Aissa Suffix 
  
Aissa Guesmia 
email: aissa.guesmia@univ-lorraine.fr
  
  
  
damping and/or infinite memory in the displacement

Keywords: separated by '-') Well-posedness -General decay -Time delay -Infinite memory -Frictional damping -Viscoelastic -Timoshenko-type -Semigroup theory -Energy method Mathematics Subject Classification Well-posedness, General decay, Time delay, Infinite memory, Frictional damping, Viscoelastic, Timoshenko-type, Semigroup theory, Energy method Mathematics Subject Classification 35B37, 35L55, 74D05, 93D15, 93D20

In this paper, we consider a vibrating system of Timoshenko-type in a bounded one-dimensional domain with discrete time delay and complementary frictional damping and infinite memory controls all acting on the transversal displacement. We show that the system is well-posed in the sens of semigroup and that, under appropriate assumptions on the weights of the delay and the history data, the stability of the system holds in case of the equal-speed propagation as well as in the opposite case in spite of the presence of a discrete time delay, where the decay rate of solutions is given in terms of the smoothness of the initial data and the growth of the relaxation kernel at infinity. The results of this paper extend the ones obtained by the present author and Messaoudi in (Acta Math Sci 36:1-33, 2016) to the case of presence of discrete delay.

Introduction

In this paper, we are concerned with the well-posedness and the long-time behavior of the solution of the following Timoshenko system:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩
ρ 1 ϕ tt (x, t)k 1 (ϕ x (x, t) + ψ(x, t)) x + d(x)ϕ t (x, tτ) + b(x)ϕ t (x, t) + +∞ 0 g(s)(a(x)ϕ x (x, ts)) x ds = 0, ρ 2 ψ tt (x, t)k 2 ψ xx (x, t) + k 1 (ϕ x (x, t) + ψ(x, t)) = 0, ϕ(0, t) = ψ x (0, t) = ϕ(L , t) = ψ x (L , t) = 0, ϕ(x, -t) = ϕ 0 (x, t), ϕ t (x, 0) = ϕ 1 (x), ϕ t (x, -τ p) = f 0 (x, -τ p), ψ(x, 0) = ψ 0 (x), ψ t (x, 0) = ψ 1 (x), (1.1) for (x, t, p) ∈]0, L[×]0, +∞[×]0, 1[, d :[ 0, L]→R, a, b :[ 0, L]→R + and g : R + → R + are given functions (to be specified later), where R + =[0, +∞[, L ,τ,ρ i , k i (i = 1, 2) are positive constants,

ϕ 0 :]0, L[×] -∞, 0[→ R,ϕ 1 ,ψ 0 ,ψ 1 :]0, L[→ R and f 0 :]0, L[×] -τ, 0[→ R
are given initial data, and

(ϕ, ψ) :]0, L[×]0, +∞[→ R 2
is the state of (1.1). A subscript y and the notation ∂ y denote the derivative with respect to y.

We also use the prime notation to denote the derivative when the function has only one variable. The infinite integral in (1.1), b(x)ϕ t (x, t) and d(x)ϕ t (x, tτ) represent, respectively, the infinite memory, the frictional damping and the discrete time delay. For simplicity of notation, the space and time variables are used only when it is necessary to avoid ambiguity.

Our aim is the study of the well-posedness and asymptotic behavior of the solutions of (1.1) in case of the equal-speed propagation

k 1 ρ 1 = k 2 ρ 2 (1.2)
as well as in the opposite case. The equality (1.2) means that the first two equations in (1.1) havethesamespeedsofwavepropagation k 1 ρ 1 and k 2 ρ 2 , respectively.

Timoshenko [START_REF] Timoshenko | On the correction for shear of the differential equation for transverse vibrations of prismaticbars[END_REF], in 1921, introduced the following model to describe the transverse vibration of a beam:

ρu tt = (K (u x -ϕ)) x , in ]0, L[×]0, +∞[, I ρ ϕ tt = (EIϕ x ) x + K (u x -ϕ), in ]0, L[×]0, +∞[, (1.3) 
where t denotes the time variable and x is the space variable along the beam of length L , in its equilibrium configuration, u is the transverse displacement of the beam and ϕ is the rotation angle of the filament of the beam. The coefficients ρ, I ρ , E, I and K are, respectively, the density (the mass per unit length), the polar moment of inertia of a cross section, Young's modulus of elasticity, the moment of inertia of a cross section, and the shear modulus. Since then, this model has attracted the attention of many researchers and an important amount of work has been devoted to the issue of the stabilization and the search for the minimum dissipation by which the solutions decay uniformly to the stable state as time goes to infinity.

To achieve this goal, diverse types of dissipative mechanisms have been used and several stability results have been obtained. We mention some of these results (for more results, we refer the reader to the list of references of this paper, which is not exhaustive, and the references therein).

Absence of delay: d ≡ 0. In the case of presence of controls on both the rotation angle and the transverse displacement, investigations showed that the Timoshenko systems are stable without any restriction on the constants ρ 1 , ρ 2 , k 1 and k 2 . In this regards, many decay estimates were obtained; see [START_REF] Guesmia | Stabilization of a linear Timoshenko system with infinite history and applications to the Timoshenko-heat systems[END_REF][START_REF] Kim | Boundary control of the Timoshenko beam[END_REF][START_REF] Messaoudi | Nonlinear Damped Timoshenko systems with second: global existence and exponential stability[END_REF][START_REF] Messaoudi | On the internal and boundary stabilization of Timoshenko beams[END_REF][START_REF] Raposo | Exponential stability for the Timoshenko system with two week dampings[END_REF]. However, in the case of only one control on the rotation angle, the rate of decay depends heavily on the constants ρ 1 , ρ 2 , k 1 and k 2 and the regularity of the initial data. Precisely, if (1.2) holds, the results obtained are similar to those established for the case of the presence of controls in both equations. We quote in this regard [START_REF] Alabau-Bousosuira | Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control[END_REF][START_REF] Ammar-Khodja | Energy decay for Timoshenko systems of memory type[END_REF][START_REF] Fernández Sare | Stability of Timoshenko systems with past history[END_REF][START_REF] Guesmia | On the control of solutions of a viscoelastic equation[END_REF][START_REF] Guesmia | General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping[END_REF][START_REF] Guesmia | On the stabilization of Timoshenko systems with memory and different speeds of wave propagation[END_REF][START_REF] Guesmia | A general stability result in a Timoshenko system with infinite memory: a new approach[END_REF][START_REF] Guesmia | Stabilization of a linear Timoshenko system with infinite history and applications to the Timoshenko-heat systems[END_REF][START_REF] Messaoudi | On the stabilization of the Timoshenko system by a weak nonlinear dissipation[END_REF][START_REF] Messaoudi | A stability result in a memory-type Timoshenko system[END_REF][START_REF] Muñoz Rivera | Global stability for damped Timoshenko systems[END_REF][46][START_REF] Mustafa | General energy decay rates for a weakly damped Timoshenko system[END_REF][START_REF] Soufyane | Uniform stabilization for the Timoshenko beam by a locally distributed damping[END_REF]. But, if (1.2) does not hold, a situation which is more interesting from the physics point of view, then it has been shown that the Timoshenko system is not exponentially stable even for exponentially decaying relaxation functions or linear frictional damping, and only weak decay estimates can be obtained for regular solutions in the presence of dissipation. This has been demonstrated in [START_REF] Alabau-Bousosuira | Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control[END_REF][START_REF] Fernández Sare | Stability of Timoshenko systems with past history[END_REF][START_REF] Guesmia | On the stabilization of Timoshenko systems with memory and different speeds of wave propagation[END_REF][START_REF] Guesmia | A general stability result in a Timoshenko system with infinite memory: a new approach[END_REF][START_REF] Guesmia | Stabilization of a linear Timoshenko system with infinite history and applications to the Timoshenko-heat systems[END_REF][START_REF] Messaoudi | Uniform decay in a Timoshenko-type system with past history[END_REF], for the case of finite or infinite memory, and in [START_REF] Guesmia | On the stabilization for Timoshenko system with past history and frictional damping controls[END_REF][START_REF] Guesmia | General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping[END_REF], for complementary frictional damping and finite or infinite memory acting on the rotation angle equation. We also refer the reader to [START_REF] Racke | Decay rates and global existence for semilinear dissipative Timoshenko systems[END_REF](and its references) concerning the stability of Timoshenko-type systems in R (instaed of ]0, L[) with controls acting on the rotation angle.

For the stability of Timoshenko systems via heat effect, we mention the pioneer work [START_REF] Muñoz Rivera | Mildly dissipative nonlinear Timoshenko systems-global existence and exponential stability[END_REF] devoted to the study of the following system:

⎧ ⎪ ⎨ ⎪ ⎩ ρ 1 ϕ tt -σ(ϕ x ,ψ) x = 0, in ]0, L[×]0, +∞[, ρ 2 ψ tt -bψ xx + k(ϕ x + ψ) + γθ x = 0, in ]0, L[×]0, +∞[, ρ 3 θ t -kθ xx + γψ tx = 0, in ]0, L[×]0, +∞[, (1.4) 
where θ denotes the temperature difference. In their work, Rivera and Racke [START_REF] Muñoz Rivera | Mildly dissipative nonlinear Timoshenko systems-global existence and exponential stability[END_REF] established, under appropriate conditions on the function σ and the positive constants ρ i , b, k and γ , several exponential decay results for the linearized system with various boundary conditions. They also proved a non-exponential stability result for the case of non-equal speed of propagation, and proved an exponential decay result for the nonlinear case. Guesmia et al. [START_REF] Guesmia | Uniform decay in mildly damped Timoshenko systems with non-equal wave speed propagation[END_REF] discussed a linear version of (1.4) and completed the work of [START_REF] Muñoz Rivera | Mildly dissipative nonlinear Timoshenko systems-global existence and exponential stability[END_REF] by establishing some polynomial decay results in the case of non-equal speed of propagation.

In (1.4), the heat flux is given by Fourier's law. As a result, this theory predicts an infinite speed of heat propagation; that is, any thermal disturbance at one point has an instantaneous effect elsewhere in the body. Experiments showed that heat conduction in some dielectric crystals at low temperatures is free of this paradox and disturbances, which are almost entirely thermal, propagate in a finite speed. This phenomenon in dielectric crystals is called second sound. To overcome this physical paradox, many theories have merged. One of which suggests that we should replace Fourier's law by Cattaneo's law. In line with this theory, (1.4), in its linear form, becomes

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ρ 1 ϕ tt -k 1 (ϕ x + ψ) x = 0, in ]0, L[×]0, +∞[, ρ 2 ψ tt -k 2 ψ xx + k 1 (ϕ x + ψ) + δθ x = 0, in ]0, L[×]0, +∞[, ρ 3 θ t + γ q x + δψ tx = 0, in ]0, L[×]0, +∞[, τ q t + q + kθ x = 0, in ]0, L[×]0, +∞[, (1.5) 
where q denotes the heat flux. Fernández Sare and Racke [START_REF] Fernández Sare | On the stability of damped Timoshenko systems: Cattaneo versus Fourier's law[END_REF] studied (1.5) and proved that 

χ = τ - ρ 1 k 1 ρ 3 ρ 2 - k 2 ρ 1 k 1 - τρ 1 δ 2 k 1 ρ 3 (1.6)
and used the semigroup method to obtain an exponential decay result, for χ = 0, and a polynomial decay, for χ = 0. See, also [START_REF] Guesmia | Stabilization of a linear Timoshenko system with infinite history and applications to the Timoshenko-heat systems[END_REF][START_REF] Kafini | Energy decay result in a Timoshenko-type system of thermoelasticity of type III with distributive delay[END_REF][START_REF] Kafini | Energy decay rates for a Timoshenko-type system of thermoelasticity of type III with constant delay[END_REF][START_REF] Messaoudi | Nonlinear Damped Timoshenko systems with second: global existence and exponential stability[END_REF][START_REF] Racke | Global existence and decay property of the Timoshenko system in thermoelasticity with second sound[END_REF][START_REF] Said-Houari | Decay property of Timoshenko system in thermoelasticity[END_REF][START_REF] Said-Houari | Damping by heat conduction in the Timoshenko system: Fourier and Cattaneo are the same[END_REF]. Notice that, when τ = 0 (Fourier's law), χ = 0 if and only if (1.2) holds.

