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Abstract

Approximate Bayesian Computation (aBc) is a statistical learning technique to calibrate and select models
by comparing observed data to simulated data. This technique bypasses the use of the likelihood and requires
only the ability to generate synthetic data from the models of interest. We apply aBc to fit and compare
insurance loss models using aggregated data. A state-of-the-art aABc implementation in Python is proposed.
It uses sequential Monte Carlo to sample from the posterior distribution and the Wasserstein distance to
compare the observed and synthetic data.
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1 Introduction

Over a fixed time period, an insurance company experiences a random number of claims called the claim
frequency, and each claim requires the payment of a randomly sized compensation called the claim severity.
The two could be associated in an equivalent way with a policyholder, a group of policyholders or even an
entire nonlife insurance portfolio. The claim frequency is a counting random variable while the claim sizes
are non-negative continuous random variables. Let us say that the claim frequency and the claim severity
distributions are specified by the parameters Ogeq and O, respectively, with 0 = (Ofeq; sey ). For each time
s=1,...,t the number of claims n; and the claim sizes u; := (1, us,..., s , ) are distributed as

ng ~ pn(1; efreq) and  (us | n5) ~ fu(u; n,Osey).

Fitting these distributions is key for claim management purposes. For instance, it allows one to estimate the
expected cost of claims and set the premium rate accordingly. The mixed nature of claim data, with a discrete
and a continuous component, has lead to two different claim modelling strategies. The first strategy is to
handle the claim frequency and the claim severity separately, see for instance Frees [12]. The second approach
gathers the two constituents in a compound model for which data in aggregated form suffices. We take the
later approach as we assume that the claim count and amounts {(n1,u1),...,(n;, u;)} are unobservable. Instead,
we only have access to some real-valued summaries of the claim data at each time, denoted by

x, =W(ngus), s=1,...,t (1)

Standard actuarial practice uses the aggregated claim sizes, defined as W(n,u) =} [ | u;, and assumes that the
claim frequency is Poisson distributed while the severities are governed by a gamma distribution, we refer



to the works of Jergensen and Souza [20]. This model is named after Tweedie [38] and is commonly used
by practitioners for ratemaking, see the paper by Smyth and Jergensen [35], as well as for claim reserving
purposes, see the work of Wiithrich [40]. We want to mention that the Tweedie model is also popular to model
the quantity of precipitation, see the work of Dunn [10]. This problem is of interest to insurers due to the
impact of heavy rainfall episodes on insurance business, we refer to Lyubchich and Gel [24] for a convincing
empirical study. The Tweedie model is already challenging to calibrate, we want to mention here the work
of Zhang [42] for likelihood based approaches, but we wish to go beyond it. Our problem is to take some
observations of these summaries x = (xy,...,x;) (or summaries plus frequency {n,x}) and find the 8 which best
explains them for a given parametric model (this model being Tweedie or not Tweedie, see Xacur and Garrido
[41]).

Yet another goal is to consider functions W other than the sum because such incomplete data situations arise in
reinsurance practice. Reinsurance treaties allows insurance companies to cede a part of their liability over a
given time period to a reinsurance company. The reinsurer then only observes its payout at each time period
that can be a proportion of the aggregated claim sizes

s
xS:aZusli, s=1,...,t (2)
i=1

where @ € (0,1) in a quota-share treaty. In the case of a stop loss agreement, the reinsurer covers the risk that
the insurer’s total claim amount exceeds a threshold ¢ > 0 and therefore only observes

g
xsZ(Z“s,i—C)Jr' s=1,...,t (3)

i=1
Being able to gain insights into the claim frequency and the claim severity distributions based on the data (2)
or (3) would help the reinsurer to better understand the risk they have underwritten. Additionally, it could
be a preliminary analysis before suggesting the insurance company an excess of loss reinsurance treaty (xoL)

where the reinsurance company takes on the part of each loss (instead of the overall sum) exceeding some
threshold.

New methods of claims analysis must be able to handle an increase in the dimension of the data. Modern
casualty and property insurance products usually include more than one type of coverage. If actuaries must
provide a separate analysis of the claim data for each type of coverage, they could also consider jointly the
data for two types of coverage to account for their inter-relation. A car accident can result in bodily injury
and material damages thus triggering two indemnifications under each of the guarantees of the automobile
insurance contract. Both losses are part of the same claim and are of course linked to the scale of the unfortunate
event. The use of data at the aggregated level to fit multivariate Tweedie models has been investigated in the
work of Shi et al. [33] for instance. We therefore show how to adapt our procedure to consider the bivariate
extension of the data (1) but note that the method can also cope with higher dimensions.

The data considered in (1) may also be seen as the increments of a stochastic process (Z;);>o observed at
equispaced discrete points in time. If we take the summary to be the sum, then the underlying stochastic
process is given by

N,
Zt:ZUi, t>0, (4)
i=1

where (N;);>¢ is a counting process and (U;);>; is a sequence of nonnegative random variables. In classical risk
theory, the process (Z;);>( represents the liability of a nonlife insurance company up to time t > 0, we refer to



the book of Asmussen and Albrecher [1] for an overview. The number of claims reported at some time ¢ > 0 is
given by (N;);»¢ and the U;’s are the compensations associated to each claim. The problem of studying the
distribution of the jumps based on observations of Z; was considered, with insurance applications in mind, by
Buchmann and Griibel [6]. This problem is also interesting in the field of queueing theory to draw inference on
the job size distribution when only having access to the workload. Traditionally, a decompounding (as coined
by Buchmann and Gribel [6]) method builds a non-parametric estimate of the claim severity distribution
based on the observations of the aggregated sums, see for instance van Es et al. [39], Coca [7] and Gugushvili
et al. [18]. The method we propose effectively decompound the random sum but assumes that the jump sizes
are driven by a parametric model. We then relax the Poisson arrival assumption to consider time dependent
data instead of 1p.

A Bayesian approach to estimating 8 would be to treat 8 as a random variable and find (or approximate) the
posterior distribution 1(0 | x). Bayes’ theorem tells us that

n(0|x) e p(x|6)7(6), (5)

where p(x | 0) is the likelihood and 1t(0) is the prior distribution. The prior represents our beliefs about 8 before
seeing any of the observations and is informed by our domain-specific expertise. The posterior distribution is a
very valuable piece of information that gathers our knowledge over the parameters. A point estimate 6 may be
derived by taking the mean or mode of the posterior. For an overview on Bayesian statistics, we refer to the
book of Gelman et al. [15].

