Aissa Guesmia 
email: aissa.guesmia@univ-lorraine.fr
  
ASYMPTOTIC STABILITY OF BRESSE SYSTEM WITH ONE INFINITE MEMORY IN THE LONGITUDINAL DISPLACEMENTS

Keywords: Bresse system, Infinite memory, Asymptotic behavior, Energy method, integral inequalities. AMS Classification: 35B40, 35L45, 74H40, 93D20, 93D15

 under one infinite memory acting on the shear angle displacements. The subject of this paper is to complete these results by proving that the asymptotic stability of Bresse systems holds also under one infinite memory acting on the longitudinal displacements.

Introduction

In this paper, we consider a Bresse system in one-dimensional open bounded domain under the homogeneous Dirichlet-Neumann-Neumann boundary conditions and with one infinite memory acting on the third equation (longitudinal displacements) (1.1)

                                 ρ 1 ϕ tt -k 1 (ϕ x + ψ + lw) x -lk 3 (w x -lϕ) = 0, ρ 2 ψ tt -k 2 ψ xx + k 1 (ϕ x + ψ + lw) = 0,
ρ 1 w tt -k 3 (w x -lϕ) x + lk 1 (ϕ x + ψ + lw) + +∞ 0 g(s)w xx (x, t -s) ds = 0, ϕ(0, t) = ψ x (0, t) = w x (0, t) = ϕ(L, t) = ψ x (L, t) = w x (L, t) = 0, ϕ(x, 0) = ϕ 0 (x), ϕ t (x, 0) = ϕ 1 (x), ψ(x, 0) = ψ 0 (x), ψ t (x, 0) = ψ 1 (x), w(x, -t) = w 0 (x, t), w t (x, 0) = w 1 (x), where (x, t) ∈]0, L[×R + , g : R + → R + is a given function, and L, l, ρ i , k i ∈ R * + . The Bresse system [START_REF] Bresse | Cours de Méchanique Appliquée[END_REF] is known as the circular arch problem, where ϕ, w and ψ represent, respectively, the vertical, longitudinal and shear angle displacements. For more details, we refer to [START_REF] Lagnese | Modelling of dynamic networks of thin thermoelastic beams[END_REF] and [START_REF] Lagnese | Modelling Analysis and Control of Dynamic Elastic Multi-Link Structures[END_REF] (see also [START_REF] Guesmia | Bresse system with infinite memories[END_REF] and [START_REF] Guesmia | Uniform and weak stability of Bresse system with two infinite memories[END_REF]).

The stability of Bresse systems with (local or global) frictional dampings was obtained by several researchers in the last few years; see [START_REF] Alabau-Boussouira | Stability to weak dissipative Bresse system[END_REF], [START_REF] Fatori | The optimal decay rate for a weak dissipative Bresse system[END_REF], [START_REF] Noun | Weakly locally internal stabilization of elastic Bresse system[END_REF] and [START_REF] Soriano | Bresse system with indefinite damping[END_REF] for the case of one frictional damping acting on the shear angle displacements, [START_REF] Alves | Stability and optimality of decay rate for weakly dissipative Bresse system[END_REF], [START_REF] Wehbe | Exponential and polynomial stability of an elastic Bresse system with two locally distributed feedbacks[END_REF] and [START_REF] Youssef | Contrôle et stabilisation de systèmes élastiques couplés[END_REF] for the case of two frictional dampings, and [START_REF] Charles | Decay rates for Bresse system with arbitrary nonlinear localized damping[END_REF], [START_REF] Soriano | Asymptotic stability for Bresse systems[END_REF], [START_REF] Soufyane | The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system[END_REF] and [START_REF] Youssef | Contrôle et stabilisation de systèmes élastiques couplés[END_REF] for the case of three frictional dampings. When each equation is controlled by a frictional damping, the exponential stability of Bresse systems was proved regardless to the speeds of wave propagations given by (1.2)

s 1 = k 1 ρ 1 , s 2 = k 2 ρ 2 and s 3 = k 3 ρ 1 .
When at least one equation is free, the obtained stability estimate is of exponential or polynomial type depending on some relations between s i . When only one frictional damping is considered, it was proved that the exponential stability is equivalent to

(1.3) s 1 = s 2 = s 3 .
Similar stability results were proved in [START_REF] Fatori | Rates of decay to weak thermoelastic Bresse system[END_REF], [START_REF] Liu | Energy decay rate of the thermoelastic Bresse system[END_REF] and [START_REF] Najdi | Weakly locally thermal stabilization of Bresse systems[END_REF] in case where the Bresse system is coupled with one or two heat equations in a certain manner.

The stability of Bresse systems with memories was also recently studied. When the three equations are controlled via infinite memories of the form +∞ 0 g 1 (s)ϕ xx (x, t-s) ds, +∞ 0 g 2 (s)ψ xx (x, t-s) ds and +∞ 0 g 3 (s)w xx (x, t-s) ds, where g i : R + → R + are differentiable, non-increasing and integrable functions on R + , the stability was proved in [START_REF] Guesmia | Bresse system with infinite memories[END_REF] regardless to s i . The obtained decay estimate in [START_REF] Guesmia | Bresse system with infinite memories[END_REF] depends only on the arbitrary growth at infinity of s → g i (s). When only two memories are considered, the stability of Bresse systems was proved in [START_REF] Guesmia | Uniform and weak stability of Bresse system with two infinite memories[END_REF], where the decay rate depends also on s i and the smoothness of initial data.