In all above mentioned works, the stability was either via both equation control or the angular rotation equation control. Recently, Almeida Júnior et al. [START_REF] Almeida Júnior | Stability to weakly dissipative Timoshenko systems[END_REF] considered the situation when the control is only on the transverse displacement equation, which is more realistic from the physics point of view. Precisely, they looked into the following system:

ρ 1 ϕ tt -k 1 (ϕ x + ψ) x + µϕ t = 0, in ]0, L[×]0, +∞[, ρ 2 ψ tt -k 2 ψ xx + k 1 (ϕ x + ψ) = 0, in ]0, L[×]0, +∞[, (1.7) 
where µ is a positive constant, and showed that the linear frictional damping µϕ t is strong enough to obtain exponential stability of (1.7) provided that (1.2) holds. They, also, proved some non-exponential and polynomial decay results in the case of non-equal speed situation.

The results of [START_REF] Almeida Júnior | Stability to weakly dissipative Timoshenko systems[END_REF] were, very recently, extended in [START_REF] Guesmia | Some stability results for Timoshenko systems with cooperative frictional and infinite-memory dampings in the displacement[END_REF] to the case where the linear frictional damping µϕ t is replaced by a nonlinear one and/or an infinite memory. The same authors of

[4] considered in [5] ⎧ ⎪ ⎨ ⎪ ⎩ ρ 1 ϕ tt -κ(ϕ x + ψ) x + σθ x = 0, in ]0, L[×]0, +∞[, ρ 2 ψ tt -bψ xx + κ(ϕ x + ψ) -σθ = 0, in ]0, L[×]0, +∞[, ρ 3 θ t -γθ xx + σ(ϕ x + ψ) t = 0, in ]0, L[×]0, +∞[, (1.8) 
with various boundary conditions, and established the exponential stability of (1.8)f o r equal-speed case, and non-exponential stability for the opposite case. In the case of lack of exponential stability, they proved some algebraic (polynomial) stability for strong solutions.

Presence of delay: d = 0. The questions related to well-posedness and stability/instability of Timoshenko-type systems as well as evolution equations with time delay have attracted considerable attention in recent years and many researchers have shown that the time delay can destabilize a system that was asymptotically stable in the absence of time delay.

When the delay and controls are present on the rotation angle equation, we mention the following Timoshenko system: [START_REF] Said-Houari | A stability result for a Timoshenko system with past history and a delay term in the internal feedback[END_REF], where µ 1 , µ 2 and τ are fixed non-negative constants. The author of [START_REF] Said-Houari | A stability result for a Timoshenko system with past history and a delay term in the internal feedback[END_REF] proved the stability of (1.9) under the assumptions (1.2)

⎧ ⎨ ⎩ ρ 1 ϕ tt -k 1 (ϕ x + ψ) x = 0, ρ 2 ψ tt -k 2 ψ xx + k 1 (ϕ x + ψ) + t 0 g(s)ψ xx (t -s) ds + µ 1 ψ t + µ 2 ψ t (t -τ) = 0, (1.9) in ]0, 1[×]0, +∞[, studied in
and0<µ 2 ≤ µ 1 ,
where the decay rate of solutions depends on the one of g. The obtained stability results in [START_REF] Said-Houari | A stability result for a Timoshenko system with past history and a delay term in the internal feedback[END_REF] generalize the ones of [START_REF] Said-Houari | A stability result of a Timoshenko system with a delay term in the internal feedback[END_REF] concerning (1.9) in the case g ≡ 0a n d0<µ 2 <µ 1 , and they were generalized in [START_REF] Kirane | Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks[END_REF] to the case g ≡ 0 and variable time delay τ(t).I n [START_REF] Said-Houari | Stability result of the Timoshenko system with delay and boundary feedback[END_REF],

the stability of Timoshenko systems with two internal time delays and two boundary linear feedbacks was proved under some smallness conditions on L and the weights of the delays.

When no frictional damping is present, the stability of this Timoshenko system Well-posedness and energy decay for Timoshenko systems... in ]0, L[×]0, +∞[,wasprovedin [START_REF] Guesmia | Some well-posedness and general stability results in Timoshenko systems with infinite memory and distributed time delay[END_REF], in both discrete time delay case

⎧ ⎨ ⎩ ρ 1 ϕ tt -k 1 (ϕ x + ψ) x = 0, ρ 2 ψ tt -k 2 ψ xx + k 1 (ϕ x + ψ) + +∞ 0 g(s)ψ xx (t -s) ds + D(ψ) = 0, ( 1 
D(ψ) = µ 2 ψ t (t -τ)
and distributed one

D(ψ) = +∞ 0 f (s)ψ t (t -s) ds,
where µ 2 ∈ R * and f : R + → R is a given function. In contrast to the situation of absence of delay and/or presence of frictional damping, (1.10) is not necessarily dissipative with respect to its classical energy. To overcome subsequently the difficulties generated by the non-dissipativeness character of (1.10), some new functionals were introduced in [START_REF] Guesmia | Some well-posedness and general stability results in Timoshenko systems with infinite memory and distributed time delay[END_REF]toget crucial estimates on some terms generated by the time delay and the infinite memory. The results of [START_REF] Guesmia | Some well-posedness and general stability results in Timoshenko systems with infinite memory and distributed time delay[END_REF] generalizes the ones of [START_REF] Guesmia | Well-posedness and exponential stability of an abstract evolution equation with infinite memory and time delay[END_REF] concerning the particular case

D(ψ) = µ 2 ψ t (t -τ)
and g converges exponentially to zero at infinity.

Similar stability results for various hyperbolic evolution equations with frictional damping and/or memory and/or time delay exist in the literature, in this regard, we refer the reader to [START_REF] Alabau-Boussouira | On convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems[END_REF][START_REF] Alabau-Boussouira | Indirect internal stabilization of weakly coupled evolution equations[END_REF][START_REF] Ammari | Feedback boundary stabilization of wave equations with interior delay[END_REF][START_REF] Apalara | Energy decay in Thermoelasticity type III with viscoelastic damping and delay term[END_REF][START_REF] Benaissa | Global existence and energy decay of solutions for the wave equation with a time varying delay term in the weakly nonlinear internal feedbacks[END_REF][START_REF] Cavalcanti | Frictional versus viscoelastic damping in a semilinear wave equation[END_REF][START_REF] Datko | An example on the effect of time delays in boundary feedback stabilization of wave equations[END_REF][START_REF] Datko | Two questions concerning the boundary control of certain elastic systems[END_REF][START_REF] Guesmia | Asymptotic stability of abstract dissipative systems with infinite memory[END_REF][START_REF] Guesmia | Asymptotic behavior for coupled abstract evolution equations with one infinite memory[END_REF][START_REF] Guesmia | Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay[END_REF][START_REF] Lasiecka | Note on intrinsic decay rates for abstract wave equations with memory[END_REF][START_REF] Lasiecka | Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping[END_REF][START_REF] Lasiecka | Regularity of higher energies of wave equation with nonlinear localized damping and source terms[END_REF][START_REF] Liu | Decay rates for dissipative wave equations[END_REF][START_REF] Messaoudi | Asymptotic stability of thermoelasticity type III with delay term and infinite memory[END_REF][START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Nicaise | Stabilization of the wave equation with boundary or internal distributed delay[END_REF][START_REF] Nicaise | Interior feedback stabilization of wave equations with time dependent delay[END_REF][START_REF] Nicaise | Exponential stability of the wave equation with boundary time-varying delay[END_REF][START_REF] Nicaise | Stability of the heat and of the wave equations with boundary timevarying delays[END_REF][START_REF] Tatar | Exponential decay for a viscoelastic problem with a singular kernel[END_REF][START_REF] Tatar | On a large class of kernels yielding exponential stability in viscoelasticity[END_REF][START_REF] Tatar | How far can relaxation functions be increasing in viscoelastic problems?[END_REF][START_REF] Tatar | A new class of kernels leading to an arbitrary decay in viscoelasticity[END_REF][START_REF] Tatar | On a perturbed kernel in viscoelasticity[END_REF].

As far as we know, the problem of stability of Timoshenko system with a time delay under infinite memory and/or frictional damping all acting on the transversal displacement has never been treated in the literature. Our goal in this paper is to investigate the effect of each control on the asymptotic behavior of the solutions of (1.1) in the presence of a time delay, and on the decay rate of its energy, when both controls are acting cooperatively, allowing each control to vanish on the whole domain. To our best knowledge, this situation has never been considered before in the literature. Under appropriate assumptions on the history data ϕ 0 , we give an explicit characterization of the decay rate of solutions depending on the growth of g at infinity and the following relations between the weights b and d of, respectively, the frictional damping and time delay: Contrarly to the case (1.11), system (1.1) is not necessarily dissipative with respect to its classical energy when (1.12) holds (see (4.1)and(4.2) below). This creates some difficulties and, so, we prove the exponential stability of (1.1) provided that (1.2) holds, g converges exponetially to zero at infinity and d ∞ is small enough. In the case when (1.11) holds, we give two general decay estimates (corresponding to the case (1.2) and the opposite one) depending on the smoothness of initial data and growth of g at infinity characterized by the condition (2.9) below introduced in [START_REF] Guesmia | Asymptotic stability of abstract dissipative systems with infinite memory[END_REF]. These results give a generalization of the ones proved by the present author and Messaoudi in [START_REF] Guesmia | Some stability results for Timoshenko systems with cooperative frictional and infinite-memory dampings in the displacement[END_REF] concerning the case d ≡ 0.

The proof of the well-posedness is based on the maximal monotone operators and semigroup approach (see, for example [START_REF] Komornik | Exact Controllability and Stabilization. The Multiplier Method[END_REF][START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF]). However, the proof of stability estimates is based on the multiplier method combined with some integral or differential inequalities (see, for example [START_REF] Alabau-Boussouira | On convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems[END_REF][START_REF] Alabau-Boussouira | Indirect internal stabilization of weakly coupled evolution equations[END_REF][START_REF] Cavalcanti | Frictional versus viscoelastic damping in a semilinear wave equation[END_REF][START_REF] Komornik | Exact Controllability and Stabilization. The Multiplier Method[END_REF][START_REF] Lasiecka | Note on intrinsic decay rates for abstract wave equations with memory[END_REF][START_REF] Lasiecka | Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping[END_REF][START_REF] Lasiecka | Regularity of higher energies of wave equation with nonlinear localized damping and source terms[END_REF][START_REF] Liu | Decay rates for dissipative wave equations[END_REF]) and an approach introduced in [START_REF] Guesmia | Asymptotic stability of abstract dissipative systems with infinite memory[END_REF][START_REF] Guesmia | Asymptotic behavior for coupled abstract evolution equations with one infinite memory[END_REF], for a class of abstract hyperbolic systems of single or coupled equations with one infinite memory. In the case when (1.2)

does not hold, we use also some ideas given in [START_REF] Alabau-Boussouira | Indirect internal stabilization of weakly coupled evolution equations[END_REF][START_REF] Fernández Sare | Stability of Timoshenko systems with past history[END_REF][START_REF] Guesmia | On the stabilization for Timoshenko system with past history and frictional damping controls[END_REF] to get the decay rate of solutions in terms of the regularity of initial data and the general growth of g at infinity.

