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HOMOTOPY THEORY OF CURVED OPERADS AND CURVED

ALGEBRAS

GABRIEL C. DRUMMOND-COLE AND JOAN BELLIER-MILLÈS

Abstract. Curved algebras are algebras endowed with a predifferential, which

is an endomorphism of degree −1 whose square is not necessarily 0. This makes
the usual definition of quasi-isomorphism meaningless and therefore the ho-

motopical study of curved algebras cannot follow the same path as differential

graded algebras.
In this article, we propose to study curved algebras by means of curved

operads. We develop the theory of bar and cobar constructions adapted to this

new notion as well as Koszul duality theory. To be able to provide meaningful
definitions, we work in the context of objects which are filtered and complete

and become differential graded after applying the associated graded functor.

This setting brings its own difficulties but it nevertheless permits us to
define a combinatorial model category structure that we can transfer to the

category of curved operads and to the category of algebras over a curved operad
using free-forgetful adjunctions.

We address the case of curved associative algebras. We recover the notion

of curved A∞-algebras, and we show that the homotopy categories of curved
associative algebras and of curved A∞-algebras are Quillen equivalent.

Introduction

Motivation. The primary goal of this paper is to give a framework to deal with
the homological and homotopical theory of curved algebras.

The most elementary definition of an associative algebra is an underlying vec-
tor space or module endowed with algebraic structures (multiplication, unit). The
study of extensions or of deformations of an associative algebra leads to the defini-
tion of the Hochschild (co)homology, which is defined by means of the Hochschild
(co)chain complex. Revisiting this definition in terms of derived functors leads up
to the notion of resolution and in particular of quasi-isomorphism. Going further,
the theory of model categories provides powerful tools to extend the previous ideas
to many other contexts including the study of other kinds of algebras (commutative
algebras, Lie algebras, . . . ). The category of dg modules over a ring is endowed
with a model category structure whose weak equivalences are quasi-isomorphisms.
Hochschild (co)homology has a meaningful interpretation in this context and it
opens the door for (co)homology theories of other types of algebras.

Now suppose that we want to follow this path for curved associative algebras.
Such algebras are equipped not with a differential but rather with a predifferential.
Instead of squaring to zero, the square of the predifferential is equal to the bracket
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2 GABRIEL C. DRUMMOND-COLE AND JOAN BELLIER-MILLÈS

with a closed element called the curvature. This difference means that it is not
reasonable to expect the category of curved algebras to have an underlying category
of dg modules. There is therefore the need to define a new category (possibly
containing the category of dg modules as a subcategory) endowed with a notion
of weak equivalences to replace quasi-isomorphisms. Only then we will be able to
achieve our goal.

Approach and antecedents. At the heart of the homological and homotopical
study of algebras are the notions of an operad, used to encode algebras, and Koszul
duality theory for such operads. Koszul duality theory is a homological theory in
its definition and in its range of applications. The approach taken in this paper is:

(1) to define curved algebras as representations of curved operads,
(2) to find an appropriate base category to study curved algebras, and
(3) to extend Koszul duality theory to the curved context.

The constructions given in this paper are in some sense dual to the constructions
given in [HM12]. However, the homotopy theory of curved algebras is complicated
by the need to work in a kind of filtered context. In an unfiltered context, a
homotopy algebra equipped with a non-zero curvature is isomorphic to an “algebra”
which has a curvature but otherwise the zero algebra structure [Pos00, 7.3] (see also
Proposition 3.3 in [DSV20] for a filtered version with the curvature in filtration
degree 0).

Moving to Koszul duality poses its own problems and this is the reason why
we cannot use the existing literature [Lyu13, Lyu14]. The formulas that one is led
naturally to write are infinite sums whose terms eventually go to smaller and smaller
submodules of the filtration. These sums then only make sense if one further refines
from a filtered to a complete context. Depending on the side of the duality, there
are further minor refinements to make in order to fully capture the phenomena
at play; see below for the gory details. The filtered context already appears in
[DDL18], and previously, in a more restricted setting in [Pos12].

In this last article, Positselski has similar motivations to ours. He proposes a
framework to study the derived category of a curved associative or A∞-algebra. He
is also able to develop a Koszul duality theory in this context. We highly recommend
the reading of this article’s engaging and fruitful introduction. We cannot however
use his framework since our main example doesn’t fit into it. We therefore propose
a filtered framework which is different in two ways: we consider filtrations on the
base ring which aren’t induced by a maximal ideal and we consider filtrations on
our objects (algebras, operads, . . . ) which aren’t induced by the filtration on the
base ring. Another example we have in mind is the curved A∞-algebras appearing
in Floer theory in [FOOO07], which fit into the framework introduced here.

On filtered objects. Dealing with filtered and complete filtered objects poses
multiple technical challenges. If the ground category is Abelian, the categories of
(complete) filtered objects in the ground category are only quasi-Abelian [Sch99].
Colimits are more difficult to compute and the monoidal product must be redefined
in order to inherit various desirable qualities.

These details can be done more or less by hand; for example, the reference [Fre17,
7.3] contains a good deal of the setup work for the case where the ground ring is
a field. It is also possible to perform an ∞-category treatment as in [GP18]. But
for us, a useful way to organize the necessary changes was by recognizing that the
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various categories of objects of interest form a lattice of normal reflective embed-
dings. A subcategory inclusion is reflective when it admits a left adjoint (called
a reflector) and a reflective inclusion of closed symmetric monoidal categories is a
normal reflective embedding when the reflector is extended into a strong symmetric
monoidal functor.

Most of these categorical details are siloed off in Appendix A.

Our main algebraic categories. Let us give a little more precise focus here to
guide the development of the exposition. The reader is encouraged to think of
most of the symmetric monoidal categories as making up a scaffolding for the two
cases of actual interest. These are curved augmented operads in the category of
gr-dg complete filtered objects (treated in Section 2) and altipotent cooperads in the
category of dg complete filtered objects (treated in Section 3).

Our operads. Again, a curved associative algebra is an associative algebra A
endowed with a predifferential d satisfying

d2 = [θ, −]

where θ is a closed element in A of degree −2. In the filtered complete context
A = F0A ⊃ F1A ⊃ · · · , a filtered object endowed with a predifferential is gr-
dg when its associated graded is differentially graded, and we will assume that
θ ∈ F1A so that our curved algebras are gr-dg. The curved algebras in this article
can therefore be considered as infinitesimal deformations of flat algebras. We extend
this definition to define the notion of a curved operad. A first example is given by
the endomorphism operad of a gr-dg object and there is a curved operad cAs whose
algebras are precisely curved associative algebras.

Our cooperads. To tell a story about the bar-cobar adjunction, we need a notion
dual to the notion of curved (augmented) operads. We use infinitesimal cooperads
for this dual notion. Infintitesimal cooperads are quite similar to (not necessarily
coaugmented) cooperads in a filtered context. The only difference is that the counit
is constrained to lie in degree 1 of the filtration. As in the article [HM12], this can
be seen as an incarnation of the fact that curvature and counit play a dual role and
that asking for the curvature to be in filtration degree 1 corresponds dually to the
fact that the counit also is in filtration degree 1.

Outline of the remaining contents. We introduce several (co)free construc-
tions. In the operadic context, we define a free pointed gr-dg operad and a free
curved operad. The first one is used to build the cobar construction of an infini-
tesimal cooperad, the latter is used to endow the category of curved operads with
a model structure. In the cooperadic context, we define the notion of altipotence
which is a variation of the notion of conilpotence adapted to the complete setting.
We provide a cofree construction in this setting and we use it in the definition of
the bar construction of a curved operad.

The bar and the cobar constructions, presented in Section 4, fit as usual in an
adjunction and are represented by a notion of curved twisting morphisms. These
are different from the constructions in [Lyu14] because of the filtered complete
framework and by the fact that we consider a curvature only on one side of the ad-
junction. In the context of R-modules (for a field R of characteristic 0), the counit
of the adjonction provides a graded quasi-isomorphism between curved operads.
This resolution is functorial and we can hope to obtain a “smaller” resolution when
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dealing with specific examples. This is the objective of the Koszul duality theory
for curved operads that we develop in Section 5. The constructions in this section
are a little bit more subtle than the classical constructions because of the fact that
infinite sums appear. In particular, it is difficult to describe the Koszul dual (in-
finitesimal) cooperad associated with a quadratic curved operad. Nevertheless, we
define under certain conditions the Koszul dual operad which is easier to compute.
Moreover, in the situation where the curved operad is Koszul, a Poincaré–Birkhoff–
Witt type isomorphism provides a description of the underlying S-module by means
of the (classical) Koszul dual cooperad of a quadratic operad which is the associ-
ated graded of the curved operad. Under the Koszul condition, we again obtain a
resolution of the quadratic curved operad, smaller in a precise meaning since the
generators embed to the bar construction as the 0-homology group for the “syzygy
degree”.

We make explicit the case of the curved operad cAs encoding curved associative
algebras in Section 6. The curved operad cAs is Koszul and we can compute its
Koszul dual infinitesimal cooperad (and operad), as well as the Koszul resolution.
The algebras over the Koszul resolution are the curved A∞-algebras which appear
in the literature (to give only a few examples see [GJ90, CD01, Kel06, FOOO07,
Nic08, Pos19, DSV20]). We finally show that the homotopy categories of curved
associative algebras and of curved A∞-algebras are Quillen equivalent.

Model category structure. Speaking of resolutions and Quillen equivalence are
indications that we have a model category structure in mind. We establish the
existence and properties of this structure in Appendix C. More precisely, there we
describe a model structure on the base category of complete gr-dg R-modules. This
model category enjoys several nice properties: it is a proper cofibrantly generated
model structure, it is combinatorial and it is a monoidal model category structure.
Classical theorems allow us to transfer this cofibrantly generated model structure
along a free-forgetful adjunction. This enables us to endow the category of com-
plete curved operads with a cofibrantly generated model structure. The bar-cobar
resolution and the Koszul resolution are cofibrant in the underlying category of
complete gr-dg S-modules. Similarly, we describe a free functor in the context of
algebras over a curved operad and endow the category of algebras over a curved op-
erad with a cofibrantly generated model structure. We provide base change results
to compare the homotopy categories of algebras over some curved operads.

In [LGL18], Le Grignou and Lejay endow the category of algebras over a curved
cooperad with a model structure. For some curved cooperad, we can try to com-
pare our curved algebras over the dual operad with their algebras and their model
structure. Because of the freedom we have for our filtrations, it is not clear how to
compare the two categories of algebras and the two model structures in general.

Conventions. The ground category is a Grothendieck category A equipped with a
closed (symmetric monoidal) tensor product. We assume moreover that the tensor
product preserve colimits in each variable. For various parts of the exposition,
weaker hypotheses suffice but this seems a reasonable place to cut things off. For
example, A can be

• the category of R-modules for R a commutative ring,
• the category of graded R-modules or complexes of R-modules,
• the category of sheaves of R-modules on a topological space X,
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• the category of graded sheaves of R-modules or complexes of sheaves of
R-modules on X, or
• for a (graded) ringed space (X, OX), the category of sheaves of (graded)
OX -modules.

When we deal with symmetric operads, we want to assume that A is Q-linear. In
the example above, this is the assumption that R is a Q-algebra.

We use the notation (M, q, ⊗, 1) to denote an additive closed monoidal cate-
gory with small colimits and limits. We assume moreover that the monoidal struc-
ture preserves colimits in each variable. Examples of such categories M are given

by the categories A, Filt(A), F̂ilt(A), and F̂ilt
gr
(A) when A is a closed symmetric

monoidal Grothendieck category with small colimits and limits and such that the
monoidal structure preserves colimits in each variable.

We want to work with S-modules or collections in M, which are functors from
the groupoid of finite sets to M. We also want to (simultaneously) work with N-
modules in M, which are functors from the groupoid of ordered finite sets to M.
We sometimes implicitly pass to a skeleton of either of these categories with objects
[n] = {1, . . . , n}.

The categories of S-modules and N-modules support a number of monoidal prod-
ucts built using the monoidal product ofM. The primary one we will want to use is
the composition product that we denote by ◦. The forgetful functor from S-modules
to N-modules does not intertwine the composition products on each of these cat-
egories, but nevertheless we will use the same symbol for both cases. In the few
cases where this might cause confusion, we will be explicit about the distinctions.

In Sections 5 and 6, we restrict ourselves to categories A of (unbounded) Z-
graded R-modules or complexes of R-modules, for R a commutative ring.

When M is a Z-graded object, we denote by sM the suspension of M , that is
the graded object such that (sM)n := Mn−1.
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1. The filtered framework

In this preliminary section we establish definitions, terminology, and notation
for the base world of filtered and complete objects in which we will work.

1.1. Predifferential graded objects. We first fix our convention for filtered ob-
jects and predifferential graded objects.

Definition 1.2.

• A filtered object ( ~X, F ) (often expressed just as X) in A is a Nop-indexed
diagram

F0X ← F1X ← F2X ← · · ·
where each map is a monomorphism. We often think of the object ( ~X, F )
as the object X := F0X equipped with the extra data of the family of
subobjects {FpX}.

Every non filtered object X gives rise to a trivially filtered object with

FpX =

{
X p = 0

∅ p > 0.

Morphisms of filtered modules f : ( ~X, F ) → (~Y , F ′) are morphisms of
diagrams. In other words, they are A-maps X → Y which are filtration
preserving in that f(FpX) ⊂ F ′pY , for all p ∈ N.

• To the filtered object ( ~X, F ), we associate the graded object (i.e., object
indexed by the elements of Nop) GrX defined by (GrX)p := FpX/Fp+1X.

We denote by Filt(A) the category of filtered objects in the category A.

Remark 1.3. • Since we are only interested in decreasing filtration, we omit
the adjective “decreasing” in this article.
• The indexing category N is not the most general possibility. The case of Z-

filtered objects is also interesting but it’s technically useful for us to work
with a partially ordered monoid with the identity as its lowest element.
Of course, there are many examples of such monoids other than N, such
as Q+ and R+. But in most examples which arise in practice, it seems
that coarsening the filtration to a discrete countable filtration by a monoid
isomorphic to N does no harm in terms of the algebra that interests us.
On the other hand, working with non-discrete filtrations poses a number of
technical problems, most importantly the fact that the associated graded
functor fails to be conservative in general. So we restrict our attention to
N-filtrations.

Remark 1.4. It is well-known that the category Filt(A) is not Abelian in general.
However, this category is a reflective subcategory of the category of Nop-indexed
diagrams in A and thus is bicomplete. See Appendix A for details.
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Notation 1.5. Denote by gA the closed symmetric monoidal category of Z-graded
A-objects and by dgA the closed symmetric monoidal category of Z-graded com-
plexes in A (dg objects in A for short). A predifferential on a graded object X in
gA is a degree −1 map of graded objects d : X → X. We denote by pgA the closed
symmetric monoidal category of predifferential graded object (pg object in A for
short).

Remark 1.6. When A is a Grothendieck category, the category pgA of predifferen-
tial graded objects is again a Grothendieck category. Colimits are taken degreewise
and filtered colimits are degreewise exact hence exact. Finally, if {Ui}i∈I is a family
of generators of A, then {Dn,∞Ui := (qk≤nUi, d) }n∈Z, i∈I , where the k-th copy
of Ui is in degree k, d sends u in the k-th copy to u in the (k − 1)-th copy and
where the filtration is given by Fp(D

n,∞Ui) = qk≤n−2pU , is a family of generators
of pgA.

1.7. “Gr” and associated graded. For any property p of gA, we say that a
filtered object X is gr-p if the associated graded object GrX is p. We extend
this terminology in the obvious way to all other contexts where we have a variant
of the associated graded functor (and we make the definitions precise when the
terminology is not obvious). This convention already appears in [Sjö73].

The following example illustrates this terminological choice.

Definition 1.8. Let ( ~X, F, d) be an object of Filt(pgA). When the predifferential
d induces a differential on GrX, that is to say,

d2 : FpX → FpX

factors through Fp+1X for all p, we call ( ~X, F, d) gr-dg. A natural way to associate

a dg object to a gr-dg object ( ~X, F, d) is to consider the associated graded object

(X, d)gr := (GrX, Gr d).

Accordingly, we call gr-homology of the gr-dg object ( ~X, F, d) the graded object

Hgr
• ( ~X, F, d) := H•((X, d)gr) = H•(GrX, Gr d).

We define the corresponding notion of “quasi-isomorphism” between gr-dg objects.

We say that a map f : ( ~X, F, d) → (~Y , F ′, d′) is a graded quasi-isomorphism if
it induces a quasi-isomorphism fgr : (X, d)gr → (Y, d′)gr, that is when Hgr

• (f) :

Hgr
• ( ~X, F, d)→ Hgr

• (~Y , F ′, d′) is an isomorphism.

Remark 1.9. The graded quasi-isomorphisms are the weak equivalences in the model
category structure on gr-dg R-modules given in Appendix C.

From now on we use this kind of “gr” terminology without comment.

1.10. Complete objects. Given a filtered object X = ( ~X, F ), the filtration struc-

ture induces maps FpX
ip−→ F0X.

Definition 1.11. We say that X is complete if the natural morphism

X → lim
p

coker ip

is an isomorphism.

We use the notation F̂ilt(A) for the category of complete filtered objects in A.
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Remark 1.12. Complete objects are a reflective subcategory of filtered objects, with
a completion functor as a reflector which we will write

V 7→ V̂ , V 7→ V̂ , V 7→ V ∧,

whichever seems typographically most appropriate in context. See Appendix A for
details.

1.13. Monoidal products. The closed symmetric monoidal product of A extends
to the filtered (see Corollary A.30) and complete (Corollary A.35) settings. The
product in the filtered setting has components:

Fp(V ⊗̄W ) := im

((
colim
a+b≥p

FaV ⊗ FbW
)
→ V ⊗W

)
,

and the product in the complete setting is the completion:

V ⊗̂W := (V ⊗̄W )∧.

In both cases the internal hom objects can be calculated in Nop-indexed diagrams
in A.

Definition 1.14. We denote by F̂ilt
gr
(A) the category of complete gr-dg objects

( ~X, F, d). It is a full subcategory of F̂ilt(pgA). Moreover, when A is assumed to
be a Grothendieck category, it is a reflexive subcategory of complete pg modules
(see Corollary A.42) and the closed symmetric monoidal product of A extends to
the complete gr-dg setting (see Corollary A.47). The monoidal product is again ⊗̂.

2. Operads in the complete and filtered setting

Let (M, q, ⊗, 1) be an additive closed monoidal category with small colimits
and limits. We assume moreover that the monoidal structure preserves colimits in
each variable. In this situation,M is enriched over the category of sets (see [Fre09,
1.1.7]) and for a set K and an object M ∈M, we have a tensor product K ⊗M in
M given by

K ⊗M := qk∈KM.

Examples of such categoriesM are given by the categories A, Filt(A), F̂ilt(A), and

F̂ilt
gr
(A) when A is a closed symmetric monoidal Grothendieck category with small

colimits and limits and such that the monoidal structure preserves colimits in each
variable.

2.1. Complete S-objects. We present the monoidal category of symmetric ob-
jects (or S-modules) in M denoted by (S-Mod(M), ◦, I). We refer for instance
to [LV12, 5.1] in the case of modules and to [Fre09, 2.2] for more general situations.

An S-module in M is a collection M = {M(0), M(1), . . . , M(n), . . .} of right-
Sn-objects M(n) inM. An action of Sn on an object M(n) is defined as a morphism
of monoids Sn ⊗ 1 → M(n) in M. A morphism f : M → N in the category of
S-Mod(M) is a componentwise morphism.

We define the monoidal product ◦ of S-objects in M by

M ◦N(n) :=
∐
k≥0

(
M(k)⊗Sk

( ∐
i1+···+ik=n

IndSn
Si1×···×Sik

(N(i1)⊗ · · · ⊗N(ik))

))
,
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where IndGHM := G⊗HM is the induced representation. We emphasize that, when

for example M = F̂ilt(A), the sum q stands for the completion of the sum in A
with respect to the filtration.

To simplify the notations, we denote by

S-Mod(Âgr) the category S-Mod(F̂ilt
gr
(A))

and by

S-Mod(d̂gA) the full subcategory of S-Mod(Âgr)

given by complete pg-S-modules M = {M(n)} such that the M(n) are dg-objects.
We remark that the category of S-modules defined in [LV12] can be seen as a

full subcategory of the category S-Mod(d̂gA) by defining on the S-module M the
trivial filtration F0M = M and FpM = {0} for all p > 0. For example, I :=
{0, R, 0, . . .} endowed with the trivial filtration and the trivial differential is an

object of S-Mod(d̂gA).

This gives a monoidal product on the categories S-Mod(Âgr) and S-Mod(d̂gA).

We are interested in the category (S-Mod(Âgr), ◦, I) in Section 2.5 and in the

category (S-Mod(d̂gA), ◦, I) in Section 3.

Remark 2.2. Using the convention that an empty tensor product is equal to R, we
get that one of the components of (M ◦N)(0) is M(0).

Definition 2.3. An operad (O, γ, η, d) in the category M is a monoid in the
monoidal category (S-Mod(M), ◦, I). The map γ : O ◦ O → O is the composition
product, the map η : I → O is the unit and the map d : O → O is a derivation for
the composition on O. We denote by Op(M) the category of operads in M.

Thus we have, for instance:

• a graded operad is an operad in the closed symmetric monoidal category
(gA,⊗),

• a filtered operad is an operad in the closed symmetric monoidal category
(Filt(A), ⊗̄), and

• a complete operad is an operad in the closed symmetric monoidal category

(F̂ilt(A), ⊗̂).
• a complete gr-dg operad is an operad in the closed symmetric monoidal

category (F̂ilt
gr
(A), ⊗̂).

Remark 2.4. The phrase “complete filtered operad” is a priori ambiguous. We will
always use this phrase to mean an operad in a symmetric monoidal category of
complete filtered objects in some ground category. We will never use it to mean an
operad equipped with a complete filtration each stage of which is itself an operad.

Let O be an operad in M. The total object obtained by taking the coproduct
(in M) ∐

n≥0

O(n)

supports a pre-Lie bracket {−, −}, and then a Lie bracket [−, −], which is given
on O(p)⊗O(q) by

{−, −} :=

p∑
i=1

∑
P

(− ◦i −)σP ,
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The notation −◦i− stands for the partial composition product on O where we plug
the element in O(q) in the ith entry of the element in O(p). The sum runs over
some ordered partitions P by means of which we can define the permutation σP.
(We refer to [LV12], Section 5.4.3 for more details.) If we fix a map µ : I → O(1)
(or an element µ ∈ O(1) when it is meaningful), we therefore obtain, by a slight
abuse of notation, an endomorphism [µ, −] of O given by the formula

[µ, −] := (µ ◦1 −)− (−1)|µ||−|
q∑
j=1

(− ◦j µ).

(Or

[µ, ν] := µ ◦1 ν − (−1)|µ||ν|
q∑
j=1

ν ◦j µ

when this is meaningful.) Moreover, the associativity of the map γ shows that
[µ, −] is a derivation.

2.5. Curved operads. We give the definition of a curved operad in the category

F̂ilt
gr
(A) and we present the curved endomorphism operad in this context. We

emphasize that our operads are allowed to have 0-ary elements, that is O(0) 6= ∅
a priori. We use the notation of the book [LV12].

Definition 2.6. A curved operad (O, γ, η, d, θ) is a complete gr-dg operad (O, γ, η, d)
equipped with a map θ : I → (F1O(1))−2 such that{

d2 = [θ, −] (or [−, θ] + d2 = 0),
d(θ) = 0 (θ is closed).

The map (or element) θ is called the curvature.

Remark 2.7. When dealing with curvature, we often think about the map θ as an
element θ ∈ F1O(1) of degree −2. If necessary, it is possible to replace “the element
θ” by “the map θ” everywhere in this article.

Definition 2.8. A morphism f : (O, d, θ) → (P, d′, θ′) of curved operads is a
morphism of operads such that{

f · d = (−1)|f |d′ · f,
f(θ) = θ′.

We denote by cOp(A) the category of curved operads in F̂ilt
gr
(A).

A weak equivalence between curved operads is a morphism of curved operads
whose underlying S-module map is a weak equivalence.

An important example of a curved operad is given by the endomorphism operad
of a complete gr-dg object.

Definition 2.9. The endomorphism operad of a complete gr-dg object (X, d) is
the curved operad

EndX := ({Hom(X⊗n, X)}n≥0, γ, ∂, θ),

where the composition map γ is given by the composition of functions and{
∂(f) := [d, f ], for f ∈ Hom(X⊗n, X),
θ := d2.

It is straightforward to check that this really defines a curved operad.
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Definition 2.10. A representation of a curved operad O on the complete gr-dg
object X is a map of curved operads O → EndX . We also say that this defines an
O-algebra structure on X.

Remark 2.11. An example of such an algebra is given by curved associative algebras
(see Section 6) and curved Lie algebras in a complete setting.

An augmentation of a curved operad (O, γ, η, d, θ) is a map O → I of curved
operads such that ε · η = idI .

An augmentation realizes the underlying S-object of O as the biproduct (i.e.,
both the product and coproduct) of I and ker ε, which we denote O as usual.

2.12. Free complete operad. The construction of the free operad given in [BJT97,
Rez96] and in [LV12], Section 5.5.1 and 5.8.6 apply in the filtered and in the com-
plete setting by replacing the biproduct and the composition product ◦ by their
filtered or complete analog.

We recall the definition of the tree operad. For M an S-module inM, we define

T0M = I

and recursively define

TnM = I q (M ◦ Tn−1M).

There is an inclusion T0M → T1M . Then given a map ιn−1 : Tn−1M → TnM ,
there is a map ιn : TnM → Tn+1M which takes the I factor to the I factor and
takes M ◦ Tn−1M → M ◦ TnM using idM on the M factor and ιn−1 on the other

factor. We write TM the colimit (in filtered S-modules) over n of TnM and T̂M
the colimit (in complete S-modules) over n of TnM .

There is an injection from I = T0M → TnM which passes to a map η : I → TM
(resp. η : I → T̂M). Similarly, the map M → T1M induces a map j : M → TM
(resp. j : M → T̂M).

The two constructions TM and T̂M are the free operads in the filtered and in
the complete setting with the same arguments as in Theorem 5.5.1 in [LV12].

Theorem 2.13. There is an operad structure γ (resp. γ̂) on TM (resp. T̂M)

such that T (M) := (TM, γ, j) (resp. T̂ (M) := (T̂M, γ̂, j)) is the free operad on
M in the category of filtered operads (resp. of complete operads).

Proof. See [LV12, Theorem 5.5.1]. �

Next we verify that this standard construction commutes with completion, so
that the complete free operad is the aritywise completion with respect to the filtra-
tion of the usual free operad.

A lax symmetric monoidal functor induces a functor on operads, acting aritywise
(see, e.g., [Fre17, Proposition 3.1.1] or [YJ15, Theorem 12.11(1) applied to Corollary
11.16]). Therefore, given an operad O in filtered objects, the aritywise completion

Ô is (functorially) a complete operad. Moreover, the completion functor and the
inclusion of complete operads into filtered operads are still adjoint [YJ15, Corollary
12.13] (see also [Fre17, Proposition 3.1.5], where the hypotheses require G to be
strong symmetric monoidal but the argument only uses the lax structure). We
record the conclusion as follows.
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Proposition 2.14. Aritywise completion and inclusion form an adjunction between
complete filtered operads and filtered operads.

This construction is then compatible with the free operad in the following sense.

Proposition 2.15. Let M be a filtered graded S-object. The completion of the

free filtered (graded) operad on M and the map of complete S-objects M̂ → T̂M
induced by completion exhibits T̂M as the free complete operad T̂ M̂ on the complete

S-object M̂ .

Proof. By adjunction, maps of complete operads from T̂M to a complete graded
operad X are in bijection first with operad maps from TM to X , then to S-object

maps from M to X , and finally to complete S-object maps from M̂ to X .

A priori there are two recipes for a map from M̂ to T̂M . To see that they agree,
it suffices to compare them on M , where both are the composition M → TM →
T̂M . �

Remark 2.16. (1) When (M, dM ) is a predifferential graded S-object, the free

(complete) operad on M is naturally endowed with a predifferential d̃M
induced by dM defined as follows: it is the unique derivation which extends
the map

M
dM−−→M ↪→ TM.

We denote by T (M, dM ) the free pg operad (TM, d̃M ). Moreover, when
(M, dM ) is a gr-dg S-object, so is T (M, dM ) and it is the free gr-dg operad
on (M, dM ). This is true in the filtered and in the complete settings.

(2) To lighten the notation, when the setting is explicit, we use the notation T
for the free operad both in the filtered and in the complete setting.

(3) By the previous proposition, it is possible to think of an element in the free
complete operad on the complete graded S-object M as a (possibly infinite)
sum of trees, whose vertices of arity k are indexed by element in M(k).

2.17. Free curved operad on a gr-dg S-module. We now provide a curved
version of the free-forgetful functors adjunction.

Definition 2.18. We say that a couple (O, dO, θ) is a pointed complete gr-dg
operad when O is a complete gr-dg operad and θ is a closed element in F1O−2

(that is dO(θ) = 0).

In the next proposition, T denote either the free filtered gr-dg operad or the free
complete gr-dg operad.

Proposition 2.19. We define the functor

T+ : S-Mod(Âgr) → Pointed filtered/compl. gr-dg operads,

(M, dM ) 7→
(
T (M q ϑI), d̃M , ϑ

)
,

where ϑ is a formal parameter in homological degree −2 and in filtration degree 1
and d̃M is the unique derivation which extends the map

M q ϑI →M
dM−−→M → T (M q ϑI).

There is an adjunction

T+ : S-Mod(Âgr) / Pointed filt./compl. gr-dg operads : U.o
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Moreover, the pointed filtered / complete gr-dg operad (T+(M, dM ), γ, j+), where

γ is the free composition product and j+ is the map M
j−→ TM → T (ϑI qM) is

the free filtered / complete gr-dg operad.