As far as we know, the first stability result for Bresse systems with only one infinite memory is the one obtained in [START_REF] Lima Santos | Asymptotic behavior to Bresse system with past history[END_REF] under

(1.4) +∞ 0 g(s)ψ xx (x, t -s) ds
acting on the shear angle displacements (the second equation in (1.1)), where g : R + → R + converges esponentially to zero at infinity.

Our objectif in this paper is to prove that the asymptotic stability of Bresse systems holds also under one infinite memory acting on the longitudinal displacements; that is (1.1) is stable, where the decay rate of solutions depends on the arbitrary growth at infinity of the kernel g, the speeds of wave propagations (1.2) and the smoothness of initial data.

The paper is organized as follows. In section 2, we present our hypotheses and state our main results. The proof of our main results will be given in section 3.

Hypotheses and main results

Following the method of [START_REF] Dafermos | Asymptotic stability in viscoelasticity[END_REF], we consider the functional

(2.1) η(x, t, s) = w(x, t) -w(x, t -s) in ]0, L[×R + × R + .
This functional satisfies (2.2)

       η t + η s -w t = 0 in ]0, L[×R + × R + , η x (0, t, s) = η x (L, t, s) = 0 in R + × R + , η(x, t, 0) = 0 in ]0, L[×R + . Let η 0 (x, s) = η(x, 0, s), U 0 = ϕ 0 , ψ 0 , w 0 , ϕ 1 , ψ 1 , w 1 , η 0 T , U = (ϕ, ψ, w, ϕ t , ψ t , w t , η) T and
(2.3) g 0 = +∞ 0 g(s) ds.

Then the system (1.1) takes the following abstract form:

(2.4)

U t = AU, U (t = 0) = U 0 ,
where A is the linear operator defined by

AU =                   ϕ t ψ t w t k1 ρ1 ϕ xx -l 2 k3 ρ1 ϕ + k1 ρ1 ψ x + l ρ1 (k 1 + k 3 )w x -k1 ρ2 ϕ x + k2 ρ2 ψ xx -k1 ρ2 ψ -lk1 ρ2 w -l ρ1 (k 1 + k 3 )ϕ x -lk1 ρ1 ψ + 1 ρ1 k 3 -g 0 w xx -l 2 k1 ρ1 w + 1 ρ1 +∞ 0 gη xx ds w t -η s                   . Let (2.5) L 0 = v : R + → H 1 * (]0, L[), L 0 +∞ 0 gv 2 x ds dx < +∞ and (2.6) H = H 1 0 (]0, L[) × H 1 * (]0, L[) 2 × L 2 (]0, L[) × L 2 * (]0, L[) 2 × L 0 , where (2.7) L 2 * (]0, L[) = v ∈ L 2 (]0, L[), L 0 v dx = 0 and (2.8) H 1 * (]0, L[) = v ∈ H 1 (]0, L[), L 0 v dx = 0 .
The domain D(A) of A is defined by (2.9)

D(A) = V = (v 1 , • • • , v 7 ) T ∈ H, AV ∈ H, v 7 (0) = 0, ∂ x v 2 (0) = ∂ x v 3 (0) = 0, ∂ x v 2 (L) = ∂ x v 3 (L) = 0, ∂ x v 7 (•, 0) = ∂ x v 7 (•, L) = 0 .
Remark 2.1. As in [START_REF] Guesmia | Uniform and weak stability of Bresse system with two infinite memories[END_REF], integrating on ]0, L[ the second and third equations in (1.1), and using the boundary conditions, we verify that (2.10)

∂ tt L 0 ψ dx + k 1 ρ 2 L 0 ψ dx + lk 1 ρ 2 L 0 w dx = 0 and (2.11) ∂ tt L 0 w dx + l 2 k 1 ρ 1 L 0 w dx + lk 1 ρ 1 L 0 ψ dx = 0.
Therefore, (2.10) implies that (2.12)

L 0 w dx = - ρ 2 lk 1 ∂ tt L 0 ψ dx - 1 l L 0 ψ dx.
Substiting (2.12) into (2.11), we get 

(2.13) ∂ tttt L 0 ψ dx + k 1 ρ 2 + l 2 k 1 ρ 1 ∂ tt L 0 ψ dx = 0. Let l 0 = k1 ρ2 + l 2 k1 ρ1 .
L 0 w dx = c1 ρ 2 l 2 0 lk 1 - 1 l cos (l 0 t) + c2 ρ 2 l 2 0 lk 1 - 1 l sin (l 0 t) - c3 l t - c4 l .
Let ( ψ0 (x), w0 (x)) = (ψ 0 (x), w 0 (x, 0)). Using the initial data of ψ and w in (1.1), we see that

                             c1 = k1 ρ2l 2 0 L 0 ψ0 dx + lk 1 ρ 2 l 2 0 L 0 w0 dx, c2 = k1 ρ2l 3 0 L 0 ψ 1 dx + lk 1 ρ 2 l 3 0 L 0 w 1 dx, c3 = 1 -k1 ρ2l 2 0 L 0 ψ 1 dx - lk 1 ρ 2 l 2 0 L 0 w 1 dx, c4 = 1 -k1 ρ2l 2 0 L 0 ψ0 dx - lk 1 ρ 2 l 2 0 L 0 w0 dx. Let (2.16) ψ = ψ - 1 L (c 1 cos (l 0 t) + c2 sin (l 0 t) + c3 t + c4 ) and
(2.17)

w = w - 1 L c1 ρ 2 l 2 0 lk 1 - 1 l cos (l 0 t) + c2 ρ 2 l 2 0 lk 1 - 1 l sin (l 0 t) - c3 l t - c4 l .
Then, from (2.14) and (2.15), one can check that (2.18)