The posterior distribution (5) rarely admits a closed-form expression, so it is approximated by an empirical
distribution of samples from 7(6 | x). Posterior samples are typically obtained using Markov Chain Monte
Carlo (McMc), yet a requirement for Mcmc sampling is the ability to evaluate (at least up to a constant) the
likelihood function p(x | ). When considering the definition of x in (1), we can see that there is little hope of
finding an expression for the likelihood function even in simple cases (e.g. when the claim sizes are 1p). If
the claim sizes are not 1D or if the number of claims influences their amount, then the chance that a tractable
likelihood for x exists is extremely low. Even when a simple expression for the likelihood exists, it can be
prohibitively difficult to compute (such as in a big data regime), and so a likelihood-free approach can be
beneficial.

We advertise here a likelihood-free estimation method known as approximate Bayesian computation (ABC).
This technique has attracted a lot of attention recently due to its wide range of applicability and its intuitive
underlying principle. One resorts to aBc when the model at hand is too complicated to write the likelihood
function but still simple enough to generate artificial data. Given some observations x, the basic principle
consists in iterating the following steps:

(i) generate a potential parameter from the prior distribution 6 ~ 7(6);

(ii) simulate ‘fake data’ X from the likelihood (x| 8) ~ p(x | 6);
(iii) if D(x,x) < €, where € > 0 is small, then store 5,

where D(-, -) denotes a distance measure and € is an acceptance threshold. The algorithm provides us with a
sample of 8’s whose distribution is close to the posterior distribution 77(6 | x).

The aBc algorithm presented in this work allows us to consider a wide variety of W functions (1) without
imposing common simplifying assumptions such as assuming the claim amounts are np and independent
from the claim frequency. In addition to parameter estimation, aBc allows us to perform model selection in a
Bayesian manner. This direction is also investigated.

The basic aBc algorithm outlined above is, arguably, the simplest method of all types of statistical inference
in terms of conceptual difficulty. At the same time, this simple method is perhaps the most difficult form



of inference in terms of computational cost. We must use a modified form of this basic regime to minimize
(though not eliminate) the gigantic computational costs of asc.

ABC is a somewhat young field (like machine learning), and the methodology of asc and the other likelihood-
free algorithms are currently the subject of intense research. As such, there are many variations of asc which
are under investigation, and there is no ironclad consensus on which variation of the asc algorithm is the best.
We intend for this work to simplify a reader’s first steps into this field of modern computational Bayesian
statistics, as we present a restrictive view of aBc instead of an overwhelming exhaustive list of every asc
variation. For a comprehensive overview on asc, we refer to the monograph of Sisson et al. [34]; in finance and
insurance, ABc has been considered in the context of operational risk management by Peters and Sisson [26]
and for reserving purposes by Peters et al. [27]. After reading this work we’d encourage interested readers
to consider the (subjectively) more conceptually difficult alternatives such as Mmcmc, ABc-mcMmc, ABc-squared,
Bayesian synthetic likelihood, variational Bayes, etc.

The rest of the paper is organized as follows. Section 2 provides an introduction to aBc algorithms and presents
our specific implementation. Section 3 shows how to use aBc to fit an insurance loss model based on 1p
univariate, b bivariate and time dependent data. The performance of our aBc implementation is illustrated
on simulated data in Section 5 and on a real world insurance dataset in Section 6.

2 Approximate Bayesian Computation

ABC is a method for approximating the posterior probability 7t(0 | x) without using the likelihood function. It
relies on the ability to generate synthetic data from the model being fit. Two ingredients are required for a
successful aBc algorithm. First is a distance to measure the dissimilarity between the observed and synthetic
data; we will use the Wasserstein distance as suggested in Bernton et al. [3]. Second is an efficient sampling
scheme. The acceptance-rejection algorithm laid out in the introduction most often leads to considerable
computing time. We instead put together an algorithm based on an adaptive importance sampling strategy
called sequential Monte Carlo, see for instance Beaumont et al. [2], Del Moral et al. [8].

Consider some observed data x = (xq,...x,) and assume that the underlying model does not lead to a tractable
likelihood function p(x | 8). Sampling from an approximated version of the posterior 7(0 | x) can be done in a
likelihood-free way through acceptance-rejection. The procedure is summarized in Algorithm 1, where D(-, -)
denotes some dissimilarity measure between the observed and fake data and € corresponds to a tolerance level.

Algorithm 1 aBc acceptance-rejection sampling for continuous data

1: input observations x = (xy,...,x,), D(-, -) distance, € > 0 threshold
2: fork=1—Kdo

3 repeat

4 generate 0 ~ ()

5: generate X ~ p(x | 0)
6 until D(x,x) < € then store 6

7 Set 6, =0

8: end for

9: return {6,..., 0} which are approximately 7(0 | x) distributed

The procedure depicted in Algorithm 1 allows us to sample from an approximation of the posterior distribution
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Figure 1: aBc posteriors for 250 simulated Normal(y, o) observations. The true parameters y = 0 and o = 5.
The fits are generated by Algorithm 1 with € = 50, ¢ = 25, and for € = 10. They become much narrower around
the true values as € becomes more restrictive (smaller). All of the posteriors are an improvement over the
u ~ Unif(-10,10), o ~ Unif(0, 10) prior distributions.

given by
7e(013)(0) [ Tz p(F10) (6

where
1, if D(x,%)<e,
Tipw)<e) = 0, otherwise.

Distribution (6) is called the aBc posterior. If the distance D is chosen to be
1 n _\Up
D) = Dyl ) = ;mxi,xi)f’) 7)
i=

where p(-, -) denotes the ground distance in the observation space, for instance p is the absolute difference if
the data is univariate or the Euclidean norm if the dimension is larger than 1, then the aBc posterior 7t.(0 | x)
converges toward the true posterior 7t(0 | x) as € tends to 0, see Rubio and Johansen [30].

Figure 1 shows a simple example of Algorithm 1 in action. It shows the aABc posteriors for some simple normally
distributed data when € takes on different values. Notice that as e decreases, the aBc posterior becomes more
confident (i.e. narrower) of the true values of 6 = (i, o).