Proof. We denote by pOp the category of pointed operads under consideration and
we consider a pointed operad (O, dO, θ) in it. By Theorem 2.13, we have

HomOp(T (M q ϑI), O) ∼= HomS-Mod(Âgr)(M q ϑI, U(O))

∼= HomS-Mod(Âgr)(M, U(O))×HomS-Mod(Âgr)(ϑI, U(O)),

where U(O) is the underlying filtered / complete graded S-modules associated with
O. The fiber over the map ϑ 7→ θ on the right-hand side is naturally isomorphic
to HomS-Mod(Âgr)(M, U(O)). On the other hand, the fiber over the map ϑ 7→ θ on

the left-hand side consists of those operad maps T+M → O sending ϑ to θ. The

condition on the predifferentials follows directly from the construction of d̃M . We
therefore obtain the adjunction

HompOp(T+(M, dM ), (O, dO, θ)) ∼= HomS-Mod(Âgr)((M, dM ), U(O, dO, θ)),

where U(O, dO, θ) is the underlying filtered / complete gr-dg S-modules associated
with (O, dO, θ). It is clear from the proof (and Theorem 2.13) that the tuple
(T+(M, dM ), γ, j+) is the free filtered / complete gr-dg operad. �

We construct the free curved operad by means of the functor T+.

Theorem 2.20. We define the functor

cT : S-Mod(Âgr) → Curved operads
(M, dM ) 7→

(
T (M q ϑI)/

(
im(dM

2 − [ϑ, −])
)
, d̄M , ϑ̄

)
,

where ϑ is a formal parameter in homological degree −2 and in filtration degree 1,
the map d̄M is the derivation induced by d̃M and

(
im(dM

2 − [ϑ, −])
)

is the ideal

generated by the image of the map dM
2 − [ϑ, −] : M → T (M q ϑI).

There is an adjunction

cT : S-Mod(Âgr) / Curved operads : U.o

Moreover, let ̄ : (M, dM ) → cT (M, dM ) denote the composition (M, dM )
j−→

T (M, dM )� cT (M, dM ). The curved operad (cT (M, dM ), γ̄, ̄) is the free curved
operad on (M, dM ) in the category of curved operads.

Proof. The map d̃M induces a well-defined map d̄M on the quotient of the free
operad T (M q ϑI)/

(
im(dM

2 − [ϑ, −])
)

since d̃M (ϑ) = 0. From the fact that

im
(

˜dM
2
− [ϑ, −]

)
⊂
(

im( ˜dM
2
− [ϑ̄, −])

)
=
(
im
(
dM

2 − [ϑ, −]
))

we obtain that cT (M, dM ) is a curved operad.
We denote by Up is the forgetful functor from curved operads to pointed gr-

dg operads. Morphisms of curved operads are morphisms of pointed gr-dg op-
erads between curved operads. This means that a morphism of curved operads
f̄ : cT (M, dM )→ (O, dO, θ) is the same thing as a morphism of pointed gr-dg oper-
ads f̄ : UpcT (M, dM )→ Up(O, dO, θ). Morphisms UpcT (M, dM )→ Up(O, dO, θ)
in pointed gr-dg operads coincide with morphisms T+(M, dM ) → Up(O, dO, θ) in

pointed gr-dg operads with the condition that the ideal
(
im
(
dM

2 − [ϑ, −]
))

is sent
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to 0. Since
(

im( ˜dM
2
− [ϑ̄, −])

)
=
(
im
(
dM

2 − [ϑ, −]
))

and morphisms of pointed

gr-dg operads commute with the predifferentials and send the marked point to
the marked point, we get that this last condition is automatically satisfied when
Up(O, dO, θ) is the underlying pointed gr-dg operad of a curved operad. Hence, we
have

HomcOp(cT (M, dM ), (O, dO, θ)) ∼= HompOp(T+(M, dM ), Up(O, dO, θ)).

The Theorem follows from Proposition 2.19. �

Remark 2.21. This adjunction is useful to define a model category structure on
complete curved operads so that the bar-cobar resolution and the Koszul resolu-
tion provide S-cofibrant resolutions (see Appendix C for the details on the model
structure).

We now give the notion of quasi-free complete curved operad. The cobar con-
struction (see Section 4) is a quasi-free operad and cofibrant complete curved operad
(see Appendix C) are retracts of quasi-free complete curved operads.

Definition 2.22. We call a complete curved operad O quasi-free if there exists a
complete S-module M and a predifferential d : T+(M)→ T+(M) such that

O ∼= (T+(M), d)/
(
im
(
d2 − [ϑ, −]

))
.

It is different from a free complete curved operad by the fact that the prediffer-
ential d is not a priori induced by a map M →M .

3. Complete cooperads

We present in this section the notion of a complete cooperad and associated
notions, most importantly altipotence, a variation of conilpotence where instead of
being eventually zero, iterated powers of the decomposition map eventually arrive
in arbitrarily high filtration degree. This material is fairly technical, but the raison
d’être and upshot are straightforward: the goal throughout is to establish a context
in which the usual formulas for the cofree conilpotent cooperad in terms of decorated
trees extend to the complete context. The tension is to find a full subcategory of
cooperads that is big enough to contain the (complete) tree cooperad but small
enough so that the tree cooperad is the cofree object there. It is possible (in fact
likely) that there are more natural alternatives to working with altipotence. Since
for us the altipotent cooperads are not of intrinsic interest but merely a tool to
study complete operads, in that capacity they are perfectly adequate.

Definition 3.1. We define a cooperad (C, ∆, ε, d) in the category M to be a
comonoid in the monoidal category (S-Mod(M), ◦, I). The map ∆ : C → C ◦C is a
decomposition map, the map ε : C → I is the counit map. Morphisms of cooperads
are morphisms of comonoids in S-modules. We denote by Coop(M) the category
of cooperads in M.

Thus:

• a graded cooperad (in A) is a cooperad in the category (gA, ⊗),
• a filtered cooperad is a cooperad in the category (Filt(A), ⊗̄), and

• a complete cooperad is a cooperad in the category (F̂ilt(A), ⊗̂),

• a dg complete cooperad is a cooperad in the category (F̂ilt(dgA), ⊗̂).
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We need an other notion of “cooperad” in the next section to define a bar con-
struction and a cobar construction.

Definition 3.2. When (M, F ) is a (complete) filtered object in M, we define the
k-shifted filtrations of F by (M, F )[k] = (M, F [k]) where

F [k]pM =

{
F0M when k + p ≤ 0,
Fk+pM when k + p ≥ 1.

With a slight abuse of notation, we often simply write M [k] instead of (M, F )[k]
and FpM [k] instead of F [k]pM .

We denote by I[−1] the (complete) filtered S-module endowed with the following
filtration

F0I[−1] = I, F1I[−1] = I and FpI[−1] = ∅ for all p ≥ 2.

Definition 3.3. We define an infinitesimal cooperad (C, ∆, ε, d) in the category
M to be the following data:

• a coassociative map ∆ : C → C ◦ C called the decomposition map;
• a map ε : C → I[−1] called the counit map which fits into the following

commutative diagrams

(C(n)[−n])n ∼= C ◦ (I[−1]) C ◦ C I[−1] ◦ C ∼= (C(n)[−1])n

C

id◦ε ε◦id

incl.

∆

incl.

Morphisms of infinitesimal cooperads are morphisms of S-modules which preserve
the decomposition map and the counit map. We denote by infCoop(M) the category
of infinitesimal cooperads in M.

The same definition is meaningful in the case where the filtration is a graduation
and we can therefore provide the same definition in a graded setting. Because
generically the associated graded functor is not colax, it does not take filtered
(infinitesimal) cooperads to graded (infinitesimal) cooperads. For that we need a
flatness condition.

Proposition 3.4. There is a functor Gr from the category of gr-flat filtered (or
complete, infinitesimal) cooperads to graded (infinitesimal) cooperads covering the
associated graded functor.

See Appendix B for the proof.

Remark 3.5 (Warning). Because the associated graded functor does not extend to
arbitrary filtered or complete (infinitesimal) cooperads, any “gr” definition which
uses a cooperadic structure on the associated graded is implicitly assumed to only
be defined for gr-flat filtered or gr-flat complete (infinitesimal) cooperads.

3.6. The tree cooperad. We recall the construction of the tree cooperad in an
additive category. This construction is taken directly from [LV12, 5.8.6] with very
mild adaptations (using coinvariants instead of invariants and working in greater
generality). We recall it explicitly because we will need to work with it intimately.

The following construction works in a cocomplete symmetric monoidal additive
category equipped with the composition product ◦ and unit I. We however work
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in the category M described in the beginning of Section 2 for the results arriving
after.

Construction 3.7 (Tree cooperad). For M an S-module in M, we write T cM as
the colimit (in S-modules) over n of TnM , where TnM is defined in Section 2.12.

There is a projection using the zero map from TnM → I which passes to a map
ε : T cM → I. There is an inclusion η : I = T0M → T cM .

Finally we define a decomposition map. We proceed inductively. First define
∆0 : T0M → T0M ◦ T0M as the canonical map I → I ◦ I. We use the same
definition for I ⊂ TnM . For the M ◦ Tn−1M summand of TnM , we define a map
to the biproduct

M ◦ Tn−1M → (I ◦ (M ◦ Tn−1M))q ((M ◦ Tn−1M) ◦ TnM)

by I ◦ id on the first factor and

M ◦ Tn−1M
idM◦∆n−1−−−−−−−→M ◦ (Tn−1M ◦ Tn−1M)

∼= (M ◦ Tn−1M) ◦ Tn−1M
id◦ιn−1−−−−−→ (M ◦ Tn−1M) ◦ TnM

on the second factor.
This passes to the colimit to give a map ∆ : T cM → T cM ◦ T cM . Verifying

left unitality is direct, right unitality is by induction, and associativity is by a
combination of induction and combinatorics involving the I factor.

This defines a cooperad, called the tree cooperad.

The tree cooperad is often constructed (e.g., in [LV12]) as an explicit model
for the cofree conilpotent cooperad. We care about this explicit model more or
less because it lets us perform calculations. However, in the complete case which
interest us, the cooperads is not conilpotent in general. Therefore our goal is to
weaken the conilpotence condition and find a more relaxed setting in which the tree
cooperad will still be cofree.

Lemma 3.8. There is a natural retract of collections rn from TnM to Tn−1M .

Proof. We can define rn inductively. For n = 1 the retract r1 : I qM ◦ T0M → I
is projection to the first factor. Suppose given rj for 1 ≤ j < n. Define the n
component at M ,

rn : I q (M ◦ TnM)→ I q (M ◦ Tn−1M),

as the identity on the first factor and id ◦ rn−1 on the second factor. By induction
rn is a retract of the desired inclusion. �

The composite of r2 · · · rn : TnM → T1M with the projection T1M →M ◦I ∼= M
provides a map εn(M) : TnM → M , which extends to a map ε(M) : TM → M
(functorial in M).

We will use the notation QnM for the “graded” component TnM/Tn−1M .

Corollary 3.9. The underlying collection of the tree cooperad T cM is the coprod-
uct of QnM over all n. Similarly, the finite stage TnM is the coproduct of these
quotients through stage n.
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Proof. The retract of Lemma 3.8 realizes the object TnM as the coproduct of QnM
and Tn−1M , since S-Mod(M) is additive with kernels. Then by induction T cnM is
isomorphic to the coproduct ∐

j≤n

QjM,

and the colimit of these is the infinite coproduct. �

Remark 3.10. Intuitively we can think of the nth graded stage QnM as consist-
ing of rooted trees decorated by elements of M with maximal number of vertices
encountered in a simple path from the root to a leaf precisely equal to n.

Corollary 3.11. Let M be a complete collection in F̂ilt(A). A map of complete
collections with codomain T cM is determined uniquely by its projections to QnM
(but need not exist).

Proof. This follows from Lemma A.17 which says the map from the coproduct to
the product is monic. �

Construction 3.12. Let C be a complete cooperad and M a complete collection
equipped with a map of collections ϕ : C →M .

We inductively construct a map Φn : C → QnM as follows. We define Φ0 as
C → I ∼= T c0 M as the counit ε. We define Φ1 as ϕ. Next assuming Φ0, . . . ,Φn−1

are defined, we define a map to the biproduct
n∑
i=0

Φi : C → T cnM = I q (M ◦ T cn−1M)

as Φ0 on the first summand I and(
ϕ ◦

n∑
i=1

Φi−1

)
·∆

on the second summand. Inductively this agrees with
∑n−1
i=0 Φi except on the factor

QnM of the biproduct T cnM , and so defines Φn.

This gives a map into the product of quotients
∏
QnM .

Lemma 3.13. Let C be a complete cooperad and M a complete collection. Let
Φ : C → T cM be a map of collections and let ϕ : C →M be the projection

C Φ−→ T cM →
∏

QnM →M.

Then Φ is a map of cooperads if and only if the projection

C Φ−→ T cM →
∏
n

QnM → QNM

coincides with the map ΦN obtained from ϕ via Construction 3.12 for all N .

Proof. The map Φ is compatible with counits if and only if C Φ−→ T cM → Q0M ∼= I
is the counit ε of C, which coincides with Φ0. Compatibility with Φ1 is already a
hypothesis of the lemma.

Let us first show necessity. Suppose shown that the projection of Φ to Tn−1M

must be
∑n−1
j=0 Φj−1 in order that Φ be a map of cooperads. Let N be arbitrary (a

priori unrelated to n) and consider the composition of the “comultiplication” ∆N :
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TNM → TNM ◦TNM used in Construction 3.7 and the map TNM ◦TNM
εN (M)◦id−−−−−−→

M ◦ TNM . More or less by unitality, this composition is the inclusion of the non-I
summand of TNM into the non-I summand of TN+1M . Moreover, the restriction of
this composition along QNM → TNM lifts as follows (again essentially by definition
of ∆N ):

(M ◦ TN−1M)/(M ◦ TN−2M)

QNM TNM TNM ◦ TNM M ◦ TNM.
∆N εN (M)◦id

In particular for N > n the projection of the horizontal composition to M ◦Tn−1M
vanishes. Then the following diagram commutes:

C T cM TnM

C ◦ C T cM ◦ T cM M ◦ Tn−1M.

∆

Φ projection

∆

Φ◦Φ

The composition along the bottom of the diagram is ϕ ◦
∑n−1
j=0 Φj by induction,

which suffices to show that the projection of Φ to TnM is
∑n
j=0 Φj , extending the

induction.
Now we turn to sufficiency. Suppose that Φ has projections as in Construc-

tion 3.12. We would like to argue that Φ is a cooperad map. We reduce the question
to an inductive question about the finite stages TrM ◦TsM by the following categor-
ical argument. First, ◦ preserves filtered colimits in each variable, since ⊗ does, so
maps to T cM◦T cM are the same as maps to colimr,s TrM◦TsM . All of the connect-
ing maps in the diagram for this colimit split, which means that colimr,s TrM ◦TsM
splits as a coproduct. Writing the coproduct explicitly is somewhat inconvenient
since ◦ doesn’t naively distribute over coproducts on the right, but in any event
every term in this coproduct appears at the stage indexed by some finite pair
(r, s). Then by Lemma A.17, there is a monomorphism from colimr,s TrM ◦TsM to∏
r,s TrM ◦ TsM . Moreover, the projection of T cM ∆−→ T cM ◦ T cM → TrM ◦ TsM

factors through Tr+sM . Therefore to check commutativity of the square

C T cM

C ◦ C T cM ◦ T cM

Φ

∆

Φ◦Φ

it suffices to check commutativity of the square

C T cM Tr+sM

C ◦ C T cM ◦ T cM TrM ◦ TsM

Φ

∑r+s
j Φj

projection of ∆

Φ◦Φ

(
∑r
j Φj)◦(

∑s
j Φj)
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for all r and s.
We proceed by induction on r. The base cases with r = 0 follow from unitality

considerations, so assume that r is strictly positive. Consider the following diagram:

C Tr+sM

C ◦ C M ◦ Tr+s−1M

C ◦ C ◦ C M ◦ Tr−1M ◦ TsM.

∑r+s
j Φj

∆ projection

id◦∆

ϕ◦
∑r+s−1
j Φj

projection of ∆

ϕ◦
∑r−1
j Φj◦

∑s
j Φj

The upper square commutes by construction of Φj and the lower square commutes
by the inductive premise. The outer rectangle constitutes the correct commutativity
for all of the summands of the next step in the induction except for the I ◦ TsM
term, which again follows by unitality. Note that comparing this outside cell to the
next inductive step uses the fact that (id ◦∆) ·∆ = (∆ ◦ id) ·∆ in the cooperad C.
This completes the induction. �

This lemma constitutes a uniqueness result for extending ϕ to a cooperad map
Φ. However, it is only a partial existence result because Construction 3.12 a priori
lands in the product of QnM , not in the subobject T cM of the product. In the next
section we will provide conditions for a refined existence result, conditions under
which the projections Φn determine a map with codomain T cM .

3.14. Gr-coaugmentation and gr-conilpotence. We now move on to the defini-
tion of altipotence. To manage that, we generalize the notions of coradical filtration
and of primitives for a coaugmented cooperad to the setting of complete filtered
(infinitesimal) cooperads.

Definition 3.15. Let (C, ∆, ε, d) be a complete cooperad.

• A coaugmentation for this cooperad is a map η : I → C of cooperads (on I,
∆(1) = 1⊗ 1) such that ε · η = idI .
• When C is gr-flat, a gr-coaugmentation η is a map of filtered complete
S-modules, such that applying the graded functor Gr to (C, ∆, ε, d, η)
provides a flat coaugmented cooperad.

Let (C, ∆, ε, d, η) be a gr-coaugmented gr-flat cooperad.

• The infinitesimal coideal of η, notated C̃, is the complete filtered S-module
which is the pushout (in complete filtered objects) of the diagram I[−1]←
I
η−→ C, where I → I[−1] is the identity in filtration degree zero. We denote

by η̃ the map I[−1]→ C̃ in the pushout.

These definitions extend directly to infinitesimal cooperads. Let (C, ∆, ε, d) be a
complete infinitesimal cooperad.

• A coaugmentation for this infinitesimal cooperad is a map η : I[−1] → C
of infinitesimal cooperads (on I[−1], ∆(1) = 1 ⊗ 1 defines a filtered map)
such that ε · η = idI[−1].
• When C is gr-flat, a gr-coaugmentation η is a map of filtered complete
S-modules, such that applying the graded functor Gr to (C, ∆, ε, d, η)
provides a flat coaugmented infinitesimal cooperad.
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Remark 3.16. In keeping with our conventions, a gr-coaugmentation only has to
be compatible with the decomposition map, the differential and the counit on the
graded level. However, a gr-coaugmentation still satisfies ε · η = idI (resp. in the
infinitesimal setting, ε · η = idI[−1]) at the filtered level. This follows from the fact
that since I has nothing in positive filtration degree, the counit ε factors through
its 0th graded component. Respectively, in the infinitesimal setting, this follows
from the fact that since I[−1] is characterized by its filtration degree 1 component,
the counit ε is characterized by its 1st graded component.

Remark 3.17. The infinitesimal coideal C̃ has the same underlying object as C, but
the image of η is forced to live in filtration degree 1. There is a map of complete

objects C → C̃. Then given a map of complete collections C̃ ϕ−→ M , we can use the

recipe of Construction 3.12 to extend C → C̃ →M to a map C →
∏
QnM . We use

the same notation in this case (i.e., we do not record whether the map ϕ started

with domain C or C̃).
Lemma 3.18. Let C be a gr-coaugmented complete cooperad. Then the cooperad

structure on C provides the infinitesimal coideal C̃ with an infinitesimal cooperad

structure. We denote the decomposition map by ∆̃ : C̃ → C̃ ◦ C̃, the counit map by

ε̃ : C̃ → I[−1], and the gr-coaugmentation by η̃ : I[−1] → C̃. We also denote by

d̃ : C̃ → C̃ the differential induced by the one on C.

For simplicity, we still denote this infinitesimal cooperad by C̃.

Proof. The map ε̃ : C̃ → I[−1] is obtained by the universal property of the pushout

C̃ and the two maps idI[−1] and C ε−→ I → I[−1]. The differential d̃ is defined

similarly. Since C̃ has the same underlying object as C the maps ∆̃, ε̃ and η̃ are

predetermined and the only question is whether they respect the filtration of C̃.
This is evident by construction for ε̃ and η̃. It remains to treat the case of ∆̃.
Because η is a gr-coaugmentation, we know that

∆η ≡ (η ◦ η)∆I (mod F1(C ◦ C))
which immediately implies that

∆̃η̃ ≡ 0 (mod F1(C̃ ◦ C̃)). �

The tree cooperad is coaugmented by the inclusion of I into T cM and the tree

infinitesimal cooperad T̃ cM is coaugmented by the inclusion of I[−1] into T̃ cM .

Lemma 3.19. The categories of gr-coaugmented complete cooperads and of gr-
coaugmented complete infinitesimal cooperads are equivalent through the map C 7→
C̃.

Proof. It is enough to describe an inverse functor to C 7→ C̃. By Remark 3.16, for
a gr-coaugmented complete infinitesimal cooperad C, we can write C ∼= η(I[−1]) q
ker ε. The inverse functor is given by C 7→ η(I[−1])[1]q ker ε. �

For convenience, we describe the notion of altipotent cooperad for cooperads but
this notion make also sense for infinitesimal cooperads by the preceding lemma and
we use it in this last setting.

Now we make some definitions related to conilpotence in the complete context.
We cannot follow either [LV12] or [LGL18] without modification.
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Definition 3.20. Let (C, ∆, ε, d) be a complete (gr-flat) cooperad endowed with
a gr-coaugmentation η. We define the reduced decomposition map ∆̄ : C → C ◦ C by

∆̄ := ∆− ((η · ε) ◦ id) ·∆− (id ◦ (η · ε)) ·∆ + ((η · ε) ◦ (η · ε)) ·∆.

Definition 3.21 (Coradical filtration). We define a bigraded collection crp,nC of
subcollections of C recursively as follows. We define crp,0C as FpC and define cr0,nC
as F0C. Next, supposing that crp

′,n′C is defined for n′ < n and p′ ≤ p, we first
define a subobject c̃r

p,n
(C ◦ C) of C ◦ C. We define it as the sub-object in C ◦ C∐

m≥0

⋃
p0+···+pm+δ=p

Fp0
C(m)⊗Sm

m⊗
i=1

Fpicr
pi+δ,n−1C.

Then define crp,nC as the following pullback:

crp,nC C

c̃r
p,n

(C ◦ C) C ◦ C.

∆̄

Recursively, there are natural inclusions crp,nC → crp−1,nC and crp,nC → crp,n+1C.

Definition 3.22. Let C be a complete (gr-flat) cooperad which is equipped with a
gr-coaugmentation η. We define the k-primitives of C to be the S-module:

PrimkC := ker ε ∩
⋂
p≥0

crp+k,pC,

and the primitives to be the S-module:

PrimC :=
⋃
k≥0

PrimkC.

We also fix the following notations

Prim+
k C :=

⋂
p≥0

crp+k,pC.

Definition 3.23. Let (C, η) be a complete gr-coaugmented (gr-flat) cooperad. If

(1) the map
colim
n

crp,nC → C

is an isomorphism for all p,
(2) the coaugmentation η(I) lies in Prim+

0 C, and
(3) for all k ≥ 0 we have

∆̄(Prim+
k C) ⊂

∐
m

⋃
k0+···+km=k+1

Fk0
C(m)⊗

(
Prim+

k1
C ⊗ · · · ⊗ Prim+

km
C
)
, (∗)

then we call C altipotent.

Remark 3.24. The Latin prefix “alti-” denotes height. This condition is a priori
stronger than gr-conilpotence and weaker than conilpotence. In a gr-conilpotent
cooperad, repeatedly applying the reduced decomposition map would eventually
increase the filtration degree by 1. In a conilpotent cooperad, repeatedly applying
the reduced decomposition map would eventually reach zero. In an altipotent
cooperad, repeatedly applying the reduced decomposition map eventually increases
the filtration degree past any fixed number.



22 GABRIEL C. DRUMMOND-COLE AND JOAN BELLIER-MILLÈS

3.25. Existence of extensions in the altipotent setting. In this section we
show that the tree cooperad is the cofree altipotent cooperad.

Lemma 3.26. Let C be a complete altipotent cooperad and M a complete collection.

Let ϕ : C →M be a map of collections which extends to a map C̃ →M that we still
denote by ϕ. Then for p ≥ 0, we have

Φj(η(I)) ⊂ FpQjM, for all j ≥ 2p, (1)

Φj (PrimkC) ⊂ Fp+kQjM, for all j ≥ 2p+ 1 and all k ≥ 0, (2)

where the maps Φj are defined in Section 3.6.

Proof. We will prove the statement by induction on p. The base case p = 0 is true
because F0QjM = QjM for Statement (1) and ϕ and Φj are filtered for Statement
(2).

Let j ≥ 2p ≥ 2. We need to control the terms in(
ϕ ◦

j∑
i=1

Φi−1

)
·∆(η(I))

where at least one Φj−1 appears. First, we recall that

∆(η) = ∆̄(η) + (η ⊗ η)∆I

with ∆̄(η(I)) lying in∐
m

∐
k0+···+km=1

Fk0
C(m)⊗

(
Prim+

k1
C ⊗ · · · ⊗ Prim+

km
C
)

since C is altipotent. (In particular, ∆̄(η(I)) ⊂ F1(C ◦ C).) By means of the

fact that ϕ extends to a map C̃ → M , we have ϕ(η(I)) ⊂ F1C. Therefore, the
induction hypothesis gives (ϕ⊗ Φj−1) (η ⊗ η)∆I(I) ⊂ F1+(p−1)QjM = FpQjM
(using 2p− 1 ≥ 2(p− 1)). Then we consider the term(

ϕ ◦
j∑
i=1

Φi−1

)
· ∆̄(η(I))

where at least one Φj−1 appears. We need to control the piece

ϕ(Fk0C(m))⊗
(
Φj1(Prim+

k1
C)⊗ · · · ⊗ Φjm(Prim+

km
C)
)

where at least one ja is j − 1. Using the fact that Prim+
k C = η(I) q PrimkC, we

have that it is enough to consider the two following situations:

• Φj−1 is applied to η(I) (for simplicity we assume that jm = j − 1 but the

reasoning works for all jl) and Fk0
C(m)⊗

(
Prim+

k1
C ⊗ · · · ⊗ Prim+

km−1
C
)
⊂

F1(C(m)⊗ C⊗(m−1)) since ∆̄(η(I)) ⊂ F1(C ◦ C),
• Φj−1 is applied to PrimklC for kl = 0 or kl = 1 (for simplicity we assume

that l = m but the reasoning works for all l) and

Fk0
C(m)⊗

(
Prim+

k1
C ⊗ · · · ⊗ Prim+

km−1
C
)
⊂ F1−k(C(m)⊗ C⊗(m−1)).

By the induction hypothesis, the application of Φj−1 to η(I) (we have j − 1 ≥
2p− 1 ≥ 2(p− 1)) lies in Fp−1Qj−1M . The piece to control is therefore in FpQjM .
Similarly, the application Φj−1 to PrimkC (we have j − 1 ≥ 2p− 1 = 2(p− 1) + 1)



HOMOTOPY THEORY OF CURVED OPERADS AND CURVED ALGEBRAS 23

lies in F(p−1)+kQj−1M . The piece to control is therefore in F(p−1+k)+(1−k)QjM =
FpQjM .

Let j ≥ 2p+ 1. We emphasize the fact that we will use the induction hypothesis
for η(I) and p that we just proved. We have on (PrimkC)(m)

∆ = ∆̄ + ((η · ε)⊗ id) ·∆ + (id⊗ (η · ε)⊗m) ·∆.

By means of the fact that ϕ extends to a map C̃ → M , we have ϕ(η(I)) ⊂
F1C. Therefore, the induction hypothesis gives ϕ(η(I)) ⊗ Φj−1((PrimkC)(m)) ⊂
F1+(p−1)+kQjM = Fp+kQjM . By the induction hypothesis for η(I) and j−1 ≥ 2p,

we get that the term (id⊗(η ·ε)⊗m) ·∆ lies in Fk+pQjM (we can assume that m ≥ 1
otherwise this term doesn’t appear in the computation of Φj((PrimkC)(m))). Since

∆̄((PrimkC)(m)) ⊂
∐
m

∐
k1+···+km=k+1

Fk0
C(m)⊗

(
Prim+

k1
C ⊗ · · · ⊗ Prim+

km
C
)
,

we have to consider the two following situations:

• Φj−1 is applied to η(I) (for simplicity we assume that jm = j − 1 but the

reasoning works for all jl) and Fk0
C(m)⊗

(
Prim+

k1
C ⊗ · · · ⊗ Prim+

km−1
C
)
⊂

Fk+1(C(m)⊗ C⊗(m−1)),
• Φj−1 is applied to PrimklC (for simplicity we assume that l = m but the

reasoning works for all l) and Fk0
C(m)⊗

(
Prim+

k1
C ⊗ · · · ⊗ Prim+

km−1
C
)
⊂

Fk+1−km(C(m)⊗ C⊗(m−1)) for km ≤ k + 1.

By induction hypothesis, the application of Φj−1 to η(I) (using j − 1 ≥ 2p) lies in
FpQj−1M . The resulting term in QjM is therefore in Fp+k+1QjM . Similarly, the
application Φj−1 to PrimklC lies in Fp−1+klQj−1M . The resulting term in QjM is
therefore in

F(p−1+kl)+(k+1−kl)QjM = Fp+kC. �

Lemma 3.27. Let C be a complete altipotent cooperad and let M be a complete

collection. Let ϕ : C̃ →M be a map of collections. Then for p, n ≥ 0, we have

Φj (crp,nC) ⊂ FpQjM, for all j ≥ n+ 2p. (3)

Proof. We will prove the statement by induction on n and p. The base cases with
n = 0 (any p) and p = 0 (any n) are true because crp,0C is just FpC and ϕ is filtered
and because F0QjM = QjM .

Let (p, n) be a pair of integers greater than or equal to 1. Suppose that the
statement (3) is true for all pairs (p′, n′) with n′ < n and for all pairs (p′, n) with
p′ < p. Let us prove the statement for (p, n).