L 0 ψ dx = L 0 w dx = L 0 η dx = 0, where η(x, t, s) = w(x, t) -w(x, t -s) in ]0, L[×R + × R + .
Therefore, Poincaré's inequality

(2.19) ∃ c 0 > 0 : L 0 v 2 dx ≤ c 0 L 0 v 2 x dx, ∀v ∈ H 1 * (]0, L[) ∪ H 1 0 (]0, L[)
is applicable for ψ, w and η. In addition, (ϕ, ψ, w) satisfies the boundary conditions and the first three equations in (1.1) with initial data

ψ 0 - 1 L (c 1 +c 4 ), ψ 1 - 1 L (l 0 c2 +c 3 ), w 0 - 1 L c1 ρ 2 l 2 0 lk 1 - 1 l - c4 l and w 1 - 1 L c2 l 0 ρ 2 l 2 0 lk 1 - 1 l - c3 l
instead of ψ 0 , ψ 1 , w 0 and w 1 , respectively. In the sequel, we work with ψ, w and η instead of ψ, w and η, respectively, but, for simplicity of notation, we use ψ, w and η.

Now, the following hypothesis guarantees the well-posedness of (2.4):

(H1) Assume that the function g : R + → R + is differentiable, non-increasing and integrable on R + , and there exists a postive constant k 0 such that, for any

(ϕ, ψ, w) T ∈ H 1 0 (]0, L[) × H 1 * (]0, L[) 2 ,
we have (2.20)

k 0 L 0 ϕ 2 x + ψ 2 x + w 2 x dx ≤ L 0 k 2 ψ 2 x + k 1 (ϕ x + ψ + lw) 2 + k 3 (w x -lϕ) 2 -g 0 w 2 x dx.
Moreover, assume that there exists a positive constant β such that

(2.21) -βg(s) ≤ g (s), ∀s ∈ R + .
We notice that, under the hypothesis (H1), the sets L 0 and H are Hilbert spaces equipped with the inner products that generate the norms, for v ∈ L 0 and

V = (v 1 , • • • , v 7 ) T ∈ H, (2.22) v 2 L0 = L 0 +∞ 0 gv 2
x ds dx and (2.23)

V 2 H = L 0 k 2 (∂ x v 2 ) 2 + k 1 (∂ x v 1 + v 2 + lv 3 ) 2 + k 3 (∂ x v 3 -lv 1 ) 2 -g 0 (∂ x v 3 ) 2 dx + L 0 ρ 1 v 2 4 + ρ 2 v 2 5 + ρ 1 v 2 6 dx + v 7 2 L0 .
Ecxactely as in [START_REF] Guesmia | Uniform and weak stability of Bresse system with two infinite memories[END_REF] one can prove that A generates a C 0 -semigroup of contractions in H by proving that -A is maximal monotone (it is enough to neglect the second memory in the first system considered in [START_REF] Guesmia | Uniform and weak stability of Bresse system with two infinite memories[END_REF], and the proof is the same as in [START_REF] Guesmia | Uniform and weak stability of Bresse system with two infinite memories[END_REF]), and deduce the following well-posedness results of (2.4).

Theorem 2.2. Assume that (H1) holds. Let n ∈ N and U 0 ∈ D(A n ). Then (2.4) has a unique solution

(2.24) U ∈ ∩ n k=0 C n-k R + ; D A k .
To get the stability of (2.4), we consider the following additional hypothesis:

(H2) Assume that g(0) > 0, and there exist a positive constant α and an increasing strictly convex function

G : R + → R + of class C 1 (R + ) ∩ C 2 (]0, +∞[) satisfying G(0) = G (0) = 0 and lim t→+∞ G (t) = +∞ such that (2.25) g (s) ≤ -αg(s), ∀s ∈ R + or (2.26) +∞ 0 g(s) G -1 (-g (s)) ds + sup s∈R+ g(s) G -1 (-g (s)) < +∞.
Let us consider the energy functional E associated to (2.4) defined by

(2.27)

E(t) = 1 2 U (t) 2 H .
First, we consider the case (1.3).

Theorem 2.3. Assume that (H1), (H2) and (1.3) are satisfied. Let U 0 ∈ H be such that (2.28)

(2.25) holds or sup

t∈R+ +∞ t g(s) G -1 (-g (s)) L 0 η 0 x (x, s -t) 2 dx ds < +∞.
Then there exist positive constants l and g (not depending neither on l nor on g) so that, if

(2.29) l < l and g 0 < g, then there exist positive constants c and c satisfying

(2.30) E (t) ≤ c G-1 (c t), ∀t ∈ R + ,
where 

(2.31) G(s) = 1 s 1 G 0 (τ ) dτ and G 0 (s) = s if (2.
t∈R+ max k=0,••• ,n +∞ t g(s) G -1 (-g (s)) L 0 ∂ k s η 0 x (x, s -t) 2 dx ds < +∞.
Then there exist positive constants l and g (not depending neither on l nor on g) such that, if (2.29) holds, then there exists a positive constant c n satisfying 2.33), respectively, and the corresponding decay rates (2.30) and (2.34), see [START_REF] Guesmia | Asymptotic stability of abstract dissipative systems with infinite memory[END_REF] and [START_REF] Guesmia | Asymptotic behavior for coupled abstract evolution equations with one infinite memory[END_REF].