The paper is organized as follows. In Sect. 2, we set up the hypotheses and present our wellposedness and stability results. In Sect. 3, we prove the well-posedness result. In Sect. 4,we establish some lemmas needed for the proof of the stability results which will be completed in Sect. 5 when (1.2)and(1.11) hold, in Sect. 6 when (1.2)and(1.12) hold, and in Sect. 7

when (1.2) does not hold and (1.11) holds. Finally, some general comments and issues will be given in Sect. 8.

Preliminaries and obtained results

Hypotheses

We consider the following hypotheses:

(H1) The functions a, b :[0, L]→R + and d :[0, L]→R are such that

a ∈ C 1 ([0, L]), b, d ∈ C([0, L]), (2.1) inf [0,L] (a + b)>0, (2.2) a ≡ 0o r i n f [0,L] a > 0. (2.3) (H2) The function g : R + → R + is a non-increasing of class C 1 (R + ) such that g(0)>0 and g 0 a ∞ < k 1 k 2 k 0 k 1 + k 2 , (2.4) 
where g 0 = +∞ 0 g(s) ds and k 0 is the smallest constant depending only on L and satisfying (Poincaré's inequality)

L 0 v 2 dx ≤ k 0 L 0 v 2 x dx, ∀v ∈ H 1 * (]0, L[) (2.5)
with

H 1 * (]0, L[) = v ∈ H 1 (]0, L[), L 0 v dx = 0 . (2.6) 
(H3) There exist a positive constant α and an increasing strictly convex function G :

R + → R + of class C 1 (R + ) ∩ C 2 (]0, +∞[) satisfying G(0) = G ′ (0) = 0 and lim t→+∞ G ′ (t) =+∞ (2.7) such that g ′ (t) ≤-αg(t), ∀t ≥ 0 (2.8) or +∞ 0 g(t) G -1 (-g ′ (t)) dt + sup t∈R + g(t) G -1 (-g ′ (t))
< +∞.

(2.9)

Remark 2.1 1. The hypothesis (2.9) was introduced in [START_REF] Guesmia | Asymptotic stability of abstract dissipative systems with infinite memory[END_REF] and it allows a wider class of relaxation functions than the ones considered in [START_REF] Fernández Sare | Stability of Timoshenko systems with past history[END_REF][START_REF] Messaoudi | Uniform decay in a Timoshenko-type system with past history[END_REF] (see examples given in [START_REF] Guesmia | Asymptotic stability of abstract dissipative systems with infinite memory[END_REF][START_REF] Guesmia | Stabilization of a linear Timoshenko system with infinite history and applications to the Timoshenko-heat systems[END_REF]).

2. As in [START_REF] Guesmia | Some stability results for Timoshenko systems with cooperative frictional and infinite-memory dampings in the displacement[END_REF], using the second equation and boundary conditions in (1.1), we easily verify that

∂ tt L 0 ψ dx + k 1 ρ 2 L 0 ψ dx = 0.
By solving this ordinary differential equation and using the initial data of ψ,wefind

L 0 ψ dx = L 0 ψ 0 dx cos k 1 ρ 2 t + ρ 2 k 1 L 0 ψ 1 dx sin k 1 ρ 2 t .
(2.10)

Let

ψ = ψ - 1 L L 0 ψ 0 dx cos k 1 ρ 2 t - 1 L ρ 2 k 1 L 0 ψ 1 dx sin k 1 ρ 2 t .
(2.11)

Then, one can easily check that

L 0 ψ dx = 0, (2.12) 
and, hence, Poincaré's inequality (2.5) is applicable for

ψ provided that ψ ∈ H 1 (]0, L[).
In addition, (ϕ, ψ) satisfies (1.1) with initial data

ψ0 = ψ 0 - 1 L L 0 ψ 0 dx and ψ1 = ψ 1 - 1 L L 0 ψ 1 dx
instead of ψ 0 and ψ 1 , respectively. In the sequel, we work with ψ instead of ψ, but, for simplicity of notation, we use ψ instead of ψ.

3. Thanks to Poincaré's inequality (2.5) (applied for ψ ∈ H 1 * (]0, L[)), we have

k 1 L 0 (ϕ x + ψ) 2 dx ≥ k 1 (1 -ǫ) L 0 ϕ 2 x dx + k 0 k 1 1 - 1 ǫ L 0 ψ 2 x dx, (2.13)
for any 0 < ǫ<1. Then, according to (2.4), we can choose ǫ>0 such that

k 0 k 1 k 0 k 1 + k 2 < ǫ< 1 k 1 (k 1 -g 0 a ∞ )
and deduce from (2.13)that

k L 0 ϕ 2 x + ψ 2 x dx ≤ L 0 -g 0 a ∞ ϕ 2 x + k 2 ψ 2 x + k 1 (ϕ x + ψ) 2 dx, (2.14)
where

k = min k 1 (1 -ǫ) -g 0 a ∞ , k 2 + k 0 k 1 1 -1 ǫ > 0. Because L 0 ϕ 2 x dx and L 0 ψ 2
x dx define norms, for ϕ and ψ on H 1 0 (]0, L[) and 

H 1 * (]0, L[), respectively, then L 0 -g 0 a ∞ ϕ 2 x + k 2 ψ 2 x + k 1 (ϕ x + ψ) 2 dx defines a norm on H 1 0 (]0, L[) × H 1 * (]0, L[),

Well-posedness

We give here a brief idea about the formulation of (1.1) into an abstract first order system and the related existence, uniqueness and smoothness of solution. Following the ideas of [START_REF] Dafermos | Asymptotic stability in viscoelasticity[END_REF][START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF],

let η(x, t, s) = ϕ(x, t) -ϕ(x, t -s), for (x, t, s) ∈]0, L[×]0, +∞[×]0, +∞[ (2.15) and z(x, t, p) = ϕ t (x, t -τ p), for (x, t, p) ∈]0, L[×]0, +∞[×]0, 1[. (2.16) Then ⎧ ⎪ ⎨ ⎪ ⎩ η t + η s -ϕ t = 0, in ]0, L[×]0, +∞[×]0, +∞[, η(0, t, s) = η(L , t, s) = 0, in ]0, +∞[×]0, +∞[, η(x, t, 0) = 0, in ]0, L[×]0, +∞[, (2.17) 
⎧ ⎪ ⎨ ⎪ ⎩ τ z t + z p = 0, in ]0, L[×]0, +∞[×]0, 1[, z(x, t, 0) = ϕ t (x, t), in ]0, L[×]0, +∞[, z(x, t, 1) = ϕ t (x, t -τ), in ]0, L[×]0, +∞[ (2.18) 
and

η 0 (x, s) := η(x, 0, s) = ϕ 0 (x, 0) -ϕ 0 (x, s), in ]0, L[×]0, +∞[, z 0 (x, p) := z(x, 0, p) = f 0 (x, -τ p), in ]0, L[×]0, 1[. Let U = (ϕ,ψ,ϕ t ,ψ t , z,η) T , (2.19 
)

U 0 = (ϕ 0 (•, 0), ψ 0 ,ϕ 1 ,ψ 1 , z 0 ,η 0 ) T (2.20)
and

H = H 1 0 (]0, L[) × H 1 * (]0, L[) × L 2 (]0, L[) × L 2 * (]0, L[) × L ξ × L g , (2.21) 
where

L 2 * (]0, L[) = v ∈ L 2 (]0, L[), L 0 v dx = 0 , (2.22 
) 

L g = v : R + → H 1 0 (]0, L[), L 0 a +∞ 0 g(s)v 2 x (s) ds dx < +∞ , (2.23) L ξ = v :]0, 1[→ L 2 (]0, L[), L 0 ξ 1 0 v 2 ( p) dpdx < +∞ (2.
∃ k0 > 0 : L 0 v 2 dx ≤ k0 L 0 v 2 x dx, ∀v ∈ H 1 0 (]0, L[) (2.26)
and the fact that a > 0ifa = 0 (according to (2.3)), and ξ>0ifd = 0 (by vertue of (2.25)).

The space H is equipped with the inner product defined by

V, W H = v 6 ,w 6 L g + v 5 ,w 5 L ξ + k 1 L 0 (∂ x v 1 + v 2 )(∂ x w 1 + w 2 ) dx + L 0 (-g 0 a∂ x v 1 ∂ x w 1 + k 2 ∂ x v 2 ∂ x w 2 + ρ 1 v 3 w 3 + ρ 2 v 4 w 4 ) dx, for any V = (v 1 ,...,v 6 ) T ∈ H and W = (w 1 ,...,w 6 ) T ∈ H. Because L g and L ξ are
Hilbert spaces, then also H is a Hilbert space according to (2.14). Now, we define the linear operators B and A by

B(v 1 ,...,v 6 ) T =- ξ 0 ρ 1 (0, 0,v 3 , 0, 0, 0) T , (2.27) 
where

ξ 0 = 0i f (1.11) holds, d ∞ if (1.12) holds (2.28)
and

A ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ v 1 v 2 v 3 v 4 v 5 v 6 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ -v 3 -v 4 -k1 ρ1 ∂ x (∂ x v 1 + v 2 ) + g0 ρ1 ∂ x (a∂ x v 1 ) + b+ξ0 ρ1 v 3 + d ρ1 v 5 (1) -1 ρ1 +∞ 0 g(s)∂ x (a∂ x v 6 (s)) ds -k2 ρ2 ∂ xx v 2 + k1 ρ2 (∂ x v 1 + v 2 ) 1 τ ∂ p v 5 -v 3 + ∂ s v 6 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ . The system (1.1) is equivalent to U ′ (t) + (A + B)U (t) = 0o n ]0, +∞[, U (0) = U 0 .
(2.29)

The domain of B is given by D(B) = H. However, the domain of A is defined by

D(A) = V = (v 1 ,...,v 6 ) T ∈ H, AV ∈ H,∂ x v 2 (0) = ∂ x v 2 (L) = 0,v 5 (0) = v 3 ,v 6 (0) = 0
and it can be characterized by 

D(A) = (v 1 ,...,v 6 ) T ∈ H 1 0 (]0, L[) × H 2 (]0, L[) ∩ H 1 * (]0, L[) × H 1 0 (]0, L[) ×H 1 * (]0, L[) × L ξ × L g , k 1 ∂ xx v 1 -g 0 ∂ x (a∂ x v 1 ) + +∞ 0 g(s)∂ x (a∂ x v 6 (s)) ds ∈ L 2 (]0, L[), ∂ p v 5 ∈ L ξ ,∂ s v 6 ∈ L g ,∂ x v 2 (0) = ∂ x v 2 (L) = 0,v 5 (0) = v 3 ,v 6 (0) = 0 .
D(A n ) = V ∈ D(A n-1 ), AV ∈ D(A n-1 ) , for n = 2, 3,..., endowed with the graph norm V D(A n ) = n k=0 A k V H .
Remark 2.2 If a ≡ 0 (resp. d ≡ 0), the variable η (resp. z) is not considered, and therefore, the corresponding components in the definition of U , U 0 , H, B, A and D(A) will not appear.

Our well-posedness result reads as follows:

Theorem 2.3 Assume that (H1)-(H3) are satisfied. For any n ∈ N and U 0 ∈ D(A n ),t h e system (2.29) has a unique solution

U ∈∩ n k=0 C n-k (R + ; D(A k )).
(2.30)

Stability

The energy functional associated with (1.1)isdefinedby

E(t) := 1 2 U (t) 2 H = 1 2 (g • ϕ x )(t) + 1 2 L 0 ξ 1 0 ϕ 2 t (t -τ p) dpdx + 1 2 L 0 ρ 1 ϕ 2 t + ρ 2 ψ 2 t + k 1 (ϕ x + ψ) 2 + k 2 ψ 2 x -g 0 aϕ 2 x dx, (2.31) 
where 

(φ • v)(t) = L 0 a +∞ 0 φ(s)(v(t) -v(t -s))
sup t∈R + +∞ t g(s) G -1 (-g ′ (s)) L 0 ϕ 2 0x (s -t) dx ds < +∞. (2.

