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Abstract

This article focuses on the classical problem of the control of infor-
mation loss during the digitization step. The properties proposed in the
literature rely on smoothness hypotheses that are not satis�ed by the
curves including angular points. The notion of turn introduced by Milnor
in the article On the Total Curvature of Knots generalizes the notion of
integral curvature to continuous curves. Thanks to the turn, we are able
to de�ne the local turn-boundedness. This promising property of curves
does not require smoothness hypotheses and shares several properties with
the par(r)-regularity, in particular well-composed digitizations. Besides,
the local turn-boundedness enables to constrain spatially the continuous
curve as a function of its digitization.

1 Introduction

The loss of information caused by a digitization process is inevitable. There-
fore a fundamental point concerns the control of this information loss. This
is the starting point for our study. More precisely, we want to determine con-
ditions under which the discretization of a shape preserves �in a sense to be
speci�ed� some of the geometric and topological properties of the original con-
tinuous shape. Then we focus on a geometric criterion, the control of the Haus-
dor� distance between a shape and its digitization, and a topological criterion,
the preservation of the manifoldness of a shape.

Several hypotheses on the shape have been proposed in the literature to
obtain such faithful digitizations. These hypotheses are detailed hereafter and
compared in Table 1 for a set of properties. In the rest of the paper, S stands
for a shape of the Euclidean plane whose border C is a Jordan curve.

One of the most used hypotheses, called par(r)-regularity, was indepen-
dently introduced in 1982 by Pavlidis in [13] and in 1984 by Serra in [14] in
order to study the preservation of the topology by the Gauss digitization. It
demands that any point c ∈ C has an interior osculating disk entirely included
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in the interior of C except for the point c and an exterior osculating disk en-
tirely included in the exterior of C except for the point c (see De�nition 10).
It has been used to prove some topology preservation properties [5, 8, 13]. The
par(r)-regularity encompasses two ideas: the border of the shape has a curva-
ture bounded from above and the shape has a positive minimal thickness. But
par(r)-regularity fails to include non-regular shapes having corners as polygons
(see Proposition 10). That is why there exists in the literature many notions
generalizing par(r)-regularity. For instance, Stelldinger et al. suggest in [15,16]
a regularization to transform some class of shapes (half-regular shapes) having
spikes into par(r)-regular shapes. The half-regularity is a more general version
than par-regularity. Indeed, it only demands that each point on the border of
the shape has one of the two osculating disks modulo the exclusion of a kind of
defects in the regularization process. In [10], Meine et al. introduced a general-
ization of half(r)-regularity: the r-stability. A shape is r-stable if its boundary
can be dilated with a closed disk of radius s without changing its homotopy
type for any s ≤ r. Sadly, these two latest notions give no guarantee about the
well-composedness of the digitization but only about the homotopy equivalence
between the object and its reconstruction and do not provide a control of the
geometry. Indeed, they allow the continuous shape to be arbitrarily far from
its digitization. More controlled generalizations of par(r)-regularity under dig-
itization have been developed. For instance, Ngo et al. [12] de�ne the notion
of quasi(r)-regularity allowing irregularities of the border of the shape S to lie
in a margin of magnitude (

√
2− 1)r around the erosion of S by a centered ball

of radius r. The quasi-regularity has been introduced in order to guarantee
the preservation under rigid transformation of the well-composedness. But the
de�nition of quasi(r)-regularity uses both local and global properties as con-
nectedness. Moreover, given explicitly a shape S, it can be hard to determine
whether it is quasi(r)-regular. In [10], in addition to r-stability, Meine et al. also
de�ned the (θ, d)-spikesas arcs delimited by two points x1 and x2 at distance at
most d from each other, such that there exists a point y in this arc forming an
angle x̂1yx2 strictly less than θ. Alone, the notion of curve without (θ, d)-spike
can only give a bound on the distance between a shape S and its digitization.
The classical notion of reach [4] which is the minimal distance between the
boundary of a shape and its medial axis also makes it possible to control the
thickness and the curvature. Indeed, it was proven in [7], that par-regularity
amounts to asking a positive reach. But having positive reach requires contin-
uous di�erentiability of the boundary. In [3], Chazal et al. de�ned the µ-reach
that just requires that all the projections on the curve of a medial axis point
close to the curve are seen under some tight angle. Nevertheless, the µ-reach
seems hard to compute and does not guarantee the well-composedness of the
digitization but only the homotopy equivalence.

In this article, we introduce a notion that requires the shape to be thick
enough and not to have small artifacts in comparison with the grid step. In
other words, the border of S should be locally �at. We propose a new wide class
of Jordan curves whose interior ful�ll the previous requirements. We call them
locally turn-bounded curves. By wide class, we mean a class that encompasses
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both regular curves and polygons. The thickness part of the de�nition is based
on the distortion thickness of Kusner and Sullivan [6]. Their idea is to consider
the minimal distance between two points of the curve su�ciently far from each
other for the geodesic distance. The locally �atness part of the de�nition of the
locally turn-boundedness relies on the notion of turn adapted to both regular
curves and polygons. The turn was �rstly introduced by Milnor [11] to study the
geometry of knots. We get the local turn-boundedness by replacing the geodesic
distance with the total curvature in the de�nition of the distortion thickness.
Indeed, local turn-boundedness allows us a more acute control on the curve. For
instance, instead of bounding one arc delimited by two �xed points in an ellipse
whose foci are the two points, we bound the arc in a disk whose diameter is the
segment delimited by the two points.

This article is an extended version of the conference article [9]. The additions
are the following: a stronger result about well-composedness (Proposition 9),
the digitization of a locally turn-bounded curve is 4-connected (Corollary 5) and
a proof that a par(r)-regular curve is locally turn-bounded (Section 5). In order
to prove these results, technical lemmas, propositions and de�nitions have been
introduced.

The article is organized as follows. First, we recall the main properties and
de�nitions about the notion of turn (Section 2). Then, we present the class
of locally turn-bounded curves and we give their basic properties (Section 3).
Section 4 is devoted to the proof of our �rst main result, Theorem 1: the digi-
tization of a shape bounded by a locally turn-bounded curve is well-composed
and 4-connected under a �compatibility hypothesis� related to the grid step. In
Section 5, we prove our second main result, Theorem 2: local turn-boundedness
is a generalization of par-regularity (and thus, of having positive reach).

2 Turn of a simple curve

Although the notion was introduced by Milnor in [11], the de�nitions and prop-
erties given in this section come from the book of Alexandrov and Reshetnyak
[1]. As presented in Proposition 2, the turn extends to continuous curves the
notion of integral curvature already de�ned for regular curves.

Terminology and notations In this paragraph, some necessary notions on
oriented curves are recalled.

• Let c ∈ R2 and r ≥ 0. We denote by B(c, r) the open disk of center c and
radius r and by B̄(c, r) the close disk of center c and radius r.

• A parametrized curve is a continuous application γ from an interval [t0, t1]
of R, t0 < t1, to R2. It is simple if it is injective on [t0, t1) and closed if
γ(t0) = γ(t1). A (geometric) curve is the image of a parametrized curve.
A Jordan curve is a simple closed curve.
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Notion
digitization well-
composed

digitization 4-
connected

distance to the dig-
itization

par-regularity Theorem 7.1 [13] Theorem 7.1 [13] Theorem 1 [7]
half-regularity no no
r-stability no no
µ-reach

quasi-regularity Proposition 3 [12] Proposition 3 [12]
local turn-
boundedness

Proposition 9 Proposition 5 Proposition 6

Notion
same homotopy
tree with a recon-
struction

homotopy equiv-
alence with a
reconstruction

homotopy equiv-
alence with the
dilation of an
approximation

half-regularity Theorem 14 [16]
r-stability Theorem 11 [10]
µ-reach Theorem 4.6 [3]

Table 1: This table sums up the notions mentioned in the introduction. Notice
that in the fourth and �fth column the reconstruction depends on each notion.

• For a simple parametrized curve γ, an order is de�ned on the points of
the associated curve C by:

γ(α) ≤γ γ(β)⇔ α ≤ β

and ≤γ is denoted by ≤ if there is no ambiguity. A simple curve γ with
such an order is called oriented curve.

• A polygonal line with vertices x0, ..., xN is denoted by [x0, x1..., xN ] (if
xN = x0, the polygonal line is a polygon).
A polygonal line L is inscribed into an oriented curve C if the vertices of
the polygonal line L form an increasing sequence for the order relationship
de�ned by some simple parametrization of C. For a Jordan curve, a polyg-
onal line L is inscribed if its �rst and its last vertex are equal and all its
vertices but the last form an increasing sequence for the order relationship
de�ned by some simple parametrization of C.

• Let N be a positive integer and x0, x1, ..., xN points of R2. The polyg-
onal line PL = [x0, x1, . . . , xN ] can be considered as the image of the
parametrized curve pl : [0, N ] 7→ R2 such that pl(t) = xbtc(t− btc) + (1−
t + btc)xbtc+1 where for r ∈ R, brc in the integer part of the real r. In
other words, for any integer i between 0 and N , if t ∈ [i, i + 1), then
pl(t) = (t − i)xi + (1 − t + i)xi+1, and thus pl([i, i + 1]) is the segment
[xi, xi+1] of R2. A polygonal line is simple if it is simple for the previous
parametrization and thus a simple polygon is a Jordan curve.

• Given a curve C and two points a, b on C (a 6= b), we write Cba for the arc
ending at a and b if C is not closed. If C is closed, Cba and Cab stand for
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the two arcs of C delimited by a and b. Since these two arcs are hard to
distinguish formally, the latter notation is de�ned up to permutation of
the two arcs.

