START_REF] Messaoudi | Global existence asymptotic behavior for a non-linear viscoelastic problem[END_REF] extended this decay result to the case where a source term is competing with the viscoelastic and the strong damping. In the absence of the strong damping (γ = 0), Messaoudi and Tatar [START_REF] Messaoudi | Global existence and uniform stability of solutions for a quasilinear viscoelastic problem[END_REF][START_REF] Messaoudi | Exponential and polynomial decay for a quasilinear viscoelastic equation, Nonlinear Anal[END_REF] studied (1.2) and showed that the viscoelastic damping is strong enough to drive the system uniformly to rest. Precisely, they showed that the energy of the solution decays exponentially (resp. polynomially) if g decays exponentially (resp. polynomially). Later, Han and Wang [START_REF] Han | General decay of energy for a viscoelastic equation with nonlinear damping[END_REF] considered (1.2) for γ = 0 and with a relaxation function of more general decay type and established, similarly to the work of Messaoudi [START_REF] Messaoudi | General decay of solution energy in a viscoelastic equation with a nonlinear source[END_REF][START_REF] Messaoudi | General decay of solutions of a viscoelastic equation[END_REF], a general decay result in which the usual exponential and the polynomial decay are only special cases. Liu [START_REF] Liu | General decay and blow up of solution for a quasilinear viscoelastic equation with a nonlinear source[END_REF] considered (1.2), for γ = 0, and in the presence of a source term. He established a general decay result similar to the one in [START_REF] Han | General decay of energy for a viscoelastic equation with nonlinear damping[END_REF]. In [START_REF] Liu | General decay rate estimate for a viscoelastic equation with weakly nonlinear timedependent dissipation and source terms[END_REF], Liu studied the problem

     |u t | ρ u tt -∆u -∆u tt + t 0 g(t -s)∆u(s)ds + α(t)h(u t ) = b|u| p-2 u, in Ω × (0, ∞), u(x, t) = 0, in ∂Ω × (0, ∞), u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), in Ω, (1.3 
) and proved, without imposing growth conditions on h, a general decay result which depends on the behavior of g, α and h. Messaoudi and Mustafa [START_REF] Messaoudi | A general stability result for a quasilinear wave equation[END_REF] studied (1.2) for relaxation functions satisfying g (t) ≤ -H(g(t)), (1.4) where H ∈ C 1 (R + ), with H(0) = 0 and H is linear or strictly increasing and strictly convex function C 2 near the origin. They obtained an explicit and general relation between the decay rate for the energy and that of the relaxation function g without imposing restrictive assumptions on the behavior of g at infinity. Recently, Cavalcanti et al. [START_REF] Cavalcanti | Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density[END_REF] considered (1.2), with γ = 0, and a relaxation function satisfying (1.4). In addition, they required lim inf x→0 + {x 2 H (x) -xH (x) + H(x)} ≥ 0 and some other condition and proved that the energy uniformly decays to zero with the rate that is determined from the solutions of the ODE quantifying the behavior of g(t).

Very recently, Messaoudi and Al-Khulaifi [START_REF] Messaoudi | General and optimal decay for a quasilinear viscoelastic equation[END_REF] considered (1.2), with γ = 0, where the relaxation function satisfies (2.2) below and established an optimal and general decay result. 1.2. Plate Problems. Concerning the study of plates, Lagnese [START_REF] Lagnese | Asymptotic energy estimates for Kirchhoff plates subject to weak viscoelastic damping[END_REF] studied a viscoelastic plate equation and showed that the energy decays to zero as time goes to infinity by intorducing a dissipative mechanism on the boundary of the system. Rivera et al. [START_REF] Mu Noz Rivera | Decay rates for viscoelastic paltes with memory[END_REF] proved that the first and second order energy, associated with the solutions of the viscoelastic plate equation, decay exponentially provided that the kernel of the memory also decays exponentially. Komornik [START_REF] Komornik | On the nonlinear boundary stabilization of Kirchoff Plates[END_REF] investigated the energy decay of a plate model under weak growth assumptions on the feedback function. Messaoudi [START_REF] Messaoudi | Global existence and nonexistence in a system of Petrovsky[END_REF] studied the following problem:

     u tt + ∆ 2 u + |u t | m-2 u t = |u| p-2 u, in Q T = Ω × (0, T ), u = ∂u ∂ν = 0, on Γ T = ∂Ω × (0, T ), u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), in Ω, (1.5)
and established an existence result and showed that the solution continues to exist globally if m ≥ p, and blows up in finite time if m < p and the initial energy is negative. This result was later improved by Chen and Zhou [START_REF] Zhou | Global nonexistence for a semilinear Petrovsky equation[END_REF].

For boundary damping, Santos and Junior [START_REF] Santos | A boundary condition with memory for Kirchoff plates equations[END_REF] studied the stability of the following problem:

               u tt + ∆ 2 u = 0, in Ω × (0, ∞), u = ∂u ∂ν = 0, on Γ 0 × (0, ∞), -u + t 0 g 1 (t -s)β 1 u(s)ds = 0, on Γ 1 × (0, ∞), ∂u ∂ν + t 0 g 2 (t -s)β 2 u(s)ds = 0, on Γ 2 × (0, ∞), u(0, x) = u 0 (x), u t (0, x) = u 1 (x), in Ω, (1.6)
where

β 1 u = ∆u + (1 -µ)B 1 u and β 2 u = ∂∆u ∂µ + (1 -µ) ∂B 2 u ∂η with B 1 u = 2ν 1 ν 2 u xy -ν 2 1 u yy -ν 2 2 u xx and B 2 u = (ν 1 -ν 2 ) u xy + ν 1 ν 2 (u yy -u xx )
. For more results in this direction, see [START_REF] Benaissa | Energy decay of solutions of a wave equation of φ-Laplacian type with a general weakly nolinear dissipation[END_REF][START_REF] Guesmia | Existence globale et stabilisation interne non linéaire d'un système de Petrovsky[END_REF][START_REF] Han | General Decay Estimate of Energy for the Second Order Evolution Equations with Memory[END_REF][START_REF] Lagnese | Boundary Stabilization of Thin Plates[END_REF][START_REF] Lasiecka | Exponential decay rates for the solutions of Euler-Bernoulli moments only[END_REF].