The combination of a small € and a prior more diffuse than the posterior distribution makes aBc rejection
sampling inefficient as acceptance almost never occurs. We therefore move from the acceptance-rejection
simulation scheme to a sequential Monte Carlo (smc) scheme inspired by the work of Del Moral et al. [8],
Beaumont et al. [2]. A sequence of ABc posteriors, similar to Figure 1, is constructed by gradually decreasing
the tolerance € through a sequence (€;),>1 and by leveraging the information about the €, ; approximate
posterior to more intelligently create an improved €, approximate posterior.

The aBc-smc algorithm starts by sampling a finite number of parameter sets (particles) from the prior distribu-
tion and each intermediate distribution (called a generation) is obtained as a weighted sample approximated
via a multivariate kernel density estimator (xpe). The parameters of the algorithm are the number of genera-
tions G and the number of particles K. For a given generation g > 1, we hold an approximation ﬁeg_l (0]x)



of the posterior distribution based on the (g — 1) generation of particles. New particles 8 are proposed by

sampling repeatedly from ﬁeg,l (0 | x) until the synthetic data X ~ p(x | 0) satisfies D(x,X) < €g_;. It goes on

until K particles 65,..., 91‘% are selected. We then need to define the next tolerance threshold €, which is used
to calculate the particle weights

m(67)

OCA—]ID( : )<€ y kzl,,K
o1 (0f [x)

8

The tolerance threshold is chosen so as to maintain a specified effective sample size (ess) of K/2 (as in Del Moral
et al. [8]). Following Kong et al. [23], the ess is estimated by 1/2521 (wf)z. This weighted sampled allows us to
update the posterior approximation as

K
e, (0] %) = kafKHw-e,%),
=1

where Ky is a multivariate kpE with smoothing matrix H. A common choice for the kpE is the multivariate
Gaussian kernel with a smoothing matrix set to twice the empirical covariance matrix assessed over the
population of weighted particles {(Gf, wf)}k:LWK, see Beaumont et al. [2]. The pseudocode of the algorithm is
provided in Algorithm 2.

Algorithm 2 Sequential Monte Carlo Approximate Bayesian Computation

1: set €y = co and 7. (0 | x) = 7(0)
2. forg=1—->Gdo
3: fork=1— K do
repeat
generate 6 ~ ﬁeg,l (0]x)
until D(x,X) <€y 1
set szgandxsz

4

5

6: generate X ~ p(x | 0)
7

8

9 end for

-1
10: find e, < e,_; so that &ss = [Z{;l(wi)z] ~ K/2, where

7[(9g)
g k
wo o — T , k=1,...,K
k Eeg_l(ef | x) Dlexi)<eg
11: comput (] =YK wWiKky(6-6°
: puerceg( |x)—Zk:1 k H( k)

12: end for

One small variation of Algorithm 2, which we use in the simulations below, is called particle recycling. Note
that for each generation g > 1 we sample K new particles based on the K&! := ZkK:1 wa'1>0 particles from the

previous generation. The method above throws away the original K&! particles in favor of the new generation.
But as both sets of particles are equally close to the observed data (both satisfied D(x,X) < €,_1), it is less
wasteful to combine them into one larger generation, and then proceed with the calculation of €, using this
larger population.



The aBc procedure suffers from the so-called curse of dimensionality [5]. Specifically, if one takes a distance
such as defined in (7) to measure the dissimilarity between observed and fake data then the odds of getting
an acceptable match will plummet as the number of observations, i.e. the dimension of x, increases. The
dimensionality curse can be alleviated by replacing x € Rf with summary statistics S(x) € R?, where d < t.
While the choice of the summary statistics S : R' > R¥ is arbitrary, it is desirable to heavily compress the
data (d < t) while limiting the amount of information lost. This is difficult. When the model at hand admits
sufficient statistics then these should be taken. In fact, one can show that convergence of 7.(6 | x) to t(6 | x)
as € — 0 holds when the chosen summary statistics are sufficient [34, Chapter 5], otherwise convergence
holds toward 7t(6 | S(x)) which may or may not be a sound approximation to 77(6 | x). Note that the summary
statistics S are not to be confused with the W summaries in Section 1! Rather than resorting to statistical
summaries, we follow up on the work of Bernton et al. [4] and measure the dissimilarity between two samples
through the Wasserstein distance defined as

t
) 1 » 1/p
W, (x,%) = ( inf — E p(xs,xg(s))p) , p=1, (8)
=1

oeS;n
o

where S; denotes the set of all the permutations of {1,...,t}. In the remainder, we only consider the case where
p =1 and further denote D(-, -) := Wj(-, -). Bernton et al. [3] have shown in their work that the use of the
Wasserstein distance uphold the convergence of the aBc posterior toward the true posterior for continuous data.
A recent study by Drovandi and Frazier [9] also shows that the Wasserstein distance compares favorably to
other measures of dissimilarity between empirical distributions. The problem is that our data is on the border
between discrete and continuous. Another obstacle is the practical evaluation of the Wasserstein distance,
which can be tricky when dealing with multivariate or time dependent data. We address these points in the
next section for each type of claim data considered in this work.

3 ABC for mixed data

The implementation of aBc is tied to the nature of the data at hand. In our problem the frequency data
is discrete, the individual claim sizes are continuous, and the aggregated data is a mixture of discrete and
continuous (due to the atom at 0). We need to ensure that the convergence result of the aBc posterior
distribution toward the exact posterior distribution holds despite the mixed nature of our data. The main task
is then to find an efficient way to compute the Wasserstein distance. We handle the case where the data is b
univariate in Section 3.1, b bivariate in Section 3.2, and we finish with time dependent data in Section 3.3.