Let j be an integer. The map Φj is defined recursively by means of the formula

j∑
i=0

Φi = ε+

(
ϕ ◦

j∑
i=1

Φi−1

)
·∆.

Recall that T cj M = I q (M ◦ T cj−1M) and M ◦ T cj−1M has summands which are
quotients of

M(m)⊗ (T cj−1M)⊗m.

It follows that Φj is given by the terms in the sum
(
ϕ ◦

∑j−1
Φ∗

)
·∆ which contain

at least one application of Φj−1 on some factor T cj−1M .
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Assume j ≥ n+ 2p. On crp,nC(m), we have

∆ = ∆̄ + ((η · ε)⊗ id) ·∆ + (id⊗ (η · ε)⊗m) ·∆− ((η · ε)⊗ (η · ε)) ·∆.
The term ϕ(η(I)) ⊗ Φj−1(crp,nC(m)) lies in FpQjM by the induction hypothesis
for the pair (p− 1, n) since crp,nC ⊂ crp−1,nC and by the fact that ϕ(η(I)) ⊂ F1C.
Because j − 1 ≥ n + 2p − 1 ≥ 2p, we have by Lemma 3.26 that Φj−1(η(I)) and
Φj−1(η · ε(crp,nC(m))) lie in FpQj−1M . It follows that the terms (id⊗ (η · ε)⊗m) ·
∆(crp,nC(m)) and −((η · ε) ⊗ (η · ε)) ·∆(crp,nC(m)) lie in FpQjM . Using the fact
that ∆̄(crp,nC(m)) ⊂ c̃r

p,n
(C ◦C) and the induction hypothesis for Φj−1 and couples

(p′, n− 1) and the fact that the Φis are filtered, we get that this last term also lies
in FpQjM . This finishes the proof. �

As a direct consequence of Lemma 3.27, we get the following corollary:

Corollary 3.28. Let C be a complete altipotent cooperad and let M be a complete

collection. Let ϕ : C̃ → M be a map of collections. Then the components of the
composition of maps of collections

crp,nC → C
∏

Φj−−−→
∏

QjM

land in filtration degree at least p in QjM for j ≥ n+ 2p.

Finally, we obtain the following lemma.

Lemma 3.29. Let C be a complete altipotent cooperad and M a complete collection.

Let ϕ : C̃ →M be a map of collections. Then the map of collections

C
∏

Φn−−−→
∏

QnM

factors as a map of collections through the tree cooperad T cM .

Proof. Corollary 3.28 tells us that we have a (unique) dotted factorization as in the
following diagram ∏n+2p−1

j=0 F0(QjM)×
∏∞
j=n+2p Fp(QjM)

crp,nC
∏∞
j=0 F0(QjM).

Taking componentwise quotients by filtration degree p takes the vertical map to
the left hand vertical map of the following commutative square:∏n+2p−1

j=0 F0(QjM)/Fp(QjM)
∐n+2p−1
j=0 F0(QjM)/Fp(QjM)

∏∞
j=0 F0(QjM)/Fp(QjM)

∐∞
j=0 F0(QjM)/Fp(QjM).

∼=

Consider the bottom right entry here. The coproduct passes through the quotient
to give

∞∐
j=0

F0(QjM)/Fp(QjM) ∼=

 ∞∐
j=0

F0(QjM)

/ ∞∐
j=0

Fp(QjM)


∼= T cM/FpT cM.
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This gives a lift of the map from

crp,nC →
∏

QjM/FpQjM

to a map

crp,nC → T cM/FpT cM
which maps FpC ⊂ crp,nC to 0.

Now (using condition (1) of Definition 3.23 for the isomorphism in the following
line), we get a map from

F0C/FpC ∼= (colim
n

crp,nC)/FpC ∼= colim
n

(crp,nC/FpC)

to T cM/FpT cM .
By examining projections, we see that these maps are compatible for different

choices of p so that we can take the limit over p. This then yields a map from the
limit, i.e., the complete cooperad C, to T cM which by construction has projections
Φn. �

3.30. Properties of the tree cooperad. Now we show that the tree cooperad is
cofree in the category of altipotent cooperads in the gr-flat setting. To do this, we
prove a sequence of lemmas telling us more and more about the associated graded
functor and this cooperad. First

Lemma 3.31. Let D be a diagram. Suppose that the colimit functor from D-
indexed diagrams in the ground category to the ground category preserves monomor-
phisms. Then the associated graded functor Gr from (complete) filtered objects to
graded objects preserves the colimits of D-indexed diagrams.

Proof. The graded functor commutes with completion, so it suffices to consider the
filtered case. Also, the graded functor from N-diagrams to graded objects is a left
adjoint so commutes with all colimits. So preservation of D-indexed colimits by the
associated graded can be checked in terms of preservation of those colimits by the
inclusion of filtered objects into diagrams. Colimits in filtered objects are obtained
by applying the reflector to the same colimits in N-diagrams. Then D-indexed
colimits are preserved as soon as the reflector is an isomorphism. In N-diagrams
colimits are computed objectwise, so the reflector being an isomorphism is implied
by D-indexed colimits in the ground category preserving monomorphisms. �

Corollary 3.32. Then the associated graded functor Gr from (complete) filtered
objects to graded objects preserves filtered colimits, and in particular transfinite
compositions and coproducts. If the ground category be Q-linear, then the associated
graded functor also preserves the coinvariants of a finite group action.

Proof. The first statement follows directly from Lemma 3.31 and the fact that the
ground category satisfies AB5. For the second statement, if the ground category is
Q-linear then the comparison map between coinvariants and invariants of a finite
group action is a (natural) isomorphism. The Gr functor is then a composition of
left and right adjoints so preserves such (co)invariants. �

Lemma 3.33. The tree cooperad on a gr-flat S-module is gr-flat.
The inclusion of I as η is a gr-coaugmentation.
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Proof. The general shape of the argument is to argue that Gr preserves all of the
categorical building blocks of the tree cooperad, and then that these building blocks
preserve flat objects.

The tree cooperad is built as a directed colimit of finite stages, each of which is
built from the monoidal unit I and previous stages by the ◦ product and a binary
coproduct. So we will be done by induction as soon as we argue that each of these
procedures preserves gr-flat objects.

The monoidal unit is gr-flat. For coproducts, directed colimits, by Corollary 3.32
we know that Gr preserves such colimits. Flat objects (and thus gr-flat objects)
are closed under coproducts and directed colimits (the latter by AB5).

The ◦ product is built as a coproduct of summands each of which either a
monoidal product or a Sn-quotient of a sum of monoidal products. We know by
Lemma B.4 that Gr preserves the monoidal product and the coproducts, and by
Corollary 3.32 that it preserves the Sn-quotients under the Q-linear assumption.
Flat objects are closed under the monoidal product by definition, and are (again)
closed under arbitrary coproducts. Moreover, the finite group coinvariants of an
object X are a retract of X. Thus if the X is flat then its coinvariants are. Then
the ◦ product preserves gr-flatness as well and we are done.

The given η is already a coaugmentation before taking associated graded, which
implies by functoriality that it remains one after doing so. �

Lemma 3.34. The tree cooperad on a gr-flat S-module, equipped with the inclusion
of I as η, is altipotent.

Proof. Next, we claim by induction that T cnM is in crp,n+1T cM for all p. For n = 0,
this is true because ∆̄η = 0 in the tree cooperad. Then ∆̄T cnM is represented by
summands

(T cn0
M)(m)⊗Sm

m⊗
i=1

T cniM

with each ni strictly less than n, so by induction ∆̄T cnM is in c̃r
p,n

(T cM ◦ T cM)
for all p (take pi = 0 and δ = p in the definition of c̃r

p,n
). This completes the

induction.
Then for fixed p the inclusions T cnM → crp,n+1T cM pass to the colimit over n

so that
T cM ∼= colim

n
T cnM → colim

n
crp,n+1T cM → T cM

is the identity. Since our ground category satisfies AB5, the colimit of monomor-
phisms is monic so this suffices to show that the final map here is an isomorphism.
This is condition (1) of Definition 3.23.

Condition (2) is easy because ∆̄η = 0.
Condition (3) follows because the primitives PrimT cM are precisely M , so

Prim+T cM ∼= I qM , and ∆̄ vanishes on this subobject. �

Corollary 3.35. The tree cooperad, viewed as a functor from gr-flat complete S-
modules to altipotent cooperads, is right adjoint to the infinitesimal coideal. That
is, the tree cooperad is cofree in the category of altipotent complete cooperads.

Proof. By Lemma 3.34, the tree cooperad (equipped with η) lies in the full subcat-
egory of altipotent cooperads. By Corollary 3.11, an S-module map from C to the
tree cooperad is uniquely determined by its projections to QnM . By Lemma 3.13,
such a map is a cooperad map from C to the tree cooperad if and only if it is
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further determined by the projection C → T cM → Q1M ∼= M via the recipe of
Construction 3.12.

Being compatible with the gr-coaugmentation means that the triangle

I T cM

C
commutes after taking the associated graded. This then implies that I → C → M
should factor through strictly positive filtration degree. This means that ϕ : C →M

must factor through the infinitesimal coideal C̃ →M .
The procedure just outlined gives an injective map from the set of cooperad

maps C → T cM to the set of complete S-module maps C̃ → M . In the other

direction, given a map of collections ϕ : C → C̃ → M , Lemma 3.29 tells us that
map of collections Φ : C →

∏
QnM obtained via Construction 3.12 factors through

T cM . Then the other direction of Lemma 3.13 ensures that this extension is in
fact a map of cooperads. This establishes surjectivity. �

Remark 3.36. It is possible to see an element in the cofree altipotent complete
cooperad on M as a (possibly infinite) sum of trees, whose vertices of arity k are
indexed by element in M(k).

3.37. Coderivations. To have a complete treatment, we briefly review the stan-
dard fact that coderivations valued in a free cooperad are determined by their
projections to the cogenerators.

Let f and g be maps of S-modules from P to Q and let h be a map of S-modules
from R to S. We define a map h ◦′ (f ; g) from R ◦ P to S ◦Q. The components of
h ◦′ (f ; g) are induced by

h(n)⊗
n−1⊗
i=1

f(ki)⊗ g(kn) : R(n)⊗
n⊗
i=1

P (ki)→ S(n)⊗
n⊗
i=1

Q(ki).

This is closely related to the infinitesimal composite of f and g as defined in [LV12,
Section 6.1.3]. Neither is quite a generalization of the other as defined, but the
family resemblance should be clear.

Now suppose f : C → D is a map of complete cooperads then a coderivation of
f is a morphism d of complete S-modules C → D such that

∆D · d = (d ◦ f) ·∆ + (f ◦′ d) ·∆.
A coderivation of idC is also called just a coderivation of C.

Proposition 3.38. Let M be a complete S-module and C a gr-coaugmented al-
tipotent cooperad equipped with a map f : C → T cM . Projection to cogenerators
T cM →M induces a bijection between coderivations of f and S-module maps from
C to M .

Proof. Equip the S-module C1q Cx with a decomposition map induced by that of
C:

C1q Cx→ (C1q Cx) ◦ (C1q Cx)

where,

• writing i for the canonical inclusions of C1 and Cx into C1q Cx and
• writing i† for the inclusion of Cx into C1q Cx in the C1 factor,
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we set

C1 ∆−→ (C ◦ C)1 ∼= (C1 ◦ C1)
i◦i−−→ (C1q Cx) ◦ (C1q Cx)

and

Cx ∆−→ (C ◦ C)x ∼= (Cx ◦ Cx)
(i◦i†)+(i†◦(i†;i))
−−−−−−−−−−−−→ (C1q Cx) ◦ (C1q Cx).

Coassociativity of C implies that C1q Cx is a gr-coaugmented altipotent cooperad
with this structure decomposition and structure data

counit: C1q Cx projection−−−−−−→ C1 ∼= C ε−→ I;

gr-coaugmentation: I
η−→ C ∼= C1 i−→ C1q Cx.

It is also clear that this construction is functorial. Then

HomCoop(C1q Cx, T cM) ∼= HomS(C1q Cx,M)

∼= HomS(C1,M)×HomS(Cx,M)

∼= HomCoop(C, T cM)×HomS(C,M).

The final entry has a natural projection to HomCoop(C, T cM). The fiber over the
morphism f is naturally isomorphic to HomS(C,M). On the other hand, the fiber
over the morphism f in HomCoop(C1 q Cx, T cM) consists of those cooperad maps
of the form

C1q Cx ∼= C q C fqd−−−→ T cM

for some d.
The condition to be a cooperad map is automatically satisfied on the C1 factor

since f is a map of cooperads. On the Cx factor, for f qd to be a map of cooperads
we get an equation. One side of the equation is

∆T cM · d.

The other side is a sum of two terms coming from the two terms defining the
decomposition map on Cx. The first term is

Cx (C ◦ C)x Cx ◦ Cx (C1q Cx) ◦ (C1q Cx)

C C ◦ C T cM ◦ T cM

∼=

∆ ∼=

∼= ∼=

i◦i†

(fqd)◦(fqd)

∆ d◦f

and the other is

Cx (C ◦ C)x Cx ◦ Cx (C1q Cx) ◦ (C1q Cx)

C C ◦ C T cM ◦ T cM.

∼=

∆ ∼=

∼= ∼=

i†◦(i†,i)

f◦(fqd)

∆ f◦(i†,f)

The equation of the first of these three terms with the sum of the latter two is
precisely the condition for d to be a coderivation of f . �



HOMOTOPY THEORY OF CURVED OPERADS AND CURVED ALGEBRAS 29

4. Bar and cobar constructions in the curved setting

In this section, we define a bar-cobar adjunction between the setting of com-
plete augmented curved operads and complete altipotent infinitesimal cooperads.
It doesn’t strictly extend the classical constructions between augmented operads
and conilpotent cooperads but the constructions are very close. More precisely, we
define a functor bar B̂ which associate a complete altipotent infinitesimal cooperad
to an augmented curved complete operad and we define a functor cobar Ω̂ in the
opposite direction. We obtain an adjunction between the two functors

B̂ : Compl. aug. curved operads / Compl. altip. inf. cooperads : Ω̂.o

It will result from this adjunction an S-cofibrant resolution of a curved operad.
This S-cofibrant resolution seems uselessly big by means of the presence of a formal
parameter ϑ which is not present in the classical cobar construction. It is in fact
possible to provide a definition of a “smaller” construction which does not involve
the parameter ϑ. However, we cannot use this smaller cobar functor in order to get
an S-cofibrant resolution in the model category structure given in Appendix C.

We consider curved operads in the category M defined as the full subcategory

of gr-flat object in F̂ilt
gr
(A) and cooperads in the category M′ defined as the full

subcategory of gr-flat objects in F̂ilt(dgA). By Lemma B.4, this ensures that the
functor Gr is strong monoidal.

4.1. Bar construction. Let (O, γ, d, ε, θ, η) be an augmented curved complete
operad. The augmentation ideal O := ker(ε : O → I) of O is a complete gr-dg
S-module.

Remark 4.2. The predifferential d on O induces a predifferential d̄ on the complete
S-module O and the composition product γ induces a map γ̄ : O ◦ O → O which
gives by means of η a map γ̄(1) : O ◦(1) O → O.

The bar construction of the augmented curved complete operad (O, γ, d, ε, θ, η)
is given by the altipotent complete infinitesimal cooperad

B̂O :=
(
T̃ c(sO), ∆β , εβ , dβ := d0 + d1 + d2, ηβ

)
,

where T̃ c(sO) is the infinitesimal cooperad associated with T c(sO) (see Lemma
3.18), the map d2 is the unique coderivation of degree −1 which extends the map

T̃ c(sO)� s2
(
O ◦(1) O

) γs⊗γ̄(1)−−−−−→ sO,

where γs(s ⊗ s) = s, the map d1 is the unique coderivation of degree −1 which
extends the map

T̃ c(sO)� sO ids⊗d̄−−−−→ sO,
and the map d0 is the unique coderivation of degree −1 which extends the map

T̃ c(sO)� I
−sθ−−→ sO.

For instance, we have pictorially

d0( ) = − sθ + sθ + sθ ∈ s2
(
O ◦(1) O

)
,
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for ∈ O(2) of degree −1 and θ is identified with θ( ) ∈ O(1). The counit εβ
is the usual projection onto the trivial tree and the gr-coaugmentation ηβ is the
inclusion of the trivial tree.

Remark 4.3. Since dβ( ) = d0( ) = − sθ , it follows that the bar construction is not

coaugmented as a filtered cooperad whenever the curvature is non zero. However,
when O is gr-flat, it is gr-coaugmented as a complete cooperad since θ is in F1O
(see Definition 3.15).

Lemma 4.4. The coderivation dβ is a differential and the bar construction induces

a functor B̂ : Comp. aug. curved op.→ Compl. altip. inf. coop..

Proof. We can split the square of the coderivation dβ as follows

(d0 + d1 + d2)2 = d0
2︸︷︷︸+ d0d1 + d1d0︸ ︷︷ ︸+ d1

2 + d0d2 + d2d0︸ ︷︷ ︸+ d1d2 + d2d1︸ ︷︷ ︸+ d2
2︸︷︷︸ .

We have d0
2 = 0 because of sign considerations. For the same reason and due to

the fact that θ is closed, we get d0d1 + d1d0 = 0. The bracket of two coderivations
is a coderivation so [d0, d2] = d0d2 + d2d0 and d1

2 are coderivations. Therefore,
the corestriction of the equality d1

2 + d0d2 + d2d0 = 0 to sO is enough to prove the

equality. The corestriction of d1
2+d0d2+d2d0 to sO is equal to d̄

2
+[−θ̄, −], which

is zero since d2 − [θ, −] is and O is augmented. The map d is a derivation with
respect to γ for the augmented curved complete operadO, so by sign considerations,
we obtain that d1d2 + d2d1 = 0. The associativity of the composition product γ of
the augmented curved complete operad O gives the last equality d2

2 = 0. �

4.5. Cobar construction. We define here a cobar construction Ω̂ which associates
a complete curved operad to a complete altipotent infinitesimal cooperad.

We recall that the functor T+ applied on a complete gr-dg S-module M is given
by pointed complete gr-dg operad (T (M q ϑI), ϑ), where the generator ϑ lives in
arity one, weight one and degree −2 (the correct arity, weight and degree for a
curvature). When M is a filtered complete graded S-module, we denote by s−1M
the desuspension of M , that is the filtered complete graded S-module such that
(s−1M)n := Mn+1 and Fp(s

−1M) := s−1FpM . Let (C, ∆, d, ε, η) be a complete

altipotent infinitesimal cooperad. The cobar construction Ω̂C of C is defined as the
(quasi-free) complete augmented curved operad

Ω̂C :=
(
T+(s−1C), γω, dω := d1 + d2 + dϑ, ϑ

)
,

where:

(1) the map d1 is the unique derivation of degree −1 which extends the map

s−1C q ϑI � s−1C
ids−1⊗d−−−−−→ s−1C � T (s−1C)� T (s−1C q ϑI),

(2) the map d2 is the unique derivation of degree −1 which extends the map

s−1C q ϑI � s−1C
∆s−1⊗∆(1)−−−−−−−→ s−2(C ◦(1) C)� T (s−1C)� T (s−1C q ϑI),

where ∆s−1(s−1) = −s−1 ⊗ s−1, and
(3) the map dϑ is the unique derivation of degree −1 which extends the map

s−1C q ϑI � s−1C
ids−1⊗ε−−−−−→ s−1I → ϑI � T (s−1C q ϑI).

(The composition is filtered but the second map isn’t.)
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The cobar construction is a quasi-free complete curved operad because of the
following lemma which implies that

Ω̂C =
(
T+(s−1C), dω

)
/
(
im
(
dω

2 − [ϑ, −]
))
.

Lemma 4.6. The square of the derivation dω is equal to [ϑ, −], the curvature ϑ is

closed and the cobar construction induces a functor Ω̂ : Compl. altip. inf. coop. →
Comp. aug. curved op..

Proof. The free complete operad T (s−1C q ϑI) is augmented and the map dω is
zero on I. (In fact, since the category of augmented curved operads is equivalent
to the category of non-unital curved operad, we could have consider the non-unital
curved operad T (s−1C q ϑI).)

Because of the fact that dω
2 = 1

2 [dω, dω] and [ϑ, −] are derivations, it is enough

to prove the equality dω
2 = [ϑ, −] on the generators s−1C q ϑI. We have dω

2 =
(d1 + d2 + dϑ)2 = d1

2 + (d1d2 + d2d1) + d2
2 + (d1dϑ + dϑd1) + dϑ

2 + (d2dϑ + dϑd2).
The term d1

2 (resp. d2
2) is zero since d is a differential (resp. ∆ is coassociative).

The term dϑ
2 is zero since ε is zero on ϑ. The sum d1d2 + d2d1 is zero because d is

a coderivation with respect to ∆ and the term d1dϑ+dϑd1 is zero because d(ϑ) = 0
and because of the Koszul sign rule. It remains to compute the term d2dϑ + dϑd2.
We have d2dϑ = 0 since d2 is zero on ϑ. Finally, dϑd2 = [ϑ, −] because ∆ is
counital.

The curvature ϑ is closed by definition of dω. This finishes the proof. �

4.7. The convolution curved Lie algebra. As usual, the bar and cobar con-
structions represent a bifunctor. It is given by curved twisting morphisms in a
curved Lie algebra.

Let O be a curved complete operad and C be a complete altipotent infinitesimal
cooperad. We use the notation HomS(C, O) for∏

n

HomS(C(n), O(n)),

where HomS stands for the morphisms of complete filtered S-modules, and we fix
the element Θ := (θO · εC : C → O) ∈ HomS(C, O)−2. Since θO is in filtration level
1 of O, this map lies in F1HomS(C, O)−2. We define on HomS(C, O) the pre-Lie
product ? given by

f ? g : C
∆(1)−−−→ C ◦(1) C

f◦g−−→ O ◦(1) O
γ(1)−−→ O

using the decomposition map of Lemma 3.18.
The product ? induces a Lie bracket {f, g} := f?g−(−1)|f ||g|g?f on HomS(C, O).

We denote by ∂ the derivation of ? given by ∂(f) := dO · f − (−1)|f |f · dC .

Lemma 4.8. The tuple (HomS(C, O), {−, −}, ∂, Θ) forms a curved Lie algebra,
called the convolution curved Lie algebra.

Proof. We do the computations for the curvature:

∂2(f) = dO · ∂(f)− (−1)|∂(f)|∂(f) · dC
= dO

2 · f − (−1)|f |dO · f · dC + (−1)|f |(dO · f · dC − (−1)|f |f · dC2)

= dO
2 · f = [θ, −] · f = Θ ? f − f ?Θ = {Θ, f}

and ∂(Θ) = dO · θ · ε− (−1)|Θ|θ · ε · dC = 0 since dO · θ = 0 and ε · dC = 0. �
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Fix an augmented curved complete operad (O, γ, dO, εO, θ, ηO) and a complete
altipotent infinitesimal cooperad (C, ∆, dC , εC , ηC). An element α : C → O of
degree −1 in the curved Lie algebra HomS(C, O) such that εO · α = 0 which is
called a curved twisting morphism if it is a solution of the curved Maurer-Cartan
equation

Θ + ∂(α) +
1

2
{α, α} = 0.

We denote by Tw(C, O) the set of curved twisting morphisms. By means of the fact
that C is an infinitesimal cooperad, a curved Maurer-Cartan satisfies im(α · ηC) ⊂
F1O. We show that it is representable on the left and on the right by the bar and
the cobar constructions.

Proposition 4.9. For any complete altipotent infinitesimal cooperad C and any
complete augmented curved operad O, there are natural bijections

Homcomp. aug. curv. op.(Ω̂C,O) ∼= Tw(C, O) ∼= Homcompl. alti. inf. coop.(C, B̂O).

Therefore the functors B̂ and Ω̂ form a pair of adjoint functors between the cate-
gories of complete augmented curved operads and the category of complete altipotent
infinitesimal cooperads.

Proof. We make the first bijection explicit. A morphism of augmented complete
operads fα : T (s−1C q ϑI)→ O sending ϑ to θO is uniquely determined by a map
−sα : s−1C → O of degree 0 such that, since fα is augmented, εO · (sα) = 0. This
is equivalent to the data of a map α : C → O of degree −1 such that εO · α = 0.
Moreover, fα commutes with the predifferential if and only if the following diagram
commutes

s−1C −sα //

dv+d1+d2

��

O dO // O

ϑI q s−1C q (s−1C ◦(1) s
−1C)

θOιv+(−sα)+(−sα)◦(1)(−sα)
// O qO ◦(1) O,

id+γ(1)

OO

where ιϑ : ϑI → I is the projection to I. We obtain therefore Θ +∂(α) +α?α = 0.
We now make the second bijection explicit. A morphism of complete altipotent

infinitesimal cooperads gα : C → T̃ c(sO) is uniquely determined by a map −sα :
C → sO (see Corollary 3.35 with Lemma 3.19), that is by a map α : C → O of
degree −1 satisfying εO ·α = 0. Moreover, gα commutes with the differential if and
only if the following diagram commutes

C
εC−sα+((−sα)◦(1)(−sα))·∆(1)//

dC

��

I q sO q sO ◦(1) sO

d|sOω =(d0+d1+d2)|sO

��
C

sα
// sO

Similarly as before, this is equivalent to the equality Θ + ∂(α) + α ? α = 0. This
concludes the proof. �
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4.10. Bar-cobar resolution. In this section, we assume that the category A is
the category of R-modules since we use results of [LV12] which are proved in this
setting.

A curved complete operad O is weight graded if it is endowed with a extra
grading O(w) compatible with the composition product. It is connected for this
weight grading if we have

O = I qO(1) qO(2) q · · · q O(w) q · · · ,

that is O(0) = I.

Proposition 4.11. Let O complete curved operad such that GrO is a connected
weight graded operad. The counit of the adjunction of Proposition 4.9

Ω̂B̂O → O

is a graded quasi-isomorphism which is an S-cofibrant resolution in the model cat-
egory structure on complete curved operads given in Appendix C, that is to say
cofibrant in the model category structure on complete gr-dg S-modules.

Proof. Since Gr is strong monoidal, we have Gr Ω̂B̂O ∼= ΩBGrO, where the con-
struction Ω and B are defined similarly as the constructions Ω̂ and B̂ and applies
to the graded setting. Let us describe ΩBGrO. We compute the differential on

ΩBGrO ∼= T
(
ϑI q s−1Ĩ q s−1T c(sGrO)

)
. The predifferential on Ω̂B̂O is

dω = d1 + d2 + dϑ = d′0 + d′1 + d′2 + d2 + dϑ.

When we applies the functor Gr , the term d′0 cancels, the term d′1 is induced by the
differential on GrO, the term d′2 is induced by the composition product on GrO,
the term d2 is induced by the cofree decomposition map on T c(sGrO) since the

part d2(s−1Ĩ) cancels, and finally the term dϑ is unchanged and induced by the

map s−1Ĩ → ϑI, s−11 7→ ϑ.

The ideal
(
s−1Ĩ q ϑI

)
in ΩBGrO is equal to the coproduct

∐
k≥0(s−1ĨqϑI)(k),

where (s−1Ĩ q ϑI)(k) is the subobject given by trees on ϑI q s−1Ĩ q s−1T c(sGrO)

with k apparitions of ϑI q s−1Ĩ. We have

ΩBGrO ∼= ΩclBclGrO
∐(

s−1Ĩ q ϑI
)
,

where Ωcl and Bcl are the classical cobar and bar constructions for the augmented
graded (uncurved) operad GrO (in [LV12] for example). The differential on ΩBGrO
splits on the two subobjects: it is equal to the one of ΩclBclGrO on ΩclBclGrO
and is induced by the map which sends s−1Ĩ to ϑI on

(
s−1Ĩ q ϑI

)
. The subobject

(s−1Ĩ q ϑI)(k) is a coproduct of several copies of the tensor product of k copies of
the chain complex

· · · → 0→ I[−1]
id−→ I[−1]→ 0→ . . .

and is acyclic, so is
(
s−1Ĩ q ϑI

)
.

Then, by Theorem 6.6.3 in [LV12] gives that ΩclBclGrO is quasi-isomorphic

to GrO. We therefore obtain that the morphism Ω̂B̂O → O is a graded quasi-
isomorphism.
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The counit of the adjunction is given by the composition

Ω̂B̂O � T+(O)→ O
where the two maps are strict surjections, so is the composition. It remains to
show that Ω̂B̂O is S-cofibrant. The curvature of Ω̂B̂O is ϑ. Let t ∈ Ω̂B̂O. We
have dω

2(t) = [ϑ, t] where the bracket is computed by means of the free product.
It follows that the identity [ϑ, t] = 0 implies t ∈ T+(0) = T (ϑI) (induction on the

roots of the terms in t). This shows that for any t ∈ s−1B̂O, we have dω
k(t) 6= 0.

Let us write the dg S-module s−1B̂O as a direct sum of Sm-modules

· · · → 0→M
id−→M → 0→ . . . and · · · → 0→M → 0→ . . .

of rank 1. Using the fact that the differential on s−1B̂O commutes with the pred-
ifferential dω, this gives the beginning of the description of Ω̂B̂O as a direct sum
of Ẑ0,∞

q,n ⊗M and Ẑ1,∞
q,n ⊗M . We can continue this process with a complement

in the quadratic part in Ω̂B̂O of the terms that we have just obtained, and so on
and so forth. This provides a description of Ω̂B̂O as a direct sum of Ẑ0,∞

q,n ⊗M
and Ẑ1,∞

q,n ⊗M . It can be seen as a retract of a direct sum of Ẑ0,∞
q,n ⊗R[Sm] and

Ẑ1,∞
q,n ⊗R[Sm] (see the proof of Proposition C.29). �

5. Koszul duality for curved operads

In this section, we describe the Koszul dual cooperad of a homogeneous quadratic
curved operad O and we relate it to the bar construction B̂O. We propose a
definition for a curved operad to be Koszul and then we show that in this case, the
Koszul dual cooperad is quasi-isomorphic to the bar construction B̂O. It follows
from the proof a sort of Poincaré–Birkhoff–Witt theorem which provides a way to
make the Koszul dual cooperad explicit.