(2.34) E(t) ≤ c n G n c n t , ∀t > 0, where G m (s) = G 1 (sG m-1 (s)), for m = 2, • • • , n, G 1 = G -1 0 and G 0 is defined in (2.
3. Proof of (2.30) and (2.34) 3.1. Preliminaries lemmas. We will use c, c y1 , c y1,y2 , • • • , throughout the rest of this paper, to denote generic positive constants which depend continuously on the initial data U 0 and some constants y 1 , y 2 , • • • , introduced in the proof.

First, simple computations (see [START_REF] Guesmia | Uniform and weak stability of Bresse system with two infinite memories[END_REF]), we see that

(3.1) E (t) = 1 2 L 0 +∞ 0 g η 2 x ds dx.
Recalling that g is non-increasing, (3.1) implies that E is non-increasing. We start our lemmas by considering the following functional:

(3.2)

I(t) = -ρ 1 L 0 w t +∞ 0 g(s)η ds dx.
Lemma 3.1. For any δ 0 > 0, there exists c δ0,l,g 0 ,g(0) > 0 such that (3.3)

I (t) ≤ -ρ 1 g 0 L 0 w 2 t dx + δ 0 E(t) + c δ0,l,g 0 ,g(0) L 0 +∞ 0 (g(s) -g (s)) η 2 x ds dx.
Proof. First, noticing that

∂ t +∞ 0 g(s)η ds = ∂ t t -∞ g(t -s)(w(t) -w(s)) ds = t -∞ g (t -s)(w(t) -w(s)) ds + t -∞ g(t -s) ds w t ; that is (3.4) ∂ t +∞ 0 g(s)η ds = +∞ 0 g (s)η ds + g 0 w t .
Second, using Young's and Hölder's inequalities, we get the following inequality: for any λ > 0, there exists c λ > 0 such that, for any v ∈ L 2 (]0, L[) and f ∈ {η, η x },

(3.5) L 0 v +∞ 0 g(s)f ds dx ≤ λ L 0 v 2 dx + c λ,g 0 L 0 +∞ 0 g(s)f 2 ds dx.
Similarly,

(3.6) L 0 v +∞ 0 g (s)f ds dx ≤ λ L 0 v 2 dx -c λ,g(0) L 0 +∞ 0 g (s)f 2 ds dx.
Now, direct computations, using the third equation in (1.1), integrating by parts and using the boundary conditions and (3.4), yield 

I (t) = -ρ 1 g 0 L 0 w 2 t dx + L 0 +∞ 0 g(s)η x ds 2 dx + k 3 L 0 (w x -lϕ) +∞ 0 g(s)η x ds dx + lk 1 L 0 (ϕ x + ψ + lw) +∞ 0 g(s)η ds dx -ρ 1 L 0 w t +∞ 0 g (s)η ds dx -g 0 L 0 w x +∞ 0 g ( 
J(t) = -ρ 2 L 0 (ϕ x + ψ + lw)ψ t dx - k 2 ρ 1 k 1 L 0 ψ x ϕ t dx.
Then, for any 0 , 1 > 0, there exists c 0 ,l > 0 such that (3.8)

J (t) ≤ k 1 L 0 (ϕ x + ψ + lw) 2 dx + lk 2 k 3 1 2k 1 L 0 (w x -lϕ) 2 dx + lk 2 k 3 2k 1 1 L 0 ψ 2 x dx + (-ρ 2 + 0 ) L 0 ψ 2 t dx + c 0,l L 0 w 2 t dx + k 2 ρ 1 k 1 -ρ 2 L 0 ψ t ϕ xt dx.
Proof. By exploiting the first two equations in (1.1), integrating by parts and using the boundary conditions, we get

J (t) = k 1 L 0 (ϕ x + ψ + lw) 2 dx + k 2 ρ 1 k 1 -ρ 2 L 0 ψ t ϕ xt dx -ρ 2 L 0 ψ 2 t dx -ρ 2 l L 0 ψ t w t dx - lk 2 k 3 k 1 L 0 (w x -lϕ)ψ x dx.
Applying Young's inequality for the last two terms in the above equality, we find (3.8).