• The angle between two vectors u and v is denoted by (u,v) ((u,v) ∈
R/2πZ). The geometric angle between two vectors u and v, denoted by
∠(u,v), or two directed straight lines oriented by u and v, is the absolute
value of the reference angle taken in (−π, π] between the two vectors.
Thus, ∠(u,v) ∈ [0, π]. Given three points x, y, z, we also write x̂yz for
the geometric angle between the vectors x− y and z − y.

Remark 1. Every geometric curve is a compact set. Hence the straight lines
are not geometric curves.

De�nition 1 (Turn). • The turn κ(L) of a polygonal line L = [xi]
N
i=0 is

de�ned by:

κ(L) :=

N−1∑
i=1

∠(xi − xi−1, xi+1 − xi).

• The turn κ(P ) of a polygon P = [xi]
N
i=0 (where xN = x0 and xN+1 = x1)

is de�ned by:

κ(P ) :=

N∑
i=1

∠(xi − xi−1, xi+1 − xi).

• The turn κ(C) of a simple curve C (respectively of a Jordan curve) is the
upper bound of the turn of its inscribed polygonal lines (respectively of
its inscribed polygons).

Since the turn of a polygon equals the upper bound of the turn of the poly-
gons inscribed in it [1, Corollary p. 119], the turn of the polygon seen as a
closed curve is equal to the turn of the polygon. Hence, the turn is well de�ned.

It should be noticed that the turn does not depend on the orientation of
the curve. Indeed, it is well-known that (u,v) = −(−v,−u), then ∠(u,v) =
∠(−u,−v). Thus κ

(
[xi]

N
i=0

)
= κ

(
[xi]

0
i=N

)
.

Remark 2. The turn is stable under homothetic maps. Indeed, obviously, the
turn is invariant by any conformal map, in particular by the homotheties.

Like the length of a curve, the turn can be calculated thanks to multiscale
samplings. This is the object of Property 1 where we denote by L(C) the length
of the curve C.

Property 1 (Convergence of the length and turn of a sequence of polygonal
lines [1], p. 23, 30, 121, 122). Let C be a simple curve and (Lm)m∈N a sequence of
polygonal lines inscribed in C and with same endpoints as C. If limm→+∞ λm =
0, where λm is the maximum length of a side of the polygonal line Lm, then

lim
m→+∞

L(Lm) = L(C)
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Figure 1: The turn of the polygon is the sum of the green angles.

and
lim

m→+∞
κ(Lm) = κ(C).

Moreover, if κ(C) is �nite, then L(C) is also �nite (i. e. C is recti�able).

In Property 1, if we assume that the sequence (Lm) is increasing (Lm is
inscribed in Lm+1), then the sequences (L(Lm)) and (κ(Lm)) are both increasing
[1, Lemma 5.1.1].

Property 2 (Turn for regular curves [1], p. 133). Let γ : [0, `] → R2 be a
parametrization by arc length of a simple curve C. Assume that γ is of class C2

and let k(s) be its curvature at the point γ(s). Then,

κ(γ) =

∫ `

0

|k(s)|ds.

For regular curves, therefore, the turn corresponds to the integral of the
curvature (with respect to an arc-length parametrization).

The following property gives a lower bound of the turn for closed curves.

Property 3 (Fenchel's Theorem: [1], Theorem 5.1.5). For any Jordan curve
C, κ(C) ≥ 2π. Moreover κ(C) = 2π if and only if the interior of C is convex.

The interior of a Jordan curve is de�ned by the Jordan's curve Thoeorem:
the interior of a Jordan curve C is the bounded connected component of R2 \ C.

The next property, known as Schur's Comparison Theorem, states that the
distance between the ends of an arc is greater than the distance between the
ends of another arc having same length but a greater turn. This property is
useful for our purpose of de�ning local turns.

Property 4 (Schur's Comparison Theorem: [2], p. 150). Let γ and γ̄ be two
simple curves parametrized by arc length on [0, L] such that:

• [γ̄(0), γ̄(L)] ∪ γ̄([0, L]) is a convex Jordan curve,

6



•a

•
c

• b

Figure 2: The turn of the arcs Cca and Cbc is zero but the turn of the arc Cba is
nonzero. Hence, triangle inequality fails with turns.

• for each subinterval I ⊂ [0, L],

κ(γ(I)) ≤ κ(γ̄(I)).

Then,
‖γ̄(L)− γ̄(0)‖ ≤ ‖γ(L)− γ(0)‖.

Turn calculations sometimes require a kind of triangle inequality but in pres-
ence of angular points a strict statement of triangle inequality fails with turns
as shown in Figure 2. Nevertheless, a loose version of the inequality can be
derived from the following properties thanks to the existence of left and right
tangents everywhere on a curve with �nite turn.

We use a geometric de�nition of the left and right unit tangent vectors.

De�nition 2 ([1], section 3.1). Let (C,≤) be a geometric oriented curve.

• The unit vector el(x) is the left unit tangent vector at x if:

∀ε > 0,∃y0 ∈ C, y0 < x,∀y ∈ C, y0 < y ≤ x,
∠(x− y, el(x)) < ε.

• The unit vector er(x) is the right unit tangent vector at x if:

∀ε > 0,∃y0 ∈ C, y0 > x,∀y ∈ C, x ≤ y < y0,

∠(y − x, er(x)) < ε.

• A curve having a right and a left unit tangent vector at each of its point
is called one-sidedly smooth.

Property 5 ([1], Theorem 2.1.4, Theorem 3.1.1, Theorem 3.3.3 and Theorem
3.4.2). Let C be a one-sidedly smooth curve. Then, the set of angular points
of C is countable, C is recti�able and any arc-length parametrization γ has both
left-hand and right-hand derivatives γ′l and γ

′
r. Moreover, for any s ∈ [0,L(C)],

‖γ′l(s)‖ = ‖γ′r(s)‖ = 1.

Property 6 (Theorem 5.1.2 [1]). Every curve of �nite turn is one-sidedly
smooth.
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The existence of left and right tangent vectors makes it possible to split a
curve into several parts using turns and tangent vectors.

Property 7 (Theorem 3.3.3 p. 53 and Theorem 5.1.3 p. 122 [1]). Let Cba be an
arc of C and c be a point on Cba. Let denote by el(c) and er(c) the left and right
unit tangent vectors at c. The turn of Cba is �nite if and only if the turns of Cca
and Cbc are both �nite. In this case,

κ(Cba) = κ(Cca) + ∠(el(c), er(c)) + κ(Cbc). (1)

In the case where a = b (C is closed), the previous equality becomes as follows.

κ(C) = ∠(el(c), er(c)) + κ(C \ {c}).

We immediately derive Corollary 1 (which is also valid if κ(C \ {c}) =∞).

Corollary 1. Let C be a Jordan curve and c be a point in C. Then, κ(C \{c}) >
π.

Proof. The large inequality derives from Fenchel's Theorem 3 and the de�nition
of geometric angles (∠(u,v) ∈ [0, π]). The strict inequality is due to the fact
that we cannot have both κ(C) = 2π and ∠(el(c), er(c)) = π. Indeed, from
Fenchel's Theorem, the former equality implies that C is the boundary of a
convex body. Then, C has no cusp, that is ∠(el(c), er(c)) < π. As we did not
�nd in the literature a proof of this last assertion, we propose one in Appendix
A.

From Property 7, adding κ(Cdc ) in the right hand side of Equation 1 (d ∈ Cbc),
we easily derive the following corollary that will be used in the sequel.

Corollary 2. Let C be an oriented simple curve from a to b. Let Cda and Cbc be
two arcs of C that overlap with a < c < d < b. Then,

κ(Cba) ≤ κ(Cda) + κ(Cbc).

We end this section with a property linking the turn of a limit and the limit
of the turns.

Property 8 ([1], Theorem 5.1.1 p. 120). If the curves (Cm) converge to the
curve C, then κ(C) ≤ lim inf κ(Cm).

In Property 8, �(Cm) converge to C� means that there exist parametrizations
of the curves Cm that uniformly converge to a parametrization of C (see Section
1.4 in [1]).

3 Locally turn-bounded curves

Thanks to the notion of turn presented in Section 2, we de�ne hereafter a new
class of curves whose turn is locally bounded. Bounding the turn has the ad-
vantage of spatially constraining the curve with respect to any su�ciently tight
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sampling without imposing smoothness. Firstly, we will give some de�nitions
(De�nitions 3, 4, 5) and a few examples (Proposition 1) in order to help the
reader to �gure out the consequences of local constraints on turn. The impatient
reader can skip this introduction to go to Proposition 2 which gives the opera-
tional characterization of the notion of locally turn bounded curve. Afterwards,
Section 3 continues by establishing three easy propositions (Propositions 3 to 5)
and a corollary (Corollary 4) that provide basic properties of the locally turn
bounded curves. We end Section 3 by a lemma and a de�nition (Lemma 2 and
De�nition 6) that make it possible to distinguish the arcs Cba and Cab under some
assumptions.

De�nition 3 (Turn-neighborhood). A point b in C is in the turn-neighborhood
of a point a on a simple geometric curve (or on a Jordan curve) with angle θ,
if one of the arcs of C from a to b has a turn that is less than, or equal to θ.
The turn-neighborhood of the point a on the geometric curve C with angle θ is
denoted by VC(a, θ).

Figure 3 shows how the turn-neighborhood VC(a, θ) varies when changing
the angle θ and the position of the point a.