1.3. Problems with Logarithmic Nonlinearity. The logarithmic nonlinearity is of much interest in physics, since it appears naturally in inflation cosmology and supersymmetric filed theories, quantum mechanics and nuclear physics [START_REF] Barrow | Inflationary models with logarithmic potentials[END_REF][START_REF] Enqvist | Q-balls and baryogenesis in the MSSM[END_REF]. This type of problems has applications in many branches of physics such as nuclear physics, optics and geophysics [START_REF] Bartkowski | One-dimensional Klein-Gordon equation with logarithmic nonlinearities[END_REF][START_REF] Bialynicki-Birula | Wave equations with logarithmic nonlinearities[END_REF][START_REF] Gorka | Logarithmic Klein-Gordon equation[END_REF]. Birula and Mycielski [START_REF] Bialynicki-Birula | Wave equations with logarithmic nonlinearities[END_REF][START_REF] Bialynicki-Birula | Nonlinear wave mechanics[END_REF] studied the following problem:

     u tt -u xx + u -εu ln |u| 2 = 0, in [a, b] × (0, T ), u(a, t) = u(b, t) = 0, in (0, T ), u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), in [a, b], (1.7)
which is a relativistic version of logarithmic quantum mechanics and can also be obtained by taking the limit p → 1 for the p-adic string equation [START_REF] Gorka | Nonlinear equations with infinitely many derivatives[END_REF][START_REF] Vladimirov | The equation of the p-adic open string for the scalar tachyon field[END_REF]. In [START_REF] Cazenave | Equations d'evolution avec non-linearite logarithmique[END_REF], Cazenave and Haraux considered

u tt -∆u = u ln |u| k , in R 3 (1.8)
and established the existence and uniqueness of the solution for the Cauchy problem. Gorka [START_REF] Gorka | Logarithmic Klein-Gordon equation[END_REF] used some compactness arguments and obtained the global existence of weak solutions, for all

(u 0 , u 1 ) ∈ H 1 0 ([a, b]) × L 2 ([a, b]
), to the initial-boundary value problem (1.8) in the one-dimensional case. Bartkowski and Gorka [START_REF] Bartkowski | One-dimensional Klein-Gordon equation with logarithmic nonlinearities[END_REF] proved the existence of classical solutions and investigated the weak solutions for the corresponding one-dimensional Cauchy problem for equation (1.8). Hiramatsu et al. [START_REF] Hiramatsu | Numerical study of Q-ball formation in gravity mediation[END_REF] introduced the following equation:

u tt -∆u + u + u t + |u| 2 u = u ln |u| (1.9)
to study the dynamics of Q-ball in theoretical physics and presented a numerical study. However, there was no theoretical analysis for the problem. In [START_REF] Han | Global existence of weak solutions for a logarithmic wave equation arising from Q-ball dynamics[END_REF], Han proved the global existence of weak solutions, for all (u 0 , u 1 ) ∈ H 1 0 (Ω) × L 2 (Ω), to the initial boundary value problem (1.9) in R 3 .

In this paper, we are concerned with the well-posedness and stability of the plate problem (1.1) with kernels g having an arbitrary growth at infinity (condition (2.2) below). The obtained stability results improve and generalize many results in the literature.

This paper is organized as follows. In section 2, we present some notations and material needed for our work. In section 3, we establish the local existence of the solutions of the problem. The global existence and the decay results are presented in section 4 and section 5, respectively.

Preliminaries

In this section, we present some material needed for the proof of our results. We use the standard Lebesgue space L 2 (Ω) and Sobolev space H 2 0 (Ω) with their usual scalar products and norms. Throughout this paper, c is used to denote a generic positive constant.

We consider the following hypotheses: (A1) g : R + → R + is a C 1 -nonincreasing function satisfying

g(0) > 0, 1 - ∞ 0 g(s)ds = > 0. ( 2 

.1)

(A2) There exist a nonincreasing differentiable function ξ : R + → R + , with ξ(0) > 0, and a constant 1 ≤ p < 3 2 such that g (t) ≤ -ξ(t)g p (t), ∀t ∈ R + .

(2.2)

(A3) The constant k in (1.1) is such that 0 < k < k 0 = 2π e 3 c p , (2.3) 
where c p is the smallest positive number satisfying

∇u 2 2 ≤ c p ∆u 2 2 , ∀u ∈ H 2 0 (Ω), where . 2 = . L 2 (Ω) .
The energy functional associated with problem (1.1) is

E(t) = 1 ρ + 2 u t ρ+2 ρ+2 + 1 2 1 - t 0 g(s)ds ∆u 2 2 + ∆u t 2 2 -k Ω u 2 ln |u|dx + k 4 u 2 2 + 1 2 (go∆u), (2.4) 
where

(go∆u)(t) = t 0 g(t -s) ∆u(s) -∆u(t) 2 2 ds.
Direct differentiation of (2.4), using (1.1), leads to 

E (t) = 1 2 (g o∆u)(t) - 1 2 g(t) ∆u 2 2 ≤ 1 2 (g o∆u)(t) ≤ 0. ( 2 
: [0, T ] → [1, ∞) satisfies w(t) ≤ C 1 + t 0 γ(s)w(s) ln (w(s))ds , ∀t ∈ [0, T ]. (2.8) 
Then

w(t) ≤ C exp C t 0 γ(s)ds , ∀t ∈ [0, T ].
(2.9)

Lemma 2.4. Let 0 ∈ (0, 1). Then there exists d ε0 > 0 such that s| ln s| ≤ s 2 + d 0 s 1-0 , ∀s > 0.

(2.10)

Proof. Let r(s) = s 0 (| ln s| -s). Notice that r is continuous on (0, ∞) and its limit at 0 + is 0 + , and its limit at ∞ is -∞. Then r has a maximum d 0 on (0, ∞), so (2.10) holds.

Local existence

In this section, we state and prove the local existence result for problem (1.1).

Definition 3.1. Let T > 0. A function u ∈ C 1 ([0, T ], H 2 0 (Ω)) is called a weak solution of (1.1) on [0, T ] if      Ω |u t | ρ u tt (x, t)w(x)dx + Ω ∆u(x, t)∆w(x)dx + Ω ∆u tt ∆wdx -Ω ∆w(x) t 0 g(t -s)∆u(s)dsdx = k Ω w(x)u(x, t) ln |u(x, t)|dx, ∀w ∈ H 2 0 (Ω), u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x). (3.1) Theorem 3.2. Assume that (A1) -(A3) hold and let (u 0 , u 1 ) ∈ H 2 0 (Ω) × H 2 0 (Ω). Then problem (1.1) has a weak solution on [0, T ].
Proof. To establish the existence of a solution to problem (1.1), we use the Faedo-Galerkin approximations. Let {w j } ∞ j=1 be an orthogonal basis of the "separable" space H 2 0 (Ω). Let V m = span{w 1 , w 2 , ..., w m } and let the projections of the initial data on the finite dimensional subspace V m be given by