33)

Then there exist positive constants ǫ 0 ,α 1 and α 2 , for which E satisfies

E(t) ≤ α 1 G-1 (α 2 t), ∀t ∈ R + , (2.34) 
where G(t) = 

E(t) ≤ α 1 e -α 2 t , ∀t ∈ R + , (2.37) 
which is the best decay rate given by (2.34). For specific examples of decay rates given by (2.34), see [START_REF] Guesmia | On the stabilization for Timoshenko system with past history and frictional damping controls[END_REF].

Our second stability result concerns the case when (1.2)and(1.12) hold.

Theorem 2.6 Assume that (1.2), (1.12), (H1) and (H2) are satisfied and

inf [0,L]
a > 0 and (2.8) holds.

(2.38)

Then there exists a positive constant d 0 independent of d such that, if 

d 2 ∞ + d ∞ < d 0 , (2.39 
∈ D(A n ) such that sup t∈R + max k=0,...,n +∞ t g(s) G -1 (-g ′ (s)) L 0 ∂ k ϕ 0x (s -t) ∂s k 2 dx ds < +∞. (2.40) 
Then there exist positive constant ǫ 0 and c n such that E satisfies

E(t) ≤ G n c n t , ∀t > 0, (2.41 
)

where G m (s) = G 1 (sG m-1 (s)),f o rm = 2,...,n and s ∈ R + ,G 1 = G -1 0 and G 0 is defined in (2.

35).

Remark 2.8 When (2.8) holds, G n (s) = s n and (2.41) becomes

E(t) ≤ c n t n , ∀t > 0, (2.42) 
which is the best decay rate given by (2.41). For specific examples of decay rates given by (2.41), see [START_REF] Guesmia | Asymptotic behavior for coupled abstract evolution equations with one infinite memory[END_REF].

Well-posedness

The proof of Theorem 2.3 is based on the semigroup appraoch by proving that A+ B generates a C 0 -semigroup in H.W ec o n s i d e rt h ec a s ei n f [0,L] a > 0a n dd = 0; the proof in cases a ≡ 0 and/or d ≡ 0 is similar and simpler.

First, we prove that -A is dissipative. Integrating by parts for the first two terms of the above equality, using Young's inequality

Let V = (v 1 ,...,v 6 ) T ∈ D(A). Exploiting the definition of D(A) andintegratingbyparts,wefind -AV, V H =- 1 2 L 0 a +∞ 0 g(s)∂ s (∂ x v 6 (s)) 2 ds dx - 1 2τ L 0 ξ 1 0 ∂ p (v 5 ( p)) 2 dpdx - L 0 (b + ξ 0 )v 2 3 dx - L 0 dv 3 v 5 (1) dx.
λ 1 λ 2 ≤ λ 2 λ 2 1 + 1 2λ λ 2 2 , ∀λ 1 ,λ 2 ∈ R, ∀λ>0 (3.1) 
(with

λ 1 =| v 3 |, λ 2 =| v 5 (1)
| and λ = 1) and noting that v 5 (0) = v 3 and v 6 (0) = 0 (from the definition of D(A)), we get

-AV, V H ≤ 1 2 L 0 a +∞ 0 g ′ (s) (∂ x v 6 (s)) 2 ds dx + L 0 -b -ξ 0 + ξ 2τ + |d| 2 v 2 3 dx + L 0 |d| 2 - ξ 2τ v 2 5 (1) dx.(3.2)
The definitions (2.25)and(2.28)ofξ and ξ 0 imply that, if (1.11) holds and d = 0,

-b -ξ 0 + ξ 2τ + |d| 2 = |d| 2 - ξ 2τ = |d|-b 2 ≤ 0,
and, if (1.12) holds or d ≡ 0,

-b -ξ 0 + ξ 2τ + |d| 2 =-b + |d|-d ∞ 2 ≤ 0a n d |d| 2 - ξ 2τ = |d|-d ∞ 2 ≤ 0.
Consequently, the last two integrals in (3.2) are non-positive. Therefore

-AV, V H ≤ 1 2 L 0 a +∞ 0 g ′ (s) (∂ x v 6 (s)) 2 ds dx ≤ 0, (3.3) 
since g is non-increasing. Then -A is dissipative.

Second, we whow that Id+ A is surjective. For this purpose, let

F = ( f 1 ,..., f 6 ) T ∈ H, we seek V = (v 1 ,...,v 6 ) T ∈ D(A) satisfying (Id + A)V = F. (3.4)
The first two equations in (3.4) are equivalent to

v 3 = v 1 -f 1 , v 4 = v 2 -f 2 . (3.5) 
Using the first equation in (3.5), the last two equations in (3.4) are equivalent to

v 5 + 1 τ ∂ p v 5 = f 5 , v 6 + ∂ s v 6 = v 1 -f 1 + f 6 , (3.6) 
then, by solving the ordinary differential equations (3.6) and noting that v 5 (0 We see that, if

) = v 3 = v 1 -f 1 and v 6 (0) = 0 (see definition of D(A)), we get v 5 = v 1 -f 1 + τ p 0 f 5 ( 
(v 1 ,v 2 ) ∈ H 1 0 (]0, L[) × H 2 (]0, L[) ∩ H 1 * (]0, L[) , (3.9) 
then, from (3.5)to(3.8), we have

(v 3 ,v 4 ) ∈ H 1 0 (]0, L[) × H 1 * (]0, L[), (v 5 ,v 6 ) ∈ L ξ × L g , (∂ p v 5 ,∂ s v 6 ) ∈ L ξ × L g , v 5 (0) = v 3 and v 6 (0) = 0.
Next, plugging (3.5)and(3.7) into the third and fourth equations in (3.4), we get

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 1 ρ 1 ρ 1 + b + ξ 0 + de -τ v 1 -k 1 ρ 1 (∂ x v 1 + v 2 ) x + g 0 ρ 1 (a∂ x v 1 ) x -1 ρ 1 +∞ 0 g(s) (a∂ x v 6 (s)) x ds = f 7 , v 2 -k 2 ρ 2 ∂ xx v 2 + k 1 ρ 2 (∂ x v 1 + v 2 ) = f 2 + f 4 , (3.10) 
where

f 7 = 1 ρ 1 (ρ 1 + b + ξ 0 + de -τ ) f 1 + f 3 - τ de -τ ρ 1 1 0 e τ y f 5 (y) dy.
So, it is sufficient to prove that (3.10), with v 6 given in (3.8), has a solution (v 1 ,v 2 ) satisfying (3.9),

∂ x v 2 (0) = ∂ x v 2 (L) = 0 (3.11)
and

k 1 ∂ xx v 1 -g 0 ∂ x (a∂ x v 1 ) + +∞ 0 g(s)∂ x (a∂ x v 6 (s)) ds ∈ L 2 (]0, L[), (3.12) 
and then, we replace v (3.13) where Since, it is easy to prove that L 1 is a bilinear, continuous and coercive form and L 2 is a linear and continuous form on, respectively,

L 1 ((v 1 ,v 2 ), (w 1 ,w 2 )) = L 2 (w 1 ,w 2 ), ∀(w 1 ,w 2 ) ∈ H 1 0 (]0, L[) × H 1 * (]0, L[),
L 1 ((v 1 ,v 2 ), (w 1 ,w 2 )) = L 0 (k 1 (∂ x v 1 + v 2 )(∂ x w 1 + w 2 ) + k 2 ∂ x v 2 ∂ x w 2 ) dx, + L 0 -ag 1 ∂ x v 1 ∂ x w 1 + ρ 1 + b + ξ 0 + de -τ v 1 w 1 + ρ 2 v 2 w 2 dx, L 2 ((w 1 ,w 2 )) = L 0 (ρ 1 f 7 w 1 + ∂ x f 8 ∂ x w 1 + ρ 2 ( f 2 + f 4 )w 2 ) dx,
H 1 0 (]0, L[) × H 1 * (]0, L[) 2 and H 1 0 (]0, L[) × H 1 * (]0, L[)
(noting that g 1 < g 0 and using (2.14)), so, applying the Lax-Milgram theorem, we deduce that (3.13) admits a unique solution Applying the classical elliptic regularity, it follows that (v 1 ,v 2 ) satisfies (3.9)-(3.12). Therefore, the operator Id + A is surjective.

(v 1 ,v 2 ) ∈ H 1 0 (]0, L[) × H 1 * (]0, L[).
Third, we see that the linear operator B is Lipschitz continuous.

Because -A is dissipative and Id+ A is surjective, then A is a maximal monotone operator.

Therefore, using Lummer-Phillips theorem (see [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF]), we deduce that A is an infinitesimal generator of a linear C 0 -semigroup on H. Finally, also A + B is an infinitesimal generator of a linear C 0 -semigroup on H (see [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF]: Ch. 3-Theorem 1.1). Consequently, Theorem 2.3 holds from the Hille-Yosida theorem (see [START_REF] Komornik | Exact Controllability and Stabilization. The Multiplier Method[END_REF][START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF]).

Some needed lemmas

We will use c (sometimes c y , c y,y 1 , ..., which depends on some parameters y, y 1 , ...), throughout the rest of this paper, to denote a generic positive constant which depends continuously on the initial data U 0 and can be different from step to step, but it does not depend neither on b nor on d.

To get our stability results, we prove first some needed lemmas, for all U 0 ∈ D(A);soall the calculations are justified. By a simple density arguments (D(A) is dense in H), (2.34)and

(2.37) remain valid for any U 0 ∈ H. The first next seven lemmas, used in [START_REF] Guesmia | Some stability results for Timoshenko systems with cooperative frictional and infinite-memory dampings in the displacement[END_REF], are adapted in the present paper to (1.1) by considering the needed modifications related to the presence of delay.

We start by giving the following estimates for the derivative of E: 

E ′ (t) ≤ 1 2 g ′ • ϕ x - 1 2 inf [0,L] (b -|d|) L 0 ϕ 2 t dx, (4.1)
and, if (1.12) holds or d ≡ 0,

E ′ (t) ≤ 1 2 g ′ • ϕ x + L 0 (-b + d ∞ )ϕ 2 t dx. (4.2)
Proof By exploiting (2.29), (3.2) and the definition (2.27)ofB,weobtain

E ′ (t) ≤ 1 2 g ′ • ϕ x + L 0 -b + ξ 2τ + |d| 2 ϕ 2 t dx + L 0 |d| 2 - ξ 2τ ϕ 2 t (t -τ)dx. (4.3)
So, from (2.25), we see that, if (1.11) holds and d = 0, then

-b + ξ 2τ + |d| 2 = |d| 2 - ξ 2τ =- 1 2 (b -|d|) ≤- 1 2 inf [0,L] (b -|d|) ≤ 0.
However, if (1.12) holds or d ≡ 0, we have

-b + ξ 2τ + |d| 2 =-b + d ∞ +|d| 2 ≤-b + d ∞ and |d| 2 - ξ 2τ = |d|-d ∞ 2 ≤ 0.
Hence, (4. Well-posedness and energy decay for Timoshenko systems...

Using the definition of E,(4.1)and(4.

2), we see that, for some non-negative constant α 0 , E ′ ≤ α 0 E. Then, by integrating,

E(t) ≤ e α 0 (t-t 0 ) E(t 0 ), ∀t ≥ t 0 ≥ 0.
So, if E(t 0 ) = 0, for some t 0 ∈ R + ,thenE(t) = 0, for all t ≥ t 0 , and therefore, (2.34),

(2.37)a n d( 2.41) hold. Consequently, without loss of generality, we can assume that E(t)>0, for all t ∈ R + .