θ

•
a

••

θ

π
3

•
a

• •

θ < π/3

π
3 •

a•
•

θ < π/3

π
3

π
3

•
a

• •

π/3 ≤ θ < 2π/3

π
3

π
3

•
a

•

•

π/3 ≤ θ < 2π/3

Figure 3: The red arc is the turn-neighborhood VC(a, θ) of a at di�erent positions
on the regular hexagon for the indicated θ. On the circle, the turn-neighborhood
remains the same, up to rotation, when changing the position of the point a.

De�nition 4 (Turn step function). The turn step function θ 7→ σ(θ) is de�ned
by

σ(θ) := inf
a∈C

d
(
a, C \ VC(a, θ)

)
.

where d denotes the Euclidean distance.
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The turn step function θ 7→ σ(θ) is increasing. Indeed, for any a ∈ C, the set
VC(a, θ) increases (for the inclusion order) in function of θ. Then, the distance
from a to the complement of VC(a, θ) increases too. If the turn of C is �nite,
there exists a value above which the turn step function has an in�nite value for
VC(a, θ) equals C.

Proposition 1 (Examples). 1. The turn step function of a Jordan curve at
0 is 0.

2. The turn step function of a convex Jordan curve at π is +∞.

3. The turn step function of a circle with radius r at θ is 2r sin(θ/2) if θ < π
and is in�nite for θ ≥ π. (see Figure 4 and Figure 5).

4. The turn step function on a polygonal curve is a step function.

5. The turn step function on a regular n-gon Pn inscribed in a circle of radius
r is

σPn(θ) =

{
2r sin

(⌊
nθ
2π

⌋
π
n

)
if θ < π

+∞ otherwise
.

(see Figure 4 and Figure 5).

Proof. 1. Firstly, observe that, if C is a polygon, taking points a arbitrarily
closed to a vertex, we have d(a, C \ VC(a, 0)) arbitrarily small, that is
σ(0) = 0. By contradiction, now assume that σ(0) = c > 0 for some
Jordan curve C. Then, thanks to the compacity of C, we can cover the
whole curve C with a �nite set of balls B(ai, c), 1 ≤ i ≤ n. By de�nition
of c, the turns κ(C ∩ B(ai, c)) are reduced to the angles between the left
and right tangent vectors at ai: C is a polygon. Contradiction.

2. According to Fenchel's Theorem 3 and Property 7, for any point on a
convex Jordan curve, the π-neighborhood is the whole curve.

3. The θ-neighborhood of any point a of a circle of radius r is an arc of circle
of length θr centered in a. The distance between the point a and the rest
of the circle is 2r sin(θ/2) (see Figure 4).

4. The turn between two points on a polygonal curve is a �nite sum of geo-
metric angles.

5. The θ-neighborhood are described in Figure 3. The θ-neighborhood of a
vertex a of Pn is made of the 2(bnθ2π c + 1) nearest sides of Pn. The θ-

neighborhood of a point a on an open edge of Pn is made of the 2bnθ2π c+ 1
nearest sides of Pn. Then the distance between a and a point outside
VPn(a, θ) is minimal when a lies in an open side. Observe that, in this
latter case, the θ-neighborhood does not depend on the position of a in
the open side. Then, a can be arbitrarily close to a vertex (see Figure 4).
Hence, for θ < π,

σ(θ) = 2r sin

(⌊
θ

2π/n

⌋
π

n

)
.
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Figure 4 illustrates the de�nition of the turn step with di�erent curves. In
Figure 5, we plot the turn step functions of circles and regular polygons.

θ

•
a

• b

σ(θ)

θ < π
σ(θ) = 2r sin( θ2 )

...a2a1• •
•

• b

σ(θ)

θ = π/3

σ(θ)

•a • b

θ = π/2

Figure 4: For the chosen value of θ, the corresponding θ-turn-step σ(θ). On
the hexagon, the distance between a point and one end of its θ-neighborhood
depends on the position of the point. This distance is asymptotically achieved
by a sequence of points (ai) lying on one side which tends to a corner of the
hexagon. The end of the θ-neighborhood of each ai is the point b. Notice that
the θ-turn step is not always the distance between a point and the end of the
θ-neighborhood. The third curve is a counterexample to this wrong assumption.

De�nition 5 (Locally turn-bounded curves). Let θ ≥ 0, δ ≥ 0. A Jordan curve
C is (θ, δ)-locally turn-bounded if, for any a ∈ C, the Euclidean distance from a
to C \ VC(a, θ) is greater than, or equal to δ:

σ(θ) ≥ δ.

In the rest of the article, we will shorten (θ, δ)-locally turn-bounded curve
by (θ, δ)-LTB curve.

Remark 3. Local turn-boundedness is scale invariant: let C be a (θ, δ)-LTB
Jordan curve. Then, the curve k C, k > 0, is (θ, kδ)-LTB. It is a direct conse-
quence of Remark 2.

The following proposition explains how to apply the notion of local turn-
boundedness to a concrete geometric con�guration.

Proposition 2 (Characteristic property of local turn-boundedness). The curve
C is (θ, δ)-LTB if and only if, for any two points a and b in C such that d(a, b) <
δ, the turn of one of the arcs of the curve C delimited by a and b is less than or
equal to θ.
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σ(θ)

θ0

2r sin(πn )

2r sin( (n−1)π
n )

2π
n

4π
n

(n−2)π
n

π

+∞

...

•

•

•

•

⊂

⊂

⊂

σ(θ)

θ0

2r

+∞

π

⊂

•

Figure 5: On the left (red), the graph of the turn-step function σ for a regular
n-gon inscribed in a circle of radius r, on the right (blue), the graph of the
turn-step function σ for a circle.

Proof. This property is just a contrapositive statement of De�nition 5. Indeed,

C is (θ, δ)-LTB ⇐⇒ ∀a ∈ C, δ ≤ d(a, C \ VC(a, θ))
⇐⇒ ∀a ∈ C,∀b /∈ VC(a, θ), δ ≤ d(a, b)

⇐⇒ ∀a ∈ C,∀b ∈ C,
κ(Cba) > θ and κ(Cab ) > θ =⇒ δ ≤ d(a, b)

⇐⇒ ∀a ∈ C,∀b ∈ C,
d(a, b) < δ =⇒ κ(Cba) ≤ θ or κ(Cab ) ≤ θ.

Using the previous characteristic property, let us now show that the class of
LTB curves contains the smooth curves of class C2.

Corollary 3. Jordan curves of class C2 are (θ, 2rC sin(θ/2))-LTB for any θ ≤ π,
rC being the minimum radius of curvature of C.

Proof. Let C be a Jordan curve of class C2. Then, C has an arc length parametriza-
tion γ and the absolute value of its curvature is bounded from above by the real
1/rC . By Property 2, the turn of C between two points is bounded by s

rC
where s

is the geodesic distance between the two points. Considering a circle D of radius
rC , we derive that the turn of C between two points a, b at geodesic distance
` less than rCπ is less than the turn of D between two points c, d at geodesic
distance `. Hence, Schur's Comparison Theorem applies: ‖a− b‖ ≥ ‖c− d‖ and
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q

•

am
•

bm

< δ

Figure 6: The sequences of points of C, (am) and (bm) tends to the point p on
both sides of p. The curve (Cm) is drawn in orange.

since

‖c− d‖ = 2rC sin

(
l

2rC

)
≥ 2rC sin(

κ(Cba)

2
)

(for `/(2rC) ≤ π/2), it follows that, for any θ ∈ (0, π], κ(Cba) ≤ θ whenever
‖a− b‖ < 2rC sin(θ/2). Then, according to Proposition 2, the result holds.

Intuitively, local turn-boundedness must also be a punctual turn-boundedness.
This is veri�ed just hereafter.

Proposition 3. Let C be a (θ, δ)-LTB curve where θ < π. Then, for any point
p ∈ C, one has ∠(el(p), er(p)) ≤ θ where el(p) and er(p) denote respectively the
left and right tangent vectors at point p.

Proof. The notations of the proof are summed up in Figure 6. Let C be a (θ, δ)-
LTB curve where θ < π and p be a point in C. Let q 6= p ∈ C and (am), resp.
(bm) be a sequence of points in C such that (am) → p, (bm) → p and am ∈ Cqp
while bm ∈ Cpq for any m. Then, from Corollary 1, κ(C \ {p}) > π. Moreover,
from Property 8, κ(C \ {p}) ≤ lim inf κ(Cm) where Cm is the arc between am
and bm included in C \ {p}. Thus, on the one hand, there exists m0 such that,
for any m > m0, κ(Cm) > π. On the other hand, there clearly exists m1 > m0

such that d(am, bm) < δ for any m > m1. Let m > m1. As C is (θ, δ)-LTB and
κ(Cm) > π, we derive that κ(C \ Cm) ≤ θ. We conclude, thanks to Property 7,
that ∠(el(p), er(p)) ≤ θ.

From Proposition 3, we derive that a (θ, δ)-LTB polygon has inner angles
greater than or equal to π−θ. Provided that δ is not greater than any edge of the
polygon and any distance between non-consecutive edges, this last property is
a su�cient condition as well. Indeed, with such a value for δ, points at distance
less than δ belong to the same edge or to two consecutive edges. Thereby, they
are linked by an arc whose turn is at most θ. Proposition 3 also shows that
LTB-curves �ll a gap between smooth curves and unconstrained polygons: they
may have angular points but not too much sharp.