u m 0 (x) = m j=1 a j w j (x), u m 1 (x) = m j=1 b j w j (x),
where

u m 0 → u 0 in H 2 0 (Ω) and u m 1 → u in H 2 0 (Ω), as m → ∞. (3.
2) We search for an approximate solution

u m (x, t) = m j=1 h m j (t)w j (x) of the approximate problem in V m            Ω |u m t | ρ u m tt w + ∆u m ∆w + ∆u m tt ∆w - t 0 g(t -s)∆u m (s)∆wds dx = k Ω wu m ln |u m |dx, ∀w ∈ V m , u m (0) = u m 0 = m j=1 (u 0 , w j )w j , u m t (0) = u m 1 = m j=1 (u 1 , w j )w j . (3.3) 
This leads to a system of ODEs for unknown functions h m j (t). Based on standard existence theory for ODE, one can obtain functions

h j : [0, t m ) → R, j = 1, 2, ..., m,
which satisfy (3.3) in a maximal interval [0, t m ), t m ∈ (0, T ]. Next, we show that t m = T and that the local solution is uniformly bounded independently of m and t. For this purpose, let w = u m t in (3.3) and integrate by parts to obtain

d dt E m (t) ≤ 1 2 (g o∆u m ) ≤ 0, (3.4) 
where

E m (t) = 1 ρ + 2 u m t ρ+2 ρ+2 + 1 2 ∆u m t 2 2 + 1 - t 0 g(s)ds ∆u m 2 2 + (go∆u m )(t) + k 4 u m 2 2 - k 2 Ω |u m | 2 ln |u m |dx. (3.5) From (3.4), we have E m (t) ≤ E m (0), ∀t ≥ 0.
The last inequality together with the Logarithmic Sobolev inequality leads to

u m t ρ+2 ρ+2 + ∆u m t 2 2 + - ka 2 c p 2π ∆u m 2 2 + k 2 + k (1 + ln a) u m 2 2 + go∆u m ≤ C + u m 2 2 ln u m 2 2 , (3.6) where C = 2E m (0). Choosing e -3 2 < a < 2π kc p (3.7)
will make

- ka 2 c p 2π > 0 and k 2 + k (1 + ln a) > 0.
This selection is possible thanks to (A3). So, we get

u m t ρ+2 ρ+2 + ∆u m t 2 2 + ∆u m 2 2 + u m 2 2 + go∆u m ≤ c 1 + u m 2 2 ln u m 2 2 . (3.8) Let us note that u m (., t) = u m (., 0) + t 0 ∂u m ∂s (., s)ds.
Then, using Cauchy-Schwarz' inequality, we get

u m (t) 2 2 ≤ 2 u m (0) 2 2 + 2 t 0 ∂u m ∂s (s)ds 2 2 ≤ 2 u m (0) 2 2 + 2T t 0 u m t (s) 2 2 ds, (3.9) 
hence, inequality (3.8) gives

u m 2 2 ≤ 2 u m (0) 2 2 + 2T c 1 + t 0 u m 2 2 ln u m 2 2 ds . (3.10) If we put C 1 = max {2T c, 2 u(0) 2 2 }, (3.10) leads to u m 2 2 ≤ 2C 1 1 + t 0 u m 2 2 ln u m 2 2 ds .
Because C 1 ≥ 0, we get

u m 2 2 ≤ 2C 1 1 + t 0 C 1 + u m 2 2 ln C 1 + u m 2 2 ds .
Applying the Logarithmic Gronwall inequality to the last inequality, we obtain the following estimate:

u m 2 2 ≤ 2C 1 e 2C1T = C 2 . Hence, from inequality (3.8) it follows that (go∆u m )(t) + u m t ρ+2 ρ+2 + ∆u m t 2 2 + ∆u m 2 2 + u m 2 2 ≤ c(1 + C 2 ln C 2 ) = C 3 .
This implies sup t∈(0,tm)

(go∆u m )(t) + u m t ρ+2 ρ+2 + ∆u m t 2 2 + ∆u m 2 2 + u m 2 2 ≤ C 3 . (3.11)
So, the approximate solution is uniformly bounded independent of m and t. Therefore, we can extend t m to T .

Substituting w = u m tt in (3.3) and using Young's and Cauchy-Schwarz' inequalities, we obtain

Ω |u m t | ρ |u m tt | 2 dx + ∆u m tt 2 2 = - Ω ∆u m ∆u m tt dx + Ω t 0 g(t -s)∆u m (s)∆u m tt (t)dsdx + k Ω u m tt u m ln |u m |dx ≤ δ ∆u m tt 2 2 + 1 4δ t 0 g(t -s) ∆u m (s) 2 ds 2 + δ ∆u m tt + 1 4δ ∆u m (t) 2 + k Ω u m tt u m ln |u m |dx.
(3.12) To estimate the last term in the right-hand side of (3.12), we apply (2.10) with ε 0 = 1 2 and use repeatedly Young's, Cauchy-Schwarz' and the embedding inequalities as follows

k Ω u m tt u m ln |u m |dx ≤ c Ω u m tt |u m | 2 + d 2 √ u m dx ≤ c δ Ω |u m tt | 2 dx + 1 4δ Ω |u m | 2 + d 2 √ u m 2 dx ≤ cδ ∆u m tt 2 2 + c 4δ Ω |u m | 4 dx + Ω |u m |dx ≤ cδ ∆u m tt 2 2 + c 4δ ∆u m 4 2 + u m 2 . (3.13) 
Combining (3.12) and (3.13) to have

Ω |u m t | ρ |u m tt | 2 dx + (1 -cδ) ∆u m tt 2 2 ≤ 1 4δ t 0 g(t -s) ∆u m (s) 2 ds 2 + 1 4δ ∆u m 2 + c δ ∆u m 4 2 + u m 2 2 .
(3.14)

Integrate the last inequality on (0, T ) and use (2.1) and (3.11), we obtain

T 0 Ω |u m t | ρ |u m tt | 2 dxdt + (1 -cδ) T 0 ∆u m tt 2 2 dt ≤ c δ T 0 (go∆u m )(t) + ∆u m 2 2 + ∆u m 4 2 + u m 2 2 dt. (3.15)
From the last inequality, choosing δ > 0 small enough and using (3.11), we get the following, for some positive constant C 4 not depending neither on m nor on t: 