Under the Koszul property, we finally obtain the S-cofibrant resolution of curved
complete operads

Ω̂O¡ → O,
which has the advantage to have a domain with a smaller space of generators in
comparison to the bar-cobar resolution.

The two generic examples are the following:

• a curved associative algebra whose curvature is a sum of squares (with
conditions so that it is Koszul);

• the operads encoding curved associative algebras or curved Lie algebras.

In this section, we work with the category A of R-modules where R is a field

and we consider the closed monoidal category M = F̂ilt
gr
(A) in the operadic side

and the closed monoidal category M′ = F̂ilt(dgA) in the cooperadic side. Section
5.1 applies to more general category A (except for Proposition 5.5 and after Section
5.16).

5.1. Subcomonoid generated by a symmetric module. We denote by N the
category S-Mod(M) and by N ′ the category S-Mod(M′). Let C be a comonoid
in N ′ and S be an object in N ′. In Appendix B of [Val08], Vallette defined the
notion of the subcomonoid of C generated by S in an abelian setting. We extend
the definition to quasi-abelian categories. The only difference is the necessity to
consider strict morphisms in order to identify certain coimage with cokernel (and
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in the dual case certain image with kernel). We only emphasize the differences in
the unfamiliar case of the subcomonoid generated by an object. The case of an
ideal and of a monoid quotient generated by an object is dual.

Definition 5.2. • Let I � C � Q be an exact sequence in N ′, where C is
a comonoid. The epimorphism C � Q in N ′ is a coideal epimorphism if
I � C is a monomorphism of comonoids in N ′.
• Let ξ : C � S be an epimorphism inN ′, where C is a comonoid. We consider

the category Sξ of sequences (S) : I � C � Q as in the previous item and
such that the composite I � C � S is equal to 0. A morphism between
(S) and (S′) : I ′ � C � Q′ is given by a pair (i : I → I ′, p : Q → Q′)
such that i is a morphism of comonoids and p is a morphism in N ′, and
such that the following diagram commutes:

I

I ′ C Q

Q′.

i

p

• We aim to consider the largest subcomonoid of C vanishing on S. This
notion is given by the terminal object (S) : C(S) � C � (S) in Sξ, when
the latter admits one.

We now make the coideal quotient (S) and the subcomonoid C(S) explicit.

Definition 5.3. We denote by iC : C ↪→ SqC is the inclusion and by πC : SqC � C
is the projection.

• The multilinear part in S of (C ◦ (S qC)) ◦ C is given either by the cokernel

coker
(
C ◦ C ◦ C id◦iC◦id−−−−−→ (C ◦ (S q C)) ◦ C

)
,

or equivalently, by the kernel

ker
(

(C ◦ (S q C)) ◦ C id◦πC◦id−−−−−→ C ◦ C ◦ C
)
,

by means of the fact that the monoidal structure commutes with colimits
and iC is a section of πC . It is denoted by C ◦ (S q C) ◦ C.
• The coideal quotient (S) of C generated by ξ : C � S is given by the coimage

(S) := coim

(
C ∆◦2−−→ C◦3 proj·(idC◦(ξqidC)◦idC)−−−−−−−−−−−−−−→ C ◦ (S q C) ◦ C

)
,

where the map proj is the projection C ◦ (S q C) ◦ C → C ◦ (S q C) ◦ C.

Lemma 5.4. The coideal quotient of C generated by ξ : C � S is also given by the
coimage

coim

(
C

(id⊗∆)·∆(1)−−−−−−−−→ C ◦(1) C◦2
idC◦(1)ξ◦idC−−−−−−−−→ C ◦(1) (S ◦ C)

)
.
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Proof. It is clear that

ker

(
C ∆◦2−−→ C◦3 proj·(idC◦(ξqidC)◦idC)−−−−−−−−−−−−−−→ C ◦ (S q C) ◦ C

)
⊆

ker

(
C

(id⊗∆)·∆(1)−−−−−−−−→ C ◦(1) C◦2
idC◦(1)ξ◦idC−−−−−−−−→ C ◦(1) (S ◦ C)

)
since C ◦(1) C◦2 is a quotient of C◦3. The coassociativity of ∆ gives the converse
inclusion. �

When the epimorphism ξ is strict (see Definition A.13), so is the epimorphism
C � (S). We therefore have (S) ∼= coker(C(S) → C). Under this assumption, we
obtain, by the universal property of the cokernel, the equivalence between the fact
that the composition C(S)� C → I is non zero and the fact that the counit does
not factor through the coideal quotient (S).

Proposition 5.5. We suppose that the epimorphism ξ : C � S is strict and that
the counit C → I does not factor through the coideal quotient (S). Then, the
subcomonoid of C generated by S is

C(S) := ker(C → (S)),

that is

C(S) = ker

(
C

(id⊗∆)·∆(1)−−−−−−−−→ C ◦(1) C◦2
idC◦(1)ξ◦idC−−−−−−−−→ C ◦(1) (S ◦ C)

)
.

Proof. The counit is given by the composite C(S)� C → I. See Proposition 60 in
[Val08, Appendix B] for the fact that the comultiplication restricts to C(S). �

5.6. Koszul dual infinitesimal cooperad. We define the notion of homogeneous
quadratic curved operad and Koszul dual infinitesimal cooperad associated with it.

Following [LV12, 5.5.4], we describe a weight grading on the free operad. It
is given by the number of generating operations needed in the construction of a
given element in the tree operad. Let M be an S-module in M and let TM be
the tree operad on M . We define the weight w(µ) of an element µ recursively as
follows: w(id) = 0, w(µ) = 1 when µ ∈ M(n) for some n; and more generally
w(ν; ν1, . . . , νm) = w(ν) + w(ν1) + · · · + w(νm) for some m and ν ∈ M(m). We
denote by TM (r) the S-module of elements of weight r.

Definition 5.7. A curved complete operad (O, θ) is called homogeneous quadratic
if all of the following hold:

(1) the operad O admits a homogeneous quadratic presentation

(O, θ) ∼= (T E/(R), θ) ∼= cT (E)/
(
R q (ϑ− θ̃(1))

)
,

where E is an S-module in M and (R) is the ideal generated by a strict
S-submodule R of T E(2) in M and the curvature θ is induced by a map
θ̃ : I→ F1T E(2),

(2) the sub-S-module R is a direct sum of homological degree and filtration
degree homogeneous subspaces,

(3) the predifferential of O vanishes, and
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(4) the counit T c(sE) → I does not factor through the coideal quotient (S),
where we fix

C := T c(sE) and S :=
(
I q T c(sE)(2)

)
/
(
s2R q (1− s2θ̃(1))

)
.

Remark 5.8. • The condition that the differential of O is 0 implies that the
bracket with the curvature is 0.
• The filtration on E induces a filtration on T E. The fact that the inclusion
R ↪→ T E(2) is strict means that the filtration on R is the one induced by
the filtration on E.

Definition 5.9. Let O := cT (E)/ (R q (ϑ− θ)) be a curved complete operad
equipped with a homogeneous quadratic presentation. We define the Koszul dual

infinitesimal cooperad O¡ of O to be the sub-cooperad C̃(S) of T̃ c(sE) generated
by the strict epimorphism C � S (with the notations of Definition 5.7). It is an
altipotent infinitesimal cooperad since it is a (strict) sub-cooperad of an altipotent
infinitesimal cooperad.

We sometimes denote it by O¡ = C̃(sE, s2R q (1 − s2θ̃(1))). Its counit is given

by the composite εO¡ : O¡ � T̃ c(sE)� I[−1].

5.10. Koszul dual operad. It is hard to explicitly describe the elements of O¡ by
means of its definition. Under certain assumptions, we can however get a better
understanding by means of the Koszul dual operad O!.

Considering a specific case of Section 4 in [HM12], we propose the following
definition.

Definition 5.11. We say that a complete operad O is constant-quadratic if it
admits a presentation of the form O = T E/(R), where E is a complete dg S-module
and (R) is the ideal generated by a complete dg S-module R ⊂ I q T E(2). (We
assume that the filtration on R is induced by the filtration on E.) We require that R
is a coproduct of homological degree and filtration degree homogeneous subobjects.
Thus the complete operad O is homological degree graded and filtration degree
graded and has a weight filtration induced by the S-module of generators E. We
assume further that the following conditions hold:

(I) The space of generators is minimal, that is R ∩ I = {0}.
(II) The space of relations is maximal, that is (R) ∩ {I q E q T E(2)} = R.

In the context of the definition above, we denote by q : T E → T E(2) the
canonical projection and by qR ⊂ T E(2) the image under q of R. Since R∩I = {0},
there exists a filtered map ϕ : qR→ I such that R is the graph of ϕ:

R = {X − ϕ(X), X ∈ qR}.

We propose the following generalization of Section 2.1.9 in [GK94]. In our
context, the situation isn’t symmetric since we define a constant-quadratic (resp.
curved) operad associated with a curved (resp. constant-quadratic) operad. We
make it however as symmetric as possible so that it is easy to extend these defi-
nitions to a curved-constant-quadratic setting. Let E be a complete S-module of
finite dimension in each arity which splits as follows:

E = Gr 0E qGr 1E = (Ea(0) q E
b
(0))q E(1).
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• In the case where (O, θ) is a homogeneous quadratic curved operad, we
assume moreover that

im θ ⊂ E(1) ◦(1) (Ea(0) q E(1)) + (Ea(0) q E(1)) ◦(1) E(1). (4)

• In the case where O is a constant-quadratic complete operad, we assume
moreover that we have a splitting R ∼= ϕ−1(0)qRcq such that

Rcq ⊂ Eb(0) ◦(1) (Ea(0) q E
b
(0)) + (Ea(0) q E

b
(0)) ◦(1) E

b
(0). (5)

We consider on E∗ the filtration induced by the graduation

Gr 0E
∗ := Ea(0)

∗ q E(1)
∗ and Gr 1E

∗ := Eb(0)

∗
.

To define a pairing between T (E)(2) and T (E∗)(2), we need to choose a tree basis
of the trees made of two vertices. When the trees are reduced (that is with at least
one leaf), the tree basis can be provided by shuffle trees (as explained in [LV12,
Section 8.2.5]). When one of the tree has 0 leaf (necessarily the one above), we
choose as a tree basis the one such that the tree of arity 0 is put further left.
This defines a natural pairing T (E)(2) ⊗ T (E∗)(2) which can be extended in a
unique way in a natural pairing 〈−, −〉 :

(
ϑI q T (E)(2)

)
⊗
(
I q T (E∗)(2)

)
such

that 〈ϑI, T (E∗)(2)〉 = {0}, 〈T (E)(2), I〉 = {0} and 〈ϑ1, 1〉 = 1 where 1 is the
generator of I.

We propose the two following definitions of Koszul dual operad in the curved /
constant-quadratic context.

Definition 5.12. In this definition, E is a complete S-module of finite dimension
in each arity admitting a decomposition E = Gr 0EqGr 1E = (Ea(0)qE

b
(0))qE(1).

(1) Given a homogeneous quadratic complete curved operad

O = cT (E)/ (R q (ϑ− θ))

such that Inclusion (4) is satisfied, we define its Koszul dual complete
constant-quadratic operad by

O! := T (s−1S−1 ⊗
H
E∗)/

(
(R q (ϑ− θ))⊥

)
,

where S−1 := Ends−1R is an endomorphism operad and ⊗
H

is the Hadamard

product defined by (O ⊗
H
P)(n) := O(n)⊗ P(n). It is a constant-quadratic

infinitesimal complete operad.
(2) Given a constant-quadratic complete operad

O = T (E)/(R)

such that Inclusion (5) is satisfied, we define its Koszul dual complete curved
operad by

O! := cT (s−1S−1 ⊗
H
E∗)/

(
R⊥
)
.

Proposition 5.13. Let O be a homogeneous quadratic curved complete operad
(resp. a constant-quadratic complete operad) generated by a complete S-module
E of finite dimension in each arity admitting a splitting E = Gr 0E q Gr 1E =
(Ea(0) q E

b
(0))q E(1) such that Inclusion (4) (resp. (5)) is satisfied. We have(

O!
)! ∼= O.
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Proof. The natural map E → (E∗)∗ is a filtered isomorphism since E is finite-
dimensional and by the definitions of the filtration on E∗. Then it is direct to
check the two computations. �

Moreover, under the condition that the operad O is Koszul, we will see in Theo-
rem 5.20 a description of the elements in O¡ by means of the elements in the Koszul
dual cooperad of the (uncurved) operad GrO.

5.14. Bar construction of a curved quadratic operad. We fix a homogeneous
quadratic curved operad O = cT (E)/ (R q (ϑ− θ)). We consider on B̂O a second
homological degree called syzygy degree. The operad O ∼= (T E/(R), θ) is weight-
graded by the weight grading of T E (that is the number of generators in E) since

R is homogeneous. We define the syzygy degree of an element in B̂O recursively
as follows: the syzygy degree of id is 0, the syzygy degree of an element in sO is 1
minus its weight in O and the syzygy degree of an element (ν; ν1, . . . , νm) is the
sum of the syzygy degrees of the elements ν, ν1, . . . , νm. The differentials d0 and
d2 lower the syzygy degree by 1.

Proposition 5.15. Let O = cT (E)/ (R q (ϑ− θ)) be a complete curved operad

equipped with a homogeneous quadratic presentation . Let O¡ = C̃(sE, s2R q (1 −
s2θ̃(1))) be its Koszul dual infinitesimal cooperad. The natural inclusion

i : O¡ ↪→ T̃ c(sE) ↪→ B̂O

induces an isomorphism of complete cooperads

i : O¡ ∼=−→ H0(B̂O),

where the homology degree is taken to be the syzygy degree.

Proof. Syzygy degree 0 elements in B̂O are given by T̃ c(sE). Syzygy degree −1
elements coincide with

T̃ c(sE) ◦(1)

((
T̃ c(sE)(2)/s2R

)
◦ T̃ c(sE)

)
seen in B̂O. The differential d provides therefore a map

T̃ c(sE)→ T̃ c(sE) ◦(1)

((
T̃ c(sE)(2)/s2R

)
◦ T̃ c(sE)

)
.

Through the isomorphism

T̃ c(sE)(2)/s2R ∼=
(
I q T̃ c(sE)(2)

)
/
(
s2R q (1− s2θ̃(1))

)
= S,

this map coincides with the map(
C̃

(id⊗∆)·∆(1)−−−−−−−−→ C̃ ◦(1) C̃◦2
idC̃◦(1)ξ◦idC̃−−−−−−−−→ C̃ ◦(1) (S ◦ C̃)

)
.

We conclude by Proposition 5.5 (and Lemma 3.19). �
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5.16. Curved Koszul operad. Since we are working with A = dg-R-Mod (with
R a field), the cooperad splits as S-modules as O¡ ∼= I[−1] q O¡. We denote by
η : I[−1]→ O¡ coming from this isomorphism.

Using the weight grading on T c(sE), we can write

T c(sE) ∼= T c(sE)even

∐
T c(sE)odd,

where T c(sE)even :=
∐
k≥0 T c(sE)(2k) and T c(sE)odd :=

∐
k≥0 T c(sE)(2k+1).

Lemma 5.17. The cooperad O¡ splits as follows:

O¡ ∼= O¡
even

∐
O¡

odd,

where O¡
even = O¡ ∩ T̃ c(sE)even and O¡

odd = O¡ ∩ T̃ c(sE)odd.

Proof. We have

O¡ = ker

(
T̃ c(sE)

(id⊗∆)·∆(1)−−−−−−−−→ T̃ c(sE) ◦(1) T̃ c(sE)◦2

idT̃ c(sE)
◦(1)ξ◦idT̃ c(sE)−−−−−−−−−−−−−−−→ T̃ c(sE) ◦(1) (S ◦ T̃ c(sE))

)
where S =

(
I[−1]q T c(sE)(2)

)
/
(
s2R q (1− s2θ̃(1))

)
. The map (id ⊗ ∆) · ∆(1)

and idT̃ c(sE)
◦(1) ξ ◦ idT̃ c(sE)

stabilize the odd part, resp. the even part. It follows

that the kernel splits as desired. �

As a consequence and using the definition of O¡ and the fact that η is a gr-
coaugmentation, we can write

η(1) = 1 +
(
−s2θ̃ +

∑
s2r
)

+ · · · ∈ I q sE q T c(sE)(2) q · · · , (6)

with
∑
s2r ∈ s2R. There is a natural morphism κ : O¡ → O of degree −1 defined

as the composite

κ : O¡ ↪→ T̃ c(sE)� sE ∼= E → O.

Lemma 5.18. We have Θ + 1
2{κ, κ} = 0 for Θ = θ · εO¡ . Hence κ is a curved

twisting morphism.

Proof. On η(I[−1]), a direct computation using Equality (6) shows that the equality

Θ + 1
2{κ, κ} = 0 is true. Then, on O¡ ⊂ T̃ c(sE)(≥1) = sE qT c(sE)(2) q · · · , using

the fact that the decomposition map is the cofree one, we only have to consider
elements whose projection on T c(sE)(2) is non zero. By means of Lemma 5.17 and
using the definition of O¡, we get that these elements write∑

s2r + · · · ∈ T c(sE)(2) q T c(sE)(≥2), (7)

with
∑
s2r ∈ s2R. Since θ|O¡ ≡ 0, we obtain that κ is a curved twisting morphism.

�

Definition 5.19. A curved complete operad (O, θ) is called Koszul ifO ∼= (ĜrO, θ̄),
where GrO is the graded uncurved operad associated with O and GrO admits a
homogeneous quadratic presentation GrO ∼= T E/(R) in Filt(A) for which it is a
Koszul operad.
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Theorem 5.20. Let O be a curved complete Koszul operad. Then the map

i : O¡ → B̂O
is a quasi-isomorphism of cooperads. Moreover, there is a Poincaré–Birkhoff–Witt
type isomorphism of S-modules

O¡ ∼= ̂(GrO)¡.

As we will see in examples, this last isomorphism provides a way to understand
the cooperad O¡.

Proof. We denote by Fp the filtration on B̂O. It is induced by the filtration on O
for which O is complete. We consider the (increasing) filtration Gp := F−p on B̂O
(note that Gp is not bounded below). We have

d0 : GpB̂O → Gp−1B̂O and d2 : GpB̂O → GpB̂O.

The filtration Gp is complete since B̂O is complete for the filtration Fp and it is

exhaustive since B̂O = G0B̂O. We consider the spectral sequence E•p,q associated
with this filtration. Using that the functor Gr is strong monoidal (R is a field), we
have

E0
p,q = GpB̂Op+q/Gp−1B̂Op+q ∼= (B̃clGrO)

(p)
p+q

where the upper index stands for the degree of the graduation in B̃clGrO and the
last isomorphism comes from the fact that Gr is strong monoidal (see Lemma B.4).
The differential is given by d0 = dB̃clGrO (induced by d2). Since GrO is a Koszul
operad, we get

E1
p,q = ˜(GrO)¡

(p)

p+q.

Now let us consider on B̂O and on B̃clGrO the syzygy degrees described in
the beginning of Section 5.14. We have the following compatibility condition: for
b ∈ FpB̂O\Fp+1B̂O with a homogeneous syzygy degree, the associated element in

(B̃clGrO)(p) has the same syzygy degree. The E1 page is concentrated in syzygy

degree 0 (in B̃clGrO) as the Koszul dual cooperad is, and by means of the com-
patibility of the syzygy degrees, we therefore obtain that the differentials dr, r ≥ 1,
induced by d0 and d2 are 0 (they both decrease the syzygy degree). This implies
that the spectral sequence is regular (see Definition 5.2.10 in [Wei94]) and by the
Complete Convergence Theorem 5.5.10 in [Wei94] that the spectral sequence con-

verges to H•(B̂O) (the spectral sequence is bounded above).
We have therefore

˜(GrO)¡
(p)

= qqE1
p,q = qqE∞p,q ∼= Gr pH•(B̂O)

and using the syzygy degree, we get ˜(GrO)¡
(p) ∼= Gr pH0(B̂O) ∼= Gr pH•(B̂O). By

means of Proposition 5.15, we obtain moreover that ̂(GrO)¡ ∼= O¡ (where we have
dropped the −̃ to lighten the notation).

Finally, the morphism O¡ → B̂O is a quasi-isomorphism and we have an isomor-

phism of S-modules O¡ ∼= ̂(GrO)¡. �

Proposition 5.21. Suppose that O is a Koszul curved complete operad. The natu-
ral map p = fκ : Ω̂O¡ → O is an S-cofibrant resolution of curved complete operads.
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Proof. We have already seen that, since Gr is strong monoidal, we have

Gr Ω̂O¡ ∼= ΩGr (O¡) ∼= Ωcl(GrO)¡
∐(

s−1ηO¡(Ĩ)q ϑI
)
.

Since GrO is a Koszul operad, Theorem 7.4.2 in [LV12] gives that Ωcl(GrO)¡ is

quasi-isomorphic to GrO. We therefore obtain that Ω̂O¡ → O is a graded quasi-
isomorphism.

It is a strict surjection and the same reasoning as in the proof of Proposition
4.11 shows that it is cofibrant in the model category structure on complete gr-dg
S-modules. �

6. The associative case

In this section, we make the case of the operad encoding curved associative
algebras explicit. It is a curved operad that we denote cAs and we prove that it
encodes curved associative algebras.

Again, we assume that A is the category of R-modules, with R a field.

6.1. The curved operad encoding curved associative algebras. We recall
that the operad As encoding associative algebras is the (trivially) filtered (complete)
operad defined by

As := T ( ) /
(

−
)
.

Its representations in R-modules are associative algebras.

Proposition 6.2. The curved operad encoding curved associative algebras is the
complete (pointed) gr-dg operad defined by

cAs :=
(
T (• q ) /

(
−

)
, 0, θ := • − •

)
,

where • is of degree −2, is of degree 0 and the predifferential is zero. We filter
it by the number of •, say

FpcAs := {µ ∈ cAs s.t. the number of • in µ is greater than or equal to p}.
It is a curved operad and its curvature belongs to F1cAs. We can also write

cAs = cT (• q ) /
(

− , ϑ− θ
)
,

where θ is defined above.

We denote by µn the element in cAs obtained as the (n−1)-iterated composition
of the generator . (The way of composing does not matter by means of the
associativity relation.)

Proof. The only thing to prove is that the bracket with the curvature is always zero
(since the predifferential of cAs is zero). Using the Koszul sign rule, we get that
[θ, •] = 0. And a quick calculation (using associativity) shows

[θ, µn] =
µn
θ −

∑
j

θ
µn

=
∑
j

•

µn+1 −
∑
j

•

µn+1 = 0.

�

Lemma 6.3. A cAs-algebra on a complete gr-dg module A is the same data as a
curved complete associative algebra (A, µ, dA, θ) with curvature θ ∈ F1A.
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Proof. A map of curved operad cAs → EndA is characterized by the image of the
generators • and which give respectively two maps θ : R→ A and µ : A⊗2 → A.
The relation defining cAs ensures that µ is associative. The fact that the curvature
is sent to the curvature says that dA

2 = [θ, −]. �

Remark 6.4. • The inclusion As→ cAs is not a map of curved operads (since
the curvature of As is zero) so it cannot be a quasi-isomorphism of curved
complete operads.
• The projection cAs → As, sending the 0-ary element to 0, is a map of

curved operads but the map Gr cAs → Gr As is not a quasi-isomorphism.
Therefore, it is not a quasi-isomorphism of curved complete operads.

6.5. Homotopy curved associative algebras. By forgetting the curvature of
cAs, we obtain a complete operad which is the coproduct As∗T (•) of the complete
operads T (•) and As. Let us explain how the coproduct ∗ is constructed.

Definition 6.6. Let O and P be two augmented (complete) operads. Then the
coproduct in the category of (complete) operads is defined to be

T
(
O q P

)
/ (RO qRP) ,

where RO and RP are the relations in O and P respectively.

Proposition 6.7. If O and P are both quadratic augmented (complete) operads,
then the coproduct O ∗ P is a quadratic augmented operad.

Proof. For any two presented operads O = T (E1)/(R1) and P = T (E2)/(R2), the
coproduct operad O∗P is naturally presented by T (E1qE2)/(R1qR2). If (E1, R1)
and (E2, R2) are both quadratic presentations, then so is (E1 qE2, R1 qR2). �

Proposition 6.8. If O and P are both quadratic augmented (complete) operads,
then the Koszul dual infinitesimal cooperad of the coproduct O ∗ P is the coproduct
infinitesimal cooperad O¡ ⊕ P ¡ (whose underlying S-module is I[−1]qO¡ q P ¡).

Proof. The infinitesimal cooperad O¡ is the sub-cooperad of T̃ c(sE1) which is uni-

versal among the infinitesimal sub-cooperads C of T̃ c(sE1) such that the composite

C � T̃ c(sE1)� T̃ c(sE1)(2)/s2R1

is zero (see [LV12, 7.1.4]). The infinitesimal cooperad P ¡ is defined similarly. Its

follows that the map O¡ ⊕ P ¡ → T̃ c(sE1 q sE2) satisfies that the composite

O¡ ⊕ P ¡ � T̃ c(sE1 q sE2)� T c(sE1 q sE2)(2)/(s2R1 q s2R2) ∼=
T c(sE1)(2)/s2R1 q sE1 ◦(1) sE2 q sE2 ◦(1) sE1 q T c(sE2)(2)/s2R2

is zero. By the universal property of (O ∗ P)¡, there exists a unique morphism of
infinitesimal cooperads O¡ ⊕ P ¡ → (O ∗ P)¡ which makes the following diagram
commutative:

O¡ ⊕ P ¡ T̃ c(sE1 q sE2).

(O ∗ P)¡

Moreover, using the fact that (O∗P)¡ is an infinitesimal sub-cooperad of the cofree

infinitesimal cooperad T̃ c(sE1 q sE2) and that its projection onto sE1 ◦(1) sE2 q
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sE2 ◦(1) sE1 is zero, we get that the map (O∗P)¡ � T̃ c(sE1qsE2) factors through

T̃ c(sE1)⊕ T̃ c(sE2). The composite (O ∗P)¡ � T̃ c(sE1)⊕ T̃ c(sE2)� T̃ c(sE1) is
an infinitesimal cooperad morphism, hence its image pr1((O∗P)¡) is an infinitesimal

sub-cooperad of T̃ c(sE1). Using the map O¡ ⊕ P ¡ → (O ∗ P)¡, we obtain that it
contains O¡. Moreover, the definition of (O ∗ P)¡ ensures that the composite

pr1((O ∗ P)¡)� T̃ c(sE1)� T c(sE1)(2)/s2R1

is zero. The infinitesimal cooperad pr1((O ∗ P)¡) is therefore an infinitesimal sub-
cooperad of O¡ (by the universal property satisfied by O¡). Eventually, pr1((O ∗
P)¡) = O¡. Similarly, pr2((O ∗ P)¡) = P ¡. Using the fact that q is a biproduct
and that O¡ and P ¡ are counital, it follows that there exists a unique morphism
(O∗P)¡ → O¡⊕P ¡ which commutes with the projections. This map is injective since

(O ∗ P)¡ � T̃ c(sE1)⊕ T̃ c(sE2) is. The composite O¡ ⊕P ¡ � (O ∗ P)¡ � O¡ ⊕P ¡

is the identity and this proves the proposition. �

We are now able to compute the Koszul dual infinitesimal cooperad of the curved
operad cAs. We denote the element s• by µc0 and the set of generators of As¡ (that

we identify with Ãs¡) presented in [LV12, 9.1.5] by {µcn}n≥1.

Theorem 6.9. The homogeneous quadratic curved complete operad cAs is Koszul.
The Koszul dual infinitesimal cooperad cAs¡ is equal to

cAs¡ =


µ̂cn :=

∑
k≥0

S⊆[n+k],|S|=k

(−1)s0+···+sk−k(n+k)µSn+k


n≥0

, ∆, 0

 ,

where S = {sj}kj=0, µSn+k is the element µcn+k on which we have grafted the element
s• in the position given by the set S, and ∆ is the cofree decomposition. The terms
µ̂cn have degree n− 1. Explicitly, for any n ≥ 0, we have

∆(µ̂cn) =
∑
k≥0

i1+···+ik=n

(−1)
∑

(ij−1)(k−j)(µ̂ck; µ̂ci1 , . . . , µ̂
c
ik

). (8)

It is isomorphic to

cAs¡ ∼= (s• q Ãs¡, ∆θ, 0),

where for any n ≥ 0,

∆θ(µcn) =
∑
k≥0

i1+···+ik=n

(−1)
∑

(ij−1)(k−j)(µck; µci1 , · · · , µ
c
ik

).

Moreover, the natural map

fκ : cA∞ := Ω̂cAs¡ → cAs

is an S-cofibrant resolution (that is cofibrant in the model category structure on
complete gr-dg S-modules given in Section C.21).

Proof. We first prove Formula (8). We recall the decomposition map on As¡ from
[LV12, Lemma 9.1.2]

∆(µcn) =
∑

i1+···+ik=n

(−1)
∑

(ij−1)(k−j)(µck; µci1 , · · · , µ
c
ik

).
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(Replacing ij + 1 as it is written in op. cit. by ij − 1 does not change the sign but
seems more natural with the computations to come.) Then, being careful with the
Koszul sign rule, since µSn is the element µcn on which we have grafted the element
s• in the position given by the set S, we get

∆
(
µSn
)

= ∑
l0+i1+···+ik=n
S=S0tS1t···tSk

(−1)
∑

(ij−1)(k+l0−(j+nj))+L0+K
(
µS0

k+l0
; µS1

i1
, · · · , µSkik

)
, (9)

where 
|Sj | = lj ,
nj = |{s ∈ S0; s < max{Sj}}|,
L0 =

∑
s∈S0

∑
{t; max{St}<s} lt, and

K =
∑
lt
∑
j>t(ij − 1).

