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Abstract In this paper, we consider a vibrating system of Timoshenko-type in a bounded1

one-dimensional domain with discrete time delay and complementary frictional damping2

and infinite memory controls all acting on the transversal displacement. We show that the3

system is well-posed in the sens of semigroup and that, under appropriate assumptions on4

the weights of the delay and the history data, the stability of the system holds in case of the5

equal-speed propagation as well as in the opposite case in spite of the presence of a discrete6

time delay, where the decay rate of solutions is given in terms of the smoothness of the initial7

data and the growth of the relaxation kernel at infinity. The results of this paper extend the8

ones obtained by the present author and Messaoudi in (Acta Math Sci 36:1–33, 2016) to the9

case of presence of discrete delay.10

Keywords Well-posedness · General decay · Time delay · Infinite memory · Frictional11

damping · Viscoelastic · Timoshenko-type · Semigroup theory · Energy method12

Mathematics Subject Classification 35B37 · 35L55 · 74D05 · 93D15 · 93D2013

1 Introduction14

In this paper, we are concerned with the well-posedness and the long-time behavior of the15

solution of the following Timoshenko system:16

B Aissa Guesmia

aissa.guesmia@univ-lorraine.fr

1 Institut Elie Cartan de Lorraine (IECL), UMR 7502, Université de Lorraine, Bat. A, Ile du Saulcy,

57045 Metz Cedex 01, France
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ρ1ϕt t (x, t) − k1(ϕx (x, t) + ψ(x, t))x + d(x)ϕt (x, t − τ) + b(x)ϕt (x, t)

+

∫ +∞

0

g(s)(a(x)ϕx (x, t − s))x ds = 0,

ρ2ψt t (x, t) − k2ψxx (x, t) + k1(ϕx (x, t) + ψ(x, t)) = 0,

ϕ(0, t) = ψx (0, t) = ϕ(L , t) = ψx (L , t) = 0,

ϕ(x,−t) = ϕ0(x, t), ϕt (x, 0) = ϕ1(x), ϕt (x,−τp) = f0(x,−τp),

ψ(x, 0) = ψ0(x), ψt (x, 0) = ψ1(x),

(1.1)17

for (x, t, p) ∈]0, L[×]0,+∞[×]0, 1[, d : [0, L] → R, a, b : [0, L] → R+ and18

g : R+ → R+ are given functions (to be specified later), where R+ = [0,+∞[, L , τ, ρi , ki19

(i = 1, 2) are positive constants,20

ϕ0 :]0, L[×] − ∞, 0[→ R, ϕ1, ψ0, ψ1 :]0, L[→ R and f0 :]0, L[×] − τ, 0[→ R21

are given initial data, and22

(ϕ, ψ) :]0, L[×]0,+∞[→ R
2

23

is the state of (1.1). A subscript y and the notation ∂y denote the derivative with respect to y.24

We also use the prime notation to denote the derivative when the function has only one vari-25

able. The infinite integral in (1.1), b(x)ϕt (x, t) and d(x)ϕt (x, t − τ) represent, respectively,26

the infinite memory, the frictional damping and the discrete time delay. For simplicity of27

notation, the space and time variables are used only when it is necessary to avoid ambiguity.28

Our aim is the study of the well-posedness and asymptotic behavior of the solutions of29

(1.1) in case of the equal-speed propagation30

k1

ρ1
=

k2

ρ2
(1.2)31

as well as in the opposite case. The equality (1.2) means that the first two equations in (1.1)32

have the same speeds of wave propagation

√

k1

ρ1
and

√

k2

ρ2
, respectively.33

Timoshenko [69], in 1921, introduced the following model to describe the transverse34

vibration of a beam:35

{

ρut t = (K (ux − ϕ))x , in ]0, L[×]0,+∞[,

Iρϕt t = (E Iϕx )x + K (ux − ϕ), in ]0, L[×]0,+∞[,
(1.3)36

where t denotes the time variable and x is the space variable along the beam of length L , in its37

equilibrium configuration, u is the transverse displacement of the beam and ϕ is the rotation38

angle of the filament of the beam. The coefficients ρ, Iρ, E, I and K are, respectively, the39

density (the mass per unit length), the polar moment of inertia of a cross section, Young’s40

modulus of elasticity, the moment of inertia of a cross section, and the shear modulus. Since41

then, this model has attracted the attention of many researchers and an important amount42

of work has been devoted to the issue of the stabilization and the search for the minimum43

dissipation by which the solutions decay uniformly to the stable state as time goes to infinity.44

To achieve this goal, diverse types of dissipative mechanisms have been used and several45

stability results have been obtained. We mention some of these results (for more results,46

we refer the reader to the list of references of this paper, which is not exhaustive, and the47

references therein).48

Absence of delay: d ≡ 0. In the case of presence of controls on both the rotation angle49

and the transverse displacement, investigations showed that the Timoshenko systems are50

stable without any restriction on the constants ρ1, ρ2, k1 and k2. In this regards, many decay51
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Well-posedness and energy decay for Timoshenko systems. . .

estimates were obtained; see [26,31,39,40,56]. However, in the case of only one control on52

the rotation angle, the rate of decay depends heavily on the constants ρ1, ρ2, k1 and k2 and53

the regularity of the initial data. Precisely, if (1.2) holds, the results obtained are similar to54

those established for the case of the presence of controls in both equations. We quote in this55

regard [2,7,14,21–24,26,41,42,45–47,63]. But, if (1.2) does not hold, a situation which is56

more interesting from the physics point of view, then it has been shown that the Timoshenko57

system is not exponentially stable even for exponentially decaying relaxation functions or58

linear frictional damping, and only weak decay estimates can be obtained for regular solutions59

in the presence of dissipation. This has been demonstrated in [2,14,23,24,26,43], for the case60

of finite or infinite memory, and in [17,22], for complementary frictional damping and finite61

or infinite memory acting on the rotation angle equation. We also refer the reader to [55] (and62

its references) concerning the stability of Timoshenko-type systems in R (instaed of ]0, L[)63

with controls acting on the rotation angle.64

For the stability of Timoshenko systems via heat effect, we mention the pioneer work [44]65

devoted to the study of the following system:66

⎧

⎪

⎨

⎪

⎩

ρ1ϕt t − σ(ϕx , ψ)x = 0, in ]0, L[×]0,+∞[,

ρ2ψt t − bψxx + k(ϕx + ψ) + γ θx = 0, in ]0, L[×]0,+∞[,

ρ3θt − kθxx + γψt x = 0, in ]0, L[×]0,+∞[,

(1.4)67

where θ denotes the temperature difference. In their work, Rivera and Racke [44] established,68

under appropriate conditions on the functionσ and the positive constantsρi , b, k andγ , several69

exponential decay results for the linearized system with various boundary conditions. They70

also proved a non-exponential stability result for the case of non-equal speed of propagation,71

and proved an exponential decay result for the nonlinear case. Guesmia et al. [27] discussed72

a linear version of (1.4) and completed the work of [44] by establishing some polynomial73

decay results in the case of non-equal speed of propagation.74

In (1.4), the heat flux is given by Fourier’s law. As a result, this theory predicts an infinite75

speed of heat propagation; that is, any thermal disturbance at one point has an instantaneous76

effect elsewhere in the body. Experiments showed that heat conduction in some dielectric77

crystals at low temperatures is free of this paradox and disturbances, which are almost entirely78

thermal, propagate in a finite speed. This phenomenon in dielectric crystals is called second79

sound. To overcome this physical paradox, many theories have merged. One of which suggests80

that we should replace Fourier’s law by Cattaneo’s law. In line with this theory, (1.4), in its81

linear form, becomes82

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ρ1ϕt t − k1(ϕx + ψ)x = 0, in ]0, L[×]0,+∞[,

ρ2ψt t − k2ψxx + k1(ϕx + ψ) + δθx = 0, in ]0, L[×]0,+∞[,

ρ3θt + γ qx + δψt x = 0, in ]0, L[×]0,+∞[,

τqt + q + kθx = 0, in ]0, L[×]0,+∞[,

(1.5)83

where q denotes the heat flux. Fernández Sare and Racke [15] studied (1.5) and proved that84

(1.2) is no longer sufficient to obtain exponential stability even in the presence of an extra85

viscoelastic dissipation of the form
∫ +∞

0 g(s)ψxx (t − s) ds in the second equation. Very86

recently, Santos et al. [62] considered (1.5), introduced a new stability number87

χ =

(

τ −
ρ1

k1ρ3

)(

ρ2 −
k2ρ1

k1

)

−
τρ1δ

2

k1ρ3
(1.6)88
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and used the semigroup method to obtain an exponential decay result, for χ = 0, and a89

polynomial decay, for χ �= 0. See, also [26,29,30,39,54,58,59]. Notice that, when τ = 090

(Fourier’s law), χ = 0 if and only if (1.2) holds.91

In all above mentioned works, the stability was either via both equation control or the92

angular rotation equation control. Recently, Almeida Júnior et al. [4] considered the situation93

when the control is only on the transverse displacement equation, which is more realistic94

from the physics point of view. Precisely, they looked into the following system:95

{

ρ1ϕt t − k1(ϕx + ψ)x + µϕt = 0, in ]0, L[×]0,+∞[,

ρ2ψt t − k2ψxx + k1(ϕx + ψ) = 0, in ]0, L[×]0,+∞[,
(1.7)96

where µ is a positive constant, and showed that the linear frictional damping µϕt is strong97

enough to obtain exponential stability of (1.7) provided that (1.2) holds. They, also, proved98

some non-exponential and polynomial decay results in the case of non-equal speed situation.99

The results of [4] were, very recently, extended in [25] to the case where the linear frictional100

damping µϕt is replaced by a nonlinear one and/or an infinite memory. The same authors of101

[4] considered in [5]102

⎧

⎪

⎨

⎪

⎩

ρ1ϕt t − κ(ϕx + ψ)x + σθx = 0, in ]0, L[×]0,+∞[,

ρ2ψt t − bψxx + κ(ϕx + ψ) − σθ = 0, in ]0, L[×]0,+∞[,

ρ3θt − γ θxx + σ(ϕx + ψ)t = 0, in ]0, L[×]0,+∞[,

(1.8)103

with various boundary conditions, and established the exponential stability of (1.8) for104

equal-speed case, and non-exponential stability for the opposite case. In the case of lack105

of exponential stability, they proved some algebraic (polynomial) stability for strong solu-106

tions.107

Presence of delay: d �= 0. The questions related to well-posedness and stability/instability108

of Timoshenko-type systems as well as evolution equations with time delay have attracted109

considerable attention in recent years and many researchers have shown that the time delay110

can destabilize a system that was asymptotically stable in the absence of time delay.111