     (u m ) is uniformly bounded in L ∞ (0, T ; H 2 0 (Ω)), (u m t ) is uniformly bounded in L ∞ (0, T ; L ρ+2 (Ω)) ∩ L ∞ (0, T ; H 2 0 (Ω)), (u m tt ) is uniformly bounded in L 2 (0, T ; H 2 0 (Ω)), (3.17) 
which implies that there exists a subsequence of (u m ) (still denoted by (u m )), such that

               u m u weakly * in L ∞ (0, T ; H 2 0 (Ω)), u m t u t weakly * in L ∞ (0, T ; L ρ+2 (Ω)) ∩ L ∞ (0, T ; H 2 0 (Ω)), u m u weakly in L 2 (0, T ; H 2 0 (Ω)), u m t u t weakly in L 2 (0, T ; L ρ+2 (Ω)) ∩ L 2 (0, T ; H 2 0 (Ω)), u m tt w u tt in L 2 (0, T ; H 2 0 (Ω)). (3.18)
Analysis of the non-linear terms

(1) Term u m ln |u m |: using (3.17), we have (u m ) is bounded in L ∞ (0, T ; H 2 0 (Ω)) which implies, using the embedding of

H 2 0 (Ω) in L ∞ (Ω) (Ω ⊂ R 2 ), the boundedness of (u m ) in L 2 (Ω × (0, T )). Similarly; (u m t ) is bounded in L 2 (Ω × (0, T )).
Then, making use of Aubin-Lions' theorem, we find, up to a subsequence, that

u m → u strongly in L 2 (Ω × (0, T )) and u m → u a.e. in Ω × (0, T ).
Since the maps s → ks ln |s| is continuous, we have the following convergence:

ku m ln |u m | → ku ln |u| a.e. in Ω × (0, T ). (3.19) 
Using the embedding of (3.20)

H 2 0 (Ω) in L ∞ (Ω) (Ω ⊂ R 2 ), it is clear that k(u m ln |u m |) is bounded in L ∞ (Ω × (0, T )). Next,
(2) Term |u m t | ρ u m t : using (3.16), we have (u m t ) is uniformly bounded in L ∞ (0, T ; H 2 0 (Ω)) which implies the boundedness of (u m t ) in L ∞ (Ω × (0, T )), and so in L 2 (Ω × (0, T )). Using (3.16), we see that (u m tt ) is bounded in L 2 ((0, T ); H 2 0 (Ω)) which implies that (u m tt ) is bounded in L 2 (Ω × (0, T )). Now, using Aubin-Lions theorem, there exists a subsequence, still denoted by (u m t ), such that u m t → u t strongly in L 2 (0, T ; L 2 (Ω)) and

|u m t | ρ u m t → |u t | ρ u t a.e. in Ω × (0, T ). (3.21)
Using (3.11) and the embedding theorems, we have Now, we integrate (3.3) over (0, t) to obtain, for every w ∈ V m , This ends the proof of Theorem 3.2.

|u m t | ρ u t 2 L 2 (0,T ;L 2 (Ω)) = T 0 u m t 2(ρ+1) 2(ρ+1) dt ≤ c T 0 ∆u m t (t) 2(ρ+1) 2 dt ≤ cT C ρ+1 3 , (3.22 
1 ρ + 1 Ω |u m t | ρ u m t wdxds - 1 ρ + 1 Ω |u m 1 |u m 1 wdx + t 0 Ω ∆u m (s)∆wdxds + Ω ∆u m t ∆wdxds - Ω ∆u m 1 ∆wdx - Ω t 0 τ 0 g(τ -s)∆u m (s) ∆wdsdτ dx = k t 0 Ω wu m (s)
1 ρ + 1 t 0 Ω |u s | ρ u s wdxds = 1 ρ + 1 Ω |u m 1 |u m 1 wdx - t 0 Ω ∆u(s)∆wdxds - Ω ∆u t ∆wdxds + Ω ∆u m 1 ∆wdx + Ω t 0 τ 0 g(τ -s)∆u(s) ∆wdsdτ dx + k t 0 Ω wu(s) ln |u(s)|dxds, (3.25 

Global Existence

In this section, we state and prove a global existence result under smallness conditions on the initial data (u 0 , u 1 ). For this purpose, we introduce the following functionals:

J(t) = 1 2 1 - t 0 g(s)ds ∆u 2 2 + ∆u t 2 2 + go∆u -k Ω u 2 ln |u|dx + k 4 u 2 2 (4.1)
and

I(t) = 1 - t 0 g(s)ds ∆u 2 2 + ∆u t 2 2 + go∆u -3k Ω u 2 ln |u|dx. (4.2) 
Lemma 4.1. The following inequalities hold:

-kd 0 |Ω|c 3 * ∆u 3 2 2 ≤ k Ω u 2 ln |u|dx ≤ kc 3 * ∆u 3 2 , ∀u ∈ H 2 0 (Ω), (4.3) 
where d 0 = sup 0<s<1 √ s| ln s| = 2 e , |Ω| is the Lesbegue measure of Ω and c * is the smallest embedding constant

Ω |u| 3 dx 1 3 ≤ c * ∆u 2 , ∀u ∈ H 2 0 (Ω) (4.4) 
(c * exists thanks to the embedding of

H 2 0 (Ω) in L ∞ (Ω) and Ω ⊂ R 2 ). Proof. Let Ω 1 = {x ∈ Ω : |u(x)| > 1} and Ω 2 = {x ∈ Ω : |u(x)| ≤ 1}.
So, using (4.4), we have

k Ω u 2 ln |u|dx = k Ω2 u 2 ln |u|dx + k Ω1 u 2 ln |u|dx ≤ k Ω1 u 2 ln |u|dx ≤ k Ω1 |u| 3 dx ≤ k Ω |u| 3 dx ≤ kc 3 * ∆u 3 2 .
On the other hand, using Hölder's inequality and (4.4), we find

-k Ω u 2 ln |u|dx = -k Ω2 u 2 ln |u|dx -k Ω1 u 2 ln |u|dx ≤ -k Ω2 u 2 ln |u|dx = k Ω2 u 2 | ln |u||dx ≤ kd 0 Ω |u| 3 2 dx ≤ kd 0 |Ω| Ω |u| 3 dx 1 2
≤ kd 0 |Ω|c Since I(0) > 0 and I is continuous on [0, T ], there exists t 0 ∈ (0, T ] such that I(t) > 0, for all t ∈ [0, t 0 ). Let us denote by t 0 the largest real number in (0, T ] such that I > 0 on [0, t 0 ). If t 0 = T , then (4.6) is satisfied. We assume by contradiction that t 0 ∈ (0, T ). Thus I(t 0 ) = 0 and ∆u(t) Consequently, if g > 0 on [0, t 0 ), we get ∆u(s) 2 = 0, ∀s ∈ [0, t 0 ).