Some terms are missing in the sum appearing to compute the sign in Formula (9):
they correspond to the entries labelled by s ∈ S0 and are equal to (1−1)(k+ l0−∗),
where ∗ is the position of s in µck+l0

; therefore they have no effect. The sum L0 is
the Koszul sign due to the elements s• corresponding to the set S0 passing through
the elements s• corresponding to some set Sj . The sum K is the Koszul sign due
to the elements s• of the Sj passing through some µcit . Moreover, we compute

the sign in front of
(
µS0

k+l0
; µS1

i1
, · · · , µSkik

)
to the right of Formula (8). There is a

shift sending the entries of µcij appearing in ∆(µcn) to {1, . . . , ij}. We denote by

S̃j = {s̃j} the set obtained by shifting this way the elements in Sj . We obtain:

(−1)
∑

(ij−lj−1)(k−j)(−1)
∑
S̃0
s̃0−l0(k+l0)+···+

∑
S̃k
s̃k−lkik .

We should therefore compare this sign with

(−1)
∑
S s−|S|n(−1)

∑
(ij−1)(k+l0−j−nj)+L0+

∑
lt
∑
j>t(ij−1).

Since |S| =
∑
lj and n = l0 +

∑
ij , it is enough to compare

−
∑

lj(k − j) +
∑
j

∑
S̃j

s̃j − l0(k + l0)−
∑

ljij

with∑
S

s−
(∑

lj

)(
l0 +

∑
ij

)
+
∑

(ij − 1)(l0 − nj) + L0 +
∑

lt
∑
j>t

(ij − 1).

We have

−
∑

ltij +
∑

lt
∑
j>t

(ij − 1) =

= −l0
∑

ij −
∑
t≥1

lt
∑
j 6=t

ij −
∑

ljij + l0
∑
j>0

(ij − 1) +
∑
t≥1

lt
∑
j>t

ij −
∑
t≥1

lt(k − t)

= −
∑
t≥1

lt
∑
j<t

ij −
∑

ljij − l0k −
∑
t≥1

lt(k − t).
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It follows that we are interested in the difference

D :=
∑
S

s−

∑
j>0

lj

 l0 −
∑
t≥1

lt
∑
j<t

ij +
∑

(ij − 1)(l0 − nj) + L0 −
∑
j

∑
S̃j

s̃j .

A combinatorial check shows that∑
S

s−
∑
j

∑
S̃j

s̃j =

∑
s∈S0

∑
{t; max{St}<s}

(it − 1) +
∑
t≥1

lt

∑
j<t

ij + |{s ∈ S0; s < max{St}}|

 ,

where
∑
t≥1 lt|{s ∈ S0; s < max{St}}| =

∑
s∈S0

∑
{t; s<max{St}} lt. Moreover,∑

s∈S0

∑
{t; s<max{St}}

lt + L0 =
∑
s∈S0

∑
t>0

lt = l0
∑
t>0

lt.

Then

D =
∑
s∈S0

∑
{t; max{St}<s}

(it − 1) +
∑

(ij − 1)(l0 − nj)

=
∑
s∈S0

∑
{t; max{St}<s}

(it − 1) +
∑

(ij − 1)|{s ∈ S0; s > max{Sj}}|

= 2
∑
s∈S0

∑
{t; max{St}<s}

(it − 1).

We conclude that Formula (8) is true.

It follows that the µ̂cn, n ≥ 0, span an infinitesimal sub-cooperad C of T̃ c(s•qs ).
Moreover, an explicitation of the first terms of µ̂c0 and µ̂c2 shows that the composite

C � T̃ c(s• q s )�
(
I[−1]q T c(s• q s )(2)

)
/
(
s2
(

−
)
q (1− s2θ̃(1))

)
is zero. By the universal property of the infinitesimal cooperad cAs¡, it follows
that there exists a unique (injective) morphism C � cAs¡ such that the following
diagram commutes:

C T̃ c(sE),

cAs¡

where E = • q .
The operad cAs is the completion of the operad Gr cAs. The operad Gr cAs

admits a presentation in filtered modules similar to the one defining cAs and it is
in fact the coproduct As ∗ T (•). By Proposition 6.8, we get

(Gr cAs)¡ ∼= T c(s•)⊕As¡ ∼= s• qAs¡.

A proof similar to the proof of Proposition 6.1.7 in [HM12] shows that the quadratic
operad Gr cAs is a Koszul operad. By the Poincaré–Birkhoff–Witt theorem of

Theorem 5.20, we have cAs¡ ∼= ˜(Gr cAs)
¡
. It suffices now to check the dimension

in each arity to get cAs¡ = {µ̂cn}n≥0. Going through the Poincaré–Birkhoff–Witt
isomorphism, we obtain the decomposition map ∆θ. �
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We can also compute the Koszul dual constant-quadratic operad (see Definition
5.12) associated with cAs.

Proposition 6.10. The Koszul dual complete constant-quadratic operad associated
with cAs is given by

cAs! ∼= T (◦ q ) /

(
− ,

◦
− |,

◦
− |
)
,

where ◦ is concentrated in homological degree 0. Algebras over cAs! are unital
associative algebras.

Proof. In order to apply Definition 5.12, we need to fix a decomposition of the space
of generators

E(1) = 〈•〉 and Ea(0) = 〈 〉.
The computation of the Koszul dual operad As! is given in Section 7.6.4 in [LV12].
The computation of the extra terms is similar. �

Remark 6.11. We therefore recover in an operadic context the curved Koszul duality
theory of the operad encoding unital associative algebras presented in [HM12].

Proposition 6.12. A cA∞-algebra is equivalent to a complete graded vector space
(A, F ) equipped with an n-ary filtered operation

mn : A⊗n → A of degree n− 2 for all n ≥ 0,

which satisfies the following relations∑
p+q+r=n

(−1)p+qrmk ◦p+1 mq = 0, n ≥ 0, (10)

where k = p+ 1 + r.
This notion of algebras coincides, under different settings, with the notions of

A∞-algebras given in [GJ90], of curved A∞-algebras defined in [CD01], of weak
A∞-algebras given in [Kel06], of filtered A∞-algebras used in [FOOO07], of [0, ∞[-
algebras studied in [Nic08] and of weakly curved A∞-algebras studied in [Pos12] to
give only one reference for each name.

Proof. A morphism of curved operad γA : Ω̂cAs¡ → End(A, dA) is characterized by
a map of complete S-modules cAs¡ → EndA and therefore by a collection of filtered
applications

m̃n : A⊗n → A, of degree n− 2 for all n,

such that m̃1 increases the filtration degree by 1. We denote by m1 the endomor-
phism m̃1 − dA and by mn the endomorphisms m̃n for n 6= 1. The fact that γA
commutes with the predifferentials and the fact that γA sends the curvature to the
curvature ensure that Equation (10) is satisfied for n. �

Remark 6.13. (1) By the fact that complete curved associative algebras are
examples of complete curved operads, Sections 4 and 5 apply to complete
curved associative algebras and we therefore obtain functorial resolutions of
complete curved associative algebras by the bar-cobar resolution and Koszul
resolutions for Koszul complete curved associative algebras (cofibrant in the
underlying category of complete gr-dg R-modules). These results can also
be seen as an example of an extension of the results in [Mil12] to the curved
/ infinitesimal setting: the operadic Koszul morphism κ : cAs¡ → cAs allows
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to define a bar-cobar adjunction on the level of curved associative algebras
and infinitesimal coassociative coalgebras.

(2) The same yoga would work for curved Lie algebras since we can define the
curved Lie operad cLie as the curved operad cAs. We obtain the curved
operad cL∞ whose algebras coincides with curved L∞-algebras defined in
[Zwi93] and used or studied for example in [Cos11, Mar12, MZ12, LS12].
It is however impossible to associate in the same way a curved operad
associated with the operad Com.

6.14. Homotopy categories. We now apply the results of Sections C.30 and C.38
to the morphism

fκ : cA∞ → cAs.

By Theorem C.35, the categories of algebras Alg(cAs) and Alg(cA∞) admit a cofi-
brantly generated model structure and by Theorem C.40, the morphism fκ produces
a Quillen adjunction between the model categories of curved algebras.

Theorem 6.15. The functor fκ
∗ and fκ∗

Lfκ∗ : Hoalg(cA∞) / Hoalg(cAs) : Rfκ∗ = fκ∗o

are equivalences of the homotopy categories.

Proof. To apply Theorem C.41, it is enough to show that the complete curved
operad cAs and cA∞ are S-split and that the morphism fκ is compatible with the
chosen splittings. The two operads come from non symmetric operads. In this
situation, we can consider the splitting

O(n) = Ons(n)⊗R[Sn]→ (Ons(n)⊗R[Sn])ns ⊗R[Sn]

induced by the map Ons(n)→ (Ons(n)⊗R[Sn])ns. The map fκ is compatible with
these splittings. �

Remark 6.16. There are two possible notions of morphisms for cA∞-morphisms:

• the classical morphisms of algebras of the curved operad cA∞, that is to
say maps f : A → B compatible with the predifferential and the algebra
structures;
• the notion, sometimes called∞-cA∞-morphisms, of morphisms of infinites-

imal coalgebras (cooperads) between an extension of the bar constructions
on A and on B to homotopy curved algebras (or operads). (See for example
Section 7.1 in [Pos12].)

In the previous theorem, we consider the first notion of morphism. The study of
∞-morphisms requires extra constructions which will be given in an other work.

Appendix A. Categorical filtrations and completions

In this appendix, we will establish definitions of filtered and complete filtered
objects for use in both our ground categories and in the categories of operads over
them.

We want to establish the ability to work concretely with filtered and complete
filtered objects, which we do by realizing them as reflective subcategories of dia-
gram categories that are easier to manipulate. The strategy of studying a category
by embedding it as a reflective subcategory of a better-behaved category is quite
old [GZ67]. In fact the cases of filtered and complete filtered objects constitute
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two of the original motivating examples. Consequently, much of the content of this
appendix may be well-known to experts.

The main technical point for us will be the transfer of a closed monoidal structure
to a reflective subcategory in a coherent fashion, using a criterion of Day [Day72].

The executive summary of (most of) this appendix is that the following diagram
of subcategory inclusions is in fact a diagram of normal reflective embeddings. This
means that:

(1) each of the solid arrows has a left adjoint reflector functor,
(2) the counit of each adjunction is an isomorphism,
(3) each category is closed symmetric monoidal,
(4) the given arrows are all lax symmetric monoidal with the unit of the ad-

junction as the monoidal natural transformation, and
(5) the left adjoints are all strong symmetric monoidal.

The diagram is as follows.

AobN ANop

Filt(A) F̂ilt(A).

Moreover, in the case where A is replaced by the category pgA of predifferential
graded objects in A, we can complete the diagram

pgAobN pgANop

Filt(pgA) F̂ilt(pgA) F̂ilt
gr
(A).

Throughout this appendix, we let (A,⊗,1,A) be a closed symmetric monoidal
Grothendieck category with initial object ∅.

We consider N as a poset category with initial object 0. When desirable, we
enrich N in A by saying N(a, b) is ∅ if a > b and 1 otherwise.

In general the underlying category of this enriched category is not equivalent to
N itself (they are equivalent if and only if 1 admits no automorphisms and no maps
to ∅).

Because of the diagrams of reflexive subcategories, the condition that A is a

Grothendieck category ensures in fact that the categories Filt(A), F̂ilt(A) and

F̂ilt
gr
(A) are quasi-abelian (see for example [Rie16, Lemma 3.3.5] and [FS10, Propo-

sition 4.20]). This property is useful for Section 5.
Various generalizations are possible: for many of the results we can replace

A with a regular cocomplete closed symmetric monoidal category and N with a
nontrivial poset with an initial object.

A.1. Categorical filtered objects.

Definition A.2. Let C be a category. A N-filtered object in a category C is an Nop-
indexed diagram in C where all maps are monomorphisms. The full subcategory
spanned by N-filtered objects is denoted Filt(C).

Lemma A.3. The full subcategory spanned by N-filtered objects in A inside ANop

is a reflective subcategory. Moreover, the reflector takes the functor F : Nop → A
to the functor rF whose value at e is the image of F (e)→ F (0).

Proof. For a diagram F : Nop → A there is a map ψe : F (e)→ F (0) for each object
e of N. Define rF (e) as im(ψe). By the universal property of the image in a regular
category, the morphisms in the diagram rF are well-defined monomorphisms.
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To see the adjunction, let F be a diagram and G a filtered object. The data of
a N-filtered object map from rF to G consists of a map fe from the image of ψe
to G(e) for each e. Such data defines a map f̃e : F (e) → im(ψe) → G(e). On the

other hand, given a map f̃e : F (e) → G(e) compatible with F (0) → G(0), there is
a unique lift through the image as in the following diagram:

F (e) G(e)

rF (e) F (0) G(0).

The coherence conditions for two different values of e to be an N-filtered object
map or a map of diagrams coincide, in that the commutativity of the outside cell
implies that the right square commutes if and only if the left square commutes.

F (e) G(e) rF (e)

F (e′) G(e′) rF (e′)

f̃e fe

f̃e′ fe′

Then this objectwise natural bijection restricts to a natural bijection between fil-
tered maps from rF to G and maps of diagrams from F to iG. �

A.4. Categorical complete filtered objects. In this section, we use the fact
thatA is an Abelian category, that it admits Nop-indexed limits and that its satisfies
AB4. A filtered object means a N-filtered object in A. For a filtered object V we
write ie (or iVe if V is ambiguous) for the monomorphism FeV → F0V .

Definition A.5. A filtered object is complete if the natural map F0V → lima coker ia
is an isomorphism.

The completion of the filtered object V is the sequence V̂ (also denoted V ∧)
defined as

FeV̂ := ker(lim
a

coker ia
πe−→ coker ie)

with the natural maps induced by the identity on lima coker(ia).

Lemma A.6. There is a natural isomorphism from lima≥e coker(FaV → FeV ) to

FeV̂ .

Proof. The natural map is constructed as follows. The map FeV → coker(FaV →
FeV ) is epic and the composition FeV → coker(FaV → FeV ) → coker ie is equal
to the composition FeV → F0V → coker ie = 0. So, passing to the limit, FeV →
lim coker(FaV → FeV ) factors through the kernel of lima coker ia → coker ie.

To see that this is an isomorphism, note that for a ≥ e, the sequence

0→ coker(FaV → FeV )→ coker ia → coker ie → 0

is exact by the third isomorphism theorem which exists because the category sat-
isfies AB4. Then taking limits over a, we get an exact sequence

0→ lim(cokerFaV → FeV )→ F0V̂ → coker ie
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since the limit is left exact. But F0V̂ → coker ie is epic since the epimorphism
F0V → coker ie factors through F0V̂ , so the sequence is in fact short exact, which
is the desired statement. �

Lemma A.7. Completion is a functor from filtered objects to the full subcategory
of complete filtered objects.

Proof. If completion is viewed as an assignment with codomain sequences, then
functoriality is clear. It should be verified that the codomain can be restricted,
first to filtered objects and then to complete filtered objects.

So first we verify that the induced maps Fe′ V̂ → FeV̂ are monomorphisms for
e′ > e.

By inspection F0V̂ ∼= lima coker ia and so the map FeV̂ → F0V̂ is the inclusion
of a kernel and thus a monomorphism. Since the map Fe′ V̂ → F0V̂ can be factored
Fe′ V̂ → FeV̂ → F0V̂ , the left map Fe′ V̂ → FeV̂ is also a monomorphism.

To see that completions are complete, by the construction of V̂ we have coherent

isomorphisms coker iV̂e
∼= coker iVe so the composition of the natural map with the

two natural isomorphisms

F0V̂ → lim
a

coker iV̂a
∼= lim

a
cokerFaV ∼= F0V̂

is the identity, which implies that the natural map is an isomorphism. �

Lemma A.8. There is a natural filtered map r (or rV ) from a filtered object V to

its completion V̂ . This natural map is an isomorphism on complete objects.

Proof. We have already used a similar natural map (let us call it r0) from F0V to

F0V̂ ∼= lima coker ia. The composition

FeV
ie−→ F0V

r0−→ F0V̂
πe−→ coker ie

is zero so that there is a unique induced map re from FeV to FeV̂ = ker(πe) as in
the following diagram:

FeV F0V

0 coker ie

FeV̂ = kerπe F0V̂ .

ie

re r0

πe

The collection re is coherent so constitute the data of morphism of filtered objects.
If V is complete then the natural map F0V → F0V̂ is an isomorphism, so that

FeV̂ → F0V̂ → F0V is naturally isomorphic to ker coker ie which in turn is natu-
rally isomorphic to the monomorphism ie. The identity isomorphism FeV → FeV
satisfies the universal property of re under the identification of this natural isomor-
phism, so re itself must be an isomorphism. �

Lemma A.9. For any filtered object V the two morphisms rV̂ and r̂V from V̂ to
ˆ̂
V coincide.
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The proof is straightforward; we record the details in order to have a complete1

account. Because FeW → F0W is a monomorphism for a filtered complex W it

suffices to check the maps F0V̂ → F0
ˆ̂
V coincide.

Proof. These are two maps

F0V̂ → lim
b

coker ker(F0V̂
πb−→ coker ib).

To check if these maps agree it suffices to check on all projections over the limit.
The e term of the limit is the coimage of πe, and so it suffices to check equality
after postcomposing the monomorphism coker ker(πe)→ coker ib.

The e component of rV̂ is just the left half of the coimage factorization F0V̂ →
coker ker(F0V̂

πe−→ coker ie) so postcomposing the given monomorphism gives πe.

On the other hand, the e component of r̂V is given by the projection πe from
F0V̂ to coker ie followed by the map coker ie → coker kerπe induced by rV0 . Post-
composition then gives

F0V̂
πe−→ coker ie

induced by rV0−−−−−−−−−→ coker kerπe
right half of πe coimage factorization−−−−−−−−−−−−−−−−−−−−−−−→ coker ie.

Then to show this to be equal to πe it suffices to check that the composition of the
right two maps in the composition is the identity of coker ie. Then this equality can
be checked after precomposition with the epimorphism F0V → coker ie. We con-
clude by the commutativity of the following diagram, which shows these two to be
equal (unlabeled morphisms are induced by cokernels and coimage factorizations).

F0V coker ie

F0V̂ coker kerπe

coker ie

rV0
induced by rV0

πe

�

Corollary A.10. The inclusion of complete filtered objects inside filtered objects

is reflective with reflector V
r−→ V̂ .

Proof. We have already defined a unit in Lemma A.7. For W a complete filtered
object, the W component of the counit is supposed to be a map of filtered objects

from Ŵ to W . Since W is complete, we may take the inverse of the unit, which is
an isomorphism on the complete filtered object W . So εW = r−1

W .

Then W
rW−−→ Ŵ

εW−−→W is the identity on W by definition and the composition

V̂
r̂V−−→ ˆ̂

V
εV̂−−→ V̂ is the identity by Lemma A.9. �

1In more ways than one.
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A.11. Coproducts and products in complete filtered objects. Next we spend
a little time showing that in complete objects, the canonical map from the coprod-
uct to the product is a monomorphism. This allows us to detect whether two maps
into a coproduct are equal by means of the product projections. We now use that
A moreover has all products and coproducts and is AB5.

Remark A.12. Biproducts are inherited by a reflective subcategory. To see this,
recall that a coproduct in the subcategory is calculated as the reflector applied to
the coproduct of the same objects in the ambient category. On the other hand,
the product of the same objects in the reflective subcategory is calculated in the
ambient category, where it coincides with a coproduct in the ambient category.
This implies that the given coproduct already (essentially) lies in the reflective
subcategory, so the reflector is an isomorphism on this coproduct.

We recall the definition of strict morphism from [Del71, 1.1.5].

Definition A.13. In a category with finite limits and colimits, we say that a
morphism f : Y → X is strict if the natural morphism coim(f) → im(f) is an
isomorphism.

In the context of (possibly complete) filtered objects, a morphism f : Y → X is
strict if and only if it is strictly compatible with filtration, that is to say, for each
n, the following is a pullback square:

f(FnY ) FnX

f(F0Y ) F0X.

Lemma A.14. Suppose Y → X is a strict, monic morphism of filtered objects.
Then the induced map F0Y/FnY → F0X/FnX is a monomorphism for all n.

Proof. Using the fact that Y → X is strict, a standard diagram chase in the
(Abelian) ground category shows that the map of cokernels of the Cartesian square

FnX/f(FnY )→ F0X/f(F0Y )

is monic.
Now consider the snake lemma in the (Abelian) ground category for the diagram

FnY F0Y F0Y/FnY 0

0 FnX F0X F0X/FnX.

Since Y → X is monic, the kernel of F0Y → F0X is zero so the kernel of
F0Y/FnY → F0X/FnX is in an exact sequence following a zero term and pre-
ceding a monomorphism. �

Lemma A.15. The natural map in diagrams from a coproduct to the product over
the same indexing set is monic.

Proof. The map from each finite subcoproduct to the product admits a retraction
so is monic. By AB5, the map in the colimit from the total coproduct to the
product is also monic. 2 �

2We learned this short proof from Zhen Lin Low.
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Lemma A.16. The natural map in filtered objects from a coproduct to the product
over the same indexing set is strict.

Proof. Let Xi be a family of filtered objects, and let Y map to
∐
F0X

i and
∏
FnX

i

over
∏
F0X

i. We construct a map from Y to
∐
FnX

i over both of these. Since
the map from

∐
FnX

i to
∐
F0X

i this will show that this lift is unique, witnessing
the desired universal property.

Since the ground category satisfies AB4,
∐
FnX

i is the kernel of the map∐
F0X

i q−→
∐

(F0X
i/FnX

i), so it suffices to show that the map from Y to
∐
FnX

i

vanishes under q. By Lemma A.15, it suffices to show that this vanishing after com-
posing with the monomorphism from

∐
(F0X

i/FnX
i) to

∏
(F0X

i/FnX
i). This in

turn can be checked by projection to each F0X
j/FnX

j factor. But these composites
factor as

Y →
∐

F0X
i →

∏
F0X

i → F0X
j → F0X

j/FnX
j

and because the map from Y to
∏
F0X

i factors through
∏
FnX

i, the entire com-
posite is zero, as desired. �

Lemma A.17. The natural map in complete objects from a coproduct to the product
over the same indexing set is monic.

Proof. Lemma A.15 shows this in diagrams. We will upgrade this first to the filtered
and then to the complete context.

Both products and coproducts in the filtered context coincide with those in
diagrams, the former without any hypotheses and the latter because the ground
category satisfies AB4. Monomorphisms in filtered objects are created in diagrams
(or by the terminal entry), so we have the same result there.

Now passing to the complete context, we need to verify that this monomorphism
passes to the completion. By Lemma A.16, the monomorphism is also strict, so by
Lemma A.14, the successive quotients(∐

i

F0X
i

)/(∐
i

FnX
i

)
→

(∏
i

F0X
i

)/(∏
i

FnX
i

)
are monic. The limit functor is a right adjoint so left exact, so we get a monomor-
phism in filtration degree zero at the level of completions. But this is enough to
detect monomorphisms in complete objects. �

A.18. Tensor products in the filtered and complete settings. Now we give
the criterion of Day for transfer of a closed symmetric monoidal structure.

Definition A.19. A class of objects G in a category C is strongly generating if a
morphism f : x → y in C is an isomorphism whenever the induced maps of sets
C(g, x)→ C(g, y) is an isomorphism for all g ∈ G.

Theorem A.20 (Day). Let D be a closed symmetric monoidal category and let
i : C → D be a reflective subcategory, with reflector r. Let GD be a strongly
generating class of objects of D. The following are equivalent:

(1) There exists:
(a) A closed symmetric monoidal structure on C,
(b) A symmetric monoidal enrichment of the inclusion i which commutes

with the underlying set functor, and
(c) A strong symmetric monoidal enrichment of the reflector r.
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(2) (Day’s condition (1)) For d in D and c in C, the component of the unit of
the reflection adjunction idD → ir is an isomorphism for the hom object
D(d, ic).

(3) (Day’s condition (2), simplified) For d in GD and c in C, the component
of the unit of the reflection adjunction idD → ir is an isomorphism for the
hom object D(d, ic).

In the case that Day’s conditions are satisfied, since ri is naturally isomorphic
to idC , we have the following natural isomorphisms for c and c′ objects in C:

c⊗C c′ ∼= (ric)⊗C (ric′) ∼= r(ic⊗D ic′).

Then for c and c′ and c′′ objects in C, we have

C(r(ic⊗D ic′), c′′) ∼= D(ic⊗D ic′, ic′′) by adjunction

∼= D(ic,D(ic′, ic′′)) by adjunction

∼= D(ic, irD(ic′, ic′′)) by Day’s condition (1)

∼= C(c, rD(ic′, ic′′)) by full faithfulness of i

which shows that the internal hom C(c′, c′′) is naturally isomorphic to rD(ic′, ic′′).
In particular this implies that

iC(c′, c′′) ∼= irD(ic′, ic′′) ∼= D(ic′, ic′′)

again by full faithfulness and Day’s condition (1).
Thus the motto is “internal homs are computed in the big category D but the

monoidal product needs to be reflected”.

A.21. Strong generation of sequences. We will repeatedly use the same set of
strong generators in what follows.

Definition A.22. Let m be an object of A and x an object of N. We define a
A-valued N-presheaf mx as follows:

Fe(mx) :=

{
m e ≤ x
∅ otherwise

with structure maps either the initial map or the identity.

Lemma A.23. The class of presheaves {mx} as m and x vary over the objects of
A and N is strongly generating.

Proof. A map of presheaves from mx to an arbitrary presheaf X is determined
uniquely by the level x map from m to FxX. Every such map in A actually
determines a map of presheaves, using the initial map for indices greater than x
and using the commutativity of the following diagram for indices e less than x:

m FxX

m FeX.

id

A map of presheaves is an isomorphism just when it is so objectwise, and this
argument shows that the given set tests at every object of N against every object
of A. �
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Lemma A.24. Let C be a reflective subcategory of D with reflector r and let G be
a strongly generating class for D. Then rG is strongly generating for C.

Proof. Let f : x → y in C and suppose f∗ : C(rg, x) → C(rg, y) is an isomorphism
for all g in G. By adjunction, (i(f))∗ : D(g, ix) → D(g, iy) is an isomorphism for
all g. Then i(f) is an isomorphism since G is generating for D. Then f is an
isomorphism since i is fully faithful. �

Corollary A.25. The class of presheaves {mx} as m and x vary over the objects
of A and N is strongly generating for the categories of filtered and complete objects.

Proof. The initial map and isomorphisms are monic so mx is already filtered, so it
is fixed by the reflector to filtered objects. It’s easy to see that mx is also complete
because the limit involved in the completion of mx stabilizes. This means that mx

is also fixed by the reflector to complete objects. The previous lemma completes
the proof. �

A.26. Monoidal structure on filtered objects. In order to transfer a monoidal
structure from A-valued presheaves on N to N-filtered objects of A, we should have
a monoidal structure on diagrams.

Fact A.27. Day convolution gives the diagram category ANop

a closed symmetric
monoidal structure with product

Fe(V ⊗W ) := colim
a+b≥e

FaV ⊗ FbW

unit

Fe(1ANop ) :=

{
1A e = 0

∅ otherwise

and internal hom object

Fe(ANop

(V,W )) := lim
e+a≥b

A(FaV, FbW ).

Lemma A.28. We have the following description of the internal hom object from
a generator:

Fe(ANop

(mx, V )) ∼= A(m,Fx+eV ),

with morphisms induced by those of V .

Proof. There are maps from A(m,Fx+eV ) to A(Fa(mx), FbV ) for e+a ≥ b defined
as follows:

• if a > x, then Fa(mx) is initial so A(Fa(mx), FbV ) is terminal and the map
requires no data.
• if a ≤ x, then Fa(mx) ∼= m. Since e+ a ≥ b, we have b ≤ x+ e, so there is

a map φ : Fx+eV → FbV . Then A(m,Fx+eV )→ A(m,FbV ) is induced by
φ.

It is immediate that these maps are compatible with the structure morphisms of the
subcategory of Nop×N over which we are taking the limit and realize A(m,Fx+eV )
as the limit. �

Lemma A.29. The inclusion of the reflective subcategory of N-filtered objects into
N-presheaves satisfies Day’s simplified condition (2) with respect to the Day convo-
lution symmetric monoidal structure and the generators of Corollary A.25.
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Proof. Let V be an N-filtered object and mx a N-presheaf generator. We must
show that

ANop

(mx, V )→ irANop

(mx, V )

is an isomorphism. It is equivalent to show that ANop

(mx, V ) is filtered. In turn
this is equivalent to showing that the structure map from index e to index 0 is a
monomorphism for all e in N. By the description of Lemma A.28, it is enough to
prove that

A(m,Fx+eV )→ A(m,FxV )

is a monomorphism for arbitrary m and x. But Fx+eV → FxV is a monomor-
phism by assumption and the functor A(m,−) is a right adjoint and thus preserves
monomorphisms. �

Corollary A.30. The category of N-filtered objects in A is closed symmetric monoidal
with product

Fe(V ⊗̄W ) := im((colim
a+b≥e

FaV ⊗ FbW )→ V ⊗W ),

unit

Fe(1Filt(A)) :=

{
1A e = 0

∅ otherwise

and internal hom object

Fe(Filt(A)(V,W )) := lim
e+a≥b

A(FaV, FbW ).

A.31. Monoidal structure on complete filtered objects. Finally we use Day’s
theorem again to transfer the monoidal structure on filtered objects to one on
complete filtered objects. Again, we make use of the assumptions of section A.4.

Lemma A.32. Let W be a complete N-filtered object and m an object of A. Then
the sequence A(m,W ) is a complete filtered object.

Proof. We saw that A(m,W ) was filtered in Lemma A.29. To see that it is com-
plete, we should verify that the canonical map

A(m,F0W )
r0−→ lim

e
coker

(
A(m,FeW )

(ie)∗−−−→ A(m,F0W )

)
is an isomorphism.