When the delay and controls are present on the rotation angle equation, we mention the112

following Timoshenko system:113

⎧

⎨

⎩

ρ1ϕt t − k1(ϕx + ψ)x = 0,

ρ2ψt t − k2ψxx + k1(ϕx + ψ) +

∫ t

0

g(s)ψxx (t − s) ds + µ1ψt + µ2ψt (t − τ) = 0,
114

(1.9)115

in ]0, 1[×]0,+∞[, studied in [57], where µ1, µ2 and τ are fixed non-negative constants. The116

author of [57] proved the stability of (1.9) under the assumptions (1.2) and 0 < µ2 ≤ µ1,117

where the decay rate of solutions depends on the one of g. The obtained stability results118

in [57] generalize the ones of [60] concerning (1.9) in the case g ≡ 0 and 0 < µ2 < µ1,119

and they were generalized in [32] to the case g ≡ 0 and variable time delay τ(t). In [61],120

the stability of Timoshenko systems with two internal time delays and two boundary linear121

feedbacks was proved under some smallness conditions on L and the weights of the delays.122

When no frictional damping is present, the stability of this Timoshenko system123

⎧

⎨

⎩

ρ1ϕt t − k1(ϕx + ψ)x = 0,

ρ2ψt t − k2ψxx + k1(ϕx + ψ) +

∫ +∞

0

g(s)ψxx (t − s) ds + D(ψ) = 0,
(1.10)124
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Well-posedness and energy decay for Timoshenko systems. . .

in ]0, L[×]0,+∞[, was proved in [20], in both discrete time delay case125

D(ψ) = µ2ψt (t − τ)126

and distributed one127

D(ψ) =

∫ +∞

0

f (s)ψt (t − s) ds,128

where µ2 ∈ R
∗ and f : R+ → R is a given function. In contrast to the situation of absence129

of delay and/or presence of frictional damping, (1.10) is not necessarily dissipative with130

respect to its classical energy. To overcome subsequently the difficulties generated by the131

non-dissipativeness character of (1.10), some new functionals were introduced in [20] to get132

crucial estimates on some terms generated by the time delay and the infinite memory. The133

results of [20] generalizes the ones of [18] concerning the particular case D(ψ) = µ2ψt (t−τ)134

and g converges exponentially to zero at infinity.135

Similar stability results for various hyperbolic evolution equations with frictional damping136

and/or memory and/or time delay exist in the literature, in this regard, we refer the reader to137

[1,3,6,8–10,12,13,16,19,28,34–38,48–52,64–68].138

As far as we know, the problem of stability of Timoshenko system with a time delay under139

infinite memory and/or frictional damping all acting on the transversal displacement has140

never been treated in the literature. Our goal in this paper is to investigate the effect of each141

control on the asymptotic behavior of the solutions of (1.1) in the presence of a time delay,142

and on the decay rate of its energy, when both controls are acting cooperatively, allowing each143

control to vanish on the whole domain. To our best knowledge, this situation has never been144

considered before in the literature. Under appropriate assumptions on the history data ϕ0,145

we give an explicit characterization of the decay rate of solutions depending on the growth146

of g at infinity and the following relations between the weights b and d of, respectively, the147

frictional damping and time delay:148

inf
[0,L]

(b − |d|) > 0 (1.11)149

and150

inf
[0,L]

(b − |d|) ≤ 0. (1.12)151

Contrarly to the case (1.11), system (1.1) is not necessarily dissipative with respect to its152

classical energy when (1.12) holds (see (4.1) and (4.2) below). This creates some difficulties153

and, so, we prove the exponential stability of (1.1) provided that (1.2) holds, g converges154

exponetially to zero at infinity and ‖d‖∞ is small enough. In the case when (1.11) holds,155

we give two general decay estimates (corresponding to the case (1.2) and the opposite one)156

depending on the smoothness of initial data and growth of g at infinity characterized by157

the condition (2.9) below introduced in [16]. These results give a generalization of the ones158

proved by the present author and Messaoudi in [25] concerning the case d ≡ 0.159

The proof of the well-posedness is based on the maximal monotone operators and semi-160

group approach (see, for example [33,53]). However, the proof of stability estimates is based161

on the multiplier method combined with some integral or differential inequalities (see, for162

example [1,3,10,33–37]) and an approach introduced in [16,19], for a class of abstract hyper-163

bolic systems of single or coupled equations with one infinite memory. In the case when (1.2)164

does not hold, we use also some ideas given in [3,14,17] to get the decay rate of solutions in165

terms of the regularity of initial data and the general growth of g at infinity.166
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The paper is organized as follows. In Sect. 2, we set up the hypotheses and present our well-167

posedness and stability results. In Sect. 3, we prove the well-posedness result. In Sect. 4, we168

establish some lemmas needed for the proof of the stability results which will be completed169

in Sect. 5 when (1.2) and (1.11) hold, in Sect. 6 when (1.2) and (1.12) hold, and in Sect. 7170

when (1.2) does not hold and (1.11) holds. Finally, some general comments and issues will171

be given in Sect. 8.172

2 Preliminaries and obtained results173

2.1 Hypotheses174

We consider the following hypotheses:175

(H1) The functions a, b : [0, L] → R+ and d : [0, L] → R are such that176

a ∈ C1([0, L]), b, d ∈ C([0, L]), (2.1)177

inf
[0,L]

(a + b) > 0, (2.2)178

a ≡ 0 or inf
[0,L]

a > 0. (2.3)179

(H2) The function g : R+ → R+ is a non-increasing of class C1(R+) such that g(0) > 0180

and181

g0‖a‖∞ <
k1k2

k0k1 + k2
, (2.4)182

where g0 =
∫ +∞

0 g(s) ds and k0 is the smallest constant depending only on L and183

satisfying (Poincaré’s inequality)184

∫ L

0

v2dx ≤ k0

∫ L

0

v2
x dx, ∀v ∈ H1

∗ (]0, L[) (2.5)185

with186

H1
∗ (]0, L[) =

{

v ∈ H1(]0, L[),

∫ L

0

v dx = 0

}

. (2.6)187

(H3) There exist a positive constant α and an increasing strictly convex function G :188

R+ → R+ of class C1(R+) ∩ C2(]0,+∞[) satisfying189

G(0) = G ′(0) = 0 and lim
t→+∞

G ′(t) = +∞ (2.7)190

such that191

g′(t) ≤ −αg(t), ∀t ≥ 0 (2.8)192

or193

∫ +∞

0

g(t)

G−1(−g′(t))
dt + sup

t∈R+

g(t)

G−1(−g′(t))
< +∞. (2.9)194

Remark 2.1 1. The hypothesis (2.9) was introduced in [16] and it allows a wider class of195

relaxation functions than the ones considered in [14,43] (see examples given in [16,26]).196
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Well-posedness and energy decay for Timoshenko systems. . .

2. As in [25], using the second equation and boundary conditions in (1.1), we easily verify197

that198

∂t t

(∫ L

0

ψ dx

)

+
k1

ρ2

∫ L

0

ψ dx = 0.199

By solving this ordinary differential equation and using the initial data of ψ , we find200

∫ L

0

ψ dx =

(∫ L

0

ψ0 dx

)

cos

(
√

k1

ρ2
t

)

+

√

ρ2

k1

(∫ L

0

ψ1 dx

)

sin

(
√

k1

ρ2
t

)

.201

(2.10)202

Let203

ψ̃ = ψ −
1

L

(∫ L

0

ψ0 dx

)

cos

(
√

k1

ρ2
t

)

−
1

L

√

ρ2

k1

(∫ L

0

ψ1 dx

)

sin

(
√

k1

ρ2
t

)

.204

(2.11)205

Then, one can easily check that206

∫ L

0

ψ̃ dx = 0, (2.12)207

and, hence, Poincaré’s inequality (2.5) is applicable for ψ̃ provided that ψ̃ ∈ H1(]0, L[).208

In addition, (ϕ, ψ̃) satisfies (1.1) with initial data209

ψ̃0 = ψ0 −
1

L

∫ L

0

ψ0 dx and ψ̃1 = ψ1 −
1

L

∫ L

0

ψ1 dx210

instead of ψ0 and ψ1, respectively. In the sequel, we work with ψ̃ instead of ψ , but, for211

simplicity of notation, we use ψ instead of ψ̃ .212

3. Thanks to Poincaré’s inequality (2.5) (applied for ψ ∈ H1
∗ (]0, L[)), we have213

k1

∫ L

0

(ϕx + ψ)2 dx ≥ k1(1 − ǫ̂)

∫ L

0

ϕ2
x dx + k0k1

(

1 −
1

ǫ̂

)∫ L

0

ψ2
x dx, (2.13)214

for any 0 < ǫ̂ < 1. Then, according to (2.4), we can choose ǫ̂ > 0 such that215

k0k1

k0k1 + k2
< ǫ̂ <

1

k1
(k1 − g0‖a‖∞)216

and deduce from (2.13) that217

k̂

∫ L

0

(

ϕ2
x + ψ2

x

)

dx ≤

∫ L

0

(

− g0‖a‖∞ϕ2
x + k2ψ

2
x + k1(ϕx + ψ)2

)

dx, (2.14)218

where k̂ = min
{

k1(1 − ǫ̂) − g0‖a‖∞, k2 + k0k1

(

1 − 1
ǫ̂

)}

> 0.219

Because
∫ L

0 ϕ2
x dx and

∫ L

0 ψ2
x dx define norms, for ϕ and ψ on H1

0 (]0, L[) and220

H1
∗ (]0, L[), respectively, then221

∫ L

0

(

− g0‖a‖∞ϕ2
x + k2ψ

2
x + k1(ϕx + ψ)2

)

dx222

defines a norm on H1
0 (]0, L[) × H1

∗ (]0, L[), for (ϕ, ψ), equivalent to the one induced223

by (H1(]0, L[))2.224
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2.2 Well-posedness225

We give here a brief idea about the formulation of (1.1) into an abstract first order system and226

the related existence, uniqueness and smoothness of solution. Following the ideas of [11,48],227

let228

η(x, t, s) = ϕ(x, t) − ϕ(x, t − s), for (x, t, s) ∈]0, L[×]0,+∞[×]0,+∞[ (2.15)229

and230

z(x, t, p) = ϕt (x, t − τp), for (x, t, p) ∈]0, L[×]0,+∞[×]0, 1[. (2.16)231

Then232

⎧

⎪

⎨

⎪

⎩

ηt + ηs − ϕt = 0, in ]0, L[×]0,+∞[×]0,+∞[,

η(0, t, s) = η(L , t, s) = 0, in ]0,+∞[×]0,+∞[,

η(x, t, 0) = 0, in ]0, L[×]0,+∞[,

(2.17)233

⎧

⎪

⎨

⎪

⎩

τ zt + z p = 0, in ]0, L[×]0,+∞[×]0, 1[,

z(x, t, 0) = ϕt (x, t), in ]0, L[×]0,+∞[,

z(x, t, 1) = ϕt (x, t − τ), in ]0, L[×]0,+∞[

(2.18)234

and235

{

η0(x, s) := η(x, 0, s) = ϕ0(x, 0) − ϕ0(x, s), in ]0, L[×]0,+∞[,

z0(x, p) := z(x, 0, p) = f0(x,−τp), in ]0, L[×]0, 1[.
236

Let237

U = (ϕ, ψ, ϕt , ψt , z, η)T , (2.19)238

U0 = (ϕ0(·, 0), ψ0, ϕ1, ψ1, z0, η0)
T (2.20)239

and240

H = H1
0 (]0, L[) × H1

∗ (]0, L[) × L2(]0, L[) × L2
∗(]0, L[) × Lξ × Lg, (2.21)241

where242

L2
∗(]0, L[) =

{

v ∈ L2(]0, L[),

∫ L

0

v dx = 0

}

, (2.22)243

Lg =

{

v : R+ → H1
0 (]0, L[),

∫ L

0

a

∫ +∞

0

g(s)v2
x (s) ds dx < +∞

}

, (2.23)244

Lξ =

{

v : ]0, 1[→ L2(]0, L[),

∫ L

0

ξ

∫ 1

0

v2(p) dp dx < +∞

}

(2.24)245

and ξ : [0, L] → R+ defined by246

ξ =

{

τb if (1.11) holds and d �= 0,

τ‖d‖∞ if (1.12) holds or d ≡ 0.
(2.25)247

The spaces Lg and Lξ endowed with the inner products248

〈v,w〉Lg =

∫ L

0

a

∫ +∞

0

g(s)vx (s)wx (s) ds dx249
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and250