Then I(t) = 0, ∀t ∈ [0, t 0 ), which is not true since I > 0 on [0, t 0 ). If g = 0 on [0, t 0 ), then let t 1 ∈ [0, t 0 ) the smallest real number such that g(t 1 ) = 0. Because g(0) > 0 and g is positive, nonincreasing and continuous on R + (condition (A1)), then t 1 > 0 and g = 0 on [t 1 , ∞). Therefore, from (4.10), we deduce that 0 = t0 0 g(s) ∆u(s) 2 2 ds = t1 0 g(s) ∆u(s) 2 2 ds, then ∆u(s) 2 = 0, for any s ∈ [0, t 1 ), which implies that I(t) = 0, for any t ∈ [0, t 1 ). As in above, this is a contraduction with the fact that I > 0 on [0, t 0 ). Then we conclude that ∆u(t 0 ) 2 2 > 0. On the other hannd, we have

I(t 0 ) ≥ ∆u(t 0 ) 2 2 -3k Ω u(t 0 ) 2 ln |u(t 0 )|dx.
By using (4.9) and Lemma 4.1, we have

I(t 0 ) ≥ -3kc 3 * 6E(0) 1 2 ∆u(t 0 ) 2 2 .
By recalling (4.5), we arrive at I(t 0 ) > 0, which contradicts the assumption I(t 0 ) = 0. Hence, t 0 = T and then

I(t) > 0, ∀t ∈ [0, T ).

Stability

In this section, we state and prove our stability result. We start by establishing several lemmas needed for the proof of our main result. Lemma 5.1. Assume that g satisfies (A1). Then, for u ∈ H 2 0 (Ω), we have

Ω t 0 g(t -s)(u(t) -u(s))ds 2 dx ≤ c(go∆u)(t)
and

Ω t 0 g (t -s)(u(t) -u(s))ds 2 dx ≤ -c(g o∆u)(t).
Proof.

Ω t 0 g(t -s)(u(t) -u(s))ds 2 dx = Ω t 0 g(t -s) g(t -s)(u(t) -u(s))ds 2 dx.
By applying Cauchy-Schwarz' and Poincaré's inequalities, we can show that

Ω t 0 g(t -s)(u(t) -u(s))ds 2 dx ≤ Ω t 0 g(t -s)ds t 0 g(t -s)(u(t) -u(s)) 2 ds dx ≤ (1 -)c(go∆u)(t)
≤ c(go∆u)(t).

(5.1)

Similarly, the second inequality in Lemma 5.1 can be proved.

Lemma 5.2. Assume that g satisfies (A1) and (A2).

Then ∞ 0 ξ(t)g 1-σ (t)dt < ∞, ∀σ < 2 -p. (5.2)
Proof. Using (A1) and (A2), we easily see that, for any σ < 2 -p,

ξ(t)g 1-σ (t) = ξ(t)g 1-σ (t)g p (t)g -p (t) ≤ -g (t)g 1-σ-p (t).
Integrate the last inequality over (0, ∞), we obtain

∞ 0 ξ(t)g 1-σ (t)dt ≤ - ∞ 0 g (t)g 1-σ-p (t)dt = - g 2-p-σ (t) 2 -p -σ ∞ 0 < ∞.
Similar to Cavalcanti and Oquendo [START_REF] Cavalcanti | Frictional versus viscoelastic damping in a semilinear wave equation[END_REF], we can easily have the following lemma:

Lemma 5.3. Assume that (A1) -(A3) and (4.5) hold and u is a solution of (1.1).

Then, for any 0 < σ < 1, we have

(go∆u)(t) ≤ c t 0 g 1-σ (t)dt E(0) p-1 p-1+σ (g p o∆u) σ p-1+σ .
By taking σ = 1 2 , we get

(go∆u)(t) ≤ c t 0 g 1 2 (s)ds 2p-2 2p-1 (g p o∆u) 1 2p-1 (t) (5.3)
and, for any 0 ∈ (0, 1), (go∆u)

1 1+ 0 (t) ≤ c 1 1+ 0 t 0 g 1 2 (s)ds 2p-2 (2p-1)(1+ 0 ) (g p o∆u) 1 (2p-1)(1+ 0 ) (t).
(5.4)

Corollary 5.4. Assume that (A1) -(A3) and (4.5) hold and u is a solution of (1.1). Then

ξ(t)(go∆u)(t) ≤ c (-E (t)) 1 2p-1
(5.5) and, for any 0 ∈ (0, 1),

ξ(t)(go∆u) 1 1+ 0 (t) ≤ c 0 (-E (t)) 1 (2p-1)(1+ 0 ) .
(5.6)

Proof. Multiply both sides of (5.3) by ξ(t) and use (5.2) and (2.5) to obtain

ξ(t)(go∆u)(t) ≤ cξ 2p-2 2p-1 (t) t 0 g 1 2 (s)ds 2p-2 2p-1 ξ 1 2p-1 (t)(g p o∆u) 1 2p-1 (t) ≤ c t 0 ξ(s)g 1 2 (s)ds 2p-2 2p-1 (ξg p o∆u) 1 2p-1 (t) ≤ c ∞ 0 ξ(s)g 1 2 (s)ds 2p-2 2p-1 (-g o∆u) 1 2p-1 (t) ≤ c (-E (t)) 1 2p-1 .
(5.7)

For the proof of (5.6), using (5.5) and because ξ is nonnegative and nonincreasing, we obtain

ξ(t)(go∆u) 1 1+ 0 (t) = ξ 0 1+ 0 (t) (ξ(t)(go∆u)(t)) 1 1+ 0 ≤ c 0 (-E (t)) 1 (2p-1)(1+ 0 ) .
Lemma 5.5. Under the assumptions (A1) -(A3) and (4.5), the functional

ψ(t) := 1 ρ + 1 Ω |u t | ρ u t udx + Ω ∆u∆u t dx
satisfies, along the solution of (1.1), the estimate

ψ (t) ≤ - 2 Ω |∆u| 2 dx + Ω |∆u t | 2 dx + 1 ρ + 1 Ω |u t | ρ+2 dx + c(go∆u)(t) + k Ω u 2 ln |u|dx.
(5.8)

Proof. Direct differentiation of ψ, using (1.1), yields

ψ (t) = - Ω |∆u| 2 dx + Ω ∆u(t) t 0 g(t -s)∆u(s)dsdx + Ω |∆u t | 2 dx + 1 ρ + 1 Ω |u t | ρ+2 dx + k Ω u 2 ln |u|dx.
(5.9)

We then estimate the second term on the right side of (5.9). We have, using (2.1),

Ω ∆u(t) t 0 g(t -s)∆u(s)dsdx = Ω ∆u(t) t 0 g(t -s) (∆u(s) -∆u(t) + ∆u(t)) dsdx ≤ (1 -) Ω |∆u| 2 dx - Ω t 0 g(t -s) (∆u(t) -∆u(s)) ds dx.
By exploiting Lemma 5.1 and

ab ≤ 1 2η a 2 + η 2 b 2 , ∀a, b ≥ 0, ∀η > 0, we arrive at Ω ∆u(t) t 0 g(t -s)∆u(s)dsdx ≤ (1 -) Ω |∆u| 2 dx + 1 2η Ω t 0 g(t -s)|∆u(t) -∆u(s)|ds 2 dx + η 2 Ω |∆u| 2 dx ≤ 1 -+ η 2 Ω |∆u| 2 dx + c η (go∆u)(t).
By taking η = , we find

Ω ∆u(t) t 0 g(t -s)∆u(s)dsdx ≤ 2 - 2 Ω |∆u| 2 dx + c(go∆u)(t). (5.10) 
Inserting (5.10) in (5.9), estimate (5.8) is established.