Lemma 4. [START_REF] Alabau-Boussouira | Indirect internal stabilization of weakly coupled evolution equations[END_REF] The following inequalities hold: satisfies, for any δ>0,

∃ d 1 > 0 : L 0 a +∞ 0 g(s)(ϕ(t) -ϕ(t -s)) ds dx 2 ≤ d 1 g • ϕ x , (4.4) 
∃ d 2 > 0 : L 0 a +∞ 0 g ′ (s)(ϕ(t) -ϕ(t -s)) ds dx 2 ≤-d 2 g ′ • ϕ x , (4.5) 
∃ d 3 > 0 : L 0 a ′ +∞ 0 g(s)(ϕ(t) -ϕ(t -s))dsdx 2 ≤ d 3 g • ϕ x . (4.6) +∞ 0 g(s)(ϕ x (t) -ϕ x (t -s)) ds 2 ≤ g 0 +∞ 0 g(s)(ϕ x (t) -ϕ x (t -s)) 2 ds, (4.7) +∞ 0 g ′ (s)(ϕ x (t) -ϕ x (t -s))ds 2 ≤-g(0) +∞ 0 g ′ (s)(ϕ x (t) -ϕ x (t -s)) 2 ds.
L 0 | f 1 f 2 | dx 2 ≤ L 0 f 2 1 dx L 0 f 2 2 dx , ∀ f 1 , f 2 ∈ L 2 (]0, L[), ( 4 
I ′ 1 (t) ≤-ρ 1 g 0 L 0 aϕ 2 t dx + δ L 0 ϕ 2 t + ϕ 2 x + ψ 2 x dx + δ L 0 b 2 ϕ 2 t + d 2 ϕ 2 t (t -τ) dx + c 1 + 1 δ g • ϕ x - c δ g ′ • ϕ x . (4.11)
Proof First, note that Then, by differentiating I 1 , and using the first equation and the boundary conditions in (1.1), we find

∂ t +∞ 0 g(s)(ϕ(t) -ϕ(t -s)) ds = ∂ t t -∞ g(t -s)(ϕ(t) -ϕ(s)) ds = t -∞ g(t -s)ϕ t (t) ds + t -∞ g ′ (t -s)(ϕ(t) -ϕ(s)) ds = g 0 ϕ t + +∞ 0 g ′ (s)(ϕ(t) -ϕ(t -s)) ds. ( 4 
I ′ 1 (t) =-ρ 1 g 0 L 0 aϕ 2 t dx -ρ 1 L 0 aϕ t +∞ 0 g ′ (s)(ϕ(t) -ϕ(t -s)) ds dx + k 1 L 0 a(ϕ x + ψ) +∞ 0 g(s)(ϕ x (t) -ϕ x (t -s)) ds dx + L 0 a(bϕ t + dϕ t (t -τ)) +∞ 0 g(s)(ϕ(t) -ϕ(t -s)) ds dx + L 0 a 2 +∞ 0 g(s)(ϕ x (t) -ϕ x (t -s)) ds 2 dx -g 0 L 0 a 2 ϕ x +∞ 0 g(s)(ϕ x (t) -ϕ x (t -s)) ds dx + L 0 aa ′ +∞ 0 g(s)(ϕ(t) -ϕ(t -s)) ds × +∞ 0 g(s)(ϕ x (t) -ϕ x (t -s)) ds dx + k 1 L 0 a ′ (ϕ x + ψ) +∞ 0 g(s)(ϕ(t) -ϕ(t -s)) ds dx -g 0 L 0 aa ′ ϕ x +∞ 0 g(s)(ϕ(t) -ϕ(t -s)) ds dx.
Therefore, applying Young's and Hölder's inequalities (3.1)and(4.9), for the last eight terms of the above equality, and using (4. satisfies, for any δ>0,

I ′ 2 (t) ≤ L 0 ρ 1 ϕ 2 t + ρ 2 ψ 2 t dx -k 1 L 0 (ϕ x + ψ) 2 dx -k 2 L 0 ψ 2 x dx + g 0 L 0 aϕ 2 x dx + δ L 0 ϕ 2 x dx + c δ L 0 b 2 ϕ 2 t + d 2 ϕ 2 t (t -τ) dx + c δ g • ϕ x . (4.14)
Proof By differentiating I 2 , and using the first two equations and boundary conditions in (1.1), we have 

I ′ 2 (t) = L 0 ρ 1 ϕ 2 t + ρ 2 ψ 2 t dx -k 1 L 0 (ϕ x + ψ) 2 dx -k 2 L 0 ψ 2 x dx + g 0 L 0 aϕ 2 x dx - L 0 ϕ(bϕ t + dϕ t (t -τ))dx - L 0 aϕ x +∞ 0 g(s)(ϕ x (t) -ϕ x (t -s)) ds dx.

Lemma 4.6

The functional

I 3 (t) := -ρ 2 L 0 ψ t (ϕ x + ψ)dx - k 2 ρ 1 k 1 L 0 ψ x ϕ t dx + ρ 2 k 1 L 0 aψ t +∞ 0 g(s)ϕ x (t -s) ds dx (4.15)
satisfies, for any δ, δ 1 > 0,

I ′ 3 (t) ≤ k 1 L 0 (ϕ x + ψ) 2 dx -ρ 2 L 0 ψ 2 t dx + g 0 δ 1 2 -1 L 0 aϕ 2 x dx + g 0 k 0 a ∞ 2δ 1 L 0 ψ 2 x dx + c δ L 0 b 2 ϕ 2 t + d 2 ϕ 2 t (t -τ) dx + δ L 0 ψ 2 t + ϕ 2 x + ψ 2 x dx + c δ (g • ϕ x -g ′ • ϕ x ) + k 2 ρ 1 k 1 -ρ 2 L 0 ϕ xt ψ t dx, (4.16)
where k 0 is defined in (2.5).

Proof Similarly to (4.12) and using that lim s→+∞ g(s) = 0, we see that

∂ t +∞ 0 g(s)ϕ x (t -s) ds = ∂ t t -∞ g(t -s)ϕ x (s) ds = g(0)ϕ x + t -∞ g ′ (t -s)ϕ x (s) ds = g(0)ϕ x + +∞ 0 g ′ (s)(ϕ x (t -s) -ϕ x (t) + ϕ x (t)) ds. =- +∞ 0 g ′ (s)(ϕ x (t) -ϕ x (t -s)) ds.
Therefore, exploiting the first two equations and boundary conditions in (1.1), we have

I ′ 3 (t) = k 1 L 0 (ϕ x + ψ) 2 dx -ρ 2 L 0 ψ 2 t dx + k 2 ρ 1 k 1 -ρ 2 L 0 ϕ xt ψ t dx -g 0 L 0 aϕ 2 x dx -g 0 L 0 aϕ x ψ dx + L 0 a(ϕ x + ψ) +∞ 0 g(s)(ϕ x (t) -ϕ x (t -s)) ds dx - ρ 2 k 1 L 0 aψ t +∞ 0 g ′ (s)(ϕ x (t) -ϕ x (t -s)) ds dx + k 2 k 1 L 0 ψ x (bϕ t + dϕ t (t -τ))dx.
By applying Young's inequality (3.1), for the last four terms of the above equality, Poincaré's inequality (2.5), for ψ, and using (4.7), (4.8) and the fact that a is bounded, (4. satisfies, for any δ, ǫ, ǫ 1 > 0,

I ′ 4 (t) ≤ ρ 1 + c 0 ǫ L 0 ϕ 2 t dx + c 0 ǫ L 0 ψ 2 t dx + g 0 a ∞ 1 + ǫ 1 2 -k 1 L 0 (ϕ x + ψ) 2 dx + g 0 k 0 a ∞ 2ǫ 1 L 0 ψ 2 x dx + δ L 0 ϕ 2 x + ψ 2 x dx + c δ L 0 b 2 ϕ 2 t + d 2 ϕ 2 t (t -τ) dx + c δ g • ϕ x , (4.21)
where k 0 is defined in (2.5), c 0 = ρ 1 2 k0 and k0 is defined in (2.26).

Proof Using the first two equations and boundary conditions in (1.1), and exploiting the fact that w(0, t) = w(L , t) = 0andw x = ψ,wefind We use a functional introduced in [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF] (in case ξ ≡ 1) to get an estimation on the delay term.

I ′ 4 (t) = ρ 1 L 0 ϕ 2 t dx -k 1 L 0 (ϕ x + ψ) 2 dx + g 0 L 0 a(ϕ x + ψ -ψ)(ϕ x + ψ)dx + ρ 1 L 0 w t ϕ t dx - L 0 (w + ϕ)(bϕ t + dϕ t (t -τ))dx - L 0 a(ϕ x + ψ) +∞ 0 g(s)(ϕ x (t) -ϕ x (t - s 
Lemma 4.9 The functional

I 5 (t) = L 0 ξ 1 0 e -2τ p ϕ 2 t (t -τ p) dpdx (4.22) satisfies I ′ 5 (t) ≤-2e -2τ L 0 ξ 1 0 ϕ 2 t (t -τ p) dpdx + 1 τ L 0 ξϕ 2 t dx - e -2τ τ L 0 ξϕ 2 t (t -τ)dx. (4.23) 
Proof Using (2.16) and the first equation in (2.18), the derivative of I 5 entails

I ′ 5 (t) = 2 L 0 ξ 1 0 e -2τ p ϕ tt (t -τ p)ϕ t (x, t -τ p) dpdx =- 2 τ L 0 ξ 1 0 e -2τ p ϕ tp (t -τ p)ϕ t (t -τ p) dpdx =- 1 τ L 0 ξ 1 0 e -2τ p ∂ p ϕ 2 t (t -τ p) dpdx.
Then, by using an integrating by parts, the above formula can be rewritten as 

I ′ 5 (t) =-2 L 0 ξ 1 0 e -2τ p ϕ 2 t (t -τ p) dpdx + 1 τ L 0 ξϕ 2 t dx - e -2τ τ L 0 ξϕ 2 t (t -τ)dx,
I 6 := NE + N 1 I 1 + N 2 I 2 + I 3 + N 3 I 4 + N 4 I 5 . (4.24) 
Then, by combining (4.11), (4.14), (4.16), (4.21)and(4.23), we obtain

I ′ 6 (t) ≤- L 0 l 0 ϕ 2 t + l 1 ψ 2 t + l 2 (ϕ x + ψ) 2 + l 3 ψ 2 x dx + l 4 g 0 L 0 aϕ 2 x dx + NE ′ (t) -2e -2τ N 4 L 0 ξ 1 0 ϕ 2 t (t -τ p) dpdx + δ(N 1 + c N2,N3 ) L 0 ϕ 2 t + ψ 2 t + ϕ 2 x + ψ 2 x dx - L 0 e -2τ N 4 τ ξ -δ N 1 + c N2,N3 δ d 2 ϕ 2 t (t -τ)dx + L 0 N 4 τ ξ + δ N 1 + c N2,N3 δ b 2 ϕ 2 t dx + c N1 + c N1,N2,N3 δ g • ϕ x - c N1 δ g ′ • ϕ x + ρ 1 k 2 k 1 -ρ 2 L 0 ϕ xt ψ t dx, ( 4.25) 
where Now, as in [START_REF] Guesmia | Some stability results for Timoshenko systems with cooperative frictional and infinite-memory dampings in the displacement[END_REF], we choose carefully the constants N , N i ,δ,δ 1 ,ǫand ǫ 1 to get desired signs of l i .