〈v,w〉Lξ
=

∫ L

0

ξ

∫ 1

0

v(p)w(p) dp dx251

are Hilbert spaces by vertue of the following Poincaré’s inequality:252

∃ k̃0 > 0 :

∫ L

0

v2dx ≤ k̃0

∫ L

0

v2
x dx, ∀v ∈ H1

0 (]0, L[) (2.26)253

and the fact that a > 0 if a �= 0 (according to (2.3)), and ξ > 0 if d �= 0 (by vertue of (2.25)).254

The space H is equipped with the inner product defined by255

〈V, W 〉H = 〈v6, w6〉Lg + 〈v5, w5〉Lξ
+ k1

∫ L

0

(∂xv1 + v2)(∂xw1 + w2) dx256

+

∫ L

0

(−g0a∂xv1∂xw1 + k2∂xv2∂xw2 + ρ1v3w3 + ρ2v4w4) dx,257

for any V = (v1, . . . , v6)
T ∈ H and W = (w1, . . . , w6)

T ∈ H. Because Lg and Lξ are258

Hilbert spaces, then also H is a Hilbert space according to (2.14).259

Now, we define the linear operators B and A by260

B(v1, . . . , v6)
T = −

ξ0

ρ1
(0, 0, v3, 0, 0, 0)T , (2.27)261

where262

ξ0 =

{

0 if (1.11) holds,

‖d‖∞ if (1.12) holds
(2.28)263

and264

A

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

v1

v2

v3

v4

v5

v6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−v3

−v4

− k1
ρ1

∂x (∂x v1 + v2) +
g0

ρ1
∂x (a∂xv1) + b+ξ0

ρ1
v3 + d

ρ1
v5(1) − 1

ρ1

∫ +∞

0

g(s)∂x (a∂x v6(s)) ds

− k2
ρ2

∂xx v2 + k1
ρ2

(∂x v1 + v2)
1
τ
∂pv5

−v3 + ∂sv6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.265

The system (1.1) is equivalent to266

{

U ′(t) + (A + B)U (t) = 0 on ]0,+∞[,

U (0) = U0.
(2.29)267

The domain of B is given by D(B) = H. However, the domain of A is defined by268

D(A) =
{

V = (v1, . . . , v6)
T ∈ H, AV ∈ H, ∂xv2(0) = ∂xv2(L) = 0, v5(0) = v3, v6(0) = 0

}

269

and it can be characterized by270

D(A) =

{

(v1, . . . , v6)
T ∈ H1

0 (]0, L[) ×
(

H2(]0, L[) ∩ H1
∗ (]0, L[)

)

× H1
0 (]0, L[)271

×H1
∗ (]0, L[) × Lξ × Lg, k1∂xxv1 − g0∂x (a∂xv1) +

∫ +∞

0

g(s)∂x (a∂xv6(s)) ds ∈ L2(]0, L[),272

∂pv5 ∈ Lξ , ∂sv6 ∈ Lg, ∂xv2(0) = ∂xv2(L) = 0, v5(0) = v3, v6(0) = 0

}

.273

123

Journal: 13370 Article No.: 0514 TYPESET DISK LE CP Disp.:2017/6/28 Pages: 32 Layout: Small

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

A. Guesmia

We use the classical notation D(A0) = H, D(A1) = D(A) and274

D(An) =
{

V ∈ D(An−1), AV ∈ D(An−1)
}

, for n = 2, 3, . . . ,275

endowed with the graph norm ‖V ‖D(An) =
∑n

k=0 ‖Ak V ‖H.276

Remark 2.2 If a ≡ 0 (resp. d ≡ 0), the variable η (resp. z) is not considered, and therefore,277

the corresponding components in the definition of U , U0, H, B, A and D(A) will not appear.278

Our well-posedness result reads as follows:279

Theorem 2.3 Assume that (H1)–(H3) are satisfied. For any n ∈ N and U0 ∈ D(An), the280

system (2.29) has a unique solution281

U ∈ ∩n
k=0Cn−k(R+; D(Ak)). (2.30)282

2.3 Stability283

The energy functional associated with (1.1) is defined by284

E(t) :=
1

2
‖U (t)‖2

H
285

=
1

2
(g ◦ ϕx )(t) +

1

2

∫ L

0

ξ

∫ 1

0

ϕ2
t (t − τp) dp dx286

+
1

2

∫ L

0

(

ρ1ϕ
2
t + ρ2ψ

2
t + k1(ϕx + ψ)2 + k2ψ

2
x − g0aϕ2

x

)

dx, (2.31)287

where288

(φ ◦ v)(t) =

∫ L

0

a

∫ +∞

0

φ(s)(v(t) − v(t − s))2 ds dx, (2.32)289

for any v : R → L2(]0, L[) and φ : R+ → R+.290

Now, we give our first stability result which concerns the case when (1.2) and (1.11) hold.291

Theorem 2.4 Assume that (1.2), (1.11) and (H1)–(H3) are satisfied and let U0 ∈ H such292

that293

sup
t∈R+

∫ +∞

t

g(s)

G−1(−g′(s))

∫ L

0

ϕ2
0x (s − t) dx ds < +∞. (2.33)294

Then there exist positive constants ǫ0, α1 and α2, for which E satisfies295

E(t) ≤ α1G̃−1(α2t), ∀t ∈ R+, (2.34)296

where G̃(t) =
∫ 1

t
1

G0(s)
ds and297

G0(s) =

{

s if (2.8) holds,

sG ′(ǫ0s) if (2.9) holds.
(2.35)298

Remark 2.5 1. Because limt→0+ G̃(t) = +∞ (by vertue of (H3)), then (2.34) implies that299

lim
t→+∞

E(t) = 0. (2.36)300
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2. In case (2.8), G̃(s) = −ln s and (2.34) is reduced to301

E(t) ≤ α1e−α2t , ∀t ∈ R+, (2.37)302

which is the best decay rate given by (2.34). For specific examples of decay rates given303

by (2.34), see [17].304

Our second stability result concerns the case when (1.2) and (1.12) hold.305

Theorem 2.6 Assume that (1.2), (1.12), (H1) and (H2) are satisfied and306

inf
[0,L]

a > 0 and (2.8) holds. (2.38)307

Then there exists a positive constant d0 independent of d such that, if308

‖d‖2
∞ + ‖d‖∞ < d0, (2.39)309

then, for any U0 ∈ H, there exist positive constants α1 and α2, for which E satisfies (2.37).310

When (1.2) does not hold and (1.11) holds, we prove the following stability result:311

Theorem 2.7 Assume that (1.11) and (H1)–(H3) are satisfied. Let n ∈ N
∗ and U0 ∈ D(An)312

such that313

sup
t∈R+

max
k=0,...,n

∫ +∞

t

g(s)

G−1(−g′(s))

∫ L

0

(

∂kϕ0x (s − t)

∂sk

)2

dx ds < +∞. (2.40)314

Then there exist positive constant ǫ0 and cn such that E satisfies315

E(t) ≤ Gn

(cn

t

)

, ∀t > 0, (2.41)316

where Gm(s) = G1(sGm−1(s)), for m = 2, . . . , n and s ∈ R+, G1 = G−1
0 and G0 is317

defined in (2.35).318

Remark 2.8 When (2.8) holds, Gn(s) = sn and (2.41) becomes319

E(t) ≤
cn

tn
, ∀t > 0, (2.42)320

which is the best decay rate given by (2.41). For specific examples of decay rates given by321

(2.41), see [19].322

3 Well-posedness323

The proof of Theorem 2.3 is based on the semigroup appraoch by proving that A+B generates324

a C0-semigroup in H. We consider the case inf [0,L] a > 0 and d �= 0; the proof in cases325

a ≡ 0 and/or d ≡ 0 is similar and simpler.326

First, we prove that −A is dissipative. Let V = (v1, . . . , v6)
T ∈ D(A). Exploiting the327

definition of D(A) and integrating by parts, we find328

〈−AV, V 〉H = −
1

2

∫ L

0

a

∫ +∞

0

g(s)∂s(∂xv6(s))
2 ds dx −

1

2τ

∫ L

0

ξ

∫ 1

0

∂p(v5(p))2 dp dx329

−

∫ L

0

(b + ξ0)v
2
3 dx −

∫ L

0

dv3v5(1) dx .330
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Integrating by parts for the first two terms of the above equality, using Young’s inequality331

λ1λ2 ≤
λ

2
λ2

1 +
1

2λ
λ2

2, ∀λ1, λ2 ∈ R, ∀λ > 0 (3.1)332

(with λ1 = |v3|, λ2 = |v5(1)| and λ = 1) and noting that v5(0) = v3 and v6(0) = 0 (from333

the definition of D(A)), we get334

〈−AV, V 〉H ≤
1

2

∫ L

0

a

∫ +∞

0

g′(s) (∂xv6(s))
2 ds dx335

+

∫ L

0

(

−b − ξ0 +
ξ

2τ
+

|d|

2

)

v2
3 dx +

∫ L

0

(

|d|

2
−

ξ

2τ

)

v2
5(1) dx .(3.2)336

The definitions (2.25) and (2.28) of ξ and ξ0 imply that, if (1.11) holds and d �= 0,337