13



π − θ

•a • b

θ = 2π/3

π − θ

•a • b

θ = π/2

π − θ
•a • b

θ = π/3

Figure 7: Illustration of Proposition 4 for three values of the parameter θ: π/3,
π/2, 2π/3. Given two points a, b ∈ C such that d(a, b) < σ(θ), then one of the
arc of C between a and b belongs to the grey area.

The next proposition makes it possible to localize a locally turn-bounded
curve from a su�ciently tight sampling. Figure 7 illustrates the proposition.

Proposition 4. Let C be a simple (θ, δ)-LTB curve. Let a, b be two points on
C such that d(a, b) < δ. Then, the arc of C delimited by a and b of smallest turn
is included in the union of the two truncated closed disks where the line segment
[a, b] is seen from an angle greater than or equal to π − θ.

Proof. Since d(a, b) < δ, by Proposition 2, the turn of one of the arcs of C
between a and b is less than or equal to θ. Denote by C0 such an arc. Let c be a
point on C0. By de�nition, the turn of the polygonal line [a, c, b] is less than or

equal to the turn of C0. Then the geometric angle âcb is greater than or equal
to π − θ. We conclude the proof by invoking the inscribed angle theorem.

In Figure 8, we use Proposition 4 to localize a (π/2, δ)-LTB curve from a
su�ciently tight sampling of the curve with respect to δ.

Proposition 5 states that LTB curves for angles θ ≤ π/2 are locally path-
connected subsets of the Euclidean plane. Locally path-connectedness can be
seen as a thickness property. Indeed, locally path-connectedness implies that
dilating a LTB curve by a su�ciently small ball (here, with radius less than
δ/2) does not change the homotopy type of the curve (no connected component
of the interior or the exterior of the curve is created).

Proposition 5. Let C be a (θ, δ)-LTB Jordan curve with θ ∈ (0, π/2] and a ∈ C.
Then, for any ε ≤ δ, the intersection of C with the open disk B(a, ε) is path-
connected and is therefore an arc of C. Furthermore, the turn of this arc is less
than or equal to 3θ.

14
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Figure 8: Any (π/2, δ)-LTB curve sampled by the set of red points is localized
in the gray region delimited by the two orange curves provided that the distance
between two consecutive sampling points is less than δ.

Proof. The notations of the proof are summed up in Figure 9. Let a ∈ C. Let
b1, b2 ∈ C ∩ B(a, ε). Then, by Proposition 2, the turn of one of the arcs of C
between a and b1, resp. between a and b2, is less than or equal to θ. This arc
is denoted by Cb1a , resp. Cb2a . So, from Proposition 4 and for θ ≤ π/2, this arc is
included in the disk with diameter [a, b1], resp. [a, b2], which is itself included
in B(a, ε). Hence, C ∩ B(a, ε) is path-connected. Furthermore, we derive from
Property 7 that

κ(Cb2b1 ) ≤ κ(Cab1) + κ(Cb2a ) + ∠(el(a), er(a))

≤ 2θ + ∠(el(a), er(a)).

By Proposition 3, ∠(el(a), er(a)) ≤ θ, then κ(Cb2b1 ) ≤ 3θ.

Observe that for π/2 < θ < π, in particular for polygons with acute angles,
Proposition 5 does not hold (the intersection of the curve with a ball near an
acute angle may have two connected components).

The recti�ability of a (θ, δ)-LTB curve is a consequence of Proposition 5.

Corollary 4. A (θ, δ)-LTB curve with θ ∈ (0, π/2] has a �nite turn and is thus
recti�able.

Proof. Let C be a (θ, δ)-locally turn-bounded curve. The open balls B(a, δ/2),
a ∈ C, cover the compact set C. Then, there exists a �nite subset of C,
{a0, . . . , am} such that

⋃m
i=0B(ai, δ/2) covers C. By Proposition 5, for each

i, C ∩B(ai, δ/2) is an arc of C whose turn is less than, or equal to 3θ.
Since the balls are open and thus overlap, by Corollary 2, κ(C) ≤

∑m
i=0 κ(C∩

B(ai, δ/2)). Therefore, κ(C) ≤ (m+ 1)(3θ).
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b ε

Figure 9: In blue, the arc Cqp which is the intersection between C and the disk

B(a, ε). The arc Cba is included in the disk of diameter [a, b] delimited by the
dashed circle.

From Corollary 4, we derive that LTB curves are one-sidedly smooth (Prop-
erty 6) and contain at most countably many angular points (Property 5). We
also deduce from Corollary 4 that the class of LTB curves contains no fractal
curve. This is not satisfactory in a multi-resolution context. Nevertheless, lo-
cal turn boundedness is a step between smooth and fully realistic models in
multi-resolution environments.

Because of the strict inequality (d(a, b) < δ) in the characteristic property
of local turn-boundedness (Proposition 2), it could be necessary to deal with
parameters δ greater than the diameter1 of the curve. The next lemma shows
that it is actually not necessary (the proof, somewhat technical, is given in
Appendix B).

Lemma 1. Let C be a (θ, δ)-LTB curve with θ < 2π/3. Then,

δ ≤ diam(C),

where diam denotes the diameter.

Using the characteristic property stated in Proposition 2, one of the main
di�culties is that there is no way to know which of the two arcs between two
points at distance less than δ has its turn less than θ.

When θ ≤ π
2 , the next lemma removes any ambiguity.

Lemma 2. Let θ ∈ (0, π/2] and C be a (θ, δ)-LTB curve. For any a, b ∈ C such
that 0 < d(a, b) < δ, there exists a unique arc of C from a to b whose turn is
less than or equal to π

2 .

1Diameter of a set S: supremum of the set of all distances between pairs of points in S.
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Proof. We prove a contrapositive statement. Let C be a (θ, δ)-LTB curve where
θ ∈ (0, π/2] and let a, b be two points in C such that 0 < d(a, b) < δ and Cba,
Cab both have a turn less than or equal to π

2 . By Proposition 4, Cba and Cab are
included in the disk of diameter [a, b] which then contains the whole curve C.
Thus, the diameter of C is smaller than δ. Contradiction with Lemma 1.

Thanks to Lemma 2, we can now de�ne the straightest arc between two close
points of a (θ, δ)-LTB curve when θ ≤ π/2.

De�nition 6 (Straightest arc between two points). Let θ ∈ (0, π/2] and C be a
(θ, δ)-LTB curve. Between two distinct points at distance less than δ, the unique
arc whose turn is less than or equal to θ is called the straightest arc between a
and b.

4 Properties of locally turn-bounded curves re-

lated to the Gauss digitization

The aim of this section is to establish the following theorem about Gauss digi-
tization of LTB Jordan curves on �ne enough grids.

Theorem 1. Let C be (θ, δ)-LTB curve with θ ≤ π/2 and h be a grid step
compatible with C. Then, the Gauss digitization of C for the grid step h is a
Jordan curve whose interior is 4-connected.

Firstly, we will recall what is the Gauss digitization of a set and how we
de�ne the Gauss digitization of a Jordan curve. We will also recall the notion of
well-composedness which expresses the manifoldness of a digitized shape, more
precisely, of an union of pixels. Pixels we are dealing with are mainly squares.
Nevertheless, when more general pixels (regular tiles, or even compact tiles) can
be used for free in the proofs, we will give general statements in the propositions.
As a �rst step towards the proof of Theorem 1, we will describe the intersection
of a LTB-curve with a pixel. Actually, studying straightest arcs starting and
ending in a given tile, we will show that such arcs are generally not entirely
included in the tile but in a swollen tile (De�nition 7 and Proposition 6). The
next step will be to de�ne and describe the supremum (for the inclusion) �
actually a maximum� of all the arcs starting and ending in a given tile T .
We will call it arc passing through T (De�nition 8 and Proposition 7). The
assumptions under which all the previous results are valid will be gathered
in the notion of grid step compatible with a given LTB-curve (De�nition 9).
The last step of this e�ort towards a topological description of the manner the
curve separates the grid points will be accomplished by considering dual pixels,
that is unit squares whose vertices are grid points: the end points of the arc
passing through a dual pixel T determines the membership of the vertices of T
to the interior or the exterior of the LTB-curve (Lemma 4 and Proposition 8).
Finally, we will state and prove Theorem 1 in two parts: well-composedness
(Proposition 9) and 4-connectedness (Corollary 5).
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C ∂h(C) point inside C point outside C

Figure 10: Gauss digitizations in red of continuous shape delimited by a
Jordan curve C in blue . Left and center: well-composed. Right: non well-
composed.

Let h > 0 be a sampling grid step, the Gauss digitization of a shape S is
de�ned as S ∩ (hZ)2. By abuse of language, given a Jordan curve C which is
the border of the compact shape S, we de�ne its Gauss digitization �we write
∂h(C)� as the border of the union of the squares p⊕

(
[−h/2, h/2]× [−h/2, h/2]

)
where ⊕ denotes the Minkowski sum and p ∈ S∩ (hZ)2. The Gauss digitization
of C is well-composed if it is a disjoint union of Jordan curves (see Figure 10).

The information on the turn makes it possible to de�ne a domain where the
arc of smallest turn of a (θ, δ)-LTB curve passing through a tile of the grid is
lying (De�nition 7). Before that, we need to prove a technical lemma that will
be used in the proofs of Proposition 6 and Proposition 9.

Lemma 3. Let C be a curve with endpoints a, b such that the straight segment
(a, b) does not intersect the curve C. Let P be a polygonal line from a to b such
that P \ {a, b} lies in the interior of the Jordan curve C ∪ [a, b] and P ∪ [a, b] is
convex. Then κ(C) > κ(P ).