l 0 = N 1 ρ 1 g 0 a 0 -(N 2 + N 3 )ρ 1 - c 0 N 3 ǫ , l 1 = ρ 2 (1 -N 2 ) -c 0 ǫ N 3 , l 2 = k 1 (N 2 + N 3 -1) -g 0 a ∞ 1 + ǫ 1 2 N 3 , l 3 = k 2 N 2 - g 0 k 0 a ∞ 2 N 3 ǫ 1 + 1 δ 1 and l 4 = N 2 + δ 1 2 -1.
Case 1 a ≡ 0: the second integral in (4.25) drops, g • ϕ x = g ′ • ϕ x = 0 (from the definition (2.32)) and the constants l 0 , l 1 , l 2 and l 3 do not depent neither on δ 1 nor on ǫ 1 . On the other hand,

l 0 =-(N 2 + N 3 )ρ 1 - c 0 N 3 ǫ ≥ N 1 b 0 -(N 2 + N 3 )ρ 1 - c 0 N 3 ǫ -N 1 b := l0 -N 1 b, so l0 := N 1 b 0 -(N 2 + N 3 )ρ 1 -c 0 N 3 ǫ .
Therefore, we choose

N 3 = 1, 0 < N 2 < 1, 0 <ǫ< ρ 2 c 0 (1 -N 2 ) and N 1 > 1 b 0 (N 2 + N 3 ) + c 0 N 3 ǫb 0 .
Notice that N 3 , N 2 and ǫ do not depend neither on b nor on d. Moreover, because b 0 > 0 thanks to (2.2)anda ≡ 0, N 1 exists and can be taken in the form N 1 = c b 0 ,andthen l0 as well as l 1 , l 2 and l 3 do not depend neither on b nor on d. According to these choices, we get

L := min l0 ρ 1 , l 1 ρ 2 , l 2 k 1 , l 3 k 2 > 0,
and then, using (2.14)and(4.25),

I ′ 6 (t) ≤-L -cδ 1 + 1 b 0 L 0 ρ 1 ϕ 2 t + ρ 2 ψ 2 t + k 1 (ϕ x + ψ) 2 + k 2 ψ 2 x dx -2e -2τ N 4 L 0 ξ 1 0 ϕ 2 t (t -τ p) dpdx - L 0 e -2τ N 4 τ ξ -c δ b 0 + 1 δ d 2 ϕ 2 t (t -τ)dx + NE ′ (t) + L 0 N 4 τ ξ + c b 2 δ b 0 + b 2 δ + b b 0 ϕ 2 t dx + ρ 1 k 2 k 1 -ρ 2 L 0 ϕ xt ψ t dx. ( 4.26) 
Next, choosing δ>0 such that

L -cδ 1 + 1 b 0 > 0.
Notice that L and c do not depend on δ, b and d;soδ exists and can be taken in the form 

δ = cb 0 b 0 + 1 , (4.27 
N 4 = c b ∞ (b 0 + 1) b 0 . (4.29) 
Thus, using (2.31), we get from (4.26)

I ′ 6 (t) ≤-cE 0 (t) - c b ∞ (b 0 + 1) b 0 E 1 (t) + NE ′ (t) + c ( b ∞ (b 0 + 1) + 1) b 0 L 0 bϕ 2 t dx + ρ 1 k 2 k 1 -ρ 2 L 0 ϕ xt ψ t dx, ( 4.30) 
where

E 0 (t) = E(t) -E 1 (t) and E 1 (t) = 1 2 L 0 ξ 1 0 ϕ 2 t (t -τ p) dpdx. (4.31)
Case 2. a 0 > 0: we choose

ǫ 1 = k 1 -g 0 a ∞ g 0 a ∞ ,δ 1 = k 0 g 0 a ∞ k 2 , k 1 δ 1 2k 1 -g 0 a ∞ (2 + ǫ 1 ) < N 3 <ǫ 1 k 2 (2 -δ 1 ) g 0 k 0 a ∞ - 1 δ 1 , max 1 -N 3 1 - g 0 a ∞ (2 + ǫ 1 ) 2k 1 , g 0 k 0 a ∞ 2k 2 N 3 ǫ 1 + 1 δ 1 < N 2 < 1 - δ 1 4 , 0 <ǫ<min 2(1 -N 2 ) - δ 1 2 ρ 2 c 0 N 3 , ρ 2 (1 -N 2 ) c 0 N 3 and N 1 > max ⎧ ⎨ ⎩ (N 2 + N 3 )ρ 1 + c 0 N 3 ǫ ρ 1 g 0 a 0 , 2N 2 + N 3 + δ 1 2 -1 ρ 1 + c 0 N 3 ǫ ρ 1 g 0 a 0 ⎫ ⎬ ⎭ .
Notice that ǫ 1 and δ 1 exist and are positive thanks to (2.4) and the property g 0 > 0 (because g(0)>0; see (H2)), N 2 exists according to the choice of N 3 , ǫ exists from the choice of N 2 ,andN 1 exists because ρ 1 g 0 a 0 > 0. On the other hand, to prove the existence of N 3 ,we repeat the calculations given in [START_REF] Guesmia | Some stability results for Timoshenko systems with cooperative frictional and infinite-memory dampings in the displacement[END_REF]. Using the definitions of ǫ 1 and δ 1 , we see that N 3 exists if and only if

k 2 0 k 1 (g 0 a ∞ ) 3 < k 2 (k 2 -k 0 g 0 a ∞ )(k 1 -g 0 a ∞ ) 2 .
Let (2.4)) and

y 0 = k 1 k 2 k 0 k 1 +k 2 , y = g 0 a ∞ ∈]0, y 0 [ (see
f (y) = k 2 0 k 1 y 3 -k 2 (k 2 -k 0 y)(k 1 -y) 2 .
We have 

f ′ (y) = 3 k 2 0 k 1 + k 0 k 2 y 2 -2 2k 0 k 1 k 2 + k 2 2 y + k 0 k 2 1 k 2 +
f ′′ (y) = 6 k 2 0 k 1 + k 0 k 2 y -2 2k 0 k 1 k 2 + k 2 2 .
Let

y 1 = 2k 0 k 1 k 2 +k 2 2 3(k 2 0 k 1 +k 0 k 2 )
. We notice that f ′ is decreasing on ]0, y 1 [, it is increasing on ]y 1 , +∞[ and

f ′ (y 0 ) = k 2 0 k 3 1 k 2 + 2k 0 k 2 1 k 2 2 k 0 k 1 + k 2 > 0, Moreover, y 1 ≤ y 0 if and only if k 2 ≤ k 0 k 1 , and, if k 2 ≤ k 0 k 1 , f ′ (y 1 ) = 5k 2 0 k 2 1 k 2 2 -k 4 2 + 2k 0 k 1 k 3 2 + 3k 3 0 k 3 1 k 2 3(k 2 0 k 1 + k 0 k 2 ) ≥ 9k 4 2 3(k 2 0 k 1 + k 0 k 2 ) > 0.
Therefore, f ′ is positive on ]0, y 0 [,a n dt h e n f (y)< f (y 0 ),f o ra n yy ∈]0, y 0 [.B u t f (y 0 ) = 0, hence f is negative on ]0, y 0 [. This guarantees the existence of N 3 .

By vertue of these choices, we notice that

L := min l 0 ρ 1 , l 1 ρ 2 , l 2 k 1 , l 3 k 2 > 0, l 4 ≤ L ,
and L does not depend on δ, b and d. Then, using (2.14)and(4.25), we find

I ′ 6 (t) ≤-(L -cδ) L 0 ρ 1 ϕ 2 t + ρ 2 ψ 2 t + k 1 (ϕ x + ψ) 2 + k 2 ψ 2 x -ag 0 ϕ 2 x dx + NE ′ (t) -2e -2τ N 4 L 0 ξ 1 0 ϕ 2 t (t -τ p) dpdx - L 0 e -2τ N 4 τ ξ -c δ + 1 δ d 2 ϕ 2 t (t -τ)dx + L 0 N 4 τ ξ + c δ + 1 δ b 2 ϕ 2 t dx + c 1 + 1 δ g • ϕ x - c δ g ′ • ϕ x + ρ 1 k 2 k 1 -ρ 2 L 0 ϕ xt ψ t dx. (4.32) Therefore, choosing δ>0andN 4 ≥ 0 such that L -cδ>0and e -2τ N 4 τ ξ -c δ + 1 δ d 2 ≥ 0.
In vertue of (2.25), N 4 can be chosen in the form N 4 = c d ∞ . Then, using (2.31), (4.30) and (4.32), we find, in both cases a ≡ 0anda 0 > 0,

I ′ 6 (t) ≤-cE 0 (t) -cE 1 (t) + NE ′ (t) + c L 0 ξϕ 2 t dx + ρ 1 k 2 k 1 -ρ 2 L 0 ϕ xt ψ t dx + c(g • ϕ x -g ′ • ϕ x ), (4.33) 
where, thanks to the definition of ξ in case (1.11), Case 1 (2.8) holds:then

c = c b ∞ (b 0 +1) b 0 if a ≡ 0, c d ∞ if a 0 > 0 (4.34) and ξ = ⎧ ⎪ ⎨ ⎪ ⎩ b ∞ (b 0 +1)+1 b 0 b if a ≡ 0, b ∞ b if a 0 > 0and(1.11) holds, d 2 ∞ + b ∞ b if a 0 > 0and(1.
g • ϕ x ≤- 1 α g ′ • ϕ x . (4.36)
Case 2 (2.9) holds: this case does not concern Theorem 2.6 because of (2.38). For Theorem 2.4 and Theorem 2.7, we apply here an inequality given in [START_REF] Guesmia | Asymptotic behavior for coupled abstract evolution equations with one infinite memory[END_REF](andin [START_REF] Guesmia | Asymptotic stability of abstract dissipative systems with infinite memory[END_REF] in a less general form).

Lemma 4.10 For any ǫ 0 > 0,wehave 

G ′ (ǫ 0 E(t))g • ϕ x ≤-cg ′ • ϕ x + cǫ 0 E(t)G ′ (ǫ 0 E(t)). ( 4 
G 0 (E(t)) E(t) I ′ 6 (t) ≤- G 0 (E(t)) E(t) ((c -ǫ 0 )E 0 (t) + ( c -ǫ 0 )E 1 (t)) + N G 0 (E(t)) E(t) E ′ (t) -c 1 + G ′ (ǫ 0 E(t)) g ′ • ϕ x + c G 0 (E(t)) E(t) L 0 ξϕ 2 t dx + ρ 1 k 2 k 1 -ρ 2 G 0 (E(t)) E(t) L 0 ϕ xt ψ t dx, (4.38) 
where G 0 is defined in ( vanishes and, for some positive constant β 1 ,

G 0 (E(t)) E(t) I ′ 6 (t) + cE ′ (t) ≤-β 1 G 0 (E(t)). (5.3) Let τ 0 > 0and F = τ 0 G 0 (E) E I 6 + cE . (5.4) 
We have F ∼ E (because I 6 ∼ E and G 0 (E) E is non-increasing) and, using (5.3),

F ′ ≤-τ 0 β 1 G 0 (E). (5.5) 
Then, for τ 0 > 0 such that

F ≤ E and F(0) ≤ 1, (5.6) 
we get, for α 2 = τ 0 β 1 > 0(sinceG 0 is increasing),

F ′ ≤-α 2 G 0 (F). (5.7) 
Then (5.7) implies that

( G(F)) ′ ≥ α 2 , (5.8) 
where

G(t) = 1 t 1 G 0 (s) ds. Integrating (5.8) over [0, t] yields G(F(t)) ≥ α 2 t + G(F(0)).
(5.9)

Because F(0) ≤ 1, G(1) = 0and G is decreasing, we obtain from (5.9)that G(F(t)) ≥ α 2 t, which implies that

F(t) ≤ G-1 (α 2 t).
The fact that F ∼ E gives (2.34). This completes the proof of Theorem 2.4. 