Lemma 3.3. Let (3.9)

K(t) = ρ 1 L 0 (ϕ x +ψ+lw)w t dx+ k 3 ρ 1 k 1 L 0 (w x -lϕ)ϕ t dx- ρ 1 k 1 L 0 ϕ t +∞ 0 g(s)w x (t-s) dx.
Then, for any δ 0 , 0 > 0, there exist c δ0,l,g 0 ,g(0) , c 0,l > 0 such that (3.10)

K (t) ≤ -lk 1 L 0 (ϕ x + ψ + lw) 2 dx + lk 2 3 k 1 L 0 (w x -lϕ) 2 dx + δ 0 E(t) -lk3g 0 k1 L 0 (w x -lϕ)w x dx + L 0 c 0,l w 2 t + 0 ψ 2 t dx - lk 3 ρ 1 k 1 L 0 ϕ 2 t dx + ρ 1 k3 k1 -1 L 0 w xt ϕ t dx + c δ0,l,g 0 ,g(0) L 0 +∞ 0 (g(s) -g (s))η 2 x ds dx.
Proof. First, we notice that

∂ t +∞ 0 g(s)w x (t -s) ds = ∂ t t -∞ g(t -s)w x (s) ds = g(0)w x (t) + t -∞ g (t -s)w x (s) ds = - +∞ 0 g (s)w x (t) ds + +∞ 0 g (s)w x (t -s) ds; that is (3.11) ∂ t +∞ 0 g(s)w x (t -s) ds = - +∞ 0 g (s)η x ds.
Now, using the first and third equations in (1.1), integrating by parts, recalling (3.11) and using the boundary conditions, we find

K (t) = -lk 1 L 0 (ϕ x + ψ + lw) 2 dx + lk 2 3 k 1 L 0 (w x -lϕ) 2 dx + ρ 1 k 3 k 1 -1 L 0 ϕ t w xt dx + lρ 1 L 0 w 2 t dx - lk 3 ρ 1 k 1 L 0 ϕ 2 t dx - lk 3 g 0 k 1 L 0 (w x -lϕ)w x dx + ρ 1 L 0 ψ t w t dx + ρ1 k1 L 0 ϕ t +∞ 0 g (s)η x ds dx + lk 3 k 1 L 0 (w x -lϕ) +∞ 0 g(s)η x ds dx.
By applying (3.5), (3.6) and Young's inequality for the last three terms in the above equality and axploiting (2.20), we deduce (3.10).

Lemma 3.4. Let (3.12)

P (t) = -ρ 1 k 3 L 0 (w x -lϕ) x 0 w t (y, t) dy dx-ρ 1 k 1 L 0 ϕ t x 0 (ϕ x +ψ+lw)(y, t) dy dx.
Then, for any 0 , δ 0 , 2 > 0, there exist c 0,l , c δ0,g 0 > 0 such that (3.13)

P (t) ≤ k 2 1 L 0 (ϕ x + ψ + lw) 2 dx -k 2 3 L 0 (w x -lϕ) 2 dx + δ 0 E(t) + -ρ 1 k 1 + ρ1k1 2 2 + 0 L 0 ϕ 2 t dx + c 0,l L 0 w 2 t dx + c 0 ρ 1 k 1 2 2 L 0 ψ 2 t dx + k 3 g 0 L 0 (w x -lϕ)w x dx + c δ0,g 0 L 0 +∞ 0 g(s)η 2 x ds dx.
Proof. By exploiting the first and third equations in (1.1), integrating by parts and using (2.18) and the boundary conditions, we get (3.14)

P (t) = ρ 1 k 3 L 0 w 2 t dx -ρ 1 k 1 L 0 ϕ 2 t dx -k 2 3 L 0 (w x -lϕ) 2 dx + k 2 1 L 0 (ϕ x + ψ + lw) 2 dx + k 3 g 0 L 0 (w x -lϕ)w x dx -ρ 1 L 0 ϕ t x 0 (k 1 ψ t (y, t) + l(k 1 -k 3 )w t (y, t)) dy dx -k 3 L 0 (w x -lϕ) +∞ 0 g(s)η x ds dx.
Noticing that the functions 

x → x 0 ψ t (
R(t) = L 0 (ρ 1 ϕϕ t + ρ 2 ψψ t + ρ 1 ww t ) dx.
Then, for any δ 0 > 0, there exists c δ0,g 0 > 0 such that (3.18)

R (t) ≤ L 0 ρ 1 ϕ 2 t + ρ 2 ψ 2 t + ρ 1 w 2 t -k 2 ψ 2 x -k 1 (ϕ x + ψ + lw) 2 -k 3 (w x -lϕ) 2 dx + g 0 L 0 w 2 x dx + δ 0 E(t) + c δ0,g 0 L 0 +∞ 0 g(s)η 2 x ds dx.
Proof. By exploiting the first three equations in (1.1), integrating by parts and using the boundary conditions, we get

R (t) = L 0 ρ 1 ϕ 2 t + ρ 2 ψ 2 t + ρ 1 w 2 t -k 2 ψ 2 x -k 1 (ϕ x + ψ + lw) 2 -k 3 (w x -lϕ) 2 dx + g 0 L 0 w 2 x dx - L 0 w x +∞ 0 g(s)η x ds dx.
Applying (2.20) and (3.5) for the last term in the above equality, we arrive at (3.18).