Proof. We set P = [a, p1, . . . , pm, b]. Let c be any point in (a, b) and Q = [a, q1,
. . . , qm, b] be the polygonal line obtained by projecting from the point c on the
curve C the polygon P (see Figure 11). By projection of a point x, we mean
the �rst intersection point y between C and the half-line D starting from c and
directed by x − c. This intersection exists and is well de�ned for P \ {a, b}
lies in the interior of C ∪ [a, b] and C ∩ D is a compact set. Note that we
do not assert that the point qi is the projection of the point pi but we claim
that the polyline P deprived of its endpoints lies in the interior of the polygon
Q ∪ [a, b] and the polyline Q is inscribed in C. Then, κ(C) ≥ κ(Q) by de�nition
of κ(C), κ(Q ∪ [b, a]) ≥ κ(P ∪ [b, a]) by Fenchel's Theorem (Property 3) and
∠(a− b, p1 − a) > ∠(a− b, q1 − a), ∠(a− b, b− pm) > ∠(a− b, b− qm) for P is
inside Q∪ [a, b]. Since κ(P ∪ [b, a]) = κ(P ) +∠(a− b, p1 − a) +∠(a− b, b− pm)
and κ(Q∪ [b, a]) = κ(Q) +∠(a− b, q1− a) +∠(a− b, b− qm) by de�nition of the
turn of a polygon, the result holds.

Let us now de�ne the �swollen� tile in which lies an arc of a LTB-curve
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p1
p2

c

q1

q2

Figure 11: Blue: the curve C and the line segment [a, b]. Black: the polygonal
line P = [a, p1, p2, b]. Black, dashed: the projection of p1 and p2 on C yields
the points q1 and q2. Red: the polygonal line Q = [a, q1, q2, b].

passing through a tile of the plane under some hypotheses.

De�nition 7 (Swollen set). Let P be a polygon [p0, ..., pN ] with p0 = pN and
A be the interior of P . The θ-swollen set of P denoted by “Pθ is de�ned by:

“Pθ := P ∪A ∪
N−1⋃
k=0

Dk

with Dk the truncated closed disk outside P where the segment [pk, pk+1] is
seen from an angle greater than or equal to π − θ. Moreover “Pπ

2
is shorten by

“P .

The notion of swollen set is illustrated in Figure 12 and in Figure 16.

Proposition 6. Assuming an n-regular tiling of the plane with edge length h
(n ∈ {3, 4, 6}), let C be a (θ, δ)-LTB Jordan curve with θ ≤ 2π/n and δ >
h
√
n− 2. Let T be a tile crossed by C and a, b be two points of T ∩ C. Then,

the arc Cba of C of smallest turn delimited by a and b lies in the θ-swollen set of
T . In particular, the maximum distance between a point of Cba and T is bounded
from above by h

2 tan( θ2 ).

Proof. Let Cba be the arc of C of smallest turn delimited by a and b. As the
diameter of T is h

√
n− 2, by the hypothesis δ > h

√
n− 2 and since C is a

(θ, δ)-LTB curve, one has κ(Cba) ≤ θ ≤ 2π/n. Let o be a point lying on Cba and
outside T , if any. Let Cdc be the closure of the connected component of Cba \ T
containing the point o. Notice that c and d are on the border ∂T of T . Indeed if
c or d is in the interior of T , then there exist points of Cdc inside T and if c or d
are outside T , there exists a connected component of Cba \T properly containing
Cdc .

We claim that the point d belongs to the same edge as c. Indeed, if it was
not the case, one of the two polygonal lines from c to d in the boundary of T
would lie in the interior of the Jordan curve Cdc ∪ [c, d] and would contain at least
a vertex of T . Then, according to Lemma 3, the turn of the subarc Cdc of Cba,
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would be greater than the turn at a vertex of T , that is 2π/n. A contradiction.
Hence, c and d belong to the same edge. By Proposition 4, we derive that Cdc
lies in the union of the two truncated disks where the segment [c, d] is seen from
an angle greater than or equal to π−θ. One of these truncated disks is included
in T while the other, exterior to T , is included in the swollen set “Tθ. Hence o
lies in the swollen set “Tθ whose Hausdor� distance to T is h

2 tan( θ2 ).

•a

•
b

θ = π
3 , δ > h

e = h(
√

3/6)

e

a
b

e

h

• •

θ = π
3 , δ >

√
2h

e = h(
√

3/6)

•
a

• b

θ = π
4 , δ > 2h

e = h(
√

2− 1)/2

Figure 12: Gray: a tile T with edge length h. Blue, thick: a LTB curve arc
with ends in T . Red: the boundary of the swollen set “Tθ . The Hausdor�
distance between “Tθ and the tile T is e.

When θ < π/2, Proposition 6 makes it possible to localize the straightest arc
between any two points of a a su�ciently small tile. Nevertheless, we still need
to de�ne the minimal straightest arc including the whole intersection between
C and T .

De�nition 8 (Arc passing through T). Let θ ∈ (0, π/2] and C be a (θ, δ)-LTB
Jordan curve . Let T be a closed set whose diameter is strictly less than δ. The
arc of C passing through T denoted by CT is de�ned by

CT :=
⋃

a,b∈T∩C

Cba (2)

where Cba is the straightest arc between a and b.

We now show some properties of the arc passing through a tile provided
this tile is su�ciently small compared to C: it is a straightest arc between some
points in T (hence its turn is less than or equal to π

2 ) and it is maximal for this
property. Furthermore, its complementary in C does not intersect T .

Proposition 7. Let θ ∈ (0, π/2] and C be a (θ, δ)-LTB Jordan curve. Let d be
the diameter of C. Let T be a closed set included in an open disk B(c, r) with

r less than or equal to min( 1
2δ,
√
2
4 d). Then, the arc CT passing through T is

the unique arc of C of turn less than or equal to π
2 having its end points in T

and such that the straightest arc between any two points of T is included in CT .
Moreover,

(C \ CT ) ∩ T = ∅.
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Proof. Since the proof is somewhat long and tedious, we put it in Appendix
D.

Going back to the main case where pixels are square tiles, we propose the
following de�nition that corresponds to the hypotheses of Proposition 7.

De�nition 9 (Compatibility hypothesis). A grid with step h or a square of side
length h is said to be compatible with the curve C if the following conditions are
ful�lled:

1. the curve C is (θ, δ)-locally turn-bounded with θ ∈ (0, π2 ],

2. h is strictly smaller than min(
√
2
2 δ,

1
2 diam(C)).

Lemma 4 and Proposition 8 investigate the positions of the vertices of a
square pixel relatively to the arc passing through this pixel.

Lemma 4. Let C be a (θ, δ)-LTB Jordan curve with θ ≤ π
2 and T be a square

compatible with C. If C contains a vertex v of T then either this vertex v is an
end point of the arc passing through T , or the arc CT is wholly included in the
two sides of T having v for ends.

Proof. Denote by a and b the ends of the arc passing through T , CT . From
Proposition 7, κ(CT ) ≤ π

2 . Assume that p ∈ CT \ {a, b} is a vertex of T . Then

the geometric angle âpb is less than or equal to π
2 . Actually, it is equal to π/2 for

π/2 ≥ κ(CT ) ≥ π−âpb. Then, on the one hand, a and b lie on two adjacent edges
of T that intersect in v. On the other hand, we have κ(CT ) = κ(Cba) = κ([a, p, b]).
Let c be point in C in between a and p. From the very de�nition of the turn,
we derive that κ([a, c, p, b]) = κ([a, p, b]), that is c ∈ [a, p]. Alike, any point of C
in between p and b lie in the segment [p, b]: CT is included in [a, p] ∪ [p, b].

Some point con�gurations cannot occur in the Gauss digitization of a curve
compatible with the grid. Proposition 8 makes it possible to exclude some
of these con�gurations. Indeed, we show that whether or not two 8-adjacent
points in hZ2 are in the same connected component of R2 \ C can be locally
decided by considering the arc CT passing through a unit square T having these
points as vertices. Better, knowing the edges of T on which lie the ends of
CT is su�cient to make the decision. Hence, instead of considering in�nitely
many cases (number of all possible LTB curves separating or not two 8-adjacent
points), we only have to consider �nitely many cases (i.e. all possible positions
of the ends of the arc passing through T ).

Proposition 8. Let C be (θ, δ)-LTB Jordan curve, T be a square compatible
with the curve and a, b be the end points of the arc passing through T . Two
vertices of T are in the same connected component of R2 \ C if and only if they
are in the same connected component of T \ [a, b] and they do not lie on C.
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Proof. Let consider the curve C′ = (C \ CT ) ∪ [a, b] and the compact set K
delimited by the closed (non necessarily simple) curve CT ∪ [a, b]. The proof is
divided in three steps. In the �rst step, we prove that C′ is a Jordan curve. In
the second step, we prove that if a vertex of T is in K, then this vertex is on C.
In the third step, we prove that if two vertices of T are in the same connected
component of R2\C, then they are in the same connected component of T \[a, b].

• Step 1. The set C′ is a Jordan curve for a and b are the end points of
C \ CT and C \ CT does not intersect T (Proposition 7) while the segment
[a, b] is included in T .

• Step 2. By Propositions 6 and 7, CT is included in Tπ/2, the π/2-swollen
set of T . In particular, the vertices of T lying in the compact set K, if
any, belong to CT .