NE ′ (t) + c L 0 ξϕ 2 t dx ≤ L 0 N (-b + d ∞ ) + c d 2 ∞ + b ∞ b ϕ 2 t dx ≤ L 0 (c b ∞ -N )bϕ 2 t dx + 2 ρ 1 N d ∞ + c d 2 ∞ E 0 (t) (6.1) 
and 

-g ′ • ϕ x ≤-2E ′ (t) + 2 d ∞ L 0 ϕ 2 t dx ≤-2E ′ (t) + 4 ρ 1 d ∞ E 0 (t). ( 6 
N = c(1 + b ∞ ), (6.3) 
and therefore, inserting (6.1)a n d( 6.2)i n t o( 4.38) and noting that the last term in (4.38) vanishes (thanks to (1.2)), G 0 = Id and ǫ0 = 0 (according to (2.35)a n d( 4.39)), we conclude that, for some positive constant β 2 which does not depend neither on b nor on d,

I ′ 6 (t) + cE ′ (t) ≤-c -β 2 (1 + b ∞ ) d 2 ∞ + d ∞ E 0 (t) -cE 1 (t).
Let F = I 6 + cE. The property I 6 ∼ E and condition (2.39), for

d 0 = c β 2 (1 + b ∞ ) , (6.4) 
lead to F ∼ E and

F ′ ≤-α 2 F, ( 6.5) 
for some positive constant α 2 .Byintegrating(6.5) over [0, t] and using again the equivalence F ∼ E,wefind (2.37). This ends the proof of Theorem 2.6.

Weak stability: (1.2) does not hold and (1.11)holds

In this section, we treat the case when (1.2) does not hold which is more realistic from the physics point of view. We need to estimate the last term in (4.38) using the system (7.1) resulting from differentiating (1.1) with respect to time A simple calculation (as for (4.1)and(4.2)) implies, in case (1.11), that

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ρ 1 ϕ ttt -k 1 (ϕ xt + ψ t ) x + dϕ tt (t -τ) + bϕ tt + +∞ 0 g(s)(aϕ xt (t -s)) x ds = 0, ρ 2 ψ ttt -k 2 ψ xxt + k 1 (ϕ xt + ψ t ) = 0, ϕ t (0, t) = ψ xt (0, t) = ϕ t (L , t) = ψ xt (L , t) = 0. ( 7 
E 2 (t) = 1 2 U t (t) 2 H . ( 7 
E ′ 2 (t) ≤ 1 2 g ′ • ϕ xt - 1 2 inf [0,L] (b -|d|) L 0 ϕ 2 tt dx; (7.3)
so E 2 is non-increasing (according to (1.11)). Let τ 0 = 1in(5.4). Thus, similarly to (5.5)

(with the same choices of ǫ 0 and N ), we deduce from (4.38)that

F ′ (t) ≤-β 1 G 0 (E(t)) + ρ 1 k 2 k 1 -ρ 2 G 0 (E(t)) E(t) L 0 ϕ xt ψ t dx. ( 7.4) 
Now, as in [START_REF] Guesmia | Some stability results for Timoshenko systems with cooperative frictional and infinite-memory dampings in the displacement[END_REF], we use some ideas of [START_REF] Guesmia | On the stabilization for Timoshenko system with past history and frictional damping controls[END_REF].

Lemma 7.1 For any ǫ>0,wehave

ρ 1 k 2 k 1 -ρ 2 T S G 0 (E(t)) E(t) L 0 ϕ xt ψ t dx dt ≤ ǫ T S G 0 (E(t)) dt + c ǫ G 0 (E(0)) E(0) (E(S) + E 2 (S)) , ∀T ≥ S ≥ 0. (7.5)
Proof By integration with respect to t,weget

ρ 1 k 2 k 1 -ρ 2 T S G 0 (E(t)) E(t) L 0 ϕ xt ψ t dx dt = ρ 1 k 2 k 1 -ρ 2 G 0 (E(t)) E(t) L 0 ϕ xt ψ dx T S - ρ 1 k 2 k 1 -ρ 2 T S G 0 (E(t)) E(t) ′ L 0 ϕ xt ψ dx dt - ρ 1 k 2 k 1 -ρ 2 T S G 0 (E(t)) E(t) L 0 ϕ xtt ψ dx dt. (7.6)
Moreover, applying Poincaré's inequality (2.5), for ψ, and using the definition of E and E 2 and their non-increasingness, we find

ρ 1 k 2 k 1 -ρ 2 L 0 ϕ xt ψ dx ≤ c (E(t) + E 2 (t)) ≤ c (E(S) + E 2 (S)) , ∀0 ≤ S ≤ t.
Thus, by integrating by parts the last integral in (7.6) with respect to x and noting that G 0 (E) E is non-increasing, we have

ρ 1 k 2 k 1 -ρ 2 T S G 0 (E(t)) E(t) L 0 ϕ xt ψ t dx dt ≤ c G 0 (E(0)) E(0) (E(S) + E 2 (S)) + c T S G 0 (E(t)) E(t) L 0 |ϕ tt ||ψ x |dxdt, ∀T ≥ S ≥ 0. (7.7)
On the other hand, according to (1.11)and(7.3) (notice also that g is non-incresing), we have Inserting this inequality into (7.7), we get (7.5).

L 0 ϕ 2 tt dx ≤ -2 inf [0,L] (b -|d|) E ′ 2 (t).

⊓ ⊔

Now, exploiting (7.4)and(7.5) and choosing ǫ ∈]0,β 1 [,weget,forβ 3 = β 1ǫ, Choosing S = 0in(7.9) and using the fact that G 0 (E) is non-increasing, we get (8.12)

If (1.2) holds, then (8.12) coincides with (5.3) and the proof of (2.34) can be finished as in Sect. 5.

If (1.2) does not hold, we consider the functional F defined in (5.4) with τ 0 = 1, and then (8.12) becomes identical to (7.4). Consequently, the proof of (2.41) can be ended as in Sect. 7. ⊓ ⊔

( 1 . 2 )

 12 is no longer sufficient to obtain exponential stability even in the presence of an extra viscoelastic dissipation of the form +∞ 0 g(s)ψ xx (ts) ds in the second equation. Very recently, Santos et al. [62] considered (1.5), introduced a new stability number
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  1 and v 2 in (3.5), (3.7)and(3.8)togetV ∈ D(A) satisfying (3.4). Let (v 1 ,v 2 ) satisfying (3.9)-(3.11). By multiplying the equations in (3.10)byρ 1 w 1 and ρ 2 w 2 , respectively, integrating their sum by parts on ]0, L[ and exploiting (3.8)and(3.11), we find that (v 1 ,v 2 ) is a solution of the system

( f 1 -

 1 f 6 (y)) dy ds.
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Lemma 4 . 1

 41 The energy functional satisfies, if(1.11) holds and d = 0,

  3) yields (4.1)and(4.2). ⊓ ⊔ Remark 4.2 1. When(1.11) holds, E ′ ≤ 0, since g is non-increasing, and then (1.1)i s dissipative. However, when (1.12) holds, we are unable to determine the sign of E ′ from (4.2), and therefore, (1.1) is not necessarily dissipative with respect to E at this stage. 123 Journal: 13370 Article No.: 0514 TYPESET DISK LE CP Disp.:2017/6/28 Pages: 32 Layout: Small Author Proof u n c o r r e c t e d p r o o f
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 8 Proof If a ≡ 0, (4.4)-(4.6) are trivial. If inf [0,L] a > 0, we use the fact that a and a ′ are bounded and apply Poincaré's and Hölder's inequalities (2.26) (for ϕ)and
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  Consequently, aplying Young's and Hölder's inequalities (3.1)a n d( 4.9), for the last two terms of the above equality, and using (4.7), Poincaré's inequality (2.26), for ϕ,andthefact that a is bounded, we find (4.14). ⊓ ⊔ 123 Journal: 13370 Article No.: 0514 TYPESET DISK LE CP Disp.:2017/6/28 Pages: 32 Layout: Small u n c o r r e c t e d p r o o f Well-posedness and energy decay for Timoshenko systems...

  )) ds dx. Applying Young's inequality (3.1), for the last four terms of the above equality, Poincaré's inequalities (2.5), for ψ,and(2.26), for ϕ and w, and exploiting (4.7), (4.18), (4.19)andthe fact that a is bounded, we get (4.21). ⊓ ⊔ 123 Journal: 13370 Article No.: 0514 TYPESET DISK LE CP Disp.:2017/6/28 Pages: 32 Layout: Small u n c o r r e c t e d p r o o f Well-posedness and energy decay for Timoshenko systems...

which gives ( 4 .

 4 23), since -2e -2τ p ≤-2e -2τ ,forany p ∈]0, 1[. ⊓ ⊔ Let a 0 := inf [0,L] a, b 0 := inf [0,L] b and, for N , N 1 , N 2 , N 3 , N 4 ≥ 0,
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  ) and consequently, Lcδ 1 + 1 b 0 is a positive constant which does not depend neither on b nor on d. At the end, we choose N 4 such that e -2τ N 4 τ ξc δ b 0 + 1 δ d 2 ≥ 0. (4.28) If d ≡ 0, then ξ ≡ 0 (thanks to (2.25)), and therefore (4.28)i ss a t i s fi e d ,f o ra n yN 4 ≥ 0. Otherwise, if d = 0, then ξ = τ b (in vertue of (2.25) and because (1.11)isassumedinthis 123 Journal: 13370 Article No.: 0514 TYPESET DISK LE CP Disp.:2017/6/28 Pages: 32 Layout: Small Author Proof u n c o r r e c t e d p r o o f Well-posedness and energy decay for Timoshenko systems... case a ≡ 0; see Theorem 2.6), consequently, the choice (4.27) and the inequality |d| < b (according to (1.11)) imply that N 4 canbetakenintheform
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  [START_REF] Datko | An example on the effect of time delays in boundary feedback stabilization of wave equations[END_REF] holds.
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Using ( 4 . 1 )

 41 (in case d = 0), (4.2) (in case d ≡ 0) and the property g ′ ≤ 0, we haveNE ′ (t) + c L L] (b -|d|) ϕ 2 t dx (5.1)andg ′ • ϕ x ≤-2E ′ (t). (5.2) 123 Journal: 13370 Article No.: 0514 TYPESET DISK LE CP Disp.:2017/6/28 Pages: 32 Layout: Small u n c o r r e c t e d p r o o f A. Guesmia Therefore, inserting (5.1)and(5.2)into(4.38), choosing ǫ 0 > 0 such that ǫ defined in (4.39) satisfies ǫ< min{c, c} if d = 0, c if d ≡ 0 (if d ≡ 0, then ξ = E 1 = 0andE = E 0 ) and choosing N ≥ 0 such that |d|) ≤ 0a n dN >β (N exists according to (1.11), (4.35) and the boundedness of b), we deduce, from (1.2), (4.38), (4.40) and the fact that G ′ (ǫ 0 E) is non-increasing, that I 6 ∼ E, the last term in (4.38)

. 2 )

 2 Therefore, choosing N ≥ 0 such that N ≥ c b ∞ and N >β; so c b ∞ -N ≤ 0andI 6 ∼ E by vertue of (4.40). The constant N can be choosen in the form

. 1 )

 1 System (7.1) is well posed for initial data U 0 ∈ D(A) thanks to Theorem 2.3.LetE 2 be the second-order energy (the energy of (7.1)) defined by

.2) 123 Journal: 13370
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  u n c o r r e c t e d p r o o fWell-posedness and energy decay for Timoshenko systems... Then, using (2.14) and Young's inequality (3.1), we estimate the last integral in[START_REF] Ammar-Khodja | Energy decay for Timoshenko systems of memory type[END_REF]E(t)) dt + c ǫ G 0 (E(0)) E(0) E 2 (S), ∀T ≥ S ≥ 0.