Since W is complete, we have

A(m,F0W ) ∼= A(m, lim
e

coker ie) ∼= lim
e
A(m, coker ie)

and under this chain of isomorphisms, the natural map

lime coker (A(m,FeW )→ A(m,F0W ))

lime (A(m, coker(FeW → F0W )))

s0

is isomorphic to a right inverse to r0. Since A is Abelian, it then suffices to show
that s0 has no kernel. But the kernel of s0 passes inside the limit and for each
index e is null by left exactness of A(m,−). �

Lemma A.33. Let W be a complete N-filtered object and x an element of N. Then
the shifted complex W [x] with Fe(W [x]) := Fx+eW is a complete filtered object.
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Proof. For any x and e the map coker(Fx+eW → FxW )→ coker(Fx+eW → F0W )
is a monomorphism since FxW → F0W is. Therefore the limit

lim
e

coker(Fx+eW → FxW )
φ−→ lim

e
coker(Fx+eW → F0W ) ∼= lim

e
coker(FeW → F0W )

is a monomorphism. The left hand side is F0Ŵ [x] and the right hand side is F0Ŵ .
Moreover, the further projection πx to coker(FxW → F0W ) factors through the

projection to coker(FxW → FxW ) ∼= 0 so φ lifts to F0Ŵ [x]
φ̃−→ FxŴ = kerπx:

lime coker(Fx+eW → FxW ) lime coker(FeW → F0W )

coker(FxW → FxW ) coker(FxW → F0W ).

φ

πx

The map φ̃ is a monomorphism because it lifts the monomorphism φ.

On the other hand the composition FxW ∼= F0W [x]
r
W [x]
0−−−→ F0Ŵ [x]

φ̃−→ FxŴ

agrees with the canonical map FxW → FxŴ which is an isomorphism because
W is complete. This shows that φ̃ is also an epimorphism. Therefore φ̃ is an

isomorphism and by two out of three, so is r
W [x]
0 . �

Corollary A.34. The reflective subcategory of complete N-filtered objects inside N-
filtered objects satisfies Day’s simplified condition (2) with respect to the symmetric
monoidal structure of Corollary A.30 and the generators of Corollary A.25.

Proof. We are checking that for any generator mx and any complete filtered object
W , the object

Filt(A)(mx,W )

is complete. We already have a description of this filtered object as a presheaf
from Lemma A.28 (and the proof of Lemma A.29): in index e this presheaf has
A(m,Fx+eW ). Then we are done by Lemmas A.32 and A.33. �

Corollary A.35. The category of complete N-filtered objects in A is closed sym-
metric monoidal with product

V ⊗̂W := (V ⊗̄W )∧,

and unit and internal hom calculated as in filtered objects.

A.36. Consequences for S-modules. The tensor product of S-modules can be
described in terms of colimits and the monoidal product in the ground category.
Then because completion is a left adjoint and by Theorem A.20 and Corollary A.34,
completion commutes with the tensor product of S modules. That is, for S-modules
A and B we have the following natural isomorphism:

(A⊗̄B)∧ ∼= Â⊗̂B̂.

Similarly, since completion is a left adjoint, it commutes with the colimit defining
the composition product of S-modules so that for any filtered S-modules A and B,



HOMOTOPY THEORY OF CURVED OPERADS AND CURVED ALGEBRAS 59

we have the following sequence of natural isomorphisms:

(A ◦B)∧ ∼=
(

colim
k

A(k)⊗̄Sk(B)⊗̄k
)∧

∼= colim
k

Â(k)⊗̂Sk

(
B⊗̄k

)∧
∼= colim

k
Â(k)⊗̂Sk(B̂)⊗̂k

∼= Â◦̂B̂.

We may collect this into the following corollary.

Corollary A.37. Completion is strong monoidal with respect to the induced com-
position products ◦ and ◦̂ on N-filtered S-modules and complete N-filtered S-modules.

A.38. Filtered gr-dg objects. Recall that Filtgr(A) is the category of filtered
gr-dg objects, that is, filtered predifferential graded objects such that the induced
predifferential structure on the associated graded object is actually a differential.

Likewise p̂gA
gr

consists of complete predifferential graded objects such that the
induced predifferential structure on the associated graded object is actually a dif-
ferential.

Lemma A.39. The category of filtered gr-dg objects Filtgr(A) is a reflective sub-
category of the one of filtered pg objects.

Proof. Let (V, F, d) be a filtered predifferential graded object.

The reflector takes this object to a filtered gr-dg object (V, F̃ , d) constructed as

follows. Define F̃ p(V ) to be the following subobject of F0V :

F̃ p(V ) =

p∑
i=0

d2iFp−iV.

The connecting map F̃ pV → V is monic by construction, which forces all the
connecting maps to be monic. By construction d respects this filtration. This is
clearly functorial.

For adjunction, consider a map f from a filtered pg object X into a filtered
gr-dg object Y . Then d2iFp−iX must be taken by f to d2iFp−iY ⊂ FpY so that f

respects the more restrictive filtration F̃ . On the other hand given a map f from X̃
to Y , the same formula for f certainly respects the less restrictive filtration on X.
Thus the identity on the underlying map F0X → F0Y induces the adjunction. �

Remark A.40. In fact, filtered gr-dg objects is also a coreflective subcategory. The
coreflector takes the object (V, F, d) to a filtered gr-dg object (V̌ , F̌ , ď) constructed
as follows. We define FpV̌ to be the subset of elements v of FpV such that there
exist indices pi for all natural numbers i such that

(1) The sequence of pi begins with p and is strictly increasing:

p = p0 < p1 < · · ·

(2) The element d2iv is equivalent to 0 (mod F>piV ).

This subset is a subobject (choosing the maximum of the pi sequences for a sum)
and closed by construction under d, which induces ď.



60 GABRIEL C. DRUMMOND-COLE AND JOAN BELLIER-MILLÈS

An equivalent construction proceeds as follows. Consider the functor T so that
Fp(TV ) is the pullback

Fp(TV ) colimq>p FqV

FpV FpV
d2

Then FpV̌ = limr Fp(T
·rV ).

Lemma A.41. Completion preserves the gr-dg property.

Proof. We use the characterization of Lemma A.6 (which uses the fact that the

ground category satisfies AB4). Let Y be gr-dg. Consider Fj Ŷ
d2

−→ Fj Ŷ . This is
an endomorphism of lima coker(FaY → FjY ) which admits an epimorphism from

FjY . Then since Y is gr-dg, the map FjY
d2

−→ FjY factors through Fj+1Y . This
means that we get a similar factorization

lim
a

coker(FaY → FjY )
d2

−→ lim
a

coker(FaY → Fj+1Y ).

�

Corollary A.42. Complete gr-dg objects F̂ilt
gr
(A) are a reflective subcategory of

both complete pg objects and filtered gr-dg objects.

Proof. By Lemma A.41, in both cases the functor X 7→ ̂̃
X can serve as reflector

(on filtered gr-dg objects this is the same as plain completion). That is, at least it
is a functor to the right codomain category.

Then the proof in both cases is a chain of canonical isomorphisms using the

formal dg reflector X 7→ X̃ and completion X 7→ X̂. Each one comes either from
an adjunction, or full faithfulness of one of the right adjoints.

We check that, for Y complete and gr-dg and X filtered, we have:

Hom
F̂ilt

gr (
̂̃
X,Y ) ∼= Hom

F̂ilt
(
̂̃
X,Y )

∼= HomFilt(X̃, Y )

∼= HomFiltgr(X̃, Y )

∼= HomFilt(X,Y ).

Now if X is itself either complete or gr-dg, then this is finally isomorphic by the
full faithfulness of the subcategories to the subcategory morphisms. �

A.43. Monoidal structure on (complete) filtered gr-dg objects. We use
Day’s theorem again to transfer the monoidal structure on (complete) filtered ob-
jects to one on (complete) gr-dg filtered objects. Again, we uses the assumptions
of section A.4 .

Lemma A.44. Let W be an object in Filtgr(A) and m an object of Filt(pgA).
Then the sequence A(m̃,W ) is gr-dg.

Proof. On the hom object, the square of the differential is the commutator with
d2, interpreted in m̃ and in W . The pth filtered component of A(m̃,W ) consists of
morphisms which increase filtration degree by p. Since d2 increases filtration degree
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by 1 on both sides, the commutator with d2 of such a morphism increases filtration
degree by p+ 1. �

Lemma A.45. Let W be a filtered gr-dg object and x an element of N. Then the
shifted complex W [x] with FeW [x] := Fx+eW is gr-dg.

Proof. The filtered gr-dg condition for Fn+xW yields the condition for FnW . �

Corollary A.46. The reflective subcategory of (complete) gr-dg objects inside (com-
plete) N-filtered objects satisfies Day’s simplified condition (2) with respect to the
symmetric monoidal structure of Corollary A.30 (Corollary A.35) and the genera-
tors of Corollary A.25 reflected into (complete) gr-dg objects via Lemma A.24.

Proof. By Lemma A.45, and because mx is complete and filtered, we need only
check that for any generator mx and any gr-dg object W , that the object

Filt(A)(mx,W )

is gr-dg. We already have a description of this filtered object as a presheaf from
Lemma A.28: in index e this presheaf has A(m,Fx+eW ). Then we are done by
Lemmas A.44 and A.45. �

Corollary A.47. The category of (complete) gr-dg objects in A is closed symmetric
monoidal with product

˜(V ⊗̄W ), (resp. ˜(V ⊗̂W ), )

and unit and internal hom calculated as in filtered objects.
By abuse of notation, we still denote by ⊗̄ (resp. ⊗̂) the tensor product in the

category of (complete) gr-dg objects.

Appendix B. Gr-flat objects and the associated graded

This section builds up the necessary material to prove Proposition 3.4.

Lemma B.1. Let the ground category A be a Grothendieck category. Let C be the
class of monomorphisms with flat cokernel. Then C is closed under the pushout
product.

Proof. This proof follows [Hov02, Theorem 7.2] word for word, although both the
hypotheses and conclusion here are weaker. Let A1 → X1 and A2 → X2 be
monomorphisms with flat cokernel C1 and C2 respectively. Then 0→ A1 → X1 →
C1 → 0 is pure exact so remains exact after tensoring with A2 or X2. Then by the
3× 3 lemma, the middle row of the following diagram is exact:

0 A1 ⊗A2 X1 ⊗A2 C1 ⊗A2 0

0 A1 ⊗X2 (X1 ⊗A2)q(A1⊗A2) (A1 ⊗X2) C1 ⊗A2 0

0 A1 ⊗X2 X1 ⊗X2 C1 ⊗X2 0.

Since C1 is flat, the map C1 ⊗ A2 → C1 ⊗ X2 is a monomorphism with cokernel
C1 ⊗ C2. Then the snake lemma applied to the bottom two rows shows that

(X1 ⊗A2)q(A1⊗A2) (A1 ⊗X2)→ X1 ⊗X2
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has zero kernel and cokernel isomorphic to C1 ⊗ C2, which is thus flat. �

Lemma B.2. Let A ← B → C and A′ ← B → C ′ be diagrams in C, and suppose
given a map of diagrams from the former to the latter which is the identity on B
and a monomorphism with flat cokernel on the other two entries. Then the induced
morphism between the pushouts is a monomorphism with flat cokernel.

Proof. First, we argue that the induced morphism is a monomorphism. Let A qB
C → I be a monomorphism from the pushout to an injective object (Grothendieck
categories have enough injectives). Then since A→ A′ and C → C ′ are monomor-
phisms, there are extensions A′ → I of A → I and C ′ → I of C → I. Because
these morphisms are extensions, they remain compatible with B → I, and so pass
to an extension A′ qB C ′ → I of A qB C → I. Then A qB C → A′ qB C ′ is the
first morphism in a monic composition, hence is monic.

To see the statement about the cokernel, note that cokernel (in the pushout
diagram category in C and in C) commutes with the colimit functor, which is a left
adjoint. Then the cokernel of the morphism of pushouts is the sum of the cokernels,
and flat objects are closed under sum. �

Lemma B.3. The N-indexed diagram product of two gr-flat filtered objects is a
gr-flat filtered object.

Proof. Let X and Y be gr-flat filtered objects. We would like to show that Fn(X⊗
Y )→ Fn−1(X ⊗ Y ) is a monomorphism. The colimit defining Fn(X ⊗ Y ) is of the
following diagram:

FnX ⊗ F0Y Fn−1X ⊗ F1Y · · ·

FnX ⊗ F1Y Fn−1X ⊗ F2Y

We can rewrite this as the following colimit:

(FnX ⊗ F0Y )
∐

FnX⊗F1Y

(Fn−1X ⊗ F1Y ) (Fn−1X ⊗ F1Y )
∐

Fn−1X⊗F2Y

(Fn−2X ⊗ F2Y )

Fn−1X ⊗ F1Y · · ·

The map from Fn(X ⊗ Y ) to Fn−1(X ⊗ Y ) is realized under colimit by a map of
diagrams from this latter diagram to the following diagram

Fn−1X ⊗ F0Y Fn−2X ⊗ F1Y

Fn−1X ⊗ F1Y · · ·

where the maps involved are

(1) monomorphisms with flat cokernel on the upper row by Lemma B.1, and
(2) identities on the lower row.
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The map of colimits can thus be constructed inductively from maps of pushout
diagrams where the morphism at the corner is the identity and all other mor-
phisms are monomorphisms with flat cokernel. The inductive step is supplied by
Lemma B.2. �

Lemma B.4. The full subcategory of gr-flat (complete) filtered objects in a Grothendieck
category is a monoidal subcategory of (complete) filtered objects and the restriction
of Gr to this subcategory is strong symmetric monoidal.

Proof. We’ll do the complete filtered case, but the filtered case is more or less a
sub-case of this. Let X and Y be gr-flat complete filtered objects. The monoidal
product of X and Y in complete filtered objects is

(Filt(X ⊗ Y ))∧

But by Lemma B.3, the regular diagram product X⊗Y is already filtered so Filt is

an isomorphism on it. Then Gr (X̂ ⊗ Y ) ∼= Gr (X ⊗ Y ) since completion preserves
associated graded. Again by Lemma B.3, X⊗Y is gr-flat. This suffices to establish
that gr-flat constitute a monoidal subcategory.

We have already essentially showed that the restriction of Gr to this subcategory
is strong. Specifically, we’ve already argued that the second and third step of the
composition

Gr (X)⊗Gr Gr (Y )→ Gr (X ⊗ Y )
Gr (Filt( ))−−−−−−−→ Gr (X⊗̄Y )

Gr (̂ )−−−→ Gr (X⊗̂Y ),

where ⊗ stands for Nop-indexed diagrams, are isomorphisms. The first step is also
an isomorphism because Gr is the reflector of a closed normal embedding, so the
adjoint inclusion is strong monoidal. �

Remark B.5. The gr-flat condition is more or less essential; if FiX/Fi+1X is not
flat then tensoring with a module with trivial filtration can yield a diagram which
is not filtered.

Now we are ready to prove Proposition 3.4.

Proof of Proposition 3.4. The dual of [Fre17, Lemma 3.1.1] says that a unit pre-
serving colax symmetric monoidal functor takes (infintesimal) cooperads to (infin-
itesimal) cooperads. The original lemma does not require cocompleteness of the
ground category or the preservation of colimits in each variable by the monoidal
product. Therefore the dual does not require completeness or (unlikely) limit-
preservation properties. The definition of an operad in that reference uses only
the monoidal product and morphisms in the ambient category, so cooperads in a
monoidal subcategory of C coincide with cooperads in C whose underlying objects
are in the monoidal subcategory.3 (The same is true for infinitesimal cooperads.)
Now Lemma B.4 says that Gr is a strong monoidal functor from the subcategory
of gr-flat complete filtered objects in C to graded objects in C, and that its image
lies in the subcategory of degreewise flat objects. �

3We cannot use the dual of [YJ15, Theorem 12.11(1)] here without modification because this

last statement fails—the monadic construction of operads there uses colimits intimately. This

implies that the category of Yau–Johnson cooperads in a monoidal subcategory of C may not
even be well-defined (if the subcategory is not complete), and that if they are well-defined the

isomorphism with cooperads whose underlying objects lie in the monoidal subcategory may fail.
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Appendix C. Model category structures

In this Appendix, we endow the category F̂ilt
gr
(R-Mod) of complete gr-dg R-

modules with a cofibrantly generated model structure. We propose to consider the
graded quasi-isomorphisms as a class of weak equivalences and a set of generating
cofibrations similar to the one described in [CESLW19]. We describe the fibrations
and we show that the model category structure on complete gr-dg R-modules is
combinatorial and is a monoidal model category structure. Then we transfer the
cofibrantly generated model category structure to the category of complete curved
operads via the free curved operad functor and to the category of complete algebras
over a curved operad by means of the corresponding free functor and we study the
cofibrant objects. We finally show a base change result for the categories of algebras
over some curved operads.

We work over unbounded chain complexes over a ring R. In this appendix, we
assume that R is a field of characteristic 0.

C.1. Cofibrantly generated model structure. We recall some definitions and
a result from [Hov99, 2.1].

Definition C.2. Let I be a class of maps in a category M.

(1) A map is I-injective if it has the right lifting property with respect to every
map in I. The class of I-injective maps is denoted I-inj.

(2) A map is I-projective if it has the left lifting property with respect to every
map in I. The class of I-projective maps is denoted I-proj.

(3) A map is an I-cofibration if it has the left lifting property with respect to
every I-injective map. The class of I-cofibrations is the class (I-inj)-proj
and is denoted I-cof.

(4) A map is an I-fibration if it has the right lifting property with respect to
every I-projective map. The class of I-fibrations is the class (I-proj)-inj
and is denoted I-fib.

(5) We assume that M is cocomplete. A map is a relative I-cell complex if it
is a transfinite composition of pushouts of elements of I. Such a morphism
f : A → B is the composition of a λ-sequence X : λ →M, for an ordinal
λ such that, for each β such that β + 1 < λ, there is a pushout square

Cβ Xβ

Dβ Xβ+1

gβ
p

such that gβ ∈ I. We denote the collection of relative I-cell complexes by
I-cell.

Definition C.3. Let M be a cocomplete category and N be a collection of mor-
phisms of M. An object A ∈ M is α-small relative to N , for a cardinal α, if for
all α-filtered ordinals λ and all λ-sequences

X0 → X1 → · · · → Xβ → · · ·

such that Xβ → Xβ+1 is in N for β + 1 < λ, the map of sets

colim
β<λ

HomM(A, Xβ)→ HomM(A, colim
β<λ

Xβ)
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is an isomorphism. We say that A is small relative to N if it is α-small relative to
N for some α. We say that A is small if it is small relative to M.

Definition C.4. A model category C is said to be cofibrantly generated if there are
sets I and J of maps such that:

(1) the domains of the mas in I are small relative to I-cell,
(2) the domains of the maps in J are small relative to J-cell,
(3) the class of fibrations is J-inj,
(4) the class of trivial fibrations is I-inj.

The set I is called the set of generating cofibrations and the set J is called the set
of generating trivial cofibrations.

We now recall the following theorem from [Hov99, Theorem 2.1.19]. It shows
how to construct cofibrantly generated model categories.

Theorem C.5. Suppose M is a complete and cocomplete category. Suppose W is
a subcategory ofM, and I and J are sets of maps ofM. Then there is a cofibrantly
generated model structure onM with I as the set of generating cofibrations, J as the
set of generating trivial cofibrations, and W as the subcategory of weak equivalences
if and only if the following conditions are satisfied:

(1) the subcategory W has the two-out-of-three property and is closed under
retracts,

(2) the domains of I are small relative to I-cell,
(3) the domains of J are small relative to J-cell,
(4) I-inj =W ∩ J-inj,
(5) J-cof ⊆ W ∩ I-cof.

C.6. The category of complete gr-dg R-modules. We apply Theorem C.5 to
endow the category of complete gr-dg R-modules with a proper model structure.
In this section, the category A denotes the category of R-modules.

We recall that a map p : (X, F ) → (Y, F ′) is strict when it satisfies p(FqX) =
p(X) ∩ F ′qY for all q. When p is a surjection, this means that p(FqX) = F ′qY for
all q. We say that a filtered gr-dg R-module (M, F ) is pure of weight q if

M = F0M = FqM ⊇ Fq+1M = 0.

We denote by R(q) the (complete) filtered R-module given by R concentrated in

pure weight q. The notation R
(q)
n means that we consider it in degree n within a

(complete) filtered complex.
Taking notations close to the ones in [CESLW19], we define, for all n ∈ Z and

q ∈ N, the complete gr-dg modules

Ẑ0,∞
q,n :=

(
R(q)
n

1−→ R
(q)
n−1

1−→ R
(q+1)
n−2

1−→ R
(q+1)
n−3

1−→ R
(q+2)
n−4 → . . .

)∧
=qk∈N R

(q+b k2 c)
n−k ,

where q is the coproduct in complete gr-dg modules, and

Ẑ1,∞
q,n :=

(
R(q)
n

1−→ R
(q+1)
n−1

1−→ R
(q+1)
n−2

1−→ R
(q+2)
n−3

1−→ R
(q+2)
n−4 → . . .

)∧
=qk∈N R

(q+d k2 e)
n−k .
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We also define the complete gr-dg R-module

B̂1,∞
q,n := Ẑ0,∞

q,n+1 q Ẑ
0,∞
q+1,n.

We denote by ϕ∞q,n : Ẑ1,∞
q,n → B̂1,∞

q,n the morphism of complete gr-dg modules defined
by the following diagram

R
(q)
n

//

(
1
1

)
��

R
(q+1)
n−1

//

(
1
1

)
��

R
(q+1)
n−2(

1
1

)
��

// · · ·

R
(q)
n+1

// R(q)
n qR

(q+1)
n

// R(q+1)
n−1 qR

(q+1)
n−1

// R(q+1)
n−2 qR

(q+2)
n−2

// · · · .

In order to apply Theorem C.5, we consider the subcategory of F̂ilt
gr
(A)

W := {f : (M, F, dM )→ (N, F ′, dN ) | f is a graded quasi-isomorphism}
of weak equivalences, and the sets

I∞0 := {ϕ∞q,n : Ẑ1,∞
q,n → B̂1,∞

q,n }n∈Z, q∈N
J∞0 := {0→ Ẑ0,∞

q,n }n∈Z, q∈N
of generating cofibrations and generating acyclic cofibrations.

In the following proposition, we characterize the morphisms having the right
lifting property with respect to the morphisms in J∞0 . These morphisms will be
the fibrations.

Proposition C.7. A map p : (Y, F, dY )→ (X, F ′, dX) has the right lifting prop-
erty with respect to all the morphisms in J∞0 if and only if the map p : (Y, F, dY )→
(X, F ′, dX) is a strict surjection.

Proof. For every q, a diagram of the form

0 (Y, F )

Ẑ0,∞
q,n (X, F ′)

p

is characterized by an element xq ∈ F ′qXn. A lift in this diagram is equivalent to
an element yq in FqYn such that p(yq) = xq. �

We provide an equivalent description by means of the functor Gr .

Lemma C.8. A map p : (Y, F ) → (X, F ′) satisfies pn : Yn → Xn is a strict
surjection for all n ∈ Z if and only if the map (Gr qp)n : Gr qYn → Gr qXn is
surjective for all q ∈ N and for all n ∈ Z.

Proof. The direct implication is immediate. The reverse implication is given by
an induction (we need Y to be complete for the filtration F in order to prove this
fact). Indeed, assume that Gr qp is surjective for all q and let x ∈ X and q = 0. If
Gr qx = 0, then we fix yq = 0. Otherwise, there exists by assumption yq ∈ FqY such
that Gr qp(Gr qyq) = Gr q(x). The element x − p(yq) is in Fq+1X. This reasoning
works for any q provided that x ∈ FqX. By induction and by the fact that Y is
complete, we get that p(

∑
q yq) = x. This proof works for Fqp instead of p so we

get that p is a strict surjection. �
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We therefore sometimes write gr-surjection for a strict surjection.

In the following lemma, we describe the pushouts in the category F̂ilt
gr
(A) and

some properties related to them.

Lemma C.9. Let f : X → Y and g : X → Y ′ be morphisms in Filtgr(A). Then

(1) the pushout

X Y

Y ′ Y ′ qX Y

f

g g′

f ′
p

in Filtgr(A) is given by

Y ′ qX Y := ((Y ′ q Y )/(g(x)− f(x); x ∈ X), F, d) .

The filtration F is given by

Fp(Y
′ qX Y ) := im

(
FpY

′ q FpY
f ′−g′−−−−→ (Y ′ q Y )/(g(x)− f(x); x ∈ X)

)
,

and the predifferential d is induced by the predifferentials on Y ′ and Y ;
(2) if f is a monomorphism, so is f ;
(3) if f is a strict morphism, so is f ′.

Using the completion map (reflector), the morphisms f and g induces morphisms

f̂ : X̂ → Ŷ and ĝ : X̂ → Ŷ ′ in F̂ilt
gr
(A). Then

(a) the pushout

X̂ Ŷ

Ŷ ′ Ŷ ′ qX̂ Ŷ

f̂

ĝ ĝ′

f̂ ′
p

in F̂ilt
gr
(A) is given by the completion of the pushout Y ′qX Y in Filtgr(A);

(b) if f is a monomorphism (resp. strict morphism), so is f ;

(c) when f is a strict monomorphism, the pushout Ŷ ′ qX̂ Ŷ computed in
Filtgr(A) is already complete. That is to say the inclusion map, adjoint
to the completion map, preserves this pushout.

Proof. (1) The pushout is obtained by the cokernel of the map X
g−f−−−→ Y ′qY .

It is computed as the pushout in the category of diagrams ANop

to which
we apply the reflector ANop → Filt(A). We recall that A = R-modules.
This extends to gr-dg modules.

(2) This is direct from the description of Y ′ qX Y .
(3) The statement follows from the fact that

(f ′)−1(Fp(Y
′ qX Y )) = g(f−1(FpB)) + FpC.

(a) Colimits in F̂ilt
gr
(A) are computed in this way.

(b) This follows from (2) and (3) above.

(c) When f̂ is a strict monomorphism, so is X̂
ĝ−f̂−−−→ Ŷ ′q Ŷ . Thus the filtration

on the pushout

Ŷ ′ qX̂ Ŷ = Ŷ ′ q Y /(ĝ − f)(X)
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is given by

Fp(Ŷ
′ qX̂ Ŷ ) =

(
FpŶ

′ q FpŶ
)
/Fp

(
(ĝ − f̂)(X)

)
= Fp

(
Ŷ ′ q Y

)
/Fp

(
(ĝ − f)(X)

)
.

It is the quotient filtration induced by the filtration on Ŷ ′ q Y and the
pushout is already complete.

�

Lemma C.10. We have the following pushout diagram

Ẑ1,∞
q,n 0

B̂1,∞
q,n Ẑ1,∞

q,n .

ϕ∞q,n
p

Moreover, if the map p has the right lifting property with respect to the maps {0→
Ẑ1,∞
q,n }, then the map Gr p is surjective on cycles. Under the assumption that p is

a strict surjection, the reverse is true.

Proof. The first part of the lemma follows from Lemma C.9.
Then, the set of diagrams

0 (Y, F )

Ẑ1,∞
q,n (X, F ′),

p (11)

corresponds (bijectively) to the set

Aq,n :=
{
x ∈ F ′qXn; dX(x) ∈ F ′q+1X

}
.

The set of lifts in such diagrams corresponds (bijectively) to the set

Aq,n :=
{

(x, y) ∈ F ′qXn q FqYn; dY (y) ∈ Fq+1Y
}
.

It is clear that if p has the right lifting property with respect to the maps {0 →
Ẑ1,∞
q,n }, then Gr p is surjective on cycles. Let assume that Gr p is surjective on

cycles and x ∈ F ′qXn such that dX(x) ∈ F ′q+1X, that is the data of a diagram (11).
Using the fact that Gr p is surjective on cycles, we get that there exists y ∈ FqYn
such that dY (y) ∈ Fq+1Y and p(y) = x + xq+1, with xq+1 ∈ F ′q+1Xn. Under the

assumption that p is a strict surjection, we get that there exists yq+1 ∈ Fq+1Yn
such that p(yq+1) = xq+1. Finally, y − yq+1 provides the requested lift. �

We can now characterize what will be the trivial fibrations. We recall that

I∞0 = {ϕ∞q,n : Ẑ1,∞
q,n → B̂1,∞

q,n }n∈Z, q∈N.

Proposition C.11. A map p : (Y, F, dY ) → (X, F ′, dX) has the right lifting
property with respect to all the maps in I∞0 if and only if the map p it is a strict
surjection and a graded quasi-isomorphism. In particular, I∞0 -inj = J∞0 -inj ∩W.
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Proof. The map 0 → B̂1,∞
q,n = Ẑ0,∞

q,n+1 q Ẑ
0,∞
q+1,n is the composition of the maps

0→ Ẑ1,∞
q,n and Ẑ1,∞

q,n → B̂1,∞
q,n . By the pushout diagram presented in Lemma C.10,

we obtain I∞0 -inj = I∞0 ∪ J∞0 -inj (since 0 → Ẑ0,∞
q,n+1 is a retract of 0 → B̂1,∞

q,n ). It

follows that maps in I∞0 -inj are in particular strict surjections (by Proposition C.7).
We now characterize the diagrams

Ẑ1,∞
q,n (Y, F )

B̂1,∞
q,n (X, F ′),

ϕ∞q,n p

in F̂ilt
gr
(R-Mod) admitting a lifting. The set of such diagrams corresponds (bijec-

tively) to the set

Bq,n :=

{
(t, x, y) ∈ F ′qXn+1 q F ′q+1Xn q FqYn;

p(y) = dX(t) + x and dY (y) ∈ Fq+1Y

}
.

The set of such diagrams admitting a lifting is in bijection with

B′q,n :=

{
(t, x, y, z) ∈ F ′qXn+1 q F ′q+1Xn q FqYn q FqYn+1;

p(z) = t, p(y) = dX(t) + x and y − dY (z) ∈ Fq+1Y

}
,

since the different conditions satisfied by the tuples in B′q,n already implies that
dY (y) ∈ Fq+1Y .