• Step 3. Two vertices of T are in the same connected component of R2 \ C
if and only if they are in the same connected component of R2 \ C′ and
they do not lie in C (for, from Step 2., we know that they cannot lie in the
interior of K), or, equivalently (since C \ CT does not intersect T ), they
are in the same component of T \ [a, b] and they do not lie on C.

We shall now prove that the Gauss digitization of a LTB curve is well-
composed provided the grid step is small enough.

Proposition 9. Let C be (θ, δ)-LTB curve with θ ≤ π/2 and h be a grid step
compatible with C. Then, the Gauss digitization of C for the grid step h is
well-composed.

Proof. The proof is made by contradiction. So, let a be a double point on
∂h(C). The point a is the center of a square T := [I1, E1, I2, E2] whose vertices
are points of (hZ)2, the points E1 and E2 lying outside C while I1, I2 lie inside or
on C. Then, by discriminating vertices strictly inside C of vertices in C, there are
only three possible con�gurations modulo rotations and symmetries depicted in
Figure 13. Let Cqp be the arc passing through T .

• First con�guration. By Proposition 8, the segment [p, q] separates the
square T into two polylines, the �rst containing the vertices E1 and E2

(outside C) and the second (possibly empty) containing the vertices I1 and
I2 (inside C). The reader can check that this separating property does not
hold for the �rst con�guration of Figure 13.

• Second con�guration. In the one hand, by Lemma 4, p or q lies in the
open polyline (E1, I1, E2) and, in the other hand, from Proposition 8, p
and q lie in the open polyline (E1, I2, E2).

• Third con�guration. From Lemma 4, {a, b} = {I1, I2}. Thus, the segment
[I1, I2] separates E1 from E2 in contradiction with Proposition 8.
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Figure 13: The three possible con�gurations for a double point a of the Gauss
digitization of a Jordan curve.

θ0 >
π
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×
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h

h

Figure 14: The blue spike with vertex at the origin is locally turn-bounded for
any θ ≥ θ0 and any δ > 0. Nevertheless, its digitization is not well-composed
(whatever the grid step).

Hence, none of the three con�gurations can occur.

Notice that the bounds θ ≤ π
2 and

√
2h < δ are tight: see Figure 14 and

Figure 15 for counterexamples.

Corollary 5. Let C be (θ, δ)-LTB curve with θ ≤ π/2 and h be a grid step
compatible with C. Then, the Gauss digitization of the closure of the interior of
C is 4-connected.

Proof. Figure 16 illustrates the proof. Let C be a Jordan curve bounding a
shape S and h > 0. Let D be a connected component of the digitization
of C (speci�cally, D is the border of a connected component of the digiti-
zation of the shape S). Making a dilation of D by the structuring element
h[−1/2, 1/2]× h[−1/2, 1/2] centered in (0, 0) yields a new polygonal border D′

whose vertices are integer points and edges are grid line segments. By the de�-
nition of D and well-composedness (Proposition 9), no grid point in D′ belongs
to the digitization of the shape S.
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Figure 15: The digitization of the blue rectangle is not well-composed though
its boundary is (π/2, δ)-locally turn-bounded.

Consider the collection T of all those unit squares sharing edges with D′:
T = {Ti | 1 ≤ i ≤ ND}. Each unit square Ti has at least a vertex outside C.
Moreover, by Proposition 9, there are exactly two edges of Ti joining a vertex
outside C to a vertex inside C or in C. We claim that on each of these edges,
there is an end of CTi , the arc through Ti. Indeed, if there was not an end on an
edge of Ti joining a vertex ve outside C and a vertex inside ve C, by Proposition
8, these two vertices would be in the same connected component of R2 \ C. And
if there was not an end on an edge of Ti joining a vertex ve outside C and a
vertex vb on C, by Lemma 4, either the vertex vb is an end of CTi , either CTi is
wholly included in the two edges of Ti having vb for edges, and CTi has one end
on [ve, vb].

Let T1 and T2 be two elements of T sharing an edge joining inside vertices
to outside vertices. This edge contains an end point of the arc passing through
T1, denoted by p1, and an end point of the arc passing through T2, denoted by
p2. By De�nition 8, p1 belongs to CT2

and p2 belongs to CT1
. Then, CT1

∪CT2
is

an arc of C whose ends are respectively the ends of CT1
and CT2

distinct from p1
and p2. Eventually, going through T , we build a closed arc

⋃ND
i=1 CTi included

in C and in the swollen set of
⋃
T . As C is a Jordan curve, we derive that

C =
⋃ND
i=1 CTi : D is unique.

Eventually, thanks to Proposition 9 and Corollary 5, we can now state the
result announced at the beginning of this section.

Theorem 1. Let C be (θ, δ)-LTB curve with θ ≤ π/2 and h be a grid step
compatible with C. Then, the Gauss digitization of C for the grid step h is a
Jordan curve whose interior is 4-connected.

In this section, we have proved that the hypothesis of local turn-boundedness
guarantees the well-composedness for a small enough grid step. The well-
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Figure 16: Proof of Corollary 5 (see text). Triangles: integer points of a
connected component of the Gauss digitization of the shape S. Squares:
integer points outside this component. Red thick line: the Gauss digitization
D of the curve C. Dashed thin line: the borderD′ of the dilation of the Gauss
digitization. Orange thick line: the border of U , the swollen set ofD′. Green:
the collection of squares T .

composedness of the digitization is also obtained under the hypothesis of par-
regularity. In the next section, we will show that local turn-boundedness is a
relaxation of the par-regularity.

5 Par-regularity and local turns

Let us �rst give the statement of the main result of this section. Afterwards,
we will recall the de�nition of par-regularity and give the outline of the proof.

Theorem 2. Let C be a par(r)-regular curve of class C1 and θ ∈ (0, π). Then,
C is (θ, 2r sin(θ/2))-LTB.

To introduce the notion of regularity, we use the same de�nition as in [7]
and [8].

De�nition 10 (par(r)-regularity). Let C be a Jordan curve of interior K.

• A closed ball B̄(ci, r) is an inside osculating ball of radius r to C at point
a ∈ C if C ∩ B̄(ci, r) = {a} and B̄(ci, r) ⊂ K ∪ {a}.

• A closed ball B̄(ce, r) is an outside osculating ball of radius r to C at point
a ∈ C if C ∩ B̄(ce, r) = {a} and B̄(ce, r) ⊂ R2 \ (C ∪K ∪ {a}.

• A curve C or a set K is par(r)-regular if there exist inside and outside
osculating balls of radius r at each a ∈ C.

The proof of Theorem 2 is divided into three steps. The �rst two steps are
independent. In the �rst step, we show that the turn of a par(r)-regular curve
is a 1

r -Lipschitz function of its length (Lemma 5). In the second step, we show
that the distance between the ends of a small arc of a par(r)-regular curve is an
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Figure 17: The par(r)-regularity demands that at each point of the boundary
of the shape, there exist inside and outside osculating balls of radius r.

increasing function of its length (Lemma 6). In the last step, applying Schur's
Comparison Theorem to a par(r)-regular arc of length θr and a circle arc of
radius r and turn θ, we show that the distance between the end points of the
par(r)-regular arc is greater than 2r sin( θ2 ). Since this distance is an increasing
function of the length (Lemma 6), we derive that the length of the par(r)-regular
arc between points at distance 2r sin( θ2 ) is smaller than θr (Proposition 11).
Then, thanks to Lemma 5 �the turn of a par(r)-regular curve is a 1

r -Lipschitz
function of its length� we conclude the proof.

Step 1: the turn of a par(r)-regular arc is a 1
r -Lipschitz function of

its length.
Some elementary lemmae used in this paragraph are stated in Appendix E .

The following lemma shows that the turn of a par(r)-regular curve is a 1
r -

Lipschitz function of the length.

Lemma 5. Let C be a par(r)-regular curve. Then the length of any arc A of
C is greater than, or equal to the length of a circle arc with radius r and turn
κ(A). In other words, for each arc A of C,

rκ(A) ≤ L(A).

Proof. We denote by a and b the endpoints of the arc A. For each m ∈ N∗,
let (am,i)i∈[[0,Nm]] be the ordered sequence of vertices of a polygonal line Lm
inscribed in A such that am,0 = a, am,Nm = b and

∀i ∈ [[0, Nm − 2]], ‖am,i+1 − am,i‖ =
1

m
< 2r.

and ‖am,Nm − am,Nm−1‖ ≤ 1
m . Then, from Lemma 9 (Appendix E) and since
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the function arcsine is increasing,

κ(Lm) ≤ 2(dL(Lm)

1/m
e − 1) arcsin

(
1/m

2r

)
,

≤ 2
L(Lm)

1/m
arcsin

(
1/m

2r

)
.

Moreover, by Property 1,

lim
1/m→0

L(Lm) = L(A) and,

lim
1/m→0

κ(Lm) = κ(A).

Furthermore,

lim
1/m→0

2r

1/m
arcsin

(
1/m

2r

)
= 1.

Hence

κ(A) ≤ 1

r
L(A).

Step 2: Par-regular curves have a local quasiconvex behavior.

This step uses the derivative of a par-regular curve. This is possible be-
cause par-regularity was indirectly proven to imply continuous di�erentiability.
Indeed, in [7], Lachaud and Thibert show that par-regularity is equivalent to
having positive reach which was proven by Federer [4] to be equivalent to being
of class C1,1 (C1 with Lipschitz derivative). We give below a proof based on the
work of Alexandrov and Reshetnyak [1].

Proposition 10. Every par(r)-regular curve C is of class C1.