Let N, N 1 , N 2 , N 3 , N 4 > 0 and

(3. [START_REF] Noun | Weakly locally internal stabilization of elastic Bresse system[END_REF])

F := N E + N 1 I + N 2 P + N 3 l K + N 4 R + J.
Then, by combining (3.3), (3.8), (3.10), (3.13) and (3.18), and exploiting to estimate the integral of -g η 2

x , we obtain (3.20)

F (t) ≤ L 0 l 1 ϕ 2 t + l 2 ψ 2 t + l 3 w 2 t + l 4 + lk 2 k 3 2k 1 1 ψ 2 x + l 5 + lk 2 k 3 1 2k 1 (w x -lϕ) 2 dx + L 0 l 6 (ϕ x + ψ + lw) 2 + g 0 N 4 w 2 x + g 0 l 7 (w x -lϕ)w x dx + δ 0 c l,N1,••• ,N4 E(t) + (N -c δ0,l,g 0 ,g(0),N1,N3 )E (t) + c δ0,l,g 0 ,g(0),N1,••• ,N4 L 0 +∞ 0 g(s)η 2 x ds dx + k 2 ρ 1 k 1 -ρ 2 L 0 ψ t ϕ xt dx + N3ρ1 l k3 k1 -1 L 0 w xt ϕ t dx + 0 c l,N2,N3 L 0 ϕ 2 t + ψ 2 t dx + c l, 0,N2,N3
L 0 w 2 t dx, where

l 1 = ρ 1 k 1 2 2 -1 N 2 - ρ 1 k 3 N 3 k 1 + ρ 1 N 4 , l 2 = c 0 ρ 1 k 1 N 2 2 2 + ρ 2 N 4 -ρ 2 , l 3 = -ρ 1 g 0 N 1 + ρ 1 N 4 , l 4 = -k 2 N 4 , l 5 = -k 2 3 N 2 + k 2 3 N 3 k 1 -k 3 N 4 , l 6 = k 1 + k 2 1 N 2 -k 1 N 3 -k 1 N 4 and l 7 = k 3 N 2 - N 3 k 1 .
At this point, we choose carefully the constants N, N i , i and δ 0 to get suitable values of l i . We choose 2 ∈ 0, 2(k1+k3) k1

. After we pick N 2 > 0 small enough so that

c 0 ρ 1 k 1 2ρ 2 2 N 2 < 1, k 1 2 2 -1 + c 0 ρ 1 k 1 2ρ 2 2 -k 3 N 2 < 1, k 3 2 2 + k 1 + k 3 k 1 c 0 ρ 1 k 1 2ρ 2 2 -k 3 N 2 < 1 and c 0 ρ 1 2ρ 2 2 (k 1 + k 3 )N 2 < 1.
Next we fix N 3 > 0 such that

N 3 < k 1 k 3 1 + k 3 - c 0 ρ 1 k 1 2ρ 2 2 N 2
and

N 3 > max k 1 1 + c 0 ρ 1 2ρ 2 2 N 2 , k 2 1 k 3 2 2 -1 N 2 , k 1 k 1 + k 3 1 + k 1 2 2 N 2 .
Noticing that N 3 exists according to the choice of N 2 . Then we choose N 4 > 0 so that

N 4 < min 1 - c 0 ρ 1 k 1 2ρ 2 2 N 2 , k 3 k 1 N 3 + k 1 1 - 2 2 N 2
and

N 4 > max -k 3 N 2 + k 3 k 1 N 3 , 1 + k 1 N 2 -N 3 .
The constant N 4 exists thanks to the choice of N 3 , N 2 and 2 . By virtue of the choice of 2 , N 2 , N 3 and N 4 , we see that

(3.21) max {l 1 , l 2 , l 4 , l 5 , l 6 } < 0.
At this step, we choose 1 = l5 l4 and we put l = 2k1 k2k3 √ l 4 l 5 ( 1 and l are well defined from (3.21)). Then, if l satisfies the first inequality in (2.29), we get

(3.22) l 4 + lk 2 k 3 2k 1 1 < 0 and l 5 + lk 2 k 3 1 2k 1 < 0.
On the other hand, from (2.20) and Young's inequality, we find that

(3.23) L 0 g 0 N 4 w 2 x + g 0 l 7 (w x -lϕ)w x dx ≤ g 0 L 0 N 4 + 1 2k 3 w 2 x + k 3 l 2 7 2 (w x -lϕ) 2 dx ≤ g 0 1 k0 N 4 + 1 2k3 + l 2 7 2 L 0 k 2 ψ 2 x + k 1 (ϕ x + ψ + lw) 2 + k 3 (w x -lϕ) 2 dx. Let g := 2k 0 2 N 4 + 1 2k3 + k 0 l 2 7 min - 1 k 2 l 4 + lk 2 k 3 2k 1 1 , - 1 k 3 l 5 + lk 2 k 3 1 2k 1 , - 1 k 1 l 6
(g > 0 according to (3.21) and (3.22)). Because 1 , l 4 , l 5 , l 6 and l 7 do not depend neither on l nor on g, then l and g do not depend neither on l nor on g. So, if g 0 satisfies the second inequality in (2.29), then

λ 0 := max l 4 + lk 2 k 3 2k 1 1 + g 0 k 2 1 k 0 N 4 + 1 2k 3 + l 2 7 2 , l 5 + lk 2 k 3 1 2k 1 + g 0 k 3 1 k 0 N 4 + 1 2k 3 + l 2 7 2 , (3.24) 
l 6 + g 0 k 1 1 k 0 N 4 + 1 2k 3 + l 2 7 2 < 0,
and therefore, using (3.23),

L 0 l 4 + lk 2 k 3 2k 1 1 ψ 2 x + l 5 + lk 2 k 3 1 2k 1 (w x -lϕ) 2 + l 6 (ϕ x + ψ + lw) 2 + g 0 N 4 w 2 x + g 0 l 7 (w x -lϕ)w x dx (3.25) ≤ λ 0 L 0 ψ 2 x + (w x -lϕ) 2 + (ϕ x + ψ + lw) 2 dx.
After, because l, l 1 , l 2 , N 2 and N 3 do not depend on 0 , we can choose 0 > 0 small enough such that (3.26) l 1 + 0 c l,N2,N3 < 0 and l 2 + 0 c l,N2,N3 < 0, and then we fix N 1 large enough so that (3.27) l 3 + c l, 0,N2,N3 < 0.