−b − ξ0 +
ξ

2τ
+

|d|

2
=

|d|

2
−

ξ

2τ
=

|d| − b

2
≤ 0,338

and, if (1.12) holds or d ≡ 0,339

−b − ξ0 +
ξ

2τ
+

|d|

2
= −b +

|d| − ‖d‖∞

2
≤ 0 and

|d|

2
−

ξ

2τ
=

|d| − ‖d‖∞

2
≤ 0.340

Consequently, the last two integrals in (3.2) are non-positive. Therefore341

〈−AV, V 〉H ≤
1

2

∫ L

0

a

∫ +∞

0

g′(s) (∂xv6(s))
2 ds dx ≤ 0, (3.3)342

since g is non-increasing. Then −A is dissipative.343

Second, we whow that I d + A is surjective. For this purpose, let F = ( f1, . . . , f6)
T ∈ H,344

we seek V = (v1, . . . , v6)
T ∈ D(A) satisfying345

(I d + A)V = F. (3.4)346

The first two equations in (3.4) are equivalent to347

{

v3 = v1 − f1,

v4 = v2 − f2.
(3.5)348

Using the first equation in (3.5), the last two equations in (3.4) are equivalent to349

{

v5 + 1
τ
∂pv5 = f5,

v6 + ∂sv6 = v1 − f1 + f6,
(3.6)350

then, by solving the ordinary differential equations (3.6) and noting that v5(0) = v3 = v1− f1351

and v6(0) = 0 (see definition of D(A)), we get352

v5 =

(

v1 − f1 + τ

∫ p

0

f5(y)eτ ydy

)

e−τp = e−τpv1 −

(

f1 − τ

∫ p

0

f5(y)eτ ydy

)

e−τp
353

(3.7)354

and355

v6 =

(∫ s

0

ey(v1 − f1 + f6(y))dy

)

e−s = (1 − e−s)v1 −

(∫ s

0

ey( f1 − f6(y))dy

)

e−s .356

(3.8)357

123

Journal: 13370 Article No.: 0514 TYPESET DISK LE CP Disp.:2017/6/28 Pages: 32 Layout: Small

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Well-posedness and energy decay for Timoshenko systems. . .

We see that, if358

(v1, v2) ∈ H1
0 (]0, L[) ×

(

H2(]0, L[) ∩ H1
∗ (]0, L[)

)

, (3.9)359

then, from (3.5) to (3.8), we have (v3, v4) ∈ H1
0 (]0, L[) × H1

∗ (]0, L[), (v5, v6) ∈ Lξ × Lg ,360

(∂pv5, ∂sv6) ∈ Lξ × Lg , v5(0) = v3 and v6(0) = 0.361

Next, plugging (3.5) and (3.7) into the third and fourth equations in (3.4), we get362

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
ρ1

(

ρ1 + b + ξ0 + de−τ
)

v1 − k1
ρ1

(∂xv1 + v2)x

+
g0

ρ1
(a∂xv1)x − 1

ρ1

∫ +∞

0

g(s) (a∂xv6(s))x ds = f7,

v2 − k2
ρ2

∂xxv2 + k1
ρ2

(∂xv1 + v2) = f2 + f4,

(3.10)363

where364

f7 =
1

ρ1
(ρ1 + b + ξ0 + de−τ ) f1 + f3 −

τde−τ

ρ1

∫ 1

0

eτ y f5(y) dy.365

So, it is sufficient to prove that (3.10), with v6 given in (3.8), has a solution (v1, v2) satisfying366

(3.9),367

∂xv2(0) = ∂xv2(L) = 0 (3.11)368

and369

k1∂xxv1 − g0∂x (a∂xv1) +

∫ +∞

0

g(s)∂x (a∂xv6(s)) ds ∈ L2(]0, L[), (3.12)370

and then, we replace v1 and v2 in (3.5), (3.7) and (3.8) to get V ∈ D(A) satisfying (3.4). Let371

(v1, v2) satisfying (3.9)–(3.11). By multiplying the equations in (3.10) by ρ1w1 and ρ2w2,372

respectively, integrating their sum by parts on ]0, L[ and exploiting (3.8) and (3.11), we find373

that (v1, v2) is a solution of the system374

L1((v1, v2), (w1, w2)) = L2(w1, w2), ∀(w1, w2) ∈ H1
0 (]0, L[) × H1

∗ (]0, L[), (3.13)375

where376

L1((v1, v2), (w1, w2)) =

∫ L

0

(k1 (∂xv1 + v2) (∂xw1 + w2) + k2∂xv2∂xw2) dx,377

+

∫ L

0

(

−ag1∂xv1∂xw1 +
(

ρ1 + b + ξ0 + de−τ
)

v1w1 + ρ2v2w2

)

dx,378

L2((w1, w2)) =

∫ L

0

(ρ1 f7w1 + ∂x f8∂xw1 + ρ2( f2 + f4)w2) dx,379

g1 =

∫ +∞

0

e−s g(s) ds and f8 = a

∫ +∞

0

e−s g(s)

∫ s

0

ey ( f1 − f6(y)) dy ds.380

Since, it is easy to prove that L1 is a bilinear, continuous and coercive form and L2 is a linear381

and continuous form on, respectively,382

(

H1
0 (]0, L[) × H1

∗ (]0, L[)
)2

and H1
0 (]0, L[) × H1

∗ (]0, L[)383

(noting that g1 < g0 and using (2.14)), so, applying the Lax-Milgram theorem, we deduce384

that (3.13) admits a unique solution385

(v1, v2) ∈ H1
0 (]0, L[) × H1

∗ (]0, L[).386
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Applying the classical elliptic regularity, it follows that (v1, v2) satisfies (3.9)–(3.12). There-387

fore, the operator I d + A is surjective.388

Third, we see that the linear operator B is Lipschitz continuous.389

Because −A is dissipative and I d+A is surjective, then A is a maximal monotone operator.390

Therefore, using Lummer–Phillips theorem (see [53]), we deduce that A is an infinitesimal391

generator of a linear C0-semigroup on H. Finally, also A + B is an infinitesimal generator392

of a linear C0-semigroup on H (see [53]: Ch. 3-Theorem 1.1). Consequently, Theorem 2.3393

holds from the Hille–Yosida theorem (see [33,53]).394

4 Some needed lemmas395

We will use c (sometimes cy , cy,y1 , . . ., which depends on some parameters y, y1, . . .),396

throughout the rest of this paper, to denote a generic positive constant which depends con-397

tinuously on the initial data U0 and can be different from step to step, but it does not depend398

neither on b nor on d .399

To get our stability results, we prove first some needed lemmas, for all U0 ∈ D(A); so all400

the calculations are justified. By a simple density arguments (D(A) is dense in H), (2.34) and401

(2.37) remain valid for any U0 ∈ H. The first next seven lemmas, used in [25], are adapted402

in the present paper to (1.1) by considering the needed modifications related to the presence403

of delay.404

We start by giving the following estimates for the derivative of E :405

Lemma 4.1 The energy functional satisfies, if (1.11) holds and d �= 0,406

E ′(t) ≤
1

2
g′ ◦ ϕx −

1

2
inf
[0,L]

(b − |d|)

∫ L

0

ϕ2
t dx, (4.1)407

and, if (1.12) holds or d ≡ 0,408

E ′(t) ≤
1

2
g′ ◦ ϕx +

∫ L

0

(−b + ‖d‖∞)ϕ2
t dx . (4.2)409

Proof By exploiting (2.29), (3.2) and the definition (2.27) of B, we obtain410

E ′(t) ≤
1

2
g′ ◦ ϕx +

∫ L

0

(

−b +
ξ

2τ
+

|d|

2

)

ϕ2
t dx +

∫ L

0

(

|d|

2
−

ξ

2τ

)

ϕ2
t (t − τ)dx .411

(4.3)412

So, from (2.25), we see that, if (1.11) holds and d �= 0, then413

−b +
ξ

2τ
+

|d|

2
=

|d|

2
−

ξ

2τ
= −

1

2
(b − |d|) ≤ −

1

2
inf
[0,L]

(b − |d|) ≤ 0.414

However, if (1.12) holds or d ≡ 0, we have415

−b +
ξ

2τ
+

|d|

2
= −b +

‖d‖∞ + |d|

2
≤ −b + ‖d‖∞ and

|d|

2
−

ξ

2τ
=

|d| − ‖d‖∞

2
≤ 0.416

Hence, (4.3) yields (4.1) and (4.2). ⊓⊔417

Remark 4.2 1. When (1.11) holds, E ′ ≤ 0, since g is non-increasing, and then (1.1) is418

dissipative. However, when (1.12) holds, we are unable to determine the sign of E ′ from419

(4.2), and therefore, (1.1) is not necessarily dissipative with respect to E at this stage.420
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2. Using the definition of E , (4.1) and (4.2), we see that, for some non-negative constant421

α0, E ′ ≤ α0 E . Then, by integrating,422

E(t) ≤ eα0(t−t0)E(t0), ∀t ≥ t0 ≥ 0.423

So, if E(t0) = 0, for some t0 ∈ R+, then E(t) = 0, for all t ≥ t0, and therefore, (2.34),424

(2.37) and (2.41) hold. Consequently, without loss of generality, we can assume that425

E(t) > 0, for all t ∈ R+.426

Lemma 4.3 The following inequalities hold:427

∃ d1 > 0 :

(∫ L

0

a

∫ +∞

0

g(s)(ϕ(t) − ϕ(t − s)) ds dx

)2

≤ d1g ◦ ϕx , (4.4)428

∃ d2 > 0 :

(∫ L

0

a

∫ +∞

0

g′(s)(ϕ(t) − ϕ(t − s)) ds dx

)2

≤ −d2g′ ◦ ϕx , (4.5)429

∃ d3 > 0 :

(∫ L

0

a′

∫ +∞

0

g(s)(ϕ(t) − ϕ(t − s))dsdx

)2

≤ d3g ◦ ϕx . (4.6)430

(∫ +∞

0

g(s)(ϕx (t) − ϕx (t − s)) ds

)2

≤ g0

∫ +∞

0

g(s)(ϕx (t) − ϕx (t − s))2ds, (4.7)431

(∫ +∞

0

g′(s)(ϕx (t) − ϕx (t − s))ds

)2

≤ −g(0)

∫ +∞

0

g′(s)(ϕx (t) − ϕx (t − s))2ds.432

(4.8)433

Proof If a ≡ 0, (4.4)–(4.6) are trivial. If inf [0,L] a > 0, we use the fact that a and a′ are434

bounded and apply Poincaré’s and Hölder’s inequalities (2.26) (for ϕ) and435

(∫ L

0

| f1 f2| dx

)2

≤

(∫ L

0

f 2
1 dx

)(∫ L

0

f 2
2 dx

)

, ∀ f1, f2 ∈ L2(]0, L[), (4.9)436

respectively, to get (4.4)–(4.6). Using again Hölder’s inequality (4.9), (4.7) and (4.8) hold.437

Notice that the constants di do not depend neither on b nor on d . ⊓⊔438

Lemma 4.4 The functional439

I1(t) := −ρ1

∫ L

0

aϕt

∫ +∞

0

g(s)(ϕ(t) − ϕ(t − s)) ds dx (4.10)440

satisfies, for any δ > 0,441

I ′
1(t) ≤ −ρ1g0

∫ L

0

aϕ2
t dx + δ

∫ L

0

(

ϕ2
t + ϕ2

x + ψ2
x

)

dx442

+ δ

∫ L

0

(

b2ϕ2
t + d2ϕ2

t (t − τ)
)

dx + c

(

1 +
1

δ

)

g ◦ ϕx −
c

δ
g′ ◦ ϕx . (4.11)443

Proof First, note that444

∂t

(∫ +∞

0

g(s)(ϕ(t) − ϕ(t − s)) ds

)