Proof. Let a ∈ C and Bi, Be be respectively the interior and exterior osculating
balls of radius r at a. Let D be the common tangent to Bi and Be at a. Since
C \ {a} does not intersect Bi and Be, it is easy to see that, for any ε > 0 and
any point b in the curve neighborhood C ∩B(a, 2r cos(ε)), the angle between the
straight line ab and D is less than ε. Also, observe that the de�nition of par-
regularity forbids cusps. Then, by De�nition 2, C has left-hand and right-hand
tangents in a which are equal: C is a smooth curve whose tangents everywhere
coincide with those of its osculating balls. Eventually, we derive from Property
5 that C is of class C1.

The following lemma states that, for any injective parametrization γ of a
par-regular curve C, the distance function t 7→ ‖γ(t) − γ(t0)‖ is quasiconvex
near its minimum.
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Lemma 6. Let C be a par(r)-regular curve and a a point on C. Let A be the
intersection of C with the ball B(a, 2r). Then, A is path-connected and for any
injective parametrization γ the distance function t 7→ ‖γ(t)− a‖ is quasiconvex.
Proof. Let γ be an injective parametrization of C. By contradiction, assume
that there exists a local minimum c 6= γ−1(a) of the map φ : t 7→ ‖γ(t)− a‖. By
Proposition 10, C is of class C1, then, φ′(c) = 0. Hence

< γ′(c), γ(c)− a >= 0,

that is, γ′(c) is orthogonal to γ(c) − a. The osculating disks of radius r at
γ(c) are tangent to γ′(c) and ‖γ(c) − a‖ ≤ r. It follows that the point a
is in one of the osculating disks at γ(c) which contradicts the assumption of
par(r)-regularity. Moreover assume that A is not path-connected. Let C1 be
a connected component which is not containing a. By Rolle's Theorem, there
exists t0 such that φ′(t0) = 0 and γ(t0) ∈ B(a, 2r), which is impossible.

We can prove an equivalent statement of Lemma 6 for LTB curves; See Ap-
pendix C. These similar behaviors are not surprising since we are showing that
par-regularity implies local turn boundedness. Nevertheless, it is interesting to
compare the radii of the neighborhoods in which these local properties hold: 2r
in the one hand (par(r)-regularity), δ in the other hand ((θ, δ)-local turn bound-
edness) while Theorem 2 states that par(r)-regularity implies (θ, 2r sin(θ/2))-
local turn boundedness where θ ∈ (0, π). Then, the radii coincide in the limit
case θ = π.

Step 3: Applying Schur's Comparison Theorem

Proposition 11. Let C be a par(r)-regular curve and θ ∈ [0, π). Given two
points a, b in C such that ‖b − a‖ ≤ 2r sin( θ2 ), the arc of C joining a to b in
B(a, 2r) has its length smaller than or equal to θr.

Proof. Let γ be the parametrization by arc length of the arc of C from a to b
in B(a, 2r). Then, γ(0) = a and γ(s1) = b for some s1 > 0. By contradiction,
assume that s1 > θr and put c = γ(θr).

Let γ̄ be the parametrization by arc length of some circle of radius r.
By Lemma 5, for any subinterval I of [0, θr],

κ(γ(I)) ≤ 1

r
|I|.

In other words, for any subinterval I of [0, θr],

κ(γ(I)) ≤ κ(γ̄(I)).

Hence, Schur's Comparison Theorem applies:

‖c− a‖ ≥ ‖γ̄(θr)− γ̄(0)‖

≥ 2r sin(
θ

2
)

≥ ‖b− a‖.
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The last inequality contradicts the quasi-convexity of s 7→ ‖γ(s)−γ(0)‖ (Lemma 6).

Theorem 2. Let C be a par(r)-regular curve of class C1 and θ ∈ (0, π). Then,
C is (θ, 2r sin(θ/2))-locally turn-bounded.

Proof. By Proposition 11, the length of one of the arc of C delimited by two
points at distance less than 2r sin( θ2 ) is at most θr. Hence by Lemma 5 the turn

of one of the arc of C delimited by two points at distance less than 2r sin( θ2 ) is
at most θ.

Notice that the circle is not (θ, δ)-LTB for δ greater than 2r sin( θ2 ), hence
the value of δ given in Theorem 2 is optimal.

Let us now compare our condition for well-composedness of (θ, δ)-LTB curves
with respect to the grid step h,

√
2h < δ with θ ≤ π/2 (De�nition 9), with the

condition of Pavlidis [13, De�nition 7.4] for par(r)-regular curves,
√

2h < 2r.
Using Theorem 2, the assumption

√
2h < δ applied on a par(r)-regular curve

becomes √
2h < 2r sin(

θ

2
).

Hence our compatibility hypothesis, which also applies to non-smooth curves,
requires a smaller grid step when applied on smooth curves (for θ = π

2 ,
√

2 times
smaller).

6 Conclusion

In this paper, the notion of local turn boundedness, which is adapted to both
regular curves and polygons having large enough interior angles, was developed
to have control on curves without smoothness assumption.

The LTB curves are a subset of curves of �nite length and �nite turn. They
have been designed to exclude curves for which geometric estimation is not pos-
sible: they cannot have small oscillations and the distance to their digitization
is bounded. They have their intrinsic properties: they are locally connected,
they cannot do small U-turns.

From these intrinsic properties, we have derived some properties of their dig-
itization. In particular, we were able to precisely describe their behavior when
passing through su�ciently small pixels and how they separate grid points.
Then, topological properties as the well-composedness and 4-connectedness of
the curve Gauss digitization was deduced. Finally, local turn boundedness was
proven to generalize par-regularity. Since par-regularity amounts to having pos-
itive reach [7] and since the reach was relaxed by the notion of µ-reach for use
with non smooth curves, we recently began to compare the µ-reach [3] with the
local turn boundedness and we hope to be able to present soon some results
about this comparison.

In a future work, using the results of this article, we intend to de�ne maps
associating sampling points of a Gauss digitization to near points on the continu-
ous curve without smoothness assumption. Moreover, the de�nition of local-turn
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seems to generalize without change to curves and surfaces in a three dimensional
space. Nevertheless, some properties like well-composedness cannot be extended
to the 3-dimensional case (see counterexample in [15, Figure 4]) and the exten-
sion of other properties has to be proven. In the long term, we hope that local
turn will provide a framework more general than the par-regularity, for both
geometric estimation and topology preservation.

A Proof of Corollary 1

Lemma 7. The boundary of a convex shape with nonempty interior has no
cusp.

Proof. Let C be a Jordan curve whose interior is convex. Let p ∈ C. Since C is a
Jordan curve, there exist in C two points q, r not colinear with p. Let P , Q, R
be three straight lines passing respectively by the points p, q, r and separating
C from one of the half planes they delimit (see Figure 18). The interior of the
convex hull of {p, q, r} is included in the interior of C. Then the arc from q to
r passing through p is included in the half plane delimited by P and containing
pqr deprived of the triangle pqr. Then, if C has demi-tangent vectors u and v
in p, the angle ∠(u,v) is bounded from above by π − α where α is the interior
angle of the triangle [p, q, r] at p.

α
•p

•

q

•

r

Q

P

R

Figure 18: Bounding a convex curve (in blue) passing through three non
colinear points.

B Proof of Lemma 1

Lemma 1. Let C be a (θ, δ)-LTB curve with θ < 2π/3. Then,

δ ≤ diam(C),

where diam denotes the diameter.
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Proof. By contradiction, we assume δ > diam(C). Let ` be the length of C, a
be a non-angular point of C and k < 1/2. We prove by induction that, for any
n, there exists an arc Cn of C whose ends are non-angular points and containing
a whose turn is less than θ and whose length is greater than (1 − (1 − k)n)`.
Furthermore, the sequence (Ci) is increasing for the inclusion. We initialize the
induction by taking a smooth point b of C such that the geodesic distance from
a to b is greater than k` (recall that the set of angular points of a LTB-curve
is countable). Since δ > diam(C) and C is LTB, one of the arcs from a to
b, that we denote by C1, has a turn less than or equal to θ. Assuming the
property is true for some i ≥ 1, we denote by ai and bi the end points of Ci.
There exists a smooth point c ∈ C \ Ci such that the geodesic distance from c
to both ai and bi is greater than or equal to k(` − L(Ci)). If the arc from ai
to c not passing through bi has a turn less than θ, we set ai+1 = c, bi+1 = bi
and Ci+1 is the arc from ai+1 to bi+1 (that is from c to bi) passing through
ai. Indeed, the other arc from ai+1 to bi+1 has a turn greater than 2π − 2θ
by Fenchel's Theorem (Property 3) and Property 7. So, since C is (θ, δ)-LTB
and d(ai+1, bi+1) ≤ diam(C) < δ, the turn of Ci+1 is less than θ. Moreover,
Ci ⊆ Ci+1. If the arc from ai to c not passing through bi has a turn greater
than θ, we de�ne Ci+1 as the arc from ai to c passing through bi since it has
a turn less than θ and we set ai+1 = ai, bi+1 = c. In both cases, we have
Ci ⊆ Ci+1 and L(Ci+1) ≥ L(Ci) + k(`−L(Ci)), and, since L(Ci) ≥ (1− (1− k)i)`
by induction hypothesis, we obtain L(Ci+1) ≥ (1− (1− k)i+1)`. This completes
the induction. Now, on the one hand, considering the arc C∞ =

⋃
Ci, we claim

that C∞ has a length greater than (1 − (1 − k)i)` for any positive integer i.
Thus, L(C∞) = `. Then, C \ C∞ is reduced to a point. On the other hand, since
C∞ is the supremum of an increasing sequence of arcs whose turns are bounded
from above by θ, it also has a turn bounded from above by θ. This contradicts
Corollary 1.