Lemma 5.6. Under the assumptions (A1) -(A3) and (4.5), the functional

χ(t) := - Ω ∆ 2 u t + 1 ρ + 1 |u t | ρ u t t 0 g(t -s)(u(t) -u(s))dsdx
satisfies, along the solution of (1.1) and for any δ, δ 1 , δ 2 > 0, the estimate

χ (t) ≤ (1 + 2(1 -) 2 )δ 1 + δ 4 Ω |∆u| 2 dx - 1 ρ + 1 t 0 g(s)ds Ω |u t | ρ+2 dx + c δ 1 + 1 δ 1 + 1 δ (go∆u)(t) - c δ 2 (g o∇u)(t) + δ 2 + cδ 2 (E(0)) ρ - t 0 g(s)ds Ω |∆u t | 2 dx + c 0,δ (go∆u) 1 1+ 0 (t). 
(5.11)

Proof. Differentiating χ with respect to t and making use of (1.1), we find

χ (t) = Ω ∆u(t) t 0 g(t -s)(∆u(s) -∆u(t))dsdx - Ω t 0 g(t -s)∆u(s)ds t 0 g(t -s)(∆u(s) -∆u(t))ds dx - t 0 g(s)ds Ω |∆u t | 2 dx - Ω ∆u t (t) t 0 g (s)(∆u(s) -∆u(t))dsdx - 1 ρ + 1 Ω |u t | ρ u t t 0 g (t -s)(u(s) -u(t))dsdx - 1 ρ + 1 t 0 g(s)ds Ω |u t | ρ+2 dx -k Ω u ln |u| t 0 g(t -s) (u(t) -u(s)) dsdx.
(5.12) Now we proceed, using repeatedly Cauchy-Schwarz' inequality, Young's inequality and Lemma 5.1, to estimate each term in the right-hand side of (5.12). The first term may be estimated as follows

Ω ∆u(t) t 0 g(t -s)(∆u(s) -∆u(t))dsdx ≤ δ 1 Ω |∆u| 2 dx + c δ 1 (go∆u)(t), ∀δ 1 > 0.
(5.13)

For the second term, we recall (2.1) and the fact that (a + b) 2 ≤ 2(a 2 + b 2 ) to get, for any δ 1 > 0,

- Ω t 0 g(t -s)∆u(s)ds t 0 g(t -s)(∆u(s) -∆u(t))ds dx ≤ δ 1 Ω t 0 g(t -s)∆u(s)ds 2 dx + 1 4δ 1 Ω t 0 g(t -s)(∆u(s) -∆u(t))ds 2 dx ≤ δ 1 Ω t 0 g(t -s) ∆u(s) -∆u(t) +|∆u(t)| ds 2 dx + c δ 1 (go∆u)(t) ≤ c δ 1 + 1 δ 1 (go∆u)(t) + 2δ 1 (1 -) 2 Ω |∆u| 2 dx.
(5.14) For the fourth term, it is easy to see that, for any δ 2 > 0,

- Ω ∆u t t 0 g (t -s)(∆u(s) -∆u(t))dsdx ≤ δ 2 Ω |∆u t | 2 dx + c δ 2 Ω t 0 (-g (t -s)) |∆u(s) -∆u(t)| 2 dsdx.
(5.15)

The fifth term may be handled similarly

- 1 ρ + 1 Ω |u t | ρ u t t 0 g (t -s)(u(s) -u(t))dsdx ≤ 1 ρ + 1 δ 2 Ω |u t | 2(ρ+1) dx + c δ 2 Ω t 0 (-g (t -s)) |∆u(s) -∆u(t)| 2 dsdx .
(5.16) Using (2.4), (2.5), (4.1), (4.6) and (4.8), we have

E(0) ≥ E(t) = J(t) + 1 ρ + 2 u t ρ+2 ρ+2 ≥ J(t) ≥ 1 6 ∆u t 2 2 ,
which gives ∆u t 2 2 ≤ 6E(0).

(5.17)

By exploiting the Sobolev embedding

H 1 0 (Ω) → L 2(ρ+1) (Ω), (5.18) 
and (5.17), we obtain

Ω |u t | 2(ρ+1) dx ≤ c(E(0)) ρ ∆u t 2 2 . (5.19) 
Therefore (5.16) takes the form

- 1 ρ + 1 Ω |u t | ρ u t +∞ 0 g (s)(u(t -s) -u(t))dsdx ≤ cδ 2 (E(0)) ρ ∆u t 2 2 - c δ 2 (g o∆u)(t).
(5.20)

Applying (2.10) for s = |u|, using the embedding of H 2 0 (Ω) in L ∞ (Ω) and performing the same calulactions as before, we get, for any δ 3 > 0 and any ε 0 ∈ (0, 1), Then, for k small enough, there exist positive constants ε and N such that the functional

-k Ω u ln |u| t 0 g(t -s)(u(t) -u(s))dsdx ≤ k Ω u 2 + d 0 |u| 1-0 t 0 g(t -s)(u(t) -u(s))dsdx ≤ c Ω |u| 2 t 0 g(t -s)(u(t) -u(s))ds dx + δ 3 Ω u 2 dx + c 0 ,δ3 Ω t 0 g(t -s)(u(t) -u(s))ds 2 1+ 0 dx ≤ cδ 3 ||∆u|| 2 2 + c δ 3 Ω t 0 g(t -s)(u(t) -u(s))ds 2 dx + c 0 ,δ3 Ω t 0 g(t -s)(u(t) -u(s))ds
L = N E + εψ + χ satisfies L ∼ E (5.23)
and, for any t 0 > 0, there exists a positive constant m such that