Therefore, from (3.24), (3.26) and (3.27) we see that

max 1 ρ 1 (l 1 + 0 c l,N2N3 ), 1 ρ 2 (l 2 + 0 c l,N2N3 ), 1 ρ 1 (l 3 + c l,N2N3, 0 ), λ 0 k 2 , λ 0 k 3 , λ 0 k 1 < 0.
Finally, we choose δ 0 > 0 small enough such that

c1 := -2 max 1 ρ 1 (l 1 + 0 c l,N2N3 ), 1 ρ 2 (l 2 + 0 c l,N2N3 ), 1 ρ 1 (l 3 + c l,N2N3, 0 ), λ 0 k 2 , λ 0 k 3 , λ 0 k 1 -δ 0 c l,N1,••• ,N4 > 0.
Then, using (2.23) and (2.27), and recalling that k2ρ1 k1 -ρ 2 = 0 (because s 1 = s 2 thanks to (1.3) or (2.32)), we deduce from (3.20) and (3.25) that (3.28)

F (t) ≤ -c 1 E(t)+(N -c)E (t)+c L 0 +∞ 0 g(s)η 2
x ds dx+

N 3 ρ 1 l k 3 k 1 -1 L 0 w xt ϕ t dx.
Now, we estimate the integral of gη 2

x in (3.28). When (2.25) holds, we see that, by virtue of (3.1), (3.29)

L 0 +∞ 0 g(s)η 2
x ds dx ≤ -

2 α E (t).
When (2.26) holds, we apply Lemma 3.6 [START_REF] Guesmia | Asymptotic behavior for coupled abstract evolution equations with one infinite memory[END_REF] (in the particular case B = -∂ xx and

• = • L 2 (]0,L[) )
to get the following inequality.

Lemma 3.6. There exists a positive constant c such that, for any τ 0 > 0, we have

(3.30) G (τ 0 E(t)) L 0 +∞ 0 g(s)η 2 x ds dx ≤ -cE (t) + cτ 0 E(t)G (τ 0 E(t)).
Proof. See Lemma 3.6 [START_REF] Guesmia | Asymptotic behavior for coupled abstract evolution equations with one infinite memory[END_REF].

Using (3.29) and (3.30), we get, for the two cases (2.25) and (2.26) and for any

τ 0 > 0, (3.31) G 0 (τ 0 E(t)) τ 0 E(t) L 0 +∞ 0 g(s)η 2 x ds dx ≤ cG 0 (τ 0 E(t)) -cE (t) -c G 0 (τ 0 E(t)) τ 0 E(t) E (t),
where G 0 is defined in (2.31). By multiplying (3.28) by G0(τ0E(t))

E(t)
and combining with (3.31), we obtain, for any τ 0 > 0, (3.32)

G0(τ0E(t)) E(t) F (t) ≤ -(c 1 -cτ 0 )G 0 (τ 0 E(t)) + (N -c) G0(τ0E(t)) E(t) -cτ 0 E (t) + G0(τ0E(t)) E(t) N3ρ1 l k3 k1 -1 L 0 w xt ϕ t dx.
On the other hand, from (2.20), (2.23) and (2.27), we deduce that there exists a positive constant γ (independent of N ) satisfying

N 1 I + N 2 P + N 3 l K + N 4 R + J ≤ γE,
which, combined with (3.19), implies that

(3.33) (N -γ)E ≤ F ≤ (N + γ)E.
Choosing N so that N > max{γ, c} (c is the constant in (3.32)) and using (3.32), (3.33) and E ≤ 0, we deduce that F ∼ E and (3.34)

G0(τ0E(t)) E(t) F (t) ≤ -(c 1 -cτ 0 )G 0 (τ 0 E(t)) -cτ 0 E (t) + G0(τ0E(t)) E(t) N3ρ1 l k3 k1 -1 L 0 w xt ϕ t dx.
Let τ > 0 and

(3.35) F = τ G 0 (τ 0 E(t)) E(t) F + cτ 0 E(t) .
Because G0(τ0E(t))

E(t)
is non-increasing, then, thanks to (3.33),

(3.36) cτ τ 0 E ≤ F ≤ τ (N + γ) G 0 (τ 0 E(0)) E(0) + cτ 0 E.
We have, using (3.34), (3.35) and the fact that G0(τ0E) E is non-increasing, (3.37) Because F (0) ≤ 1 (from (3.38)), G(1) = 0 and G is decreasing, we obtain from (3.41) that G( F (t)) ≥ c t, which implies that F (t) ≤ G-1 (c t). Then (3.36) gives (2.30).

F (t) ≤ -τ (c 1 -cτ 0 )G 0 (τ 0 E(t)) + τ G 0 (τ 0 E(t)) E(t) N 3 ρ 1 l k 3 k 1 -1 L 0 w xt ϕ t dx.

Proof of (2.34).