= ∂t

(∫ t

−∞

g(t − s)(ϕ(t) − ϕ(s)) ds

)

445

=

∫ t

−∞

g(t − s)ϕt (t) ds +

∫ t

−∞

g′(t − s)(ϕ(t) − ϕ(s)) ds446

= g0ϕt +

∫ +∞

0

g′(s)(ϕ(t) − ϕ(t − s)) ds. (4.12)447
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Then, by differentiating I1, and using the first equation and the boundary conditions in (1.1),448

we find449

I ′
1(t) = −ρ1g0

∫ L

0
aϕ2

t dx − ρ1

∫ L

0
aϕt

∫ +∞

0
g′(s)(ϕ(t) − ϕ(t − s)) ds dx450

+ k1

∫ L

0
a(ϕx + ψ)

∫ +∞

0
g(s)(ϕx (t) − ϕx (t − s)) ds dx451

+

∫ L

0
a(bϕt + dϕt (t − τ))

∫ +∞

0
g(s)(ϕ(t) − ϕ(t − s)) ds dx452

+

∫ L

0
a2

(∫ +∞

0
g(s)(ϕx (t) − ϕx (t − s)) ds

)2

dx − g0

∫ L

0
a2ϕx

∫ +∞

0
g(s)(ϕx (t)453

− ϕx (t − s)) ds dx +

∫ L

0
aa′
(∫ +∞

0
g(s)(ϕ(t) − ϕ(t − s)) ds

)

454

×

(∫ +∞

0
g(s)(ϕx (t) − ϕx (t − s)) ds

)

dx455

+ k1

∫ L

0
a′(ϕx + ψ)

∫ +∞

0
g(s)(ϕ(t) − ϕ(t − s)) ds dx456

− g0

∫ L

0
aa′ϕx

∫ +∞

0
g(s)(ϕ(t) − ϕ(t − s)) ds dx .457

Therefore, applying Young’s and Hölder’s inequalities (3.1) and (4.9), for the last eight terms458

of the above equality, and using (4.4)–(4.7), Poincaré’s inequality (2.26), for ϕ, and the fact459

that a and a′ are bounded, we get (4.11). ⊓⊔460

Lemma 4.5 The functional461

I2(t) :=

∫ L

0

(ρ1ϕϕt + ρ2ψψt ) dx (4.13)462

satisfies, for any δ > 0,463

I ′
2(t) ≤

∫ L

0

(

ρ1ϕ2
t + ρ2ψ2

t

)

dx − k1

∫ L

0
(ϕx + ψ)2 dx − k2

∫ L

0
ψ2

x dx464

+ g0

∫ L

0
aϕ2

x dx + δ

∫ L

0
ϕ2

x dx +
c

δ

∫ L

0

(

b2ϕ2
t + d2ϕ2

t (t − τ)
)

dx +
c

δ
g ◦ ϕx .465

(4.14)466

Proof By differentiating I2, and using the first two equations and boundary conditions in467

(1.1), we have468

I ′
2(t) =

∫ L

0

(

ρ1ϕ
2
t + ρ2ψ

2
t

)

dx − k1

∫ L

0

(ϕx + ψ)2 dx − k2

∫ L

0

ψ2
x dx469

+ g0

∫ L

0

aϕ2
x dx −

∫ L

0

ϕ(bϕt + dϕt (t − τ)) dx470

−

∫ L

0

aϕx

∫ +∞

0

g(s)(ϕx (t) − ϕx (t − s)) ds dx .471

Consequently, aplying Young’s and Hölder’s inequalities (3.1) and (4.9), for the last two472

terms of the above equality, and using (4.7), Poincaré’s inequality (2.26), for ϕ, and the fact473

that a is bounded, we find (4.14). ⊓⊔474
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Lemma 4.6 The functional475

I3(t) := −ρ2

∫ L

0

ψt (ϕx + ψ) dx −
k2ρ1

k1

∫ L

0

ψxϕt dx476

+
ρ2

k1

∫ L

0

aψt

∫ +∞

0

g(s)ϕx (t − s) ds dx (4.15)477

satisfies, for any δ, δ1 > 0,478

I ′
3(t) ≤ k1

∫ L

0

(ϕx + ψ)2 dx − ρ2

∫ L

0

ψ2
t dx479

+ g0

(

δ1

2
− 1

)∫ L

0

aϕ2
x dx +

g0k0‖a‖∞

2δ1

∫ L

0

ψ2
x dx480

+
c

δ

∫ L

0

(

b2ϕ2
t + d2ϕ2

t (t − τ)
)

dx481

+ δ

∫ L

0

(

ψ2
t + ϕ2

x + ψ2
x

)

dx +
c

δ
(g ◦ ϕx − g′ ◦ ϕx )482

+

(

k2ρ1

k1
− ρ2

)∫ L

0

ϕxtψt dx, (4.16)483

where k0 is defined in (2.5).484

Proof Similarly to (4.12) and using that lims→+∞ g(s) = 0, we see that485

∂t

(∫ +∞

0

g(s)ϕx (t − s) ds

)

= ∂t

(∫ t

−∞

g(t − s)ϕx (s) ds

)

486

= g(0)ϕx +

∫ t

−∞

g′(t − s)ϕx (s) ds487

= g(0)ϕx +

∫ +∞

0

g′(s)(ϕx (t − s) − ϕx (t) + ϕx (t)) ds.488

= −

∫ +∞

0

g′(s)(ϕx (t) − ϕx (t − s)) ds.489

Therefore, exploiting the first two equations and boundary conditions in (1.1), we have490

I ′
3(t) = k1

∫ L

0

(ϕx + ψ)2 dx − ρ2

∫ L

0

ψ2
t dx +

(

k2ρ1

k1
− ρ2

)∫ L

0

ϕxtψt dx491

− g0

∫ L

0

aϕ2
x dx − g0

∫ L

0

aϕxψ dx +

∫ L

0

a(ϕx + ψ)

∫ +∞

0

g(s)(ϕx (t) − ϕx (t − s)) ds dx492

−
ρ2

k1

∫ L

0

aψt

∫ +∞

0

g′(s)(ϕx (t) − ϕx (t − s)) ds dx +
k2

k1

∫ L

0

ψx (bϕt + dϕt (t − τ)) dx .493

By applying Young’s inequality (3.1), for the last four terms of the above equality, Poincaré’s494

inequality (2.5), for ψ , and using (4.7), (4.8) and the fact that a is bounded, (4.16) is estab-495

lished. ⊓⊔496
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Now, as in [7], we use a function w to get a crucial estimate.497

Lemma 4.7 The function498

w(x, t) =

∫ x

0

ψ(y, t) dy (4.17)499

satisfies the estimates (k̃0 is the constant defined in (2.26))500

∫ L

0

w2
x dx =

∫ L

0

ψ2 dx, ∀t ≥ 0, (4.18)501

∫ L

0

w2
t dx ≤ k̃0

∫ L

0

ψ2
t dx, ∀t ≥ 0. (4.19)502

Proof We just have to note that wx = ψ to get (4.18). On the other hand, using (2.12) (remind503

that we are working with ψ̃ , but we use ψ instead of ψ̃ ; see Remark 2.1-2),504

wt (0, t) = 0 and wt (L , t) =

∫ L

0

ψt (y, t) dy = ∂t

∫ L

0

ψ(y, t) dy = 0.505

Then, applying (4.18) to wt and using Poincaré’s inequality (2.26), for wt , we arrive at506

(4.19). ⊓⊔507

Lemma 4.8 The functional508

I4(t) := ρ1

∫ L

0

(wϕt + ϕϕt ) dx (4.20)509

satisfies, for any δ, ǫ, ǫ1 > 0,510

I ′
4(t) ≤

(

ρ1 +
c0

ǫ

)

∫ L

0

ϕ2
t dx + c0ǫ

∫ L

0

ψ2
t dx511

+
(

g0‖a‖∞

(

1 +
ǫ1

2

)

− k1

)

∫ L

0

(ϕx + ψ)2 dx +
g0k0‖a‖∞

2ǫ1

∫ L

0

ψ2
x dx512

+ δ

∫ L

0

(

ϕ2
x + ψ2

x

)

dx +
c

δ

∫ L

0

(

b2ϕ2
t + d2ϕ2

t (t − τ)
)

dx +
c

δ
g ◦ ϕx , (4.21)513

where k0 is defined in (2.5), c0 = ρ1

2

√

k̃0 and k̃0 is defined in (2.26).514

Proof Using the first two equations and boundary conditions in (1.1), and exploiting the fact515

that w(0, t) = w(L , t) = 0 and wx = ψ , we find516

I ′
4(t) = ρ1

∫ L

0

ϕ2
t dx − k1

∫ L

0

(ϕx + ψ)2 dx517

+ g0

∫ L

0

a(ϕx + ψ − ψ)(ϕx + ψ) dx + ρ1

∫ L

0

wtϕt dx518

−

∫ L

0

(w + ϕ)(bϕt + dϕt (t − τ)) dx −

∫ L

0

a(ϕx + ψ)

∫ +∞

0

g(s)(ϕx (t)519

−ϕx (t − s)) ds dx .520

Applying Young’s inequality (3.1), for the last four terms of the above equality, Poincaré’s521

inequalities (2.5), for ψ , and (2.26), for ϕ and w, and exploiting (4.7), (4.18), (4.19) and the522

fact that a is bounded, we get (4.21). ⊓⊔523
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We use a functional introduced in [48] (in case ξ ≡ 1) to get an estimation on the delay524

term.525

Lemma 4.9 The functional526

I5(t) =

∫ L

0

ξ

∫ 1

0

e−2τpϕ2
t (t − τp) dp dx (4.22)527

satisfies528

I ′
5(t) ≤ −2e−2τ

∫ L

0

ξ

∫ 1

0

ϕ2
t (t − τp) dp dx529

+
1

τ

∫ L

0

ξϕ2
t dx −

e−2τ

τ

∫ L

0

ξϕ2
t (t − τ) dx . (4.23)530

Proof Using (2.16) and the first equation in (2.18), the derivative of I5 entails531