L (t) ≤ -mE(t) + c(go∆u)(t) + c 0 (go∆u) 1 1+ 0 (t), ∀t ≥ t 0 . (5.24) 
Proof. To prove (5.23), we use Young's inequality, the Sobolev embedding H 1 0 (Ω) → L ρ+2 (Ω), (4.6), (4.8), (5.17) and (5.19) to obtain

|L(t) -N E(t)| ≤ ε ρ + 2 ||u t || ρ+2 ρ+2 + ε (ρ + 1)(ρ + 2) ||u|| ρ+2 ρ+2 + ε 2 ||∆u t || 2 2 + ε 2 ||∆u|| 2 2 + 1 2(ρ + 1) ||u t || 2(ρ+1) 2(ρ+1) + 1 - 2(ρ + 1) c p (go∆u)(t) + 1 2 ||∆u t || 2 2 + 1 - 2 (go∆u)(t) ≤ εE(t) + ε c ρ+2 (ρ + 1)(ρ + 2) 6 E(0) 1+ ρ 2 E(t) + 3εE(t) + 3ε E(t) + 3c (ρ + 1) (E(0)) ρ E(t) + 3(1 -) (ρ + 1) c p E(t) + 3E(t) + 3(1 -)E(t) ≤ c(1 + ε)E(t); (5.25) that is [N -c(1 + ε)] E(t) ≤ L(t) ≤ [N + c(1 + ε)] E(t).
By fixing N large enough so that N > c(1 + ε), we obtain the desired result (5.23). For the proof of (5.24), since g is positive and g(0) > 0 then, for any t 0 > 0, we have t 0 g(s)ds ≥ t0 0 g(s)ds = g 0 > 0, ∀t ≥ t 0 .

By using (2.5), (5.8) and (5.11) then, for t ≥ t 0 , we have

L (t) ≤ N 2 - c δ 2 (g o∆u)(t) - g 0 -ε ρ + 1 Ω |u t | ρ+2 dx -ε 2 -(1 + 2(1 -) 2 )δ 1 - δ 4 ∆u 2 2 -[g 0 -ε -δ 2 -cδ 2 (E(0)) ρ ] ∆u t 2 2 + c ε + δ 1 + 1 δ 1 + 1 δ (go∆u)(t) + c 0,δ (go∆u) 1 1+ 0 (t) + εk Ω u 2 ln |u|dx.
(5.26)

Using the definition of E(t), we obtain, for any m > 0,

L (t) ≤ -mE(t) + N 2 - c δ 2 (g o∆u)(t) - g 0 -ε ρ + 1 - m ρ + 2 Ω |u t | ρ+2 dx -ε 2 -(1 + 2(1 -) 2 )δ 1 - δ 4 - m(1 -g 0 ) 2 ∆u 2 2 -g 0 -ε -δ 2 -cδ 2 (E(0)) ρ - m 2 ∆u t 2 2 + c ε + δ 1 + 1 δ 1 + 1 δ + m 2 (go∆u)(t) + c 0 ,δ (go∆u) 1 1+ 0 (t) + mk 4 u 2 2 + ε - m 2 k Ω u 2 ln |u|dx.
(5.27) Using the Logarithmic Sobolev inequality (2.7), we get, for 0 < m < 2ε,

L (t) ≤ -mE(t) + N 2 - c δ 2 (g o∆u)(t) - g 0 -ε ρ + 1 - m ρ + 2 Ω |u t | ρ+2 dx -ε 2 -(1 + 2(1 -) 2 )δ 1 - δ 4 - m(1 -g 0 ) 2 -ε - m 2 kc p a 2 2π ∆u 2 2 -g 0 -ε -δ 2 -cδ 2 (E(0)) ρ - m 2 ∆u t 2 2 + c ε + δ 1 + 1 δ 1 + 1 δ + m 2 (go∆u)(t) + c 0,δ (go∆u) 1 1+ 0 (t) -ε - m 2 k 2 2(1 + ln a) -ln u 2 2 u 2 2 + mk 4 u 2 2 .
(5.28) At this point, we choose our constant carefully. First, we pick 0 < ε < g 0 , then δ 1 , δ 2 and δ small enough so that

k 1 := ε 2 -(1 + 2(1 -) 2 )δ 1 - δ 4 > 0 and k 2 := g 0 -ε -δ 2 -cδ 2 (E(0)) ρ > 0.
Then, N sufficiently large so that

N > c(1 + ε) and N 2 - c δ 2 ≥ 0.
Consequently, we get

L (t) ≤ -mE(t) - g 0 -ε ρ + 1 - m ρ + 2 Ω |u t | ρ+2 dx -k 1 - m(1 -g 0 ) 2 -ε - m 2 kc p a 2 2π ∆u 2 2 -k 2 - m 2 ∆u t 2 2 + c + m 2 (go∆u)(t) + c 0 (go∆u) 1 1+ 0 (t) + mk 4 u 2 2 -ε - m 2 k 2 2(1 + ln a) -ln u 2 2 u 2 2 .
(5.29)

Finally, we choose m and k small enough so that m ≤ ε (so

mk 4 ≤ ε -m 2 k 2 ), g 0 -ε ρ + 1 - m ρ + 2 > 0, k 1 - m(1 -g 0 ) 2 -ε - m 2 kc p a 2 2π > 0 and k 2 - m 2 > 0,
we get

L (t) ≤ -mE(t) + c(go∆u)(t) + c ε0 (go∆u) 1 1+ε 0 (t) -ε - m 2 k 2 1 + 2 ln a -ln u 2 2 u 2 2 .
( So, from (2.5) and using Young's inequality, we get

|E (t)| = 1 2 g(t) ∆u(t) 2 2 - 1 2 (g o∆u)(t) ≤ 1 2 g(t) ∆u(t) 2 2 - t 0 g (t -s) ∆u(t) 2 2 + ∆u(s) 2 2 ds ≤ 6 l 1 2 g(t) + 2g(0) -2g(t) E(0)
≤ cE(0).

(5.33)

Theorem 5.9. Let (u 0 , u 1 ) ∈ H 2 0 (Ω) × H 2 0 (Ω), ∈ (0, 2p -1) and t 0 > 0. Assume that (A1) -(A3) and (4.5) hold. Then, for k small enough, there exists a positive constant K such that the solution of (1.1) satisfies

E(t) ≤ K 1 + t t0 ξ 2p-1+ (s)ds -1 2p-2+
, ∀t ≥ t 0 .

(5.34)

Moreover, if there exist 1 ∈ (0, 2p -1) and t 0 > 0 such that

∞ t0 1 + t t0 ξ 2p-1+ 1 (s)ds -1 2p-2+ 1 dt < ∞, (5.35) 
then, for any r ∈ (0, p) and t 0 > 0, there exists a positive constant K such that the solution of (1.1) satisfies

E(t) ≤ K 1 + t t0 ξ p+r (s)ds -1 p-1+r
, ∀t ≥ t 0 .