3.1 IID univariate data

For each time period, a random number of claims n € IN are filed. The claim frequencies form an np sample
from the probability mass function (pMF) pn (7 | Ogreq)- Given n, the associated claim sizes u = (uy,...,u,) have a
joint probability density function (ppr) denoted by fiyn(u | 71, Ogey). The available data x := W(n, u) is univariate,
up (parametrized by 0 = (Bfreq, Osev)) and mixed because of a point mass px (0| 6) at 0. Zeros can occur if no
claims are filed (n = 0) which occurs with probability py (0| Ofeq), or because of censoring effects like in the
non-proportional reinsurance treaty case, see Section 1. The continuous part of x’s distribution is characterized
by the conditional ppF

[1-px(0]6)] fxix>0(x]6), x>0.
For a data history x = (xq,...,x;) of t time periods, we separate the zeros from the non-zero data points, so
x=(x"x")= (0,..-,0, X7, x4)-

to zeros t—ty non-zeros



The likelihood function may be written as

t—tg
p(x10) = px(016)°[1-px (01O [ | fuxso(xl 16) 9)
s=1

=px(0160)°[1-px(0]0)]"p(x*| B).

To evaluate the conditional pDF fx|x~¢ in (9) we must consider all possible values of n which often leads to an
infinite series without closed-form expression, as illustrated in Example 1.

Example 1. Consider the case where we only observe the aggregate claim sizes x; =Y .~ ug; fors=1,..., t,i.e, W
is the sum operator. If the claim sizes are up and independent from the claim frequency, which is common in the
actuarial science literature, the conditional por of X taking positive values is

(o9

Zf[(]m)(x | esev)pN(n | efreq)f (10)

n=1

1

Frixso(x6) = (01 0eg)
where f[(;n)(x | Bsey) denotes the n-fold convolution product of fiy(x | Osey) with itself. A closed-form expression of (10)
is available only in a few cases. For the remaining cases, quite some energy has been dedicated by actuarial scientists
to finding convenient numerical approximations. Note that none of the aforementioned numerical routines would be
suited to the multiple evaluations of the conditional PDF required for mcMc or maximum likelihood inference via some
optimization algorithm. We begin our numerical illustration of the ABc method on some cases where a closed-form
expression of (10) is available, as we will be able to sample from the true posterior via an MmcMmc simulation scheme.
Point estimates may also be compared to frequentist estimators such as the maximum likelihood or the method of
moment estimators. The latter has been used in a similar situation in the work of Goffard et al. [16].

The lack of analytical expression for the likelihood function justifies the use of a likelihood-free inference
method such as aBc. The distribution of x is of mixed type which means we cannot directly apply Algorithm 2
as we would lose the convergence toward the true posterior distribution. To address this issue, we ask that the
number of zeros in the synthetic samples 7y matches the number of zeros in the observed data t; and we treat
the non-zero data points as b continuous data. So, in Algorithm 2 we retain synthetic samples that belong to
the set

Bex = {Ye R'; x* =%% and D(x*,%") < e}.

Algorithm 2 then samples from the approximate posterior distribution

me(@1x)w(0) [ s, Dp(El0)dF

where
1, ifx?=%x%and D(x*,x*)<e,

0, otherwise.

I (%)= {

Proposition 1 in Appendix A shows the convergence of 1t toward the true posterior as we let € approach 0.
The Wasserstein distance for real-valued, b observations reduces to
=
+ =H\p _ + =+ p
Wy (x™,x7)P = —t Z'x(s) XiglPs
s=1
where x(1) <... < x(;_y,) and 3(71) <... <5‘c'(+t

and synthetic data respectively. Example 2 shows the efficiency of ABc on an example where we can access the
true posterior (i.e. the likelihood function is available).

—to) denote the order statistics of the non-zero portions of the observed
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Figure 2: Fitting a Geom(p)-Exp(0) model to simulated data. The true parameters are p = 0.8 and 0 = 5. The
ABC posterior, ABc summary statistics posterior, and the true posterior (by mcmc) coincide very well (in fact,
they overlap), and are considerably narrower than the prior.

Example 2. Let the claim frequency be geometrically distributed
ni,...,n; ~ Geom(p = 0.8),
with pmF given by py(n; p) = (1 —p)p", n € Ng. Assume that the claim amounts are exponentially distributed
U 1yeen s Ug © Exp(0=5), s=1,...,t,

with poF defined as f(x; 8) = (1/8)e™/?, x > 0, irrespective of the claim frequency. The available data is the aggregated

claim sizes
nS
X = E usg, s=1,...,t,
k=1

and we assume that t = 100 data points are available to conduct the inference. The likelihood function of the data is

p(x10)=(1-p(B) exp[-L Y x|
s=1

so we can sample from the true posterior distribution via an mcMc scheme. This compound geometric-exponential

model admits t (the number of zeros in the data) and Z;;tlo x7 (sum of the non-zero data points) as sufficient statistics
which in turn allows us to sample from an aBc posterior based on sufficient summary statistics. We set uniform priors

p ~Unif(0,1), &~ Unif(0,100)

over the parameters of the Geom(p)-Exp(0) parametric model. We set the number of generations to G = 10 and the
number of particles to K = 1000 for the aBc samplers. Figure 2 displays the xDpEs of the posterior samples produced via
ABC using the Wasserstein distance, ABc with sufficient statistics, and mcmc. The McMmc posterior sample is generated
by the PyMC3 Python library, see Salvatier et al. [31].

3.2 IID bivariate data

Insurers are typically exposed to more than one type of risk, and it can be beneficial for them to consider the
joint risk profile for related products. A joint model for bivariate data like

({ns, ush, {mg,v5}), s=1,...,t



could, for example, be used when {n,,u;} and {m;, v;} represent the claim data associated to two types of
coverage, or two policyholders, or even two nonlife insurance portfolios. The available information is then

X, = ( W(ng, ug)

, s=1,...,t
O (mg, vy) )

The likelihood function may be written as in the univariate case (9) except that three types of singularity
need to be accounted for. Namely, the cases where none of the components, both components and only one
component is null. The data is then split four ways as

x = (x(0,0),xH,O),x(0,+)’x(+,+))’
where x(00 = (xgo’o),...,xig’oo)) denotes the portion of the data where both components are null, x(+0) =
(ngr’O),...,xg’oo)),x(o'*) = (xgo’”,.. ,xto ) denote the portions of the data where the first or second components
are null respectively, and x(*+ (x(l+ ) o xi ' )) corresponds to the portion of the data where both components

are nonnegative. The synthetlc data 51mulated within Algorithm 2 is selected only if it belongs to the set
—~ 2 —
Bex = {xG]R X R'; to,0 = £0,0, to+ = F0,40 te,0 = F1,0
D(x"", %) <y, D(x"°, ) < &, and D(x ™", ¥"") < e3}.