I ′
5(t) = 2

∫ L

0

ξ

∫ 1

0

e−2τpϕt t (t − τp)ϕt (x, t − τp) dp dx532

= −
2

τ

∫ L

0

ξ

∫ 1

0

e−2τpϕtp(t − τp)ϕt (t − τp) dp dx533

= −
1

τ

∫ L

0

ξ

∫ 1

0

e−2τp∂pϕ
2
t (t − τp) dp dx .534

Then, by using an integrating by parts, the above formula can be rewritten as535

I ′
5(t) = −2

∫ L

0

ξ

∫ 1

0

e−2τpϕ2
t (t − τp) dp dx +

1

τ

∫ L

0

ξϕ2
t dx −

e−2τ

τ

∫ L

0

ξϕ2
t (t − τ) dx,536

which gives (4.23), since −2e−2τp ≤ −2e−2τ , for any p ∈]0, 1[. ⊓⊔537

Let a0 := inf [0,L] a, b0 := inf [0,L] b and, for N , N1, N2, N3, N4 ≥ 0,538

I6 := N E + N1 I1 + N2 I2 + I3 + N3 I4 + N4 I5. (4.24)539

Then, by combining (4.11), (4.14), (4.16), (4.21) and (4.23), we obtain540

I ′
6(t) ≤ −

∫ L

0

(

l0ϕ
2
t + l1ψ

2
t + l2(ϕx + ψ)2 + l3ψ

2
x

)

dx + l4g0

∫ L

0

aϕ2
x dx + N E ′(t)541

− 2e−2τ N4

∫ L

0

ξ

∫ 1

0

ϕ2
t (t − τp) dp dx + δ(N1 + cN2,N3 )

∫ L

0

(

ϕ2
t + ψ2

t + ϕ2
x + ψ2

x

)

dx542

−

∫ L

0

(

e−2τ N4

τ
ξ −

(

δN1 +
cN2,N3

δ

)

d2

)

ϕ2
t (t − τ) dx543

+

∫ L

0

(

N4

τ
ξ +

(

δN1 +
cN2,N3

δ

)

b2

)

ϕ2
t dx544

+
(

cN1 +
cN1,N2,N3

δ

)

g ◦ ϕx −
cN1

δ
g′ ◦ ϕx +

(

ρ1k2

k1
− ρ2

)∫ L

0

ϕxtψt dx, (4.25)545

where546

l0 = N1ρ1g0a0 − (N2 + N3)ρ1 −
c0 N3

ǫ
,547

l1 = ρ2(1 − N2) − c0ǫN3, l2 = k1(N2 + N3 − 1) − g0‖a‖∞

(

1 +
ǫ1

2

)

N3,548

l3 = k2 N2 −
g0k0‖a‖∞

2

(

N3

ǫ1
+

1

δ1

)

and l4 = N2 +
δ1

2
− 1.549
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Now, as in [25], we choose carefully the constants N , Ni , δ, δ1, ǫ and ǫ1 to get desired signs550

of li .551

Case 1 a ≡ 0: the second integral in (4.25) drops, g ◦ ϕx = g′ ◦ ϕx = 0 (from the definition552

(2.32)) and the constants l0, l1, l2 and l3 do not depent neither on δ1 nor on ǫ1. On the other553

hand,554

l0 = −(N2 + N3)ρ1 −
c0 N3

ǫ
≥ N1b0 − (N2 + N3)ρ1 −

c0 N3

ǫ
− N1b := l̃0 − N1b,555

so l̃0 := N1b0 − (N2 + N3)ρ1 − c0 N3
ǫ

. Therefore, we choose556

N3 = 1, 0 < N2 < 1, 0 < ǫ <
ρ2

c0
(1 − N2) and N1 >

1

b0
(N2 + N3) +

c0 N3

ǫb0
.557

Notice that N3, N2 and ǫ do not depend neither on b nor on d . Moreover, because b0 > 0558

thanks to (2.2) and a ≡ 0, N1 exists and can be taken in the form N1 = c
b0

, and then l̃0 as559

well as l1, l2 and l3 do not depend neither on b nor on d . According to these choices, we get560

L := min

{

l̃0

ρ1
,

l1

ρ2
,

l2

k1
,

l3

k2

}

> 0,561

and then, using (2.14) and (4.25),562

I ′
6(t) ≤ −

(

L − cδ

(

1 +
1

b0

))∫ L

0

(

ρ1ϕ
2
t + ρ2ψ

2
t + k1(ϕx + ψ)2

563

+ k2ψ
2
x

)

dx − 2e−2τ N4

∫ L

0

ξ

∫ 1

0

ϕ2
t (t − τp) dp dx564

−

∫ L

0

(

e−2τ N4

τ
ξ − c

(

δ

b0
+

1

δ

)

d2

)

ϕ2
t (t − τ) dx565

+ N E ′(t) +

∫ L

0

(

N4

τ
ξ + c

(

b2δ

b0
+

b2

δ
+

b

b0

))

ϕ2
t dx566

+

(

ρ1k2

k1
− ρ2

)∫ L

0

ϕxtψt dx . (4.26)567

Next, choosing δ > 0 such that568

L − cδ

(

1 +
1

b0

)

> 0.569

Notice that L and c do not depend on δ, b and d; so δ exists and can be taken in the form570

δ =
cb0

b0 + 1
, (4.27)571

and consequently, L − cδ
(

1 + 1
b0

)

is a positive constant which does not depend neither on572

b nor on d . At the end, we choose N4 such that573

e−2τ N4

τ
ξ − c

(

δ

b0
+

1

δ

)

d2 ≥ 0. (4.28)574

If d ≡ 0, then ξ ≡ 0 (thanks to (2.25)), and therefore (4.28) is satisfied, for any N4 ≥ 0.575

Otherwise, if d �= 0, then ξ = τb (in vertue of (2.25) and because (1.11) is assumed in this576
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Well-posedness and energy decay for Timoshenko systems. . .

case a ≡ 0; see Theorem 2.6), consequently, the choice (4.27) and the inequality |d| < b577

(according to (1.11)) imply that N4 can be taken in the form578

N4 =
c‖b‖∞(b0 + 1)

b0
. (4.29)579

Thus, using (2.31), we get from (4.26)580

I ′
6(t) ≤ −cE0(t) −

c‖b‖∞(b0 + 1)

b0
E1(t) + N E ′(t)581

+
c (‖b‖∞(b0 + 1) + 1)

b0

∫ L

0

bϕ2
t dx +

(

ρ1k2

k1
− ρ2

)∫ L

0

ϕxtψt dx, (4.30)582

where583

E0(t) = E(t) − E1(t) and E1(t) =
1

2

∫ L

0

ξ

∫ 1

0

ϕ2
t (t − τp) dp dx . (4.31)584

Case 2. a0 > 0: we choose585

ǫ1 =
k1 − g0‖a‖∞

g0‖a‖∞
, δ1 =

k0g0‖a‖∞

k2
,586

587

k1δ1

2k1 − g0‖a‖∞(2 + ǫ1)
< N3 < ǫ1

(

k2(2 − δ1)

g0k0‖a‖∞
−

1

δ1

)

,588

589

max

{

1 − N3

(

1 −
g0‖a‖∞(2 + ǫ1)

2k1

)

,
g0k0‖a‖∞

2k2

(

N3

ǫ1
+

1

δ1

)}

< N2 < 1 −
δ1

4
,590

591

0 < ǫ < min

{(

2(1 − N2) −
δ1

2

)

ρ2

c0 N3
,
ρ2(1 − N2)

c0 N3

}

592

and593

N1 > max

⎧

⎨

⎩

(N2 + N3)ρ1 + c0 N3
ǫ

ρ1g0a0
,

(

2N2 + N3 + δ1
2

− 1
)

ρ1 + c0 N3
ǫ

ρ1g0a0

⎫

⎬

⎭

.594

Notice that ǫ1 and δ1 exist and are positive thanks to (2.4) and the property g0 > 0 (because595

g(0) > 0; see (H2)), N2 exists according to the choice of N3, ǫ exists from the choice of596

N2, and N1 exists because ρ1g0a0 > 0. On the other hand, to prove the existence of N3, we597

repeat the calculations given in [25]. Using the definitions of ǫ1 and δ1, we see that N3 exists598

if and only if599

k2
0k1(g0‖a‖∞)3 < k2(k2 − k0g0‖a‖∞)(k1 − g0‖a‖∞)2.600

Let y0 = k1k2
k0k1+k2

, y = g0‖a‖∞ ∈]0, y0[ (see (2.4)) and601

f (y) = k2
0k1 y3 − k2(k2 − k0 y)(k1 − y)2.602

We have603

f ′(y) = 3
(

k2
0k1 + k0k2

)

y2 − 2
(

2k0k1k2 + k2
2

)

y + k0k2
1k2 + 2k1k2

2604
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A. Guesmia

and605

f ′′(y) = 6
(

k2
0k1 + k0k2

)

y − 2
(

2k0k1k2 + k2
2

)

.606

Let y1 =
2k0k1k2+k2

2

3(k2
0 k1+k0k2)

. We notice that f ′ is decreasing on ]0, y1[, it is increasing on ]y1,+∞[607

and608

f ′(y0) =
k2

0k3
1k2 + 2k0k2

1k2
2

k0k1 + k2
> 0,609

Moreover, y1 ≤ y0 if and only if k2 ≤ k0k1, and, if k2 ≤ k0k1,610

f ′(y1) =
5k2

0k2
1k2

2 − k4
2 + 2k0k1k3

2 + 3k3
0k3

1k2

3(k2
0k1 + k0k2)

≥
9k4

2

3(k2
0k1 + k0k2)

> 0.611

Therefore, f ′ is positive on ]0, y0[, and then f (y) < f (y0), for any y ∈]0, y0[. But612

f (y0) = 0, hence f is negative on ]0, y0[. This guarantees the existence of N3.613

By vertue of these choices, we notice that614

L := min

{

l0

ρ1
,

l1

ρ2
,

l2

k1
,

l3

k2

}

> 0, l4 ≤ L ,615

and L does not depend on δ, b and d . Then, using (2.14) and (4.25), we find616

I ′
6(t) ≤ −(L − cδ)

∫ L

0

(

ρ1ϕ
2
t + ρ2ψ

2
t + k1(ϕx + ψ)2 + k2ψ

2
x − ag0ϕ

2
x

)

dx + N E ′(t)617

− 2e−2τ N4

∫ L

0

ξ

∫ 1

0

ϕ2
t (t − τp) dp dx −

∫ L

0

(

e−2τ N4

τ
ξ − c

(

δ +
1

δ

)

d2

)

ϕ2
t (t − τ) dx618

+

∫ L

0

(

N4

τ
ξ + c

(

δ +
1

δ

)

b2

)

ϕ2
t dx + c

(

1 +
1

δ

)

g ◦ ϕx −
c

δ
g′ ◦ ϕx619

+

(

ρ1k2

k1
− ρ2

)∫ L

0

ϕxtψt dx . (4.32)620

Therefore, choosing δ > 0 and N4 ≥ 0 such that L − cδ > 0 and621

e−2τ N4

τ
ξ − c

(

δ +
1

δ

)

d2 ≥ 0.622

In vertue of (2.25), N4 can be chosen in the form N4 = c‖d‖∞. Then, using (2.31), (4.30)623

and (4.32), we find, in both cases a ≡ 0 and a0 > 0,624

I ′
6(t) ≤ −cE0(t) − c̃E1(t) + N E ′(t)625

+ c

∫ L

0

ξ̃ϕ2
t dx +

(

ρ1k2

k1
− ρ2

)∫ L

0

ϕxtψt dx + c(g ◦ ϕx − g′ ◦ ϕx ), (4.33)626

where, thanks to the definition of ξ in case (1.11),627

c̃ =

{

c‖b‖∞(b0+1)
b0

if a ≡ 0,

c‖d‖∞ if a0 > 0
(4.34)628

and629

ξ̃ =

⎧

⎪

⎨

⎪

⎩

‖b‖∞(b0+1)+1
b0

b if a ≡ 0,

‖b‖∞b if a0 > 0 and (1.11) holds,

‖d‖2
∞ + ‖b‖∞b if a0 > 0 and (1.12) holds.