First, we suppose that p has the right lifting property with respect to maps in
I∞0 . It remains to prove that p is a graded quasi-isomorphism. By Lemma C.10,
we have that Gr p is surjective on cycles, so that H•(Gr p) is surjective as well. We
then prove that H•(Gr p) is injective. Let ¯̄y ∈ ker Hn(Gr qp), that is there exists
a lift y ∈ FqYn such that dY (y) ∈ Fq+1Yn−1 and p(y) ∈ im dX |FqX + Fq+1X. We

fix p(y) = dX(xq) + xq+1 for some xq ∈ FqX and xq+1 ∈ Fq+1X. This is precisely
the data of an element in Bq,n. By the lifting property, we obtain z ∈ FqYn+1 such
that y − dY (z) ∈ Fq+1Y . It follows that the class of y = dY (z) + (y − dY (z)) is 0
in H•GrY and H•(Gr p) is injective.

Conversely, assume that p is a strict surjection and a graded quasi-isomorphism.
It remains to show that p has the right lifting property with respect to the maps
{Ẑ1,∞

q,n → B̂1,∞
q,n }q,n. Let (t, x, y) ∈ Bq,n. By means of the fact that p is a strict

surjection, we get that there exists z ∈ FqYn+1 such that p(z) = t. If y − dY (z) ∈
Fq+1Y , we have found the requested lift. Otherwise y − dY (z) provides a non
zero element in Gr qY . The fact that p is a strict surjection implies that Gr qp is
surjective. We therefore get a short exact sequence

0→ K → Gr qY → Gr qX → 0

in dg-modules where K is the kernel of Gr qp. By the associated long exact sequence
and the fact that Gr qp is a quasi-isomorphism, we obtain that K is acyclic. We
have ȳ−dGrY (z̄) ∈ Zn−1(K) since dY (y−dY (z)) ∈ Fq+1Y and p(y−dY (z)) = x ∈
F ′q+1X. So there exist uq ∈ FqYn+1 such that p(uq) ∈ Fq+1X and yq+1 ∈ Fq+1Yn
with the property that y− dY (z) = dY (uq) + yq+1. Using the fact that p is a strict
surjection, we obtain that there exists uq+1 ∈ Fq+1Yn+1 such that p(uq+1) = p(uq).
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Finally, we have

p(z + uq − uq+1) = t and y − dY (z + uq − uq+1) = yq+1 − uq+1 ∈ Fq+1Y.

This provides the requested lift. �

Definition C.12. Let f : (Y, F, dY )→ (X, F ′, dX) be a map of gr-dg R-modules.
We denote by C(f) the mapping cone of the map f defined by

FqC(f)n := FqYn−1 q FqXn,

with the predifferential D(y, x) = (−dY (y), f(y) + dX(y)).

Lemma C.13. The cone C(idY ) of the identity map is gr-acyclic (that is to say
its gr-homology is 0).

Proof. We have Gr (D)(ȳ, z̄) = (−d̄ȳ, ȳ + d̄z̄) so Gr (D)(ȳ, z̄) = 0 if and only if
d̄ȳ = 0 and ȳ = −d̄z̄. This is equivalent to the fact that (ȳ, z̄) = Gr (D)(z̄, 0).
Hence C(idY ) is gr-acyclic. �

Proposition C.14. We have J∞0 -cof ⊆ W.

Proof. We follow the proof given in [CESLW19]. Let f : A → B be a J∞0 -
cofibration. By Proposition C.7, this means that f has the left lifting property
with respect to the maps p which are strict surjections. We consider the diagram

A Aq C(idB)[−1]

B B,

f (f, π1)

=

where π1 : C(idB)[−1] = B•qB•+1 → B• is the projection on the first factor. The
map π1 is a strict surjection. It follows that the diagram admits a lift h : B →
A q C(idB)[−1]. Applying the functor Gr to the diagram and using the fact that
the cone is gr-acyclic (by Lemma C.13), the two commutative triangles give that f
is a graded quasi-isomorphism. �

Theorem C.15. The category F̂ilt
gr
(R-Mod) of gr-dg R-modules admits a proper

cofibrantly generated model category structure, where:

(1) weak equivalences are graded quasi-isomorphisms,
(2) fibrations are strict surjections, and
(3) I∞0 and J∞0 are the sets of generating cofibrations and generating acyclic

cofibrations respectively.

Proof. We apply Theorem C.5. The graded quasi-isomorphisms satisfy the two-
out-of-three property. It follows that the subcategory W satisfies the two-out-
of-three property. This category is also closed under retract since graded quasi-
isomorphisms are closed under retract. The non trivial domains of the maps in
I∞0 and in J∞0 are Ẑ1,∞

q,n . The complete gr-dg modules Ẑ1,∞
q,n are ℵ1-small since

completion commutes with ℵ1-filtered colimits. Finally, Propositions C.11 and
C.14 ensure that we can apply Theorem C.5 and we obtain the wanted cofibrantly
generated model structure. Using Proposition C.7, we can see that every object
is fibrant. So by [Hir03, Corollary 13.1.3] the model category structure is right
proper. It remains to show that the model structure is left proper, that is to say
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that weak equivalences are preserved by pushout along cofibrations. It is enough
to show that for any diagram

X Y

X ′ Y ′

X ′′ Y ′′,

f

g g′

p

p

in which both squares are cocartesian, f belongs to I∞0 , and g belongs to W,
the map g′ also belongs to W. We first show that it is true in the category of
chain complexes of R-modules. We show that if f is injective and g is a quasi-
isomorphism, we obtain that the map g′ is a quasi-isomorphism. This follows first
from the fact that in the category of chain complexes pushout along an injection
f : X → Y provides an injection X ′ → Y ′. Then in this situation, the second
pushout gives a short exact sequence

0→ X ′ → Y ′ qX ′′ → Y ′′ → 0

which provides a long exact sequence in homology. Finally, the fact that g is a
quasi-isomorphism implies that so is g′.

We consider the functor

Gr : F̂ilt
gr
(A) → (dgA)obN,

(V, F, dV ) 7→ (V, F, dV )gr = (GrV, dGrV ) .

Given a map f = ϕ∞q,n in I∞0 , we show that the two cocartesian squares in F̂ilt
gr
(A)

give two cocartesian squares under Gr . The functor Gr is the composition of the

inclusion functor i1 : F̂ilt
gr
(A) → Filt(pgA), the inclusion functor i2 : Filt(pgA) →

(pgA)N
op

and the quotient functor q1 : (pgA)N
op → (dgA)obN. All the maps in

I∞0 are strict monomorphisms. From Lemma C.9, we get that the inclusion i1
preserves pushouts in which one map is a strict monomorphism (the inclusion
Filtgr(A) → Filt(pgA) preserves the pushouts). Moreover, when f is a strict
monomorphism, so is the map X ′ → Y ′. Therefore the inclusion i1 sends the
two cocartesian squares to two cocartesian squares. Provided that the maps f and
X ′ → Y ′ are strict morphisms, Proposition 1.1.11 in [Del71] shows that the func-
tor q1 · i2 also sends the two cocartesian squares to two cocartesian squares (the
predifferentials don’t affect this property). Finally, the functor Gr sends maps in
I∞0 to cofibrations in (dgA)obN (objectwise injections with free, hence projective,
cokernel) and maps in W to quasi-isomorphisms in (dgA)obN so this shows that
Gr g′ is a quasi-isomorphism, that is g′ belongs to W. �

C.16. Properties of the model structure on gr-dg R-modules. We prove
that the model category structure on gr-dg R-modules is combinatorial and is a
monoidal model structure.

Definition C.17. Let M be a category endowed with a model structure. We say
that M is combinatorial if it is

(1) locally presentable as a category, and
(2) cofibrantly generated as a model category.
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Lemma C.18. The category of complete gr-dg R-modules is a (locally) presentable

category. As a consequence, the category F̂ilt
gr
(A) is combinatorial.

Proof. The category of A = R-modules is locally presentable (see for instance
Example 5.2.2.a in [Bor94]). Applying [AR94, Corollary 1.54], the category ANop

of Nop-indexed diagrams is locally presentable. By Lemma A.3 and Corollary A.10,

the category F̂ilt(A) of complete filtered objects in A is a reflective subcategory of
the category of Nop-indexed diagrams. The monad T associated with the adjunction
sends an Nop-indexed diagrams {X(p)}p to the completion X̂ (seen in ANop

) of its

associated filtered object X̃ defined by FpX̃ = im(X(p) → X(0)). Let us show
that the monad T commutes with filtered colimits. First, the image of a map
can be written as the equalizer of a cokernel pair. It therefore commutes with
filtered colimits since colimits commute colimits and in the category A, finite limits
commute with filtered colimits (Corollary 3.4.3 in [Bor94]). Then, the completion
does not commute with filtered colimits but it commutes with κ-filtered colimits,
for κ a regular cardinal such that κ > ℵ0 since the completion is defined in the
locally presentable category A by a diagram obtained by means of two cokernels,
a kernel and a limit indexed by ℵ0 (see for example Corollary 5.2.8 in [Bor94]).
It follows that T commutes with ℵ1-filtered colimits and therefore by Theorem

5.5.9 in [Bor94], the category F̂ilt(A) of complete filtered objects in A is locally

presentable. Again by Corollary 1.54 in [AR94], the category F̂ilt(A)obZ of graded
complete objects in A is locally presentable. Let A = R[[d]] be the R-algebra of
formal power series generated by d of degree −1 and endowed with the filtration
FpA = d2pR[[d]] for all p ≥ 0. It is complete for the filtration and therefore

provides an algebra in F̂ilt(A)Z
disc

. The category of complete gr-dg R-modules is

the category of A-modules in F̂ilt(A)Z
disc

. Again by Example 5.2.2.a in [Bor94], we

obtain that F̂ilt
gr
(A) is locally presentable. �

We recall from [Hov99, Definition 4.2.6] the notion of symmetric monoidal model

category and we prove that the category F̂ilt
gr
(A) is a symmetric monoidal model

category.

Definition C.19. We say that a symmetric monoidal category (M, ⊗, 1) endowed
with a model structure is a symmetric monoidal model category when

(1) the natural morphism

i1�i2 : (X1 ⊗A2)q(A1⊗A2) (A1 ⊗X2)→ X1 ⊗X2

induced by cofibrations i1 : A1 → X1 and i2 : A2 → X2 forms a cofibration,
respectively an acyclic cofibration if i1 or i2 is also acyclic.

(2) Let Q1
π−→ 1 be the cofibrant replacement for the unit obtained by using

the functorial factorization to factor 0 → 1 into a cofibration followed by

a trivial fibration. Then the natural map Q1 ⊗X π⊗id−−−→ 1 ⊗X is a weak

equivalence for all cofibrant X. Similary, the natural map X ⊗ Q1 id⊗π−−−→
X ⊗ 1 is a weak equivalence for all cofibrant X.

Proposition C.20. The category F̂ilt
gr
(A) is a symmetric monoidal model category.

Proof. To prove the first condition of Definition C.19, by [Hov99, Corollary 4.2.5],
it is enough to prove the claim in the case of generating (acyclic) cofibrations.
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(1) We first consider the cofibrations i1 = ϕ∞q,n : Ẑ1,∞
q,n → B̂1,∞

q,n and i2 = ϕ∞p,m.
The generators, as an R-module, of X1 ⊗X2 are{

dk1qn+1 ⊗ dl1
p
m+1, d

k1q+1
n ⊗ dl1pm+1, d

k1qn+1 ⊗ dl1p+1
m , dk1q+1

n ⊗ dl1p+1
m

}
k, l∈N ,

whereas the ones of (X1 ⊗A2)q(A1⊗A2) (A1 ⊗X2) are

Z :=
{
dk(d1qn+1 + 1q+1

n )⊗ dl1pm+1, d
k(d1qn+1 + 1q+1

n )⊗ dl1p+1
m ,

dk1qn+1 ⊗ dl(d1pm+1 + 1p+1
m ), dk1q+1

n ⊗ dl(d1pm+1 + 1p+1
m )

}
k, l∈N .

We prove by induction on the weight grading that the map

i1�i2 : (X1 ⊗A2)q(A1⊗A2) (A1 ⊗X2)→ X1 ⊗X2

can be written as the coproduct of some cofibrations ϕ∞rs,os and ϕ∞rs,os−1.
We first describe ϕ∞r0,o0

and ϕ∞r0,o0−1. We have

(d1qn+1 + 1q+1
n )⊗ 1pm+1 + (−1)n+11qn+1 ⊗ (d1pm+1 + 1p+1

m ) =

d
(
1qn+1 ⊗ 1pm+1

)
+
(
1q+1
n ⊗ 1pm+1 + (−1)n+11qn+1 ⊗ 1p+1

m

)
.

This gives a cofibration ϕ∞r0,o0
where r0 = q + p and o0 = n+m+ 1, and

• (d1qn+1 +1q+1
n )⊗1pm+1 +(−1)n+11qn+1⊗(d1pm+1 +1p+1

m ) is the generator

of Ẑ1,∞
r0,o0

,

• 1qn+1 ⊗ 1pm+1 is the generator of Ẑ0,∞
r0,o0+1, and

• 1q+1
n ⊗ 1pm+1 − (−1)n1qn+1 ⊗ 1p+1

m is the generator of Ẑ0,∞
r0+1,o0

.
Similarly,
• the element in Ẑ1,∞

r0,o0−1

zp+qn+m = d
(
1qn+1 ⊗ (d1pm+1 + 1p+1

m )
)

+ (−1)nd
(
(d1qn+1 + 1q+1

n )⊗ 1pm+1

)
−
(
(d1qn+1 + 1q+1

n )⊗ 1p+1
m + 1q+1

n ⊗ (d1pm+1 + 1p+1
m )

)
,

• the element bp+qn+m+1 = 1qn+1 ⊗ d1pm+1 + (−1)nd1qn+1 ⊗ 1pm+1 in Ẑ0,∞
r0,o0

,
and

• the element bp+q+1
n+m = (−1)n+1

(
1qn+1 ⊗ d1p+1

m − d1q+1
n ⊗ 1pm+1

)
− 2 ×

1q+1
n ⊗ 1p+1

m in Ẑ0,∞
r0+1,o0−1

fit into the equality zp+qn+m+1 = dbp+qn+m+2 + bp+q+1
n+m+1 and therefore give a

cofibration ϕ∞r0,o0−1. Let us show that we have the equality

〈dk1qn+1 ⊗ dl1
p
m+1, 〉k,l∈N ∩ im (i1�i2) = {0}. (12)

The term dk1qn+1 ⊗ dl1pm+1 appears only in two terms of Z which are

dk−1(d1qn+1 + 1q+1
n )⊗dl1pm+1 and dk1qn+1⊗dl−1(d1pm+1 + 1p+1

m ). The terms

dk−11q+1
n ⊗ dl1pm+1 and dk1qn+1 ⊗ dl−11p+1

m appear only in one other term
each. We get the two equalities:

dk−1(d1qn+1 + 1q+1
n )⊗ dl1pm+1 − dk−11q+1

n ⊗ dl−1(d1pm+1 + 1p+1
m ) =

dk1qn+1 ⊗ dl1
p
m+1 − dk−11q+1

n ⊗ dl−11p+1
m

and

dk1qn+1 ⊗ dl−1(d1pm+1 + 1p+1
m )− dk−1(d1qn+1 + 1q+1

n )⊗ dl−11p+1
m =

dk1qn+1 ⊗ dl1
p
m+1 − dk−11q+1

n ⊗ dl−11p+1
m .
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The term dk−11q+1
n ⊗ dl−11p+1

m doesn’t appear in an other term in Z. This
proves Equality (12). This implies that the element 1qn+1 ⊗ 1pm+1 and its

derivatives don’t belong to im(i1�i2). This also gives that bp+qn+m+1 and its
derivatives don’t belong to im(i1�i2) q imϕ∞r0,o0

. Let S0 be an R-linear
complement of the domains of ϕ∞r0,o0

and ϕ∞r0,o0−1 in (X1 ⊗ A2) q(A1⊗A2)

(A1 ⊗ X2). It is a tedious but direct computation to show that modulo
Fq+p+2(X1⊗X2), the map i1�i2 is given by idS0

qϕ∞r0,o0
qϕ∞r0,o0−1 (that is

to say the codomain of idS0
qϕ∞r0,o0

qϕ∞r0,o0−1 is equal to X1⊗X2 modulo
Fq+p+2(X1 ⊗X2)). This is the base case of the induction.

We define similarly the maps ϕ∞rs,os and ϕ∞rs,os−1. We have

d2s(d1qn+1 + 1q+1
n )⊗ d2s1pm+1 + (−1)n+1d2s1qn+1 ⊗ d2s(d1pm+1 + 1p+1

m )

= d
(
d2s1qn+1 ⊗ d2s1pm+1

)
+ d2s1q+1

n ⊗ d2s1pm+1 + (−1)n+1d2s1qn+1 ⊗ d2s1p+1
m .

This gives a cofibration ϕ∞rs,os where rs = q+p+2s and os = n+m+1−4s,
and
• d2s(d1qn+1 + 1q+1

n ) ⊗ d2s1pm+1 + (−1)n+1d2s1qn+1 ⊗ d2s(d1pm+1 + 1p+1
m )

is the generator of Ẑ1,∞
rs,os ,

• d2s1qn+1 ⊗ d2s1pm+1 is the generator of Ẑ0,∞
rs,os+1, and

• d2s1q+1
n ⊗d2s1pm+1−(−1)nd2s1qn+1⊗d2s1p+1

m is the generator of Ẑ0,∞
rs+1,os

.
Then,
• the element in Ẑ1,∞

rs,os−1

zp+q+2s
n+m−4s = d

(
d2s1qn+1 ⊗ d2s(d1pm+1 + 1p+1

m )
)
+(−1)n

(
d2s(d1qn+1 + 1q+1

n )⊗ d2s1pm+1

)
−
(
d2s(d1qn+1 + 1q+1

n )⊗ d2s1p+1
m + d2s1q+1

n ⊗ d2s(d1pm+1 + 1p+1
m )

)
,

• the element bp+q+2s
n+m+1−4s = d2s1qn+1 ⊗ d2s+11pm+1 + (−1)nd2s+11qn+1 ⊗

d2s1pm+1 in Ẑ0,∞
rs,os , and

• the element bp+q+1+2s
n+m−4s =

(−1)n+1
(
d2s1qn+1 ⊗ d2s+11p+1

m − d2s+11q+1
n ⊗ d2s1pm+1

)
− 2× d2s1q+1

n ⊗ d2s1p+1
m

in Ẑ0,∞
rs+1,os−1

fit into the equality zp+q+2s
n+m+1−4s = dbp+q+2s

n+m+2−4s + bp+q+1+2s
n+m+1−4s and give a

cofibration ϕ∞rs,os−1. We denote by Codoms the codomain of the map

q0≤k≤s
(
ϕ∞rk,ok q ϕ

∞
rk,ok−1

)
. We want to prove the following statement:

for k ≥ 0, we have the equality

〈dk1qn+1 ⊗ dl1
p
m+1, 〉k,l≥2s ∩ (im (i1�i2) + Codoms−1) = {0}. (Es)

and there exists an R-linear subspace Ss of X1 ⊗X2 such that modulo
Fq+p+2(s+1) (X1 ⊗X2), the map i1�i2 is given by

idSs
∐
q0≤k≤s

(
ϕ∞rk,ok q ϕ

∞
rk,ok−1

)
.

Let assume Equality (Es) for s − 1 and the existence of Ss−1 such that
modulo Fq+p+2s (X1 ⊗X2), the map i1�i2 is given by

idSs−1

∐
q0≤k≤s−1

(
ϕ∞rk,ok q ϕ

∞
rk,ok−1

)
.
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First of all, we obtain im (i1�i2) + Codoms−1 from im (i1�i2) + Codoms−2

by adding the terms d2s1qn+1 ⊗ d2s1pm+1 and bp+q+2s
n+m+1−4s and their bound-

aries. It is easy to see that all these terms are sums of terms of the form
dk1qn+1⊗dl1

p
m+1 with at least one term with k ≥ 2s or l ≥ 2s. By Equalities

(12) and (Es) for s − 1, this gives Equality (Es). It remains to show that
there exists Ss such that modulo Fq+p+2(s+1) (X1 ⊗X2), the map i1�i2
is given by idSs

∐
q0≤k≤s

(
ϕ∞rk,ok q ϕ

∞
rk,ok−1

)
, that is to say the codomain

of this last map is equal to X1 ⊗ X2 modulo Fq+p+2(s+1) (X1 ⊗X2). By
the induction hypothesis, it is enough to show that all the elements in
Fq+p+2(s+1) (X1 ⊗X2) /Fq+p+2(s+1) (X1 ⊗X2) are in the codomain mod-
ulo Fq+p+2(s+1) (X1 ⊗X2). A basis of the module

Fq+p+2s (X1 ⊗X2) /Fq+p+2(s+1) (X1 ⊗X2)

is given by the classes of the elements in the set

Cs :=
{
d2k+t1qn+1 ⊗ d2(2s−k+u)+l1pm+1

}
t, u, l∈J0, 1K, k∈J0, 2s+uK

⋃
{
d2k+t1q+1

n ⊗ d2(2s−1−k+u)+l1pm+1,

d2k+t1qn+1 ⊗ d2(2s−1−k+u)+l1p+1
m

}
t, u, l∈J0, 1K, k∈J0, 2s−1+uK⋃{

d2k+t1q+1
n ⊗ d2(2(s−1)−k+u)+l1p+1

m

}
t, u, l∈J0, 1K, k∈J0, 2(s−1)+uK

.

First of all, using the terms dk1qn+1⊗ dl1
p
m+1 and the terms in Z such that

k, l ≥ 2s, the same tedious computation as for the base case shows that the
terms dk1qn+1⊗dl1

p
m+1, dk1q+1

n ⊗dl1pm+1, dk1qn+1⊗dl1p+1
m , dk1q+1

n ⊗dl1p+1
m ,

for k, l ≥ 2s, are in the codomain modulo Fq+p+2(s+1) (X1 ⊗X2). Finally,

it is enough to say that we get the terms dk1qn+1⊗dl1
p
m+1, dk1q+1

n ⊗dl1pm+1,

dk1qn+1 ⊗ dl1p+1
m , dk1q+1

n ⊗ dl1p+1
m , for k, l such that k or l is < 2s using

the previous terms and the boundaries of some lift of the class modulo
Fq+p+2s (X1 ⊗X2) of the terms in Cs−1. The picture of this proof is nested
cones. This gives the inductive step and therefore proves that the map i1�i2
is a cofibration since we are working in a complete setting.

When the two maps are acyclic cofibrations, say i1 : 0 → Ẑ0,∞
q,n and

i2 : 0 → Ẑ0,∞
p,m , the map i1�i2 is given by 0 → Z0,∞

q,n+1 ⊗ Ẑ0,∞
p,m which is a

coproduct of acyclic cofibrations. When we assume that i1 or i2 is an acyclic
cofibration, say i1 = ϕ1,∞

q,n and i2 : 0→ Ẑ0,∞
p,m , we can see that the map i1�i2

is isomorphic to the inclusion Ẑ1,∞
q,n ⊗Ẑ0,∞

p,m → Ẑ1,∞
q,n ⊗Ẑ0,∞

p,m qZ
0,∞
q,n+1⊗Ẑ0,∞

p,m ,
which is an acyclic cofibration.

(2) By [Hov99, Remark 4.2.3] and the fact that a left Quillen functor preserves
weak equivalences between cofibrant objects, we can consider any cofibrant
replacement of the unit. The map Ẑ1,∞

0,0 → 1 is one. We have to show that

for all cofibrant X, the natural map Ẑ1,∞
0,0 ⊗X → X (resp. X⊗Ẑ1,∞

0,0 → X)

is a weak equivalence. By [Hov99, Lemma 4.2.7], it is enough to show that

the map X → Hom(Ẑ1,∞
0,0 , X) (where the internal Hom is computed in

graded filtered R-modules) is a weak equivalence for all X (since all objects
are fibrant). Since this map is an equality, we are done.

�
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C.21. Model structure on complete curved operads. In this section, we re-
call from [Hir03, Theorem 11.3.2] the theorem of transfer of cofibrantly generated
model structure, essentially due to Quillen [Qui67, Section II.4] and we apply it to
endow the category of complete curved operads with a cofibrantly generated model
structures. The model structure is obtained from the adjunction between the free
complete curved operad and the forgetful functor from complete curved operads to
complete gr-dg S-modules.

Applying Theorem C.15 for the ring R[Sm], m ∈ N, we obtain a proper cofi-
brantly generated model category structure on the categoryMm of complete gr-dg
R[Sm]-modules. Considering this collection (Mm, Wm, Im, Jm)m∈N of proper cofi-
brantly generated model category structures, we have that the product

S-Mod(Âgr) :=

(∏
m∈N
Mm,

∏
m∈N

Wm,
∏
m∈N

Im

)
(for A = R-Mod) also is a proper cofibrantly generated model category structure
(see for example [Hir03, 11.6]). A morphism f : M → N inM is a weak equivalence
(resp. fibration) if the underlying collection of morphisms {M(m) → N(m)}m∈N
consists of weak equivalences (resp. fibrations). Moreover the set I (resp. J) of
generating cofibrations (resp. acyclic cofibrations) can be described explicitly as
follows:

I = {Ẑ1,∞
q,n (m)→ B̂1,∞

q,n (m)} and J = {0→ Ẑ0,∞
q,n (m)},

where Ẑk,∞q,n (m) (resp. B̂1,∞
q,n (m)) is the complete gr-dg S-module obtained by the

complete free gr-dg R[Sm]-module Ẑk,∞q,n ⊗R[Sm] (resp. B̂1,∞
q,n ⊗R[Sm]) put in arity

m. We denote byW the subcategory of weak equivalences. Notice that the domains

of elements of I or J are small (ℵ1-small) in the category S-Mod(Âgr).

Theorem C.22 (Theorem 3.3 in [Cra95], Theorem 11.3.2 in [Hir03]). Let C is a
cofibrantly generated model category, with I as set of generating cofibrations, J as
set of generating trivial cofibrations and W as class of weak equivalences. Let D
be a complete and cocomplete category and let F : C 
 D : G be a pair of adjoint
functors. Suppose further that:

(1) G preserves filtered ℵ1-colimits,
(2) G maps relative FJ-cell complexes to weak equivalences.

Then the category D is endowed with a cofibrantly generated model structure in
which FI is the set of generating cofibrations, FJ is the set of generating triv-
ial cofibrations, and the weak equivalences are the maps that G takes into a weak
equivalence in C. We have that fibrations are precisely those maps that G takes
into a fibration in C. Moreover (F, G) is a Quillen pair with respect to these model
structures.

In order to apply this theorem, we prove several results. The first one concerns
the adjunction between the free curved operad cT and the corresponding forgetful
functor.

Proposition C.23. The adjunction between the free curved operad and the forgetful
functor (see Theorem 2.20)

cT : S-Mod(Âgr) / Curved operads : Uo
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provides a monad U · cT whose category of algebras is naturally isomorphic to the
category of curved operads.

Proof. We apply the crude monadicity theorem that we recall from [BW05, Section

3.5]. The functor U : Curved operads → S-Mod(Âgr) is monadic if it satisfies the
hypotheses:

• the functor U has a left adjoint,
• the functor U reflects isomorphisms,
• the category Curved operads has coequalizers of those reflexive pairs (f, g)

for which (Uf, Ug) is a coequalizer and U preserves those coequalizers.

The free functor is left adjoint to the forgetful functor U . The forgetful functor
clearly reflects isomorphisms. The coequalizer of a pair f, g : O → P in the
category of curved operads is given by the quotient map

(P, dP , θP)→ (P/ (im(f − g)) , d̄P , θ̄P)

where (im(f − g)) is the (operadic) ideal generated by im(f − g), the map d̄P
induced by dP is well-defined since (im(f − g)) is stable under dP and the element
θ̄P is the class of θP in P/ (im(f − g)). The element θ̄P is a curvature since θP
is. When (f, g) is a reflexive pair, the ideal generated by im(f − g) is equal to
im(f − g). It follows that the third condition is satisfied since the coequalizers in

S-Mod(Âgr) are given by P/ im(f − g). Hence the forgetful functor U is monadic
and the result follows from the crude monadicity theorem. �

Proposition C.24. The category of curved operads has all limits and small colim-
its.

Proof. By Proposition 4.3.1 in [Bor94] and Proposition C.23, the category of curved

operads admits the same type of limits as the category S-Mod(Âgr) which is com-
plete (and they are preserved by U).

By Proposition 4.3.2 in [Bor94] and Proposition C.23, if some colimits present

in S-Mod(Âgr) are preserved by the monad U · T , the category of curved operads
admits the same type of colimits and they are preserved by U . Using the fact
that ◦ preserves filtered colimits in each variable, since ⊗ does, and that colimits
commutes with colimits, we get by the construction of the underlying S-module of
the free complete operad given in Section 2.12 that the monad U ′ · T , where U ′

is the forgetful functor from complete gr-dg operad to complete gr-dg S-modules,
commutes with filtered colimits. Similarly, the same is true when we replace T
by T+ and the forgetful functor by the corresponding forgetful functor. Then, the
free curved operad cT (M, dM ) described in Section 2.17 is given by a quotient of
T+(M, dM ) which is a coequalizer (hence a colimit). We finally get that the monad
U · cT commutes with filtered colimits. We therefore obtain that the category of
curved operads admits filtered colimits. It is therefore enough to check that it
admits pushouts (by Theorem 1 in Chapter IX of [Mac71], a category with filtered
colimits and pushouts has all small colimits). The pushouts can be computed
explicitly. The construction is well-known in the category of operads in A (see
for example the proof of Theorem 1.13 in [GJ94]). Given two maps of filtered
operads c → a and c → b and the pushout in operads F0a ∨F0c F0b. We endow
the pushout with the filtration given by im (FpT (aq b)→ F0a ∨F0c F0b) which
is the initial one such that there are filtered maps a → a ∨c b and b → a ∨c b
and a ∨c b is a filtered operad. It is easy to check that this defines the pushout
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in filtered operads. Taking completion gives the pushout in complete operads and
this extends in a straightforward manner to the gr-dg setting. In order to obtain
the pushout of two maps (c, dc, θc)→ (a, da, θa) and (c, dc, θc)→ (b, db, θb) in
the curved setting, the only difference is to consider the quotient a ∨c b/(θa − θb)
so that

(a, da, θa) ∨(c,dc, θc) (b, db, θb) := (a ∨c b/(θa − θb), da∨cb/(θa−θb), θ̄a = θ̄b).