The tolerance levels €1, €, and €3 decrease along the sequential Monte Carlo iterations so as to maintain an
appropriate effective sample size. The dissimilarity between synthetic and observed data is then measured
through the Wasserstein distance. The computation of D(x*?,x¥*?) and D(x%*,x%") is similar to that of
Section 3.1. Namely, we have

0
D(x+’0 ~+0 Z|x+0 ~+0
(+,0) (+0) ~(+,0) ~+,0)
where x 7 <. < X(t, o) and Xy <o <Xy and
tO +
D(xo, Z |x0 ,+ ,-() +
s=1
where x(((l))+) <...< xE ) and A(Of <...< Eio )) To compute the Wasserstein D(x™*,x*") we first set the ground

distance p to be the Euchdean norm. Finding the optimal permutation in a multivariate setting can be achieved
using the Hungarian algorithm at a computational cost of magnitude O(t?) (recall that t is the number of
observations). Of course, this is significantly higher than the cost required to sort a univariate sample, namely
O(tlog(t)). To alleviate the computational burden, we resort to an approximation based on a Hilbert curve.
This technique builds a one to one mapping ¢ : {0,...,2K - 1}% - {0,..., 28?1} that connects a one-dimensional
space to a d-dimensional one, where k is referred to as the Hilbert curve order. Up to rescaling and rounding
up our data (we denote by # this data transformation), we can locate it in the space {0,..., 2k _1)d by choosing
k appropriately and then apply ¢ to it. Consider the transformed data

y=(pon(y™)....pon(x "), andg=(pon(™),....pon "))

Denote by 0, and oy the permutations of {1,...,f, .} obtained by sorting y and ¥ in increasing order. The
distance D(x**,x*") is then approximated by

Dx"t X ) — ) p(xT X ). (11)



Hilbert curves define a total ordering in a vector space while preserving spatial locality. The approximation
(11) performs quite well for two-dimensional data, and the computational cost is the same magnitude as
sorting univariate samples.

3.3 Time dependent data

The arrival of claims in insurance is traditionally modelled by a counting process (N;);>o. The number of
claims n; filed during a given time period s then corresponds to the increments of (N;);»o. If we take this
approach, then our summaries

xs=W(nsus), s=1,...,t

are time dependent instead of b (unless N, is a homogeneous Poisson, then the increments are b and
Section 3.1 would apply). To assess the dissimilarity between the observed trajectory x = (xy,...,x;) and a fake
trajectory X = (X1,...,X;) we adopt a curve matching strategy as introduced by Bernton et al. [3]. This strategy
starts by making the time index part of the data by defining

y={(x1,1),..., (x;, 1)}, and = {(x1, 1),..., (x;, 1)}

The ground distance, to be inserted in the Wasserstein distance expression (8), between two data points
i = (x;,i) and y; = (x;, j) is given by

0y 317) = (i = %)2 + 20 = 2,
where y > 0 weights the importance of the vertical distance relative to the horizontal distance.

Intuitively, a large value of ¥ amounts to pairing each point of the observed trajectory with the corresponding
time index points in the simulated trajectory. If ¥ = 0 then the computation of the Wasserstein distance
does not account for the time dependency which brings us back to the case studied in Section 3.1. For an
intermediate value of y, the computation of the Wasserstein distance proceeds in the same way as in the
bivariate case studied in Section 3.2.

The effect of any particular y value will depend on the range of values obtained in the x; time series. To make
y dimensionless, we first note that the y variable effectively scales the time axis of the data from s to ys. So we
set  so that the trace plot of the rescaled time series {(ys, x5)}s=1,. + has some desired aspect ratio H : V. This is
achieved by

max x; — min x
_ s=1,...,t s s=1,...,t s H
Y t-1 I’a
as the original {(s, x5)}s=1,._; time series spanned 1 to t and min x; to max x; on each axis. Each of these y
""" s=1,...,t s=1,..,t

options are tested in Section 5.4 of the simulation study.

4 Model selection

When it comes to selecting a parametric model for claim data, one has plenty of options for both the claim
frequency and the claim sizes, see for instance the book of Klugman et al. [22, Chapters V & VI]. A decision
must be made to find the most suitable models among a set of candidates {1,..., M}. The Bayesian approach to
model selection and hypothesis testing uses a categorical random variable m with state space {1,...,M} and a
prior distribution 7t(m). The posterior model evidence is then given by
mi(m|x) = Af(x | m)T:(m) —, mefl,...,M}.
S M plx | (i)
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One often compares two models, say 1 and 2, by computing the Bayes factors By, := 7(2 | x)/m(1 | x). We
refer the reader to Kass and Raftery [21] for an overview on Bayesian model selection and Bayes factors. The
marginal likelihood of the data according to given model m € {1,..., M} is defined by

p(x|m) :J p(x|m,0)(0|m)d6, formel(l,...,M}, (12)

m

where ©,, denotes the parameter space of model m. The evaluation of (12) is challenging from a computational
point of view, even when the likelihood is available. The acceptance-rejection implementation of aBc proposed
in Grelaud et al. [17] reduces to adding another step to Algorithm 1 by first drawing a model from 7(m). The
posterior probability of a model is then proportional to the number of times this model was selected, see
Algorithm 3.

Algorithm 3 Acceptance-rejection to compute the model evidence

1: fork=1—-Kdo

2 repeat

3: generate my ~ 1(m)

4: generate 0 ~ 7t(0 | m)
5

6

7

generate x; ~ p(x | my, 6y)
until x; € B, , then store (my, 6;)
: end for

Algorithm 3 is, in essence, the Monte Carlo approach to the computation of models’ marginal likelihoods, see
for instance McCulloch and Rossi [25]. Namely, the model evidence is evaluated by

[\/]x

plx|m)= p(x|m,6y),

k:

where 0,...,0x ~ 7(0 | m). This procedure might be inefficient as most of the 8; have small likelihoods when
the posterior is more concentrated than the prior distribution. Importance sampling strategies have been
proposed to address this issue. The sequential Monte Carlo idea used in Algorithm 2 has been adapted in the
works of Toni and Stumpf [37] and Prangle et al. [28] to improve the sampling efficiency. Our implementation
is described hereafter.