  E(t)) dt + c G 0 (E(0)) E(0) (E(S) + E 2 (S)) , ∀T ≥ S ≥ 0. (7.8)By combining (7.8) and the property F ∼ E, we deduce that, for some positive constant β 4 ,T S G 0 (E(t)) dt ≤ β 4 1 + G 0 (E(0)) E(0) (E(S) + E 2 (S)) , ∀T ≥ S ≥ 0. (7.9)

G 0 0 G 0 2 T T 2 G

 00022 (E(T ))T ≤ T (E(t)) dt ≤ β 4 1 + G 0 (E(0)) E(0) (E(0) + E 2 (0)), ∀T ≥ 0, which gives (2.41), for n = 1, with c 1 = β 4 1 + G 0 (E(0))n, suppose that (2.41) holds and let U 0 ∈ D(A n+1 ) such that a ≡ 0 or (2.8) holds or (2.40) holds, for n + 1 instead of n.W eh a v eU t (0) ∈ D(A n ) (thanks to Theorem 2.3)andU t satisfies the first two equations and the boundary conditions of (1.1). On the other hand, if a = 0and(2.8) does not hold, then U t (0) satisfies (2.40) (because U 0 satisfies (2.40), for n + 1). Then the energy E 2 of (7.1)(definedin(7.2)) also satisfies, for some positive constant cn , E 2 (t) ≤ G n cn t , ∀t > 0. (7.10)Now, choosing S = T 2 in (7.9), combining with (2.41)a n d( 7.10), and using the fact that G 0 (E) is non-increasing, we deduce thatG 0 (E(T ))T ≤ 0 (E(t)) dt ≤ 2β 4 , for c n+1 = max 4β 4 1 + G 0 (E(0)) E(0) , 2c n , 2 cn (notice that G n is increasing), E(T ) ≤ G -1This proves (2.41), for n + 1. The proof of Theorem 2.7 is completed.

ϕ

  xt ψ t dx. (8.10) Choosing N ≥ 0 such that c ξ -N 2 b ≤ 0a n dN >β; 123 Journal: 13370 Article No.: 0514 TYPESET DISK LE CP Disp.:2017/6/28 Pages: 32 Layout: Small u n c o r r e c t e d p r o o f A. Guesmia

  . Guesmia Now, as in[START_REF] Ammar-Khodja | Energy decay for Timoshenko systems of memory type[END_REF], we use a function w to get a crucial estimate.Proof We just have to note that w x = ψ to get (4.18). On the other hand, using (2.12) (remind that we are working with ψ, but we use ψ instead of ψ; see Remark 2.1-2),

	Lemma 4.7 The function						
						x
			w(x, t) =				ψ(y, t) dy	(4.17)
					0		
	satisfies the estimates ( k0 is the constant defined in (2.26))
	0	L	w 2 x dx =	0	L	ψ 2 dx, ∀t ≥ 0,	(4.18)
	0	L	w 2 t dx ≤ k0	0	L	ψ 2 t dx, ∀t ≥ 0.	(4.19)

16)isestablished. ⊓ ⊔ 123 Journal: 13370 Article No.: 0514 TYPESET DISK LE CP Disp.:2017/6/28 Pages: 32 Layout: Small u n c o r r e c t e d p r o o f Aw t (0, t) = 0a n dw t (L , t) = L 0 ψ t (y, t) dy = ∂ t L 0 ψ(y, t) dy = 0. Then, applying (4.18)t ow t and using Poincaré's inequality (2.26), for w t , we arrive at (4.19). ⊓ ⊔ Lemma 4.8 The functional I 4 (t) := ρ 1 L 0 (wϕ t + ϕϕ t ) dx (4.20)

  .37) 

	Proof In Theorem 2.4 and Theorem 2.7,itisassumedthat(1.11) holds. Then, thanks to (4.1),
	E is non-increasing. Therefore, the proof is the same as in [19]-Lemma 3.6 (for B	1 2 = ∂ x
	and . = . L 2 (]0,L[) ).	⊓ ⊔
	Using (4.33), (4.36)and(4.37), we see that, in both two previous cases,	

  On the other hand, by(2.14) and the definitions of the functionals I i and E, there exists a positive constant β (not depending on N , b and d) satisfying|N 1 I 1 + N 2 I 2 + I 3 + N 3 I 4 + N 4 I 5 |≤β E,

	2.35)and		
	ǫ =	0i f (2.8) holds, cǫ 0 if (2.9) holds.	(4.39)
	which implies that		
	(N -β)E ≤ I 6 ≤ (N + β)E.	(4.40)
	Now, at this stage, we distinguish the cases of Theorems 2.4, 2.6 and 2.7.	

6 Exponential stability: (1.2) and (1.12)hold

  Exploiting (2.38), (4.2), (4.35) and the property g ′ ≤ 0, we find

  Assume that (H1)-(H3) and (8.2) are satisfied and inf [0,L] a > 0.Let instead of (2.25) and (2.28). Then the well-posedness result of Theorem 2.3 holds true. Case (1.2) holds: for any U 0 ∈ H such that (2.8) or (2.33) holds, E satisfies (2.34). 2. Case (1.2) does not hold: for any n ∈ N * and U 0 ∈ D(A n ) such that (2.8) or (2.40) holds, E satisfies (2.41). Proof First, according to (8.2)a n d( 8.3), (2.27)a n d( 3.2) imply that B ≡ 0a n d( 3.3), respectively. The rest of the proof of Theorem 2.3 is identical to the one given in Sect. 3. Second, under the choice (8.3), (4.3)and(8.2) imply that g ′ • ϕ x ≤-2E ′ (t)

						ξ =	τ bi f d = 0, 0 if d ≡ 0	and ξ 0 = 0	(8.3)
	Moreover, there exists a positive constant d 0 independent of d such that, if
											d ∞ < d 0 ,	(8.4)
	then											
	1. (8.5)
	and											
			E ′ (t) ≤-	1 2	0	L	bϕ 2 t dx +	d ∞ 2	0	L	ϕ 2 t dx.	(8.6)
	Similarly to (8.5), we have also						
							-g ′ • ϕ xt ≤-2E ′ 2 (t).	(8.7)
	Because ξ ≤ τ b,then										
						c = c d ∞ and ξ = b ∞ b	(8.8)
	instead of (4.34)and(4.35). Consequently, using (8.6), we have
	NE ′ (t) + c	0	L	ξϕ 2 t dx ≤		0	L	c ξ -	N 2	b ϕ 2 t dx +	N d ∞ ρ 1	E 0 (t).	(8.9)
	Therefore, inserting (8.5)and(8.9)into(4.38), we get
	G 0 (E(t)) E(t)	I ′ 6 (t) ≤-	G 0 (E(t)) E(t)		c -	N d ∞ ρ 1	-ǫ 0 E 0 (t) + ( c -ǫ 0 )E 1 (t)
			-c 1 + G ′ (ǫ 0 E(t)) E ′ (t) +	G 0 (E(t)) E(t)	0	L	c ξ -	N 2	b ϕ 2 t dx
			+			ρ 1 k 2 k 1	-ρ 2			
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  so N can be taken as in(6.3), therefore I 6 ∼ E (due to (4.40)) and, for some positive constantβ 5 which does not depend neither on b nor on d (notice that G ′ (ǫ 0 E) is non-increasing), β 5 (1 + b ∞ ) d ∞ -ǫ 0 ) E 0 (t) + ( c -ǫ 0 )E 1 (t)) (1+ b ∞ ) , and choosing ǫ>0 such that cβ 5 (1 + b ∞ ) d ∞ -ǫ 0 > 0a n d c -ǫ 0 > 0,we deduce from (8.11) that, for some positive constant β 6 ,

	G 0 (E(t)) E(t)	I ′ 6 (t) ≤-((c -cE ′ (t) + G 0 (E(t)) E(t) ρ 1 k 2 k 1	-ρ 2	G 0 (E(t)) E(t)	0	L	ϕ xt ψ t dx.	(8.11)
	c 6 (t) + cE ′ (t) ≤-β 6 G 0 (E(t)) + Next, exploiting (8.4), for d 0 = β 5 G 0 (E(t)) E(t) I ′	ρ 1 k 2 k 1	-ρ 2	G 0 (E(t)) E(t)	0	L	ϕ xt ψ t dx.

General comments and issues

We give in this last section some general comments and issues. Remark 8.1 When (1.2) does not hold and (1.12) holds, proving the stability of (1.1) seems a delicate question (even under smallness condition on d ∞ ). In this case, there is a double difficulty: the presence of the last term in (4.38) which can not be absorbed by E itself and the fact that (1.1)and(7.1) are not neccessarily dissipative with respect to E and E 2 , respectively (see (4.2)and(7.2)).

Remark 8.2

The regularity g ∈ C 1 (R + ) can be weaken by assuming that g is differentiable almost everywhere on R + . On the other hand, our condition (2.9) implies that the set

is empty. Using the arguments of [START_REF] Tatar | Exponential decay for a viscoelastic problem with a singular kernel[END_REF][START_REF] Tatar | On a large class of kernels yielding exponential stability in viscoelasticity[END_REF][START_REF] Tatar | How far can relaxation functions be increasing in viscoelastic problems?[END_REF][START_REF] Tatar | A new class of kernels leading to an arbitrary decay in viscoelasticity[END_REF][START_REF] Tatar | On a perturbed kernel in viscoelasticity[END_REF], our stability results can be extended to the case of convolution kernels g having flat zones up to a certain extent; that is, the set (8.1) is not negligeable but small enough in some sense. Remark 8. [START_REF] Almeida Júnior | Stability to 1-D thermoelastic Timoshenko beam acting on shear force[END_REF] The arguments applied in [START_REF] Guesmia | Some well-posedness and general stability results in Timoshenko systems with infinite memory and distributed time delay[END_REF] to get the stability of (1.10) can be adapted to (1.1) and a general stability estimate can be proved when (1.2), (1.12)and(2.9) hold (so g can converge to zero at infinity less faster than exponentially). The arguments of [START_REF] Guesmia | Some well-posedness and general stability results in Timoshenko systems with infinite memory and distributed time delay[END_REF]arebased on an approach introduced and developped in [START_REF] Tatar | Exponential decay for a viscoelastic problem with a singular kernel[END_REF][START_REF] Tatar | On a large class of kernels yielding exponential stability in viscoelasticity[END_REF][START_REF] Tatar | How far can relaxation functions be increasing in viscoelastic problems?[END_REF][START_REF] Tatar | A new class of kernels leading to an arbitrary decay in viscoelasticity[END_REF][START_REF] Tatar | On a perturbed kernel in viscoelasticity[END_REF]. This approach allowed us to deal with some arbitrary decaying kernels g without assuming explicit conditions on their derivatives g ′ and to avoid passing by E ′ in objective to overcome subsequently the difficulties generated by the non-dissipativeness character of (1.10). On the other hand, the arguments of [START_REF] Guesmia | Some well-posedness and general stability results in Timoshenko systems with infinite memory and distributed time delay[END_REF] can be used to obtain the stability of (1.1) in case where the discrete time delay dϕ t (tτ) is replaced by a distributed one

for some given function f : R + → R. Moreover, the results of the present paper remain true if we replace the linear damping bϕ t by a non-linear one bh(ϕ t ), for some given function h : R → R. Finally, some other Timoshenko-type systems with controls and time delays on the displacement can be considered (see [START_REF] Guesmia | Some stability results for Timoshenko systems with cooperative frictional and infinite-memory dampings in the displacement[END_REF] concerning the case where no delay is considered). To keep away this paper of being too long, we do not discuss these situations. During the process of typesetting your article, the following queries have arisen. Please check your typeset proof carefully against the queries listed below and mark the necessary changes either directly on the proof/online grid or in the 'Author's response' area provided below