(4.35)630
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Well-posedness and energy decay for Timoshenko systems. . .

Now, we estimate the term g ◦ ϕx in (4.33).631

Case 1 (2.8) holds: then632

g ◦ ϕx ≤ −
1

α
g′ ◦ ϕx . (4.36)633

Case 2 (2.9) holds: this case does not concern Theorem 2.6 because of (2.38). For Theorem634

2.4 and Theorem 2.7, we apply here an inequality given in [19] (and in [16] in a less general635

form).636

Lemma 4.10 For any ǫ0 > 0, we have637

G ′(ǫ0 E(t))g ◦ ϕx ≤ −cg′ ◦ ϕx + cǫ0 E(t)G ′(ǫ0 E(t)). (4.37)638

Proof In Theorem 2.4 and Theorem 2.7, it is assumed that (1.11) holds. Then, thanks to (4.1),639

E is non-increasing. Therefore, the proof is the same as in [19]-Lemma 3.6 (for B
1
2 = ∂x640

and ‖.‖ = ‖.‖L2(]0,L[)). ⊓⊔641

Using (4.33), (4.36) and (4.37), we see that, in both two previous cases,642

G0(E(t))

E(t)
I ′
6(t) ≤ −

G0(E(t))

E(t)
((c − ǫ̃0)E0(t) + (c̃ − ǫ̃0)E1(t)) + N

G0(E(t))

E(t)
E ′(t)643

− c
(

1 + G ′(ǫ0 E(t))
)

g′ ◦ ϕx + c
G0(E(t))

E(t)

∫ L

0

ξ̃ϕ2
t dx644

+

(

ρ1k2

k1
− ρ2

)

G0(E(t))

E(t)

∫ L

0

ϕxtψt dx, (4.38)645

where G0 is defined in (2.35) and646

ǫ̃ =

{

0 if (2.8) holds,

cǫ0 if (2.9) holds.
(4.39)647

On the other hand, by (2.14) and the definitions of the functionals Ii and E , there exists a648

positive constant β (not depending on N , b and d) satisfying649

|N1 I1 + N2 I2 + I3 + N3 I4 + N4 I5| ≤ βE,650

which implies that651

(N − β)E ≤ I6 ≤ (N + β)E . (4.40)652

Now, at this stage, we distinguish the cases of Theorems 2.4, 2.6 and 2.7.653

5 General stability: (1.2) and (1.11) hold654

Using (4.1) (in case d �= 0), (4.2) (in case d ≡ 0) and the property g′ ≤ 0, we have655

N E ′(t) + c

∫ L

0

ξ̃ϕ2
t dx ≤

∫ L

0

(

cξ̃ −
N

2
inf
[0,L]

(b − |d|)

)

ϕ2
t dx (5.1)656

and657

− g′ ◦ ϕx ≤ −2E ′(t). (5.2)658
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Therefore, inserting (5.1) and (5.2) into (4.38), choosing ǫ0 > 0 such that ǫ̃ defined in (4.39)659

satisfies660

ǫ̃ <

{

min{c, c̃} if d �= 0,

c if d ≡ 0
661

(if d ≡ 0, then ξ = E1 = 0 and E = E0) and choosing N ≥ 0 such that662

cξ̃ −
N

2
inf
[0,L]

(b − |d|) ≤ 0 and N > β663

(N exists according to (1.11), (4.35) and the boundedness of b), we deduce, from (1.2),664

(4.38), (4.40) and the fact that G ′(ǫ0 E) is non-increasing, that I6 ∼ E , the last term in (4.38)665

vanishes and, for some positive constant β1,666

G0(E(t))

E(t)
I ′
6(t) + cE ′(t) ≤ −β1G0(E(t)). (5.3)667

Let τ0 > 0 and668

F = τ0

(

G0(E)

E
I6 + cE

)

. (5.4)669

We have F ∼ E (because I6 ∼ E and G0(E)
E

is non-increasing) and, using (5.3),670

F ′ ≤ −τ0β1G0(E). (5.5)671

Then, for τ0 > 0 such that672

F ≤ E and F(0) ≤ 1, (5.6)673

we get, for α2 = τ0β1 > 0 (since G0 is increasing),674

F ′ ≤ −α2G0(F). (5.7)675

Then (5.7) implies that676

(G̃(F))′ ≥ α2, (5.8)677

where G̃(t) =

∫ 1

t

1

G0(s)
ds. Integrating (5.8) over [0, t] yields678

G̃(F(t)) ≥ α2t + G̃(F(0)). (5.9)679

Because F(0) ≤ 1, G̃(1) = 0 and G̃ is decreasing, we obtain from (5.9) that680

G̃(F(t)) ≥ α2t,681

which implies that682

F(t) ≤ G̃−1(α2t).683

The fact that F ∼ E gives (2.34). This completes the proof of Theorem 2.4.684
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Well-posedness and energy decay for Timoshenko systems. . .

6 Exponential stability: (1.2) and (1.12) hold685

Exploiting (2.38), (4.2), (4.35) and the property g′ ≤ 0, we find686

N E ′(t) + c

∫ L

0

ξ̃ϕ2
t dx ≤

∫ L

0

(

N (−b + ‖d‖∞) + c
(

‖d‖2
∞ + ‖b‖∞b

))

ϕ2
t dx687

≤

∫ L

0

(c‖b‖∞ − N )bϕ2
t dx +

2

ρ1

(

N‖d‖∞ + c‖d‖2
∞

)

E0(t) (6.1)688

and689

− g′ ◦ ϕx ≤ −2E ′(t) + 2‖d‖∞

∫ L

0

ϕ2
t dx ≤ −2E ′(t) +

4

ρ1
‖d‖∞E0(t). (6.2)690

Therefore, choosing N ≥ 0 such that691

N ≥ c‖b‖∞ and N > β;692

so c‖b‖∞ − N ≤ 0 and I6 ∼ E by vertue of (4.40). The constant N can be choosen in the693

form694

N = c(1 + ‖b‖∞), (6.3)695

and therefore, inserting (6.1) and (6.2) into (4.38) and noting that the last term in (4.38)696

vanishes (thanks to (1.2)), G0 = I d and ǫ̃0 = 0 (according to (2.35) and (4.39)), we697

conclude that, for some positive constant β2 which does not depend neither on b nor on d ,698

I ′
6(t) + cE ′(t) ≤ −

(

c − β2(1 + ‖b‖∞)
(

‖d‖2
∞ + ‖d‖∞

))

E0(t) − c̃E1(t).699

Let F = I6 + cE . The property I6 ∼ E and condition (2.39), for700

d0 =
c

β2(1 + ‖b‖∞)
, (6.4)701

lead to F ∼ E and702

F ′ ≤ −α2 F, (6.5)703

for some positive constant α2. By integrating (6.5) over [0, t] and using again the equivalence704

F ∼ E , we find (2.37). This ends the proof of Theorem 2.6.705

7 Weak stability: (1.2) does not hold and (1.11) holds706

In this section, we treat the case when (1.2) does not hold which is more realistic from the707

physics point of view. We need to estimate the last term in (4.38) using the system (7.1)708

resulting from differentiating (1.1) with respect to time709

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ρ1ϕt t t − k1(ϕxt + ψt )x + dϕt t (t − τ) + bϕt t +

∫ +∞

0

g(s)(aϕxt (t − s))x ds = 0,

ρ2ψt t t − k2ψxxt + k1(ϕxt + ψt ) = 0,

ϕt (0, t) = ψxt (0, t) = ϕt (L , t) = ψxt (L , t) = 0.

(7.1)710

System (7.1) is well posed for initial data U0 ∈ D(A) thanks to Theorem 2.3. Let E2 be the711

second-order energy (the energy of (7.1)) defined by712

E2(t) =
1

2
‖Ut (t)‖

2
H

. (7.2)713
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A simple calculation (as for (4.1) and (4.2)) implies, in case (1.11), that714

E ′
2(t) ≤

1

2
g′ ◦ ϕxt −

1

2
inf
[0,L]

(b − |d|)

∫ L

0

ϕ2
t t dx; (7.3)715

so E2 is non-increasing (according to (1.11)). Let τ0 = 1 in (5.4). Thus, similarly to (5.5)716

(with the same choices of ǫ0 and N ), we deduce from (4.38) that717

F ′(t) ≤ −β1G0(E(t)) +

(

ρ1k2

k1
− ρ2

)

G0(E(t))

E(t)

∫ L

0

ϕxtψt dx . (7.4)718

Now, as in [25], we use some ideas of [17].719

Lemma 7.1 For any ǫ > 0, we have720

(

ρ1k2

k1
− ρ2

)∫ T

S

G0(E(t))

E(t)

∫ L

0

ϕxtψt dx dt ≤ ǫ

∫ T

S

G0(E(t)) dt721

+ cǫ

G0(E(0))

E(0)
(E(S) + E2(S)) , ∀T ≥ S ≥ 0. (7.5)722

Proof By integration with respect to t , we get723

(

ρ1k2

k1
− ρ2

)∫ T

S

G0(E(t))

E(t)

∫ L

0

ϕxtψt dx dt =

(

ρ1k2

k1
− ρ2

)[

G0(E(t))

E(t)

∫ L

0

ϕxtψ dx

]T

S

724

−

(

ρ1k2

k1
− ρ2

)∫ T

S

(

G0(E(t))

E(t)

)′ ∫ L

0

ϕxtψ dx dt725

−

(

ρ1k2

k1
− ρ2

)∫ T

S

G0(E(t))

E(t)

∫ L

0

ϕxttψ dx dt. (7.6)726

Moreover, applying Poincaré’s inequality (2.5), for ψ , and using the definition of E and E2727

and their non-increasingness, we find728

∣

∣

∣

∣

(

ρ1k2

k1
− ρ2

)∫ L

0

ϕxtψ dx

∣

∣

∣

∣

≤ c (E(t) + E2(t))729

≤ c (E(S) + E2(S)) , ∀0 ≤ S ≤ t.730

Thus, by integrating by parts the last integral in (7.6) with respect to x and noting that G0(E)
E

731

is non-increasing, we have732

(

ρ1k2

k1
− ρ2

)∫ T

S

G0(E(t))

E(t)

∫ L

0
ϕxtψt dx dt733

≤ c
G0(E(0))

E(0)
(E(S) + E2(S)) + c

∫ T

S

G0(E(t))

E(t)

∫ L

0
|ϕt t ||ψx |dxdt, ∀T ≥ S ≥ 0. (7.7)734

On the other hand, according to (1.11) and (7.3) (notice also that g is non-incresing), we735

have736

∫ L

0

ϕ2
t t dx ≤

−2

inf [0,L] (b − |d|)
E ′

2(t).737
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Well-posedness and energy decay for Timoshenko systems. . .