We fix the number of generations G and the number of particles K. When several models are competing, a
particle is a combination of a model and its parameters.

For the first generation (g = 1), for each particle k = 1,...,K, a model m,lc is drawn from 7(m) with parameter
9]1 sampled from the prior distribution 7(6 | m}l) until the synthetic data x; ~ p(x | mi, 6,1) satisfies xi € B, x,
where €; = co. A first approximation of the posterior model probability is given by

K
T(el m|x) 2 mk:m}'
k:

A multivariate xpe Kz with bandwidth H'™ is then fitted to the parameter values associated to each model
with

Mw

., (0] m,x) _E T KO- Oty M€ (L M),
k=1

12



At a given generation g € {1,..., G} and for each model m € {1,..., M}, we hold an approximation of the posterior
model evidence ﬁeg,l (m | x) and the posterior distribution of the parameters ﬁsg,l (6 | m,x). New particles

(mi, 6,‘3) are proposed by sampling from 7t(m) and ﬁ\eg_l Ca m‘,%,x) until the synthetic data x; ~ p(x | mi, 6,‘3)
satisfies x; € Beg,l,x-l Sampling is performed repeatedly until K particles are selected. The acceptance
threshold €, is updated so that the sum of the esss for each model is K/2. Each particle’s weight is given by

(65 | my)
Te,, (65 |, x)

g

kaC ]IBeg,x(xk)’ kzl,...,K.

The model probability is then updated

K
ﬁeg(m | x) = ka;(II{mfzm},
)

along with the posterior distribution of the parameters associated to each model
K
¢, (0] m,x) Z o O O Ly M= Lo, M.
=1
The algorithm is summarized in Algorithm 4 in the appendix.

Our aBc implementation when evaluating posterior model probabilities is tested on a simple example where
we aim at fitting individual claim sizes generated from a lognormal distribution

Upyeny Uy ° LogNorm(pu =0,0 =1),

with associated ppr

fx;po)=
xo

The lognormal model is compared to a gamma model Gamma(r, m) with ppr

e—x/mxr—l
f(x,r,m)—m, X>0,
and a Weibull model Weib(r, m) with ppr
k k 1 k
f(X;k’ﬁ):/j(E exp[ ] x> 0.

Uniform priors are set over the parameters of all the model:
u ~ Unif(-20,20), and o ~ Unif(0,5),

for the lognormal model,
r ~ Unif(0,5), and m ~ Unif(0,100),

11t may seem odd that we always sample from 7(m) instead of ﬁeg_l (m ] x), though we found that by sticking to the model prior we
remove the possibility that a good model dies out from the population during the early smc iterations.
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for the gamma model, and
k ~ Unif(5,5), and g ~ Unif(0,100),

for the Weibull model. The likelihood functions of the data u = (uy,...,u,,) may be computed for these loss
models and the model probabilities can be estimated using the sequential Monte Carlo sampler of the PyMC3
library. The computation of model probabilities via aBc is more demanding than simply estimating parameters.
Namely, the number of iterations must be larger to lead to an accurate model probability estimation. We
therefore set the number of iterations to G = 20. The model evidences of all three models are reported in
Table 1 for sample sizes ranging from 25 to 200.

PyMC3 ABC

Gamma LogNorm Weib Gamma LogNorm Weib
sample size
25.0 0.44 0.20 0.37 0.46 0.17 0.37
50.0 0.24 0.65 0.11 0.33 0.50 0.17
75.0 0.04 0.95 0.01 0.11 0.83  0.06
100.0 0.01 0.99 0.00 0.04 0.95 0.01
150.0 0.00 1.00 0.00 0.01 0.99 0.00
200.0 0.00 1.00 0.00 0.00 1.00 0.00

Table 1: Model evidence for individual claim sizes data simulated by a LogNorm(y = 0,0 = 1) model. The
model evidences computed via aBc fare well compared to the model evidences computed by relying on the
likelihood function.

Further aBc model selection examples are given in Section 5 and Section 6 for aggregated data.

5 Simulation Study

This section aims at studying the finite sample behavior of our aBc implementation on case studies based on
simulated data. In Section 5.1, we assume that the claim sizes are independent from the claim frequency and
that the insurer has access to the truncated aggregated sum. In Section 5.2, we consider a model in which the
average of the claim sizes depends on the number of claims and the insurer has access to the total claim sizes
for each time period. In Section 5.3, we consider a bivariate aggregated claim distribution with dependent
claim frequencies. Lastly Section 5.4 considers a time dependent claim arrival process.

Our goal is to check whether our aBc sampling algorithm manages to return a posterior sample that concentrates
around the true value when the model is well specified. Another question is how does the ABc posterior behave
when the model is misspecified? The aBc posterior samples are compared, in that case, to the maximum
likelihood estimates of the parameters.

Finally, we assume that the claim frequency data is available in addition to the aggregated data. The number of
claims is then input directly in our aBc implementation to specify how many claim sizes should be generated
for each time period. It reduces the computing time, and allow us to drop the parametric assumption over the
claim frequency distribution and direct our focus on the claim sizes distribution.

In the cases treated in Sections 5.1 through 5.3, the number of generations for asc is set to G = 7 and goes up
to G =15 for the time dependent example of Section 5.4. Each generation consists of K = 1000, the computing
times are reported and discussed in Section 5.5.

14



5.1 Negative-Binomial Weibull model with truncation

Let the claim frequency be negative binomial distributed
ny,...,n; ~ NegBin(a =4, p = %),

with pMF
a+n-—1
pN(n:a,p)=( , )p“(l—p)”, n>0,

while the claim sizes are Weibull distributed
Ug1ymeey U, ° Weib(k = %, p=1), s=1,...,t

The available data is the aggregated claim size in excess of a threshold ¢, given by

g

xs:(Zus,i_C)+’ s=1,...,t (13)

i=1

It corresponds to the data available to a reinsurance company with a global non-proportional treaty over a
non-life insurance portfolio. The cases t = 50 and ¢ = 250 are considered. The prior distributions over the four

parameters are
a ~Unif(0,10), p~Unif(yg55,1),  k ~Unif({5,10), g ~ Unif(0,20). (14)

Figure 3 displays the aBc posterior samples when only using the aggregated data (13). The p and k posteriors
are quite informative, whereas the scale parameters a and g are slightly skewed in opposite directions so that
they compensate for each other.