C Local increase of the distance for (θ, δ)-LTB
curves

We now show that, when θ ≤ π/2, the Euclidean distance d(p, q) between two
points p and q of a parameterized LTB curve is locally monotonic in function of
the parameter of one of the two points p and q. Visually, Proposition 12 states
that (θ, δ)-LTB have no local U-turns (see Figure 19).

Proposition 12. Let θ ∈ (0, π/2] and C be a (θ, δ)-LTB curve . Let γ : [0, tM ]→
C be an injective parametrization of the curve C and tm ∈ (0, tM ) be such that
the arc γ([0, tm]) is included in B(γ(0), δ2 ). Then, the restriction of the function
t 7→ ‖γ(t)− γ(0)‖ on [0, tm] is increasing.

Proof. We prove a contrapositive statement. Let φ : t ∈ [0, tm] 7→ ‖γ(t) −
γ(0)‖. Suppose that φ is not monotonic. Then, there exists t1, t2 in (0, tm)
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b

Figure 19: This con�guration cannot occur in a (θ, δ)-LTB since the distance
to the point c is not locally increasing (d1 < d2).

such that t1 < t2 and φ(t1) > φ(t2). Therefore, the turn of the polygonal
line [γ(0), γ(t1), γ(t2)] is strictly greater than π/2. Hence, the turn of the arc
γ([0, t2]) is a fortiori greater than π/2. Since C is (θ, δ)-LTB for some θ <
π/2, the turn of the arc γ([t2, tM ]) is strictly less than π/2 and, according to
Proposition 4, the arc γ([t2, tM ]) is therefore included in the disk of diameter
[γ(t2), γ(tM )] which is itself included in the ball B(γ(0), δ/2)(for γ(tM ) = γ(0)).
We conclude that the whole curve C is included in the ball B(γ(0), δ2 ). Then
the diameter of C is strictly less than δ which contradicts Lemma 1.

D Proof of Proposition 7

Proposition 7. Let θ ∈ (0, π/2] and C be a (θ, δ)-LTB Jordan curve. Let d
be the diameter of C . Let T be a closed set included in an open disk B(c, r)

with r less than or equal to min( 1
2δ,
√
2
4 d). Then, the arc CT passing through T

is the unique arc of C of turn less than or equal to π
2 having its end points in T

and such that the straightest arc between any two points of T is included in CT .
Moreover,

(C \ CT ) ∩ T = ∅.

Proof. Observe that, obviously, any straightest arc between two points of C ∩T
is included in CT . Furthermore,

C ∩ T =
⋃

a∈C∩T
Caa ⊂ CT ,

where Caa = {a} is the straightest arc from a to a. Thus,

(C \ CT ) ∩ T = ∅.

The proof is divided into six steps. In the �rst step, we show that CT is an
arc of C. In the second step, we show that the ends of CT , q1 and q2, are in T .
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In the third step, we show that CT is the straightest arc between q1 and q2. In
the fourth step, we show that CT is included in the open disk B(c,

√
2r) (see

Figure 20). In the �fth step, we show that CT is not the whole curve C. In the
sixth step, we show that CT is the unique arc of C with turn less than or equal
to π/2 and including any straightest arc of C between points of T .

Step 1. Let p1 and p2 be two points of CT . By De�nition 6, there exist four
points a1, b1, a2, b2 in T such that p1 lies in the straightest arc Cb1a1 and p2
lies in the straightest arc Cb2a2 . Hence, the straightest arc between a1 and a2,
which is included in CT , connects the arcs Cb1a1 and Cb2a2 . Thereby, p1 and p2 are
connected by a path in CT . We derive that CT is path-connected: CT is an arc
of C.

Step 2. The ends of CT , q1 and q2, are limits of points that are the ends of
straightest arcs between two points in T . Indeed, for any ε > 0, there exists a

point q′1 of CT such that the length of the subarc of CT , C
q′1
q1 , is less than ε. The

point q′1 belongs to a straightest arc between two points in T , one of these two

points is on the arc Cq
′
1
q1 , hence at geodesic distance from q1 less than ε and a

fortiori at Euclidean distance from q1 less than ε. The same holds for q2. Since
T is a closed set, CT has its end points q1 and q2 in T .

Step 3. The straightest arc between q1 and q2 is included in CT (by de�nition
of CT ). Then, CT is the straightest arc between q1 and q2.

Step 4. (Figure 20) From Step 3 and Proposition 4, we derive that CT
is included in the disk of diameter [q1, q2]. By the hypotheses, the segment
[q1, q2] is included in B(c, r). Then, the arc CT is included in the open ball
B(c, (sin φ

2 + cos φ2 )r) ⊆ B(c,
√

2r) where φ is the geometric angle q̂1cq2.

Step 5. By hypothesis, the diameter of C is greater than or equal to 2
√

2r.
Since CT is included in the open disk B(c,

√
2r), CT cannot be the whole curve C.

Step 6. If there exits another arc C′ of curvature less than or equal to π
2

having its ends in T such that each other arc having its ends in T and of turn
less than or equal to π

2 is included in C′, then C′ ⊂ CT and CT ⊂ C′ hence
C′ = CT .

E Turn of a polygonal line inscribed in a par-

regular curve

We establish two results allowing us to control the turn of a polygonal line
inscribed in a par(r)-regular curve (Lemma 8 and Lemma 9). The �rst of
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r √
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r cos(φ2 )

r sin(φ2 )

× c

•q1

•
q2

Figure 20: Step 4 of the proof of Proposition 7: the points q1 and q2 are in the
ball of center c and of radius r. Then the ball of diameter [q1, q2] is included
in the ball B(c,

√
2r) for sin φ

2 + cos φ2 ≤
√

2.

these two lemmas is an easy consequence of the inscribed angle theorem. It is
illustrated in Figure 21. Its proof is left to the reader.

Lemma 8. Let P be a polygonal line [ai]
N
i=0. Then,

κ(P ) =
1

2

N−1∑
i=1

θi

=

N−1∑
i=1

arcsin

(
‖ai − ai−1‖

2ri

)
+ arcsin

(
‖ai+1 − ai‖

2ri

)
,

where, for any i ∈ [[1, N−1]], ri is the radius of the circumcircle Ci of the triangle
ai−1aiai+1 and θi is the central angle of Ci subtended by the arc [ai−1, ai, ai+1].

Lemma 9. Let P = [ai]
N
i=0 be a polygonal line inscribed in a par(r)-regular

curve. If the maximal edge length of P is less than 2r, then the turn of P is less
than the turn of a polygonal line which has the same edge length sequence and
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a0

a1

a2 a3

a4

a5
θ1

θ2

θ3 θ4

Figure 21: Thick: the polygonal line P = [a0, a1, a2, a3, a4, a5]. The four
angles θ1 θ2, θ3 and θ4 are subtended by the circle arcs de�ned respectively
by the triples (a0, a1, a2), (a1, a2, a3), (a2, a3, a4) and (a3, a4, a5). Then, the

turn of P is half the sum of the θi: κ(P ) = 1
2

∑4
i=1 θi.

is inscribed in a circle of radius r. In other words,

κ(P ) ≤ arcsin

(
‖a1 − a0‖

2r

)
+ 2

N−2∑
i=1

arcsin

(
‖ai+1 − ai‖

2r

)
+ arcsin

(
‖aN − aN−1‖

2r

)
.

Proof. Figure 22 illustrates the main argument of the proof. Let C be a par(r)-
regular curve and P = [ai]

N
i=0 be a polygonal line inscribed in C. For any

i ∈ [[0, N − 1]], we set `i = ‖ai+1 − ai‖ and we assume `i ≤ 2r. Let P ′ = [a′i]
N
i=0

be a polygonal line inscribed in a circle with radius 2r such that `i = ‖a′i+1−a′i‖
for any i ∈ [[0, N − 1]].

For each i ∈ [[1, N − 1]], let us denote respectively by κi and κ
′
i the turn of

the polygonal lines [ai−1, ai, ai+1] and [a′i−1, a
′
i, a
′
i+1]. On the one hand, from

Lemma 8 (Appendix E, we have κ′i = arcsin
(
`i−1

2r

)
+arcsin

(
`i+1

2r

)
. On the other

hand, the turns κ([ai−1, ai, ai+1]) and κ([a′i−1, a
′
i, a
′
i+1]) are respectively the sup-

plementary angles of ̂ai−1aiai+1 and ̂a′i−1a
′
ia
′
i+1. Then, from the de�nition 10

of the par-regularity, κ([ai−1, ai, ai+1]) ≤ κ([a′i−1, a
′
i, a
′
i+1]) (see Figure 22). As

κ(P ) =
∑N
i=1 κi and κ(P ′) =

∑N
i=1 κ

′
i, we conclude straightforwardly.
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•a′i−1

• a′i+1

•

ai
• ai+1

•ai−1

Figure 22: Thick, black: a polygonal line [ai−1, ai, ai+1] inscribed in a par(r)-
regular curve (not depicted). The circles of par(r)-regularity are drawn in
red. Thin, orange: a polygonal line [a′i−1, a

′
i, a
′
i+1] inscribed in a circle with

radius r (the circle is the osculating circle that is on the side of the turn
of the oriented polygonal line [ai−1, ai, ai+1]). The polygonal lines have the
same edge length sequence.
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