�

We now apply the transfer Theorem C.22 to the adjunction

cT : S-Mod(Âgr) / Curved operads : U.o

We have seen in the beginning of Section C.21 that the category on the left-hand
side is a cofibrantly generated model category. In order to apply Theorem C.22, we
have to understand cT J-cell complexes, with

cT J = {I → cT (Ẑ0,∞
q,n (m))}n∈Z, q∈N,m∈N.

Then, we study cT I-cell complexes, with

cT I = {cT (Ẑ1,∞
q,n (m))→ cT (B̂1,∞

q,n (m))}n∈Z, q∈N,m∈N

in order to describe cofibrant objects. The classes cT I, resp. cT J , will be the
generating cofibrations, resp. generating acyclic cofibrations.

Lemma C.25. A morphism of curved operads is a relative cT J-cell complex if and
only if it is a map O → O∨cT (Z, dZ), where (Z, dZ) is a complete gr-dg S-module

equal to a direct sum of complete gr-dg S-modules Ẑ0,∞
q,n (m). In particular, (Z, dZ)

is a free S-module and it is gr-acyclic (that is to say its gr-homology is 0) and it
satisfies ker(dZ) = {0}. Explicitly, we can write

cT (Z, dZ) ∼=
(
T (ϑI q (Z/ im dZ

2)), d, ϑ
)
,

with dϑ = 0 and d2 = [ϑ, −].

Proof. We have cT (0) = T (ϑI)/(im(02 − [ϑ, −])) ∼= T (ϑI). Pushouts of elements
of cT J are therefore as follows

T (ϑI) O

∨
α cT (Ẑ0,∞

α ) O ∨
(∨

α cT (Ẑ0,∞
α )

)
,

∨αcT (jα)

with each Ẑ0,∞
α equal to a Ẑ0,∞

q,n (m). Since the coproduct of free curved operads
is the free curved operad on the sum of their generating modules (see the proof
of Proposition C.24), the composite of two such pushouts is equal to O → O ∨
cT
(
qαẐ0,∞

α

∐
qβẐ0,∞

β

)
. Hence a transfinite composition of such pushouts has

the form O → O ∨ cT (Z), with Z a gr-acyclic gr-dg S-module whose components

are free complete gr-dg S-modules Ẑ0,∞
q,n (m). To prove the isomorphism given an

explicit description of cT (Z, dZ), we define a map ϑI q Z → T (ϑI q Z/ im dZ
2)
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by sending ϑ to ϑ and an element dkx, for a generator x of a free gr-dg S-module
Ẑ0,∞
q,n (m), to

dkx 7→ [ϑ, . . . [ϑ︸ ︷︷ ︸
b k2 c times

, dk−2b k2 cx] . . . ].

By the universal property of the free complete gr-dg operad, we obtain a (surjective)
map

T (ϑI q Z)→ T (ϑI q Z/ im dZ
2)

and a direct computation shows that the ideal (im(dZ
2− [ϑ, −])) is sent to zero. It

is easy to describe an inverse to this map in complete S-modules. �

Theorem C.26. The category of complete curved operads is endowed with a cofi-
brantly generated model category structure where the generating (acyclic) cofibra-
tions are the images under the free functor of the generated (acyclic) cofibrations.
A map f : O → P is a

• weak equivalences if and only if, in any arity, it is a graded quasi-isomorphism
of gr-dg S-modules,
• fibration if and only if, in any arity, it is a gr-surjection,
• cofibrations if and only if it has the left lifting property with respect to acyclic

fibrations.

Moreover (cT , U) is a Quillen pair with respect to the cofibrantly model structures.
The generating cofibrations are the maps cT I and the generating acyclic cofibrations
are the maps cT J .

Proof. By Proposition C.24, in order to apply Theorem C.22, it is enough to show
that U preserves filtered ℵ1-colimits and that it maps relative cT J-cell complexes
to weak equivalences. We have already seen in the proof of Proposition C.24 that
U preserves filtered colimits; in particular, it preserves filtered ℵ1-colimits. By
Lemma C.25, a relative cT J-cell complex can be written as a map j : O → O ∨( ∨

α cT (Ẑ0,∞
α )

)
= O ∨ cT

(
qαẐ0,∞

α

)
. Using the description of the pushout of

curved operads in the proof of Proposition C.24, we can compute

O ∨ cT
(
qαẐ0,∞

α

)
∼=
(
O ∨gr-dg op T+

(
qαẐ0,∞

α / im dα
2
))

/(θO − ϑ)

∼= O ∨gr-dg op T
(
qαẐ0,∞

α / im dα
2
)
.

The functor

Gr : F̂ilt
gr
(A)→ (dgA)obN, (V, F, dV ) 7→ (Gr •V, Gr dV )

commutes with direct sums (see for example [Fre17, Proposition 7.3.8]) and satisfies,
for gr-flat complete modules, GrM ⊗Gr GrN ∼= Gr (M⊗̂N) (see Lemma B.4). By
Maschke’s Theorem (R is a field of characteristic 0), any R[S∗]-module is flat. It
follows that when M and N are two gr-dg S-modules, we have GrM ◦ GrN ∼=
Gr (M ◦N). Moreover the functor Gr preserves filtered colimits. Indeed, it is the
composition

F̂ilt
gr
(A)

i1−→ Filt(pgA)
i2−→ (pgA)N

op q1−→ (dgA)obN,

where i1 and i2 are inclusions and q1 sends a directed sequence to the (N-indexed)
product of the cokernel of the maps appearing in the directed sequence. By
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Proposition 1.62 in [AR94], the functor i2 preserves filtered colimits. Since cok-
ernels are coequalizers (therefore colimits) in (pgA)N

op

and (dgA)obN, and colimits
commute with colimits, the map q2 preserves all colimits. Then, because of the
presence of the quotient map q1, when colimiMi is a filtered colimit, we have
Gr colimiMi = (q1 · i2)(colimi i1(Mi)) (even if i1 does not preserve (ℵ0-)filtered
colimits). The free operad functor is obtained as a filtered colimit of finite co-
products of ◦ monoidal products (see Section 2.12), so Gr commutes with the free
curved operad functor.

The coproduct of two operads can be computed explicitly and is a quotient of the
free operad on the direct sum of the two underlying S-modules of the operads (see
the proof of Theorem 1.13 in [GJ94]). The graded functor Gr therefore preserves
the coproduct of two operads. We get

Gr
(
O ∨gr-dg op T

(
qαẐ0,∞

α / im dα
2
))
∼= Gr (O)∨dg opT

(
qαGr

(
Ẑ0,∞
α / im dα

2
))

.

We get, using the fact that R is a field of characteristic 0 and the arguments given
in [Hin03, Theorem 3.2], that the map Gr (U(j)) is a quasi-isomorphism. �

We conclude this section by computing the cofibrant objects in the model cate-
gory of complete curved operads. We recall that the notion of quasi-free complete
curved operad is given in Definition 2.22.

Proposition C.27. A complete curved operad is cofibrant if and only if it is a
retract of a quasi-free complete curved operad (T+(S), d) /

(
im
(
d2 − [ϑ, −]

))
, where

S is a complete S-module endowed with an exhaustive filtration

S0 = {0} ⊂ S1 ⊂ S2 ⊂ · · · ⊂ colim
i

Si = S

of free S-modules such that Si−1 � Si are split monomorphisms of complete S-
modules with cokernels isomorphic to a sum of complete S-modules

Si/Si−1
∼=
∐
α

(
ξα ·R[Smα ]q Ẑ0,∞

qα+1,nα
(mα)

)
where ξα is in homological degree nα+1 and filtration degree qα. The predifferential
d is the one of Ẑ0,∞

qα+1,nα
(mα) on Ẑ0,∞

qα+1,nα
(mα) and

d(ξα) + ζα ∈ (T+(Si−1), d) /
(
im
(
d2 − [ϑ, −]

))
,

with ζα is a generator of the gr-dg S-module Ẑ0,∞
qα+1,nα

(mα).

Proof. By Proposition 2.1.18 in [Hov99], cofibrations are retracts of relative cT I-
cell complexes. We therefore study the pushouts of elements of cT I of the form∨

α cT
(
Ẑ1,∞
α

)
(T+(Si−1), di−1) /

(
im
(
di−1

2 − [ϑ, −]
))

∨
α cT (B̂1,∞

α ) P,

∨αcT (iα)

f

with each Ẑ1,∞
α equal to a Ẑ1,∞

qα,nα(mα) and B̂1,∞
α equal to a B̂1,∞

qα,nα(mα). We
denote by zα the image under f of the generating (as a gr-dg S-modules) element

of Ẑ1,∞
qα,nα(mα). If we denote by ξα and by ζα the generating (as a gr-dg S-modules)



HOMOTOPY THEORY OF CURVED OPERADS AND CURVED ALGEBRAS 81

elements of B̂1,∞
qα,nα(mα) = Ẑ0,∞

qα,nα+1(mα) q Ẑ0,∞
qα+1,nα

(mα), and by dkξα, resp. by

dkζα, their successives predifferentials, the pushout P is equal to(
T+(Si−1) ∨compl. op. T

(
ξα ·R[Smα ]

∐
Ẑ0,∞
qα+1,nα

(mα)
)
, di

)
/
(
im
(
di

2 − [ϑ, −]
))
,

where di is the derivation defined on Si−1 by di−1, the differential on Ẑ0,∞
qα+1,nα

(mα)

is the one of Ẑ0,∞
qα+1,nα

(mα) and diξ
α = zα−ζα. By induction, we get the result. �

Corollary C.28. Equivalently, a complete curved operad is cofibrant if and only

if it is a retract of a quasi-free complete curved operad
(
T+(S̃), d

)
, where S̃ is a

complete S-module endowed with an exhaustive filtration

S̃0 = {0} ⊂ S̃1 ⊂ S̃2 ⊂ · · · ⊂ colim
i

S̃i = S̃

of free S-modules such that S̃i−1 � S̃i are split monomorphisms of complete S-
modules with cokernels isomorphic to a sum of complete S-modules

S̃i/S̃i−1
∼=
∐
α

(ξα ·R[Smα ]q ζα ·R[Smα ])

where ξα is in homological degree nα + 1 and filtration degree qα and ζα is in
homological degree nα and filtration degree qα+1. The predifferential d is such that

d(ξα) + ζα ∈
(
T+(S̃i−1), di−1

)
, and d(ζα) is obtained by the fact that d2(ξα) =

[ϑ, ξα].

Proposition C.29. Any quasi-free complete curved operad (T+(X), ∂) is a retract

of a quasi-free complete curved operad (T+(S̃), ∂′), where the components of S̃ are
free S-modules. Moreover, if X is endowed with an exhaustive filtration

X0 = {0} ⊂ X1 ⊂ X2 ⊂ · · · ⊂ colim
i

Xi = X

such that Xi−1 � Xi are split monomorphisms of complete S-modules with coker-
nels isomorphic to a sum of complete S-modules

Xi/Xi−1
∼=
∐
α

(ξα ·R[Smα ]q ζα ·R[Smα ]) ,

where ξα is in homological degree nα + 1 and filtration degree qα and ζα is in
homological degree nα and filtration degree qα+1. The predifferential ∂ is such that
∂(ξα)+ζα ∈ (T+(Xi−1), ∂), and ∂(ζα) is obtained by the fact that ∂2(ξα) = [ϑ, ξα],

then S̃ can be chosen with the same property and such that the cokernels of the
S̃i−1 � S̃i are free S-modules.

Under these hypotheses, the complete curved operad (T+(X), ∂) is cofibrant, as
a retract of a cofibrant complete curved operad.

Proof. We copy the proof of Lemma 39 in [MV09], adapting the setting. Let X(m)
denote the set of equivalence classes under the action of Sm. We choose a set of
representatives {x̄i}i∈I . Let S̃ be the free S-module generated by the {x̄i}i∈I . The
generator associated with x̄i will be denoted by si. For any x ∈ X(m), we consider
the subgroup Sx := {σ ∈ Sm | x · σ = χ(σ)x, χ(σ) ∈ R}. In this case, χ is a

character of Sx. We define the following element of S̃:

N(x̄i) :=
1

|Sx̄i |
∑

χ(σ−1) · siσ,
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where the sum runs over σ ∈ Sx̄i (N preserves the filtration). The image under the
boundary map ∂ of an x̄i is a (potentially infinite) sum of trees

∑
T (x̄i1 , . . . , x̄ik).

We define the boundary map ∂′ on T+(S̃) by

∂′(si) :=
∑ 1

|Sx̄i |
∑

χ(σ−1) · T (N(x̄i), . . . , N(x̄ik))σ,

where the second sum runs over σ ∈ Sx̄i and the sum lies in the complete gr-dg
module since N preserves the filtration. Finally, we define the maps of curved
operads T+(S̃) → T+(X) by si 7→ x̄i and T+(X) → T+(S̃) by x̄i 7→ N(x̄i). They
form a deformation retract, which preserves the filtration on X when it exists and
the different properties on the cokernels also hold. �

C.30. Model structure on categories of complete curved algebras. Fol-
lowing Hinich [Hin97], we endow the category Alg(O) of algebras over an S-split
complete curved operad (O, d, θ) with a model category structure. We apply The-
orem C.22 to the free-forgetful functor adjunction between the categories of gr-dg
R-modules and Alg(O).

We first describe the free-forgetful adjunction.

Proposition C.31. The forgetful functor # : Alg(O) → compl. gr-dg R-Mod ad-
mits a left adjoint free O-algebra functor FO : compl. gr-dg R-Mod→ Alg(O) given
by

(V, dV ) 7→ FO(V, dV ) :=
(
O(V )/

(
im
(
dV

2 − θ ⊗ idV
))
, dO(V )

)
.

Proof. The proof is similar to the proof of Theorem 2.20. Let (V, dV ) be a com-
plete gr-dg R-module and (A, dA) be an (O, d, θ)-algebra. We denote by UO =
U(O, d, θ) the complete gr-dg operad underlying (O, d, θ). The above construction
FO(V, dV ) is a UO-algebra as a quotient by the ideal

(
im
(
dV

2 − θ ⊗ idV
))

of the
free UO-algebra

UO(V, dV ) =
(
qn≥0O(n)⊗Sn V

⊗n, dO(V )

)
where dO(V ) is the gr-dg predifferential induced by the predifferentials on O and

on V . It is a (O, d, θ)-algebra since the condition that θ is sent to dO(V )
2 in

EndFO(V, dV ) follows from the fact that we have considered the quotient by the

ideal
(
im
(
dV

2 − θ ⊗ idV
))

. Indeed,

dO(V )
2 = dO

2 ⊗ idV ⊗• +
∑
j

idO ⊗ idV
⊗j ⊗ dV 2 ⊗ id⊗(•−j)

= [θ, −]⊗ idV ⊗• +
∑
j

idO ⊗ idV
⊗j ⊗ (θ ⊗ idV )⊗ id⊗(•−j)

= θ ⊗ idO(V ).

We have the adjunction

Homgr-dgR-Mod

(
(V, dV ), (A, dA)#

) ∼= HomUO-alg. (UO(V, dV ), U(A, dA)) ,

where U(A, dA) is the UO-algebra underlying (A, dA). Since (A, dA) is a (O, d, θ)-
algebra, a morphism of UO-algebras UO(V, dV ) → U(A, dA) automatically sends
the ideal

(
im
(
dV

2 − θ ⊗ idV
))

to 0 and coincides (bijectively) with a morphism of
(O, d, θ)-algebras FO(V, dV )→ (A, dA). We get the bijection

HomUO-alg. (UO(V, dV ), U(A, dA)) ∼= Homgr-dgR-Mod (FO(V, dV ), (A, dA))
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which gives the result. �

In order to apply Theorem C.22, we prove several results. The first one concerns
the adjunction between the free (O, d, θ)-algebra functor FO and the forgetful
functor #.

Proposition C.32. The adjunction between the free (O, d, θ)-algebra functor and
the forgetful functor (see Proposition C.31)

FO : compl. gr-dg R-Mod / Alg(O) : #o

provides a monad # · FO whose category of algebras is naturally isomorphic to the
category of (O, d, θ)-algebras.

Proof. As in the proof of Proposition C.23, we apply the crude monadicity theorem
given in [BW05, Section 3.5]. The result follows from the fact that the functor
# : Alg(O) → compl. gr-dg R-Mod is monadic. The free functor is left adjoint to
the forgetful functor #. The forgetful functor clearly reflects isomorphisms. It
remains to show that the category Alg(O) has coequalizers of those reflexive pairs
(f, g) for which (#f, #g) is a coequalizer and # preserves those coequalizers. The
coequalizer of a pair f, g : (A, dA)→ (B, dB) in the category of (O, d, θ)-algebras
is given by the quotient map (B, dB)→ (B/ (im(f − g)) , d̄B) where (im(f − g)) is
the (O-)ideal generated by im(f −g) and the map d̄B induced by dB is well-defined
since (im(f − g)) is stable under dB . The quotient algebra is still a (O, d, θ)-
algebra. When (f, g) is a reflexive pair, the ideal generated by im(f −g) is equal to
im(f − g). It follows that the remaining condition is satisfied since the coequalizers
in compl. gr-dg R-Mod are given by B/ im(f − g). �

Proposition C.33. The category of (O, d, θ)-algebras has all limits and small
colimits.

Proof. By Proposition 4.3.1 in [Bor94] and Proposition C.32, the category of (O, d, θ)-
algebras admits the same type of limits as the category compl. gr-dg R-Mod which
is complete (and they are preserved by #).

Proposition 4.3.2 in [Bor94] and Proposition C.32 implies that if some colimits in
compl. gr-dg R-Mod are preserved by the monad # · FO, the category of (O, d, θ)-
algebras admits the same type of colimits and they are preserved by #.

Using the fact that ⊗ preserves filtered colimits in each variable and that colimits
commutes with colimits, we get that the monad # · FO preserves filtered colimits.
We therefore obtain that the category of (O, d, θ)-algebras admits filtered colimits.
It is therefore enough to check that it admits pushouts (by Theorem 1 in Chapter
IX of [Mac71], a category with filtered colimits and pushouts has all small colimits).
The pushouts can be computed explicitly as follows. Let IA (resp. IB) be the kernel
of the map γA : O(A) → A (resp. γB) and γ0

A : O(0) → A (resp. γ0
B : O(0) → B)

the algebra structure given by 0-ary elements in O. The coproduct of two (O, d, θ)-
algebras (A, dA) and (B, dB) is given as usual by the quotient

A ∨B := O(A# qB#)/
(
IA q IB q im

(
γ0
A − γ0

B

))
.

The filtration (resp. predifferential) is induced by the filtrations (resp. prediffer-
entials) on A and B. It gives a (O, d, θ)-algebra since A and B are and since O
is curved. Given two maps of complete (O, d, θ)-algebras φ : (C, dC) → (A, dA)
and ψ : (C, dC) → (B, dB), we obtain the corresponding pushout A ∨C B as the
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quotient of the coproduct A ∨ B by the ideal generated by the image of the map
φ− ψ. �

We apply the transfer Theorem C.22 to the adjunction

FO : compl. gr-dg R-Mod / Alg(O) : #.o

We have seen in the beginning of Section C.21 that the category compl. gr-dg R-Mod
is a cofibrantly generated model category with generating cofibrations I∞0 and gen-
erating acyclic cofibrations J∞0 . In order to apply Theorem C.22, we have to un-
derstand FOJ

∞
0 -cell complexes, with

FOJ
∞
0 = {O(0)→ FO(Ẑ0,∞

q,n )}n∈Z, q∈N.

Then, we study cT I-cell complexes, with

cT I∞0 = {FO(Ẑ1,∞
q,n )→ FO(B̂1,∞

q,n )}n∈Z, q∈N
in order to describe cofibrant objects. The classes FOI

∞
0 , resp. FOJ

∞
0 , will be the

generating cofibrations, resp. generating acyclic cofibrations.

Lemma C.34. A morphism of (O, d, θ)-algebras is a relative FOJ
∞
0 -cell complex

if and only if it is a map A → A ∨ FO(Z, dZ), where (Z, dZ) is a complete gr-

dg module equal to a direct sum of complete gr-dg modules Ẑ0,∞
q,n . In particular,

(Z, dZ) is a free module and it is gr-acyclic (that is to say its gr-homology is 0)
and it satisfies ker(dZ) = {0}. Explicitly, we can write

FO(Z, dZ) ∼=
(
O(Z/ im dZ

2), dFO(Z)

)
,

with dFO(Z)
2 = θ ⊗ idZ/ im dZ2 .

Proof. We have FO(0) = O(0). Pushouts of elements of FOJ are therefore as
follows

O(0) A

∨
α FO(Ẑ0,∞

α ) A ∨
(∨

α FO(Ẑ0,∞
α )

)
,

∨αFO(jα)

with each Ẑ0,∞
α equal to a Ẑ0,∞

q,n . Since the coproduct of free (O, d, θ)-algebras is
the free (O, d, θ)-algebra on the sum of their generating modules (see the proof
of Proposition C.33), the composite of two such pushouts is equal to A → A ∨
FO

(
qαẐ0,∞

α

∐
qβẐ0,∞

β

)
. Hence a transfinite composition of such pushouts has

the form A→ A∨FO (Z), with Z a gr-acyclic gr-dg module whose components are

free gr-dg modules Ẑ0,∞
q,n . The last identification is direct. �

We call S-split operad what is defined to be Σ-split in [Hin97]. This definition
extends without modification to complete curved operads.

Theorem C.35. Let (O, d, θ) be a complete curved operad which is S-split. The
category Alg(O) of (O, d, θ)-algebras is a cofibrantly generated model category with
generating cofibrations FO(I∞0 ) and generating acyclic cofibrations FO(J∞0 ). The
weak equivalences (resp. fibrations) are the maps that are graded quasi-isomorphisms
(resp. strict surjections).



HOMOTOPY THEORY OF CURVED OPERADS AND CURVED ALGEBRAS 85

Proof. We apply Theorem C.22 to the free-forgetful adjunction given in Propo-
sition C.31. By Proposition C.33, the category Alg(O) is complete and cocom-
plete. We have seen in the proof of Proposition C.33 that the forgetful functor
# preserves filtered colimit; in particular it preserves filtered ℵ1-colimits. We fi-
nally have to show that # maps relative FO(J∞0 )-cell complexes to weak equiva-
lences. By Lemma C.34, a relative FOJ

∞
0 -cell complex can be written as a map

j : A → A ∨ FO
(
qαẐ0,∞

α

)
. By means of the description of the pushouts of

(O, d, θ)-algebras given in the proof of Proposition C.33, we can compute

A ∨ FO
(
qαẐ0,∞

α

)
∼= A ∨ O

(
qαẐ0,∞

α / im dα
2
)

∼= O
(
A# q

(
qαẐ0,∞

α / im dα
2
))

/
(
IA q

(
γ0
A − idO(0)

))
.

The functor

Gr : F̂ilt
gr
(A)→ (dgA)obN, (V, F, dV ) 7→ (Gr •V, Gr dV )

commutes with direct sums (see for example [Fre17, Proposition 7.3.8]) and satisfies,
for gr-flat complete modules, GrM⊗Gr GrN ∼= Gr (M⊗̂N) (see Lemma B.4). Here
R is a field of characteristic 0, so any module is flat. It follows that the functor Gr
commutes with the free UO-algebra functor and we get

Gr
(
A ∨ FO

(
qαẐ0,∞

α

))
∼= Gr (A) ∨dg O-alg. GrO

(
qαGr

(
Ẑ0,∞
α / im dα

2
))

.

By the proof of Theorem 4.1.1 in [Hin97], using the fact that O is S-split, we obtain
that the map Gr (j#) is a quasi-isomorphism. �

We conclude this section by computing the cofibrant objects in the model cat-
egory of complete (O, d, θ)-algebras. We use the term quasi-free for a complete
(O, d, θ)-algebras whose underlying module is free when we forget the predifferen-
tial.

Proposition C.36. A complete (O, d, θ)-algebra is cofibrant if and only if it is a
retract of a quasi-free complete (O, d, θ)-algebra (O(S), d) /

(
d2 − θ ⊗ id

)
, where S

is a complete module endowed with an exhaustive filtration

S0 = {0} ⊂ S1 ⊂ S2 ⊂ · · · ⊂ colim
i

Si = S

of free modules such that Si−1 � Si are split monomorphisms of complete modules
with cokernels isomorphic to a sum of complete modules

Si/Si−1
∼=
∐
α

(
ξα ·Rq Ẑ0,∞

qα+1,nα

)
where ξα is in homological degree nα+1 and filtration degree qα. The predifferential
d is the one of Ẑ0,∞

qα+1,nα
on Ẑ0,∞

qα+1,nα
and

d(ξα) + ζα ∈ (O(Si−1), d) /
(
im
(
d2 − θ ⊗ id

))
,

with ζα is a generator of the gr-dg module Ẑ0,∞
qα+1,nα

.

Proof. The proof is similar to the proof of Proposition C.27. �
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Corollary C.37. Equivalently, a complete (O, d, θ)-algebra is cofibrant if and only

if it is a retract of a quasi-free complete (O, d, θ)-algebra
(
O(S̃), d

)
, where S̃ is a

complete module endowed with an exhaustive filtration

S̃0 = {0} ⊂ S̃1 ⊂ S̃2 ⊂ · · · ⊂ colim
i

S̃i = S̃

of free modules such that S̃i−1 � S̃i are split monomorphisms of complete modules
with cokernels isomorphic to a sum of complete modules

S̃i/S̃i−1
∼=
∐
α

(ξα ·Rq ζα ·R)

where ξα is in homological degree nα + 1 and filtration degree qα and ζα is in
homological degree nα and filtration degree qα+1. The predifferential d is such that

d(ξα)+ζα ∈
(
O(S̃i−1), di−1

)
, and d(ζα) is obtained by the fact that d2(ξα) = θ⊗ξα.

C.38. Homotopy category of algebras over a curved operad. We now come
to the study of the homotopy category. We denote by Hoalg(O) the homotopy
category of Alg(O). We show how a morphism of complete curved operads can
provide a Quillen adjunction or a Quillen equivalence between the model category
structures.

Definition C.39. Let α : (O, d, θ) → (O′, d′, θ′) be a morphism of complete
curved operads.

(1) We denote by α∗ : Alg(O′) → Alg(O) the direct image functor given by
precomposition

(O, d, θ) α−→ (O′, d′, θ′)→ EndA.

This functor is exact since only the algebra structure changes.
(2) We denote by α∗ : Alg(O)→ Alg(O′) the inverse image functor, left adjoint

to α∗, given by the following definition: for (A, dA) in Alg(O),

α∗(A, dA) := O′(A#)/ (α(idA#)(IA)) .

We can check that α∗(A, dA) satisfies dα∗(A, dA)
2 = θ′ ⊗ idα∗(A, dA). By a

computation similar to the one in the proof of Proposition C.31, this follows
from the fact that im(idI ⊗ dA2− θ⊗ idA) ⊂ IA by the fact that (A, dA) is
a (O, d, θ)-algebra and since α(θ) = θ′.

This pair of adjoint functors form a Quillen pair and therefore provides an ad-
junction on the level of the homotopy categories.

Theorem C.40. Inverse and direct image functors form a Quillen pair, that is we
have the adjunction

Lα∗ : Hoalg(O) / Hoalg(O′) : Rα∗ = α∗.o

Proof. From Proposition 8.5.3 in [Hir03], it is enough to prove that the left ad-
joint functor α∗ preserves cofibrations and acyclic cofibrations. By means of the
fact that (acyclic) cofibrations are retract of relative I∞0 -cell (resp. J∞0 -cell) com-
plexes (see Proposition 11.2.1 in [Hir03]), it is enough to prove the result on
generating (acyclic) cofibrations. We have α∗(O(0), 0) ∼= O′(0) since IO(0) =
(µ⊗ (ν1 ⊗ · · · ⊗ νn)− γO(µ⊗ ν1 ⊗ · · · ⊗ νn)⊗ 1, µ ∈ O(n), νi ∈ O(0)). Similarly,

we show that α∗(FO(Ẑ0,∞
q,n )) ∼= F ′O(Ẑ0,∞

q,n ) by means of the fact that the ideal
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im(idI ⊗ dẐ0,∞
q,n

2 − θ ⊗ idẐ0,∞
q,n

) ⊂ IFO(Ẑ0,∞
q,n ) is sent to the ideal im(idI ⊗ dẐ0,∞

q,n

2 −
α(θ) ⊗ idẐ0,∞

q,n
) with α(θ) = θ′. This shows that α∗ preserves acyclic cofibrations.

The same reasoning shows that α∗ sends (generating) cofibrations to (generating)
cofibrations. �

Finally, we compare the categories Hoalg(O) and Hoalg(O′) when the mor-
phism α : (O, d, θ) → (O′, d′, θ′) is a weak equivalence, that is a graded quasi-
isomorphism, of S-split complete curved operads compatible with the splitting (that
is α sends the splitting to the splitting).

Theorem C.41. Let α : (O, d, θ) → (O′, d′, θ′) be a graded quasi-isomorphism
of S-split complete curved operads compatible with the splittings. Then the functors
α∗ and α∗ form a pair of Quillen equivalences, that is the functors

Lα∗ : Hoalg(O) / Hoalg(O′) : Rα∗ = α∗o

are equivalences of the homotopy categories.

Proof. The functors α∗ reflects weak equivalences so by Corollary 1.3.16 in [Hov99],
it is enough to show that the unit of the adjunction A→ α∗(α

∗(A)) is a weak equiv-
alence, that is a graded quasi-isomorphism, for every cofibrant (O, d, θ)-algebra
(A, dA). Since we are working over a field R of characteristic 0, we have already
seen that the functor Gr commutes with direct sums and preserves the tensor
products. It follows that

Grα∗(A, dA) ∼= (GrO′)(GrA#)/ ((Grα)(idGrA#)(IGrA)) ,

since Gr IA ∼= IGrA. The result now follows from the proof given in Section 4.7 in
[Hin97]. �
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Mathématique de France, 76:III1–VI140, 1999.
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