0 20

0 10 O 1

memm= Prior === ABC (50 x,’s) === ABC (250 x,’s) === True

Figure 3: aBc posterior samples of a NegBin(a, p)-Weib(k, f) model fitted to simulated NegBin(a = 4,p = %)—
Weib(k = %,[3 = 1) data. The posteriors are based on 50 observations and 250 observations of the x; summaries
as in (13).

If we observe the claim frequencies n; as well as the x; summaries, then we’d expect the asc algorithm to
generate posterior samples even closer to the true values. Figure 4 shows the aBc posteriors for the claim sizes
model in this scenario. The aBc posteriors are indeed very strongly concentrated around the true values k = %
and B =1 compared to Figure 3 (the Figure 3 posteriors are drawn with a lower opacity in Figure 4 for ease of
reference).
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0.0 2.5 5.0 7.5 10,0 O 5 10 15 20

ABC (50 x,’s) ABC (250 x4s) === True
== ABC (50 x4’s & ng’s) === ABC (250 x,’s & ny’s)

Figure 4: aBc posterior samples of a Weib(k, f) model fitted to data simulated by a NegBin(a = 4,p = %)—
Weib(k = %,ﬂ =1). The data includes each summary x, as in (13) and each frequency n;. The posterior with
250 observations is a slight improvement over the one with 50 observations.

We now turn to the case where the model is misspecified. The same data simulated from a NegBin(a =4,p = %)—
Weib(k = %,ﬂ = 1) model is used to fit a NegBin(«a, p)-Gamma(r, m) model. The prior distributions over the
four parameters are uniform with

a ~Unif(0,20), p~Unif(tgg5,1), 7~ Unif(0,10), and m ~ Unif(0, 20). (15)

The true values for the gamma distribution parameters are replaced by the maximum likelihood estimators
based on a large sample of Weibull distributed individual losses. Figure 5 displays the aBc posterior samples
when only using the aggregated data (13).

0 10 0 50

mmmm= Prior === ABC (50 x,’s) === ABC (250 x,’s)

Figure 5: aBc posterior samples of a NegBin(a, p)-Gamma(r, m) model fitted to data simulated by a NegBin(a =
4,p= %)—Weib(k = %,ﬂ = 1) model. The data only includes the summaries x; as in (13). The target values are
the true values for a and p and the MLE estimates for k and 8 (based on the individual claim sizes, which are
hidden from asc).

The aBc posterior distributions are informative regarding p, r and m, however the algorithm does not improve
significantly the prior assumption over a.
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Figure 6 displays the aBc posterior samples for the parameters of the gamma distribution when the claim
frequency data is available in addition to the summaries (13).

r
T . T — VI T T T T T
0.00 0.25 0.50 0.75 1.00 0 20 40
ABC (50 x,’s) ABC (250 x,’s) ~ meere MLE

= ABC (50 x,’s & n’s) e ABC (250 x4’s & 14’s)

S\

)_

Figure 6: aBc posterior samples of a Gamma(r, m) model fitted to data simulated by a NegBin(a =4,p =
Weib(k = %,[3 =1) model. The data includes each summary x, as in (13) and each frequency #;.

The posterior sample for m does not seem to center around the maximum likelihood estimator. Note that the
situation improves greatly when considering a larger sample, of size 500 say.

To perform model selection, we specify to our aBc algorithm the Weibull and the gamma distribution as
competing models for the claim sizes and we set uniform priors as in (14) and (15) over the parameters. The
model evidences computed via aBc are reported in Table 2.

Frequency Model

Sample Sizes Negative Binomial =~ Observed Frequencies

50 0.57 1.00
250 0.59 1.00

Table 2: Model evidence in favor of a Weib(k, ) model when compared against a Gamma(r, #1) model for data
simulated by a NegBin(a =4,p = %)—Weib(k = %,ﬁ = 1) model. Ideally, the values should increase to 1 (since
the Weibull model is the true model) as the sample size increases.

When only the summaries x; are available and the claim frequency is modeled by a negative binomial
distribution then aBc slightly favours the (true) Weibull over the gamma distributions. When the claim counts
ng are also available then aBc firmly concludes that the Weibull model is the correct model for the claim sizes.

5.2 Dependence between the claim frequency and severity

Let the claim frequency be Poisson distributed
fi,...,1; ~ Poisson(\ = 4),

with pmF
e Ak

o k>o0.

pn(k; A) =
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The claim sizes are assumed to be exponentially distributed with a scale parameter depending on the observed
claim frequency
6115)

IID
U ye oo Usy | ns ~ Exp(p=pe), fors=1,...,t.

We denote this u; ~ DepExp(n;; B,9). The resulting conditional pDF is

1 X
fulx|n;B,0)= Wexp(—ﬁ), x> 0.
This dependence structure relates to the insurance ratemaking practice where premiums are computed using
the average claim frequency and severity predicted by a generalized linear models (cLm). In the classical
setting, the claim frequency is assumed to be Poisson distributed and the claim sizes are gamma distributed.
The LM are then fitted independently for the claim frequency and the claim severity, we refer to Renshaw [29].
Empirical studies, like the one conducted in Frees et al. [13], have shown how the claim sizes may vary with
the claim frequency. A standard practice is then to include the predicted claim frequency as a covariate within
the claim sizes model, see for instance Shi et al. [32]. Equivalently we can scale the expectation of the severity
distribution by a factor of e®”s. Our case study is inspired by Garrido et al. [14, Example 3.1]. The available
data is the aggregated claim sizes

g
xS:Zusrk, s=1,...,t (16)
k=1
We consider data histories of length t = 50 and 250, and selected the prior distributions
A ~Unif(0,10), B ~Unif(0,20), &~ Unif(~1,1).

Figure 7 displays the posterior samples of A the parameter of the Poisson distribution, § the scale parameter of
the exponential parameter and o the frequency/severity correlation parameter.

A 0

0 5 10

mmmm= Prior == ABC (50 x,’s) === ABC (250 x,’s) === True

Figure 7: aBc posterior samples of a Poisson(A)-DepExp(#; 8, 0) model fitted to data simulated by a Poisson(A =
4)-DepExp(n; f = 2,0 = 0.2). The data only includes the summaries x; as in (16).