Then, using (2.14) and Young’s inequality (3.1), we estimate the last integral in (7.7) as738

follows:739

c

∫ T

S

G0(E(t))

E(t)

∫ L

0

|ϕt t ||ψx | dx dt ≤
ǫk̂

2

∫ T

S

G0(E(t))

E(t)
ψ2

x dx dt − cǫ

G0(E(0))

E(0)

∫ T

S

E ′
2(t) dt740

≤ ǫ

∫ T

S

G0(E(t)) dt + cǫ

G0(E(0))

E(0)
E2(S), ∀T ≥ S ≥ 0.741

Inserting this inequality into (7.7), we get (7.5). ⊓⊔742

Now, exploiting (7.4) and (7.5) and choosing ǫ ∈]0, β1[, we get, for β3 = β1 − ǫ,743

∫ T

S

F ′(t) dt ≤ −β3

∫ T

S

G0(E(t)) dt + c
G0(E(0))

E(0)
(E(S) + E2(S)) , ∀T ≥ S ≥ 0.744

(7.8)745

By combining (7.8) and the property F ∼ E , we deduce that, for some positive constant β4,746

∫ T

S

G0(E(t)) dt ≤ β4

(

1 +
G0(E(0))

E(0)

)

(E(S) + E2(S)) , ∀T ≥ S ≥ 0. (7.9)747

Choosing S = 0 in (7.9) and using the fact that G0(E) is non-increasing, we get748

G0(E(T ))T ≤

∫ T

0

G0(E(t)) dt ≤ β4

(

1 +
G0(E(0))

E(0)

)

(E(0) + E2(0)), ∀T ≥ 0,749

which gives (2.41), for n = 1, with c1 = β4

(

1 + G0(E(0))
E(0)

)

(E(0) + E2(0)), since G−1
0 is750

increasing.751

By induction on n, suppose that (2.41) holds and let U0 ∈ D(An+1) such that a ≡ 0752

or (2.8) holds or (2.40) holds, for n + 1 instead of n. We have Ut (0) ∈ D(An) (thanks to753

Theorem 2.3) and Ut satisfies the first two equations and the boundary conditions of (1.1).754

On the other hand, if a �= 0 and (2.8) does not hold, then Ut (0) satisfies (2.40) (because U0755

satisfies (2.40), for n + 1). Then the energy E2 of (7.1) (defined in (7.2)) also satisfies, for756

some positive constant c̃n ,757

E2(t) ≤ Gn

(

c̃n

t

)

, ∀t > 0. (7.10)758

Now, choosing S = T
2

in (7.9), combining with (2.41) and (7.10), and using the fact that759

G0(E) is non-increasing, we deduce that760

G0(E(T ))T ≤ 2

∫ T

T
2

G0(E(t)) dt ≤ 2β4

(

1 +
G0(E(0))

E(0)

)(

Gn

(

2cn

T

)

+ Gn

(

2c̃n

T

))

,761

this implies that, for cn+1 = max
{

4β4

(

1 + G0(E(0))
E(0)

)

, 2cn, 2c̃n

}

(notice that Gn is increas-762

ing),763

E(T ) ≤ G−1
0

(cn+1

T
Gn

(cn+1

T

))

= G1

(cn+1

T
Gn

(cn+1

T

))

= Gn+1

(cn+1

T

)

.764

This proves (2.41), for n + 1. The proof of Theorem 2.7 is completed.765
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8 General comments and issues766

We give in this last section some general comments and issues.767

Remark 8.1 When (1.2) does not hold and (1.12) holds, proving the stability of (1.1) seems768

a delicate question (even under smallness condition on ‖d‖∞). In this case, there is a double769

difficulty: the presence of the last term in (4.38) which can not be absorbed by E itself and the770

fact that (1.1) and (7.1) are not neccessarily dissipative with respect to E and E2, respectively771

(see (4.2) and (7.2)).772

Remark 8.2 The regularity g ∈ C1(R+) can be weaken by assuming that g is differentiable773

almost everywhere on R+. On the other hand, our condition (2.9) implies that the set774

{s ∈ R+, g(s) > 0 and g′(0) = 0} (8.1)775

is empty. Using the arguments of [64–68], our stability results can be extended to the case776

of convolution kernels g having flat zones up to a certain extent; that is, the set (8.1) is not777

negligeable but small enough in some sense.778

Remark 8.3 It is interesting to determine the biggest value of d0 in (2.39) which guarantees779

the exponential stability (2.37) of (1.1) when (1.2) and (1.12) hold. On the other hand, is the780

system (1.1) instable when (1.2) and (1.12) hold, but ‖d‖∞ is not small enough?781

Remark 8.4 Another interesting question concerns the stability of (1.1) with an additional782

discrete time delay d̃ψt (t − τ̃ ) considered on the second equation, where τ̃ is a positive783

constant and d̃ : [0, L] → R is a given function.784

Remark 8.5 The arguments applied in [20] to get the stability of (1.10) can be adapted to785

(1.1) and a general stability estimate can be proved when (1.2), (1.12) and (2.9) hold (so g can786

converge to zero at infinity less faster than exponentially). The arguments of [20] are based787

on an approach introduced and developped in [64–68]. This approach allowed us to deal with788

some arbitrary decaying kernels g without assuming explicit conditions on their derivatives789

g′ and to avoid passing by E ′ in objective to overcome subsequently the difficulties generated790

by the non-dissipativeness character of (1.10). On the other hand, the arguments of [20] can791

be used to obtain the stability of (1.1) in case where the discrete time delay dϕt (t − τ) is792

replaced by a distributed one793

∫ +∞

0

f (s)ϕt (t − s) ds,794

for some given function f : R+ → R. Moreover, the results of the present paper remain true795

if we replace the linear damping bϕt by a non-linear one bh(ϕt ), for some given function796

h : R → R. Finally, some other Timoshenko-type systems with controls and time delays797

on the displacement can be considered (see [25] concerning the case where no delay is798

considered). To keep away this paper of being too long, we do not discuss these situations.799

Remark 8.6 When inf [0,L] a > 0 and ‖d‖∞ is small enough, the stability estimates (2.34)800

and (2.41) hold true also in case801

inf
[0,L]

(b − |d|) = 0. (8.2)802

More precisely, we have the following:803
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Theorem 8.7 Assume that (H1)–(H3) and (8.2) are satisfied and inf [0,L] a > 0. Let804

ξ =

{

τb if d �= 0,

0 if d ≡ 0
and ξ0 = 0 (8.3)805

instead of (2.25) and (2.28). Then the well-posedness result of Theorem 2.3 holds true.806

Moreover, there exists a positive constant d0 independent of d such that, if807

‖d‖∞ < d0, (8.4)808

then809

1. Case (1.2) holds: for any U0 ∈ H such that (2.8) or (2.33) holds, E satisfies (2.34).810

2. Case (1.2) does not hold: for any n ∈ N
∗ and U0 ∈ D(An) such that (2.8) or (2.40)811

holds, E satisfies (2.41).812

Proof First, according to (8.2) and (8.3), (2.27) and (3.2) imply that B ≡ 0 and (3.3),813

respectively. The rest of the proof of Theorem 2.3 is identical to the one given in Sect. 3.814

Second, under the choice (8.3), (4.3) and (8.2) imply that815

− g′ ◦ ϕx ≤ −2E ′(t) (8.5)816

and817

E ′(t) ≤ −
1

2

∫ L

0

bϕ2
t dx +

‖d‖∞

2

∫ L

0

ϕ2
t dx . (8.6)818

Similarly to (8.5), we have also819

− g′ ◦ ϕxt ≤ −2E ′
2(t). (8.7)820

Because ξ ≤ τb, then821

c̃ = c‖d‖∞ and ξ̃ = ‖b‖∞b (8.8)822

instead of (4.34) and (4.35). Consequently, using (8.6), we have823

N E ′(t) + c

∫ L

0

ξ̃ϕ2
t dx ≤

∫ L

0

(

cξ̃ −
N

2
b

)

ϕ2
t dx +

N‖d‖∞

ρ1
E0(t). (8.9)824

Therefore, inserting (8.5) and (8.9) into (4.38), we get825

G0(E(t))

E(t)
I ′
6(t) ≤ −

G0(E(t))

E(t)

((

c −
N‖d‖∞

ρ1
− ǫ̃0

)

E0(t) + (c̃ − ǫ̃0)E1(t)

)

826

− c
(

1 + G ′(ǫ0 E(t))
)

E ′(t) +
G0(E(t))

E(t)

∫ L

0

(

cξ̃ −
N

2
b

)

ϕ2
t dx827

+

(

ρ1k2

k1
− ρ2

)

G0(E(t))

E(t)

∫ L

0

ϕxtψt dx . (8.10)828

Choosing N ≥ 0 such that829

cξ̃ −
N

2
b ≤ 0 and N > β;830
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so N can be taken as in (6.3), therefore I6 ∼ E (due to (4.40)) and, for some positive constant831

β5 which does not depend neither on b nor on d (notice that G ′(ǫ0 E) is non-increasing),832

G0(E(t))

E(t)
I ′
6(t) ≤ −

G0(E(t))

E(t)
((c − β5(1 + ‖b‖∞)‖d‖∞ − ǫ̃0) E0(t) + (c̃ − ǫ̃0)E1(t))833

− cE ′(t) +

(

ρ1k2

k1
− ρ2

)

G0(E(t))

E(t)

∫ L

0

ϕxtψt dx . (8.11)834

Next, exploiting (8.4), for d0 = c
β5(1+‖b‖∞)

, and choosing ǫ > 0 such that835

c − β5(1 + ‖b‖∞)‖d‖∞ − ǫ̃0 > 0 and c̃ − ǫ̃0 > 0,836

we deduce from (8.11) that, for some positive constant β6,837

G0(E(t))

E(t)
I ′
6(t) + cE ′(t) ≤ −β6G0(E(t)) +

(

ρ1k2

k1
− ρ2

)

G0(E(t))

E(t)

∫ L

0

ϕxtψt dx .838

(8.12)839

If (1.2) holds, then (8.12) coincides with (5.3) and the proof of (2.34) can be finished as in840

Sect. 5.841

If (1.2) does not hold, we consider the functional F defined in (5.4) with τ0 = 1, and842

then (8.12) becomes identical to (7.4). Consequently, the proof of (2.41) can be ended as in843

Sect. 7. ⊓⊔844
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