In this section, we treat the case when (2.32) holds. We need to estimate the last integral in (3.37) using the following systems resulting from differentiating (1.1) with respect to time t:

(3.42)                  ρ 1 ϕ ttt -k 1 (ϕ xt + ψ t + lw t ) x -lk 3 (w xt -lϕ t ) = 0, ρ 2 ψ ttt -k 2 ψ xxt + k 1 (ϕ xt + ψ t + lw t ) = 0, ρ 1 w ttt -k 3 (w xt -lϕ t ) x + lk 1 (ϕ xt + ψ t + lw t ) + +∞ 0 g(s)w xxt (x, t -s) ds = 0, ϕ t (0, t) = ψ xt (0, t) = w xt (0, t) = ϕ t (L, t) = ψ xt (L, t) = w xt (L, t) = 0.
Thanks to Theorem 2.2, we have, for any initial data U 0 ∈ D(A), the system (3.42) has a unique solution U satisfying

∂ t U ∈ C(R + ; H).
Let U 0 ∈ D(A) and Ẽ be the energy of (3.42) defined by

(3.43) Ẽ(t) = 1 2 ∂ t U (t) 2 H .
Similarly to (3.1), we have

(3.44) Ẽ (t) = 1 2 L 0 +∞ 0 g (s)η 2 xt ds dx ≤ 0;
so Ẽ is non-increasing. We use an idea introduced in [START_REF] Fernández Sare | Stability of Timoshenko systems with past history[END_REF] to get this lemma.

Lemma 3.7. For any > 0, there exists c > 0 such that (3.45) Using (3.5) (for f = η xt and v = ϕ t ) and (2.27), we get, for all > 0, (3.47)

N 3 ρ 1 l k 3 k 1 -1 L 0 w xt ϕ t dx ≤ c L 0 +∞ 0 g(s)η 2 xt ds dx + E(t) -c E (t).
N 3 ρ 1 g 0 l k 3 k 1 -1 L 0 ϕ t +∞ 0 g(s)w xt η ds dx ≤ 2 E(t) + c L 0 +∞ 0 g(s)η 2 xt ds dx.
On the other hand, by integrating with respect to s and using the definition of η, we obtain Inserting (3.52) in (3.49), choosing τ 0 > 0 small enough such that c1 2 -cτ 0 > 0, and using the fact that G0(τ0E) E is non-increasing, we find, for some c2 > 0, (3.53) G 0 (τ 0 E(t)) ≤ -c 2 F (t) -c 1 + G 0 (τ 0 E(0)) E(0) E (t) + Ẽ (t) .

L 0 ϕ t +∞ 0 g(s)w xt (t -s) ds dx = - L 0 ϕ t +∞ 0 g(s)∂ s (w x (t -s)) ds dx = L 0 ϕ t g(0)w x (t) + +∞ 0 g (s)w x (t -s) ds dx = - L 0 ϕ t +∞ 0 g ( 
By integration with respect to t and using (3.36), we get, for some c3 > 0, (

T S G 0 (τ 0 E(t)) dt ≤ c3 1 + G 0 (τ 0 E(0)) E(0) E(S) + Ẽ(S) , ∀T ≥ S ≥ 0.

Choosing S = 0 in (3.54) and using the fact that G 0 (τ 0 E) is non-increasing, we obtain By induction on n, one can prove that (2.34) holds, for n = 2, 3, • • • ; see [START_REF] Guesmia | Asymptotic behavior for coupled abstract evolution equations with one infinite memory[END_REF] and [START_REF] Guesmia | Uniform and weak stability of Bresse system with two infinite memories[END_REF].

Remark 3.8. We give in this remark some general comments and open problems.

(1) Our stability results (2.30) and (2.34) hold under the smallness conditions (2.29) on l and g 0 , and the boundedness conditions (2.28) and (2.33) on the initial data η 0 . It is interesting to drop these conditions or determine the biggest values of l and g in (2.29) for which (2.30) and (2.34) hold. (2) Another interesting question concerns the stability of (1.1) when s 1 = s 2 .

(3) The case where only one infinity memory is considered in the vertical displacements; that is the integral in (1.1) is replaced by +∞ 0 g(s)ϕ xx (x, t -s) ds and considered on the first equation in (1.1), seems very delicate. The particular case of Timoshenko systems ((1.1) with l = 0) under infinity memory and/or frictional damping in the vertical displacements was studied in [START_REF] Guesmia | Some stability results for Timoshenko systems with cooperative frictional and infinite-memory dampings in the displacement[END_REF] and some stability estimates were proved.

3. 2 .

 2 Proof of (2.30). Let us choose τ > 0 such that(3.38) F ≤ τ 0 E and F (0) ≤ 1.According to(1.3), the coefficient of the integral in (3.37) vanishes, and hence, by choosing τ 0 > 0 small enough such that c1 -cτ 0 > 0 and using the first inequality in (3.38), we get, for c = τ (c -cτ 0 ),(3.39) F ≤ -c G 0 ( F ), whereupon (3.40) ( G( F )) ≥ c ,where G is defined in (2.31). Integrating (3.40) over [0, t] yields (3.41) G( F (t)) ≥ c t + G( F (0)).

Proof.

  We have, by the definition of η, )w xt (t -s) ds dx.

( 3 . 0 G 0 1

 3001 55) G 0 (τ 0 E(T ))T ≤ T (E(t)) dt ≤ c3 1 + G 0 (τ 0 E(0)) E(0) E(0) + Ẽ(0) .Because G -1 0 is increasing, (2.34) for n = 1 is deduced from (3.55) with c
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