( 

ξ(t)L (t) ≤ -mξ(t)E(t) + c (-E (t)) 1 2p-1 + c (-E (t)) 1 (2p-1)(1+ 0 ) ≤ -mξ(t)E(t) + c (-E (t)) 0 (2p-1)(1+ 0 ) (-E (t)) 1 (2p-1)(1+ 0 ) + c (-E (t)) 1 (2p-1)(1+ 0 ) ≤ -mξ(t)E(t) + c (-E (t)) 1 (2p-1)(1+ 0 ) , ∀t ≥ t 0 .
(5.38) Multiply the last inequality by ξ γ (t)E γ (t), where γ = (2p -1)(1 + 0 ) -1, and notice that ξ ≤ 0 to obtain

ξ γ+1 (t)E γ (t)L (t) ≤ -mξ γ+1 (t)E γ+1 (t) + c (ξE) γ (t) (-E (t)) 1 γ+1 , ∀t ≥ t 0 .
Use of Young's inequality, with q = γ + 1 and q * = γ+1 γ , gives, for any ε > 0,

ξ γ+1 (t)E γ (t)L (t) ≤ -mξ γ+1 (t)E γ+1 (t) + c ε ξ γ+1 (t)E γ+1 -c ε E (t) = -(m -ε c)ξ γ+1 (t)E γ+1 -cE (t), ∀t ≥ t 0 .
We then choose 0 < ε < m c and recall that ξ ≤ 0 and E ≤ 0, to get, for c 1 = m -ε c, ξ γ+1 E γ L (t) ≤ ξ γ+1 (t)E γ (t)L (t) ≤ -c 1 ξ γ+1 (t)E γ+1 (t) -cE (t), ∀t ≥ t 0 , which implies ξ γ+1 E γ L + cE (t) ≤ -c 1 ξ γ+1 (t)E γ+1 (t), ∀t ≥ t 0 .

Let F = ξ γ+1 E γ L + cE. Then F ∼ E (thanks to (5.23)) and F (t) ≤ -cξ γ+1 (t)F γ+1 (t) = -cξ (2p-1)(1+ 0 ) (t)F (2p-1)(1+ 0 ) (t), ∀t ≥ t 0 .

Integrating over (t 0 , t) and using the fact that F ∼ E, we obtain (5.34) with = (2p -1) 0 . To establish (5.36), we use the idea of Messaoudi and Al-Khulaifi [START_REF] Messaoudi | General and optimal decay for a quasilinear viscoelastic equation[END_REF] (5.42) Inequality (5.38) with 2p -1 replaced by p is exactely (5.42). Then, the proof of (5.36) can be completed as for the one of (5.34) (by taking γ = p(1 + 0 ) -1 and = p 0 ). This completes the proof of our main result.

Remarks 5.11. We note here that 2p -2 + and p -1 + can be arbitrary close to 2p -2 and p -1, respectively, since can be arbitrary close to zero. On the other hand, in the absence of the logarithmic "forcing" term (k = 0), the estimates (2.10) and (5.21) drop out and, consequently, (5.24) takes the form L (t) ≤ -mE(t) + c(go∆u)(t), ∀t ≥ t 0 .

(5.43)

In this case, we obtain the following result:

Theorem 5.12. Let (u 0 , u 1 ) ∈ H 2 0 (Ω) × H 2 0 (Ω) and t 0 > 0. Assume that (A1) -(A2) hold. Then, there exists a positive constant K such that the solution of (1. , ∀t ≥ t 0 .

(5.47)

2 2

 2 dt ≤ C 4 . (3.16) From (3.11) and (3.16), we have

  taking into account the Lebesgue bounded convergence theorem (Ω is bounded), we get ku m ln |u m | → ku ln |u| strongly in L 2 (0, T ; L 2 (Ω)).

  ln |u m (s)|dxds. (3.24) Convergences (3.2), (3.18), (3.20) and (3.23) are sufficient to pass to the limit in (3.24) as m → ∞, and get, for any w ∈ V m and m ≥ 1,

  ) which implies that(3.25) is valid for any w ∈ H 2 0 (Ω). Using the fact that the terms in the right-hand side of (3.25) are absolutely continuous (since they are functions of t defined by integrals over (0, t)), then (3.25) is differentiable for a.e. t ∈ R + . Thus, differentiating (3.25), we obtain, for a.e. t ∈ (0, T ) and w ∈ H 2 0 (Ω), Ω |u t | ρ u tt wdxds + -s)∆u(s) ∆wdsdx = k Ω wu(t) ln |u(t)|dxds. (3.26)

δ 4 =Ω u ln |u| t 0 gLemma 5 . 7 .

 4057 cδ 3 and using Holder's inequality and Lemma 5.1, we find -k (t -s)(u(t) -u(s))dsdx ≤ 12)-(5.15), (5.20) and (5.21), estimate (5.11) is established. Assume that (A1) -(A3) and (4.5) hold and let ε 0 ∈ (0, 1).

≤ 1 p

 1 (ξ 0 (0)ξ(t)(g • ∆u)(t))1 1+ 0 ≤ c (ξ(t)(g • ∆u)(t)) 1 1+ 0 ≤ c(-E (t)) 1 p(1+ 0 ) . (5.41) If η(t) = 0, then s → ∆u(s) is a constant function on [0, t]. Therefore (g • ∆u)(t) = 0,and hence (5.40) and (5.41) hold. Now, multiplying (5.24) by ξ(t) and using (5.33), (5.40) and (5.41) to find, for any t ≥ t 0 (as for (5.38)),ξ(t)L (t) ≤ -mξ(t)E(t) + c (-E (t)) + c (-E (t)) 1 p(1+ 0 ) ≤ -mξ(t)E(t) + c (-E (t)) 0 p(1+ 0 ) (-E (t)) 1 p(1+ 0 ) + c (-E (t)) 1 p(1+ 0 )≤ -mξ(t)E(t) + c (-E (t)) 1 p(1+ 0 ) , ∀t ≥ t 0 .

  [START_REF] Barrow | Inflationary models with logarithmic potentials[END_REF] satisfies, for all t ≥ t 0 ,

	E(t) ≤ Ke	-λ t t 0	ξ(s)ds	if p = 1		(5.44)
	and							
	E(t) ≤ K 1 +	t t0	ξ 2p-1 (s)ds	-1 2p-2	if 1 < p <	3 2	.	(5.45)
	Moreover, if 1 < p < 3 2 and							
	∞		t		-1 2p-2		
	1 +		ξ 2p-1 (s)ds	dt < ∞,		(5.46)
	0		t0					
	then							
				t		-1 p-1		
	E(t) ≤ K 1 +	ξ p (s)ds		
				t0				
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