The algorithm does a tremendous job on this example even without including the claim frequencies at each time
period. Figure 8 displays the aBc posterior samples associated to the claim sizes distribution DepExp(1; §, 0)
when including the frequency information in addition to the summaries (16). As observed earlier, the inclusion
of the claim frequency information greatly improves the quality of the ABc posterior samples.
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T
0 5 10 -0.2 0.0

ABC (50 x,’s) ABC (250 x4’s) === True
= ABC (50 x,’s & ny’s) memmm ABC (250 x,’s & n4’s)

Figure 8: aBc posterior samples of a DepExp(;f,0) model fitted to data simulated by a Poisson(A = 4)-
DepExp(#n; = 2,6 = 0.2). The data includes each summary x; as in (16) and each frequency n;.

5.3 Bivariate aggregated claim distribution

This section considers a joint model for the frequency of claims reported for two nonlife insurance portfolios.
The claim counts are Poisson distributed with respective intensity Aw; and Aw, where A is some non-negative
random variable. The frequency data (ny,my),...,(n;, m;) is 1D according to a bivariate counting distribution
with joint pMF given by

dIPA(/\), n,mENo.

e—)\wl Aw ne—/\wz Awn )™
pN,M(n:m):f (Awy) (Awy)

n! m!

This setting aligns with that of model C in the work of Hesselager [19], and we refer to this model as the
BPoisson(A, wy, w,) bivariate Poisson model. The severities associated to a given time period s = 1,...,t form
two mutually independent, b sequences of exponentially distributed random variables,

U 15em s Ug 2 Exp(m; =10) and Vs 151 Vs,m, = Exp(m, = 40).

The model encapsulate the link between the frequencies of two insurance portfolios while accommodating
for the well known overdispersed nature of the claim count data. Following up on the work of Streftaris and
Worton [36], we let A be a lognormal random variable LogNorm(o = 0.2) (the mean log parameter is set to 0)
as it is consistent with the use of a generalized linear model equipped with a log link function to estimate the
Poisson intensity given a set of covariates. The marginal components of the claim frequency distribution are
set to wy = 15 and w;, = 5. The available data is the aggregated claim sizes for each portfolio

nS mS
XS:(ZMS’]{,ZVS’](), S:l,...,t. (17)
k=1 k=1

We consider data histories of length t = 50 and 250. Uniform prior distributions are set over the claim

frequency parameters
o ~Unif(0,2), w; ~Unif(0,50), w, ~ Unif(0,50),

and the claim sizes parameters
my ~ Unif(0,100), m, ~ Unif(0,100).
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The discrepancy between observed and fake data follows from the approximation of the Wasserstein distance
via the projection onto the Hilbert filling curve space detailed in Section 3.2. Figure 9 shows the resulting
posterior distribution based on data histories of length 50 and 250.

0 2

0 50 O 100 O 100

memmm Prior == ABC (50 x,’s) === ABC (250 x,’s) === True

Figure 9: aBc posterior samples of a BPoisson(A, wy, w,)-Exp(my, m,) fitted to simulated data from a model
BPoisson(A ~ LogNorm(o = 0.2), w; = 15,w, = 5)-Exp(m; = 10,m, = 40). The data includes 50 observations
and 250 observations of the summaries x; as in (17).

ABC manages to identify the parameters linked to the marginal distributions and the dependence structure.

5.4 Compound sums with nonhomogenous Poisson claim arrival

We can generalize the discrete time model to continuous time by modelling the arrival of claims with a counting
process (N;);»o. The liability of the insurer, taking into account the randomly sized compensation associated to
each claim, takes the form of a pure jump process

N,
Z = ZU,-, t>0,
i=1

as in (4) above. Our goal in this section is to see whether our aBc routine enables us to estimate the model
parameters from the knowledge of a trajectory of such a stochastic process. We move away from the standard
Poisson assumption by assuming that the claim arrival is governed by a nonhomogenous Poisson process with
instantaneous arrival rate A(t). We observe the increments of the process (Z;);»o defined by

where the increments of the counting processes are independent and Poisson distributed with parameter

u(s) = LHI A(s)ds. We consider a cyclical claim arrival rate by setting
A(t)=a+b[1 +sin(27ct)], t>0.

We refer to this model as the cyclical Poisson model CPoisson(a, b, c). We wish to see whether our asc algorithm
allows us to draw inference on the parameters a,b, and c on the intensity function. For this example, we set
a=1,b=5,and ¢ = 1/50. The claim amounts follow a lognormal distribution LogNorm(y = 0,0 = 0.5) and we
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=== Expected value for x; @® Observed x;

Figure 10: Observations and theoretical mean of the increments of a cyclical compound Poisson process
CPoisson(a =1,b = 5,c =1/50)-LogNorm(u = 0,0 = 0.5).

consider two time horizons t € {50,250}. Figure 10 displays the observed increments of the nonhomogenous
compound Poisson process together with their the theoretical means as a function of time over 250 time
periods.

Uniform prior distributions are set over the claim frequency parameters
a ~ Unif(0,50), b ~ Unif(0,50), and ¢ ~ Unif(1/1000,1/10),

and the claim sizes parameter
u ~ Unif(-10,10) and o ~ Unif(0, 3).

Our aim is to compare the aBc posterior samples resulting from different choices of y which parametrize the
ground distance

oy (317) = (i —%)2 + 20 = 2,

which is used in the Wasserstein distance (8). We consider the extremal cases where = 0 and y = co. Recall
that y = oo forces the pairs of data points to have the same time index, whereas = 0 ignores the time
dependency altogether. Stated another way, the y = co case calculates the L! distance between the observed
and fake data, and y = 0 calculates the L! distance between the sorted versions of each data vector. We also
look for a tradeoff by setting y to be

s=1,..,t B
* — 2 . reeey reeey
4 -1
This transforms the data so the x,’s trace plot has an aspect ratio of 2 : 1 and leads to an acceptable compromise
between y = 0 and y = co. Figure 11 shows the aBc posterior distributions based on these three different values
for y.

max Xg — min X
s=1

There is a clear distinction between the 6 parameters which affect the quantiles of the x; summaries (i.e., a,b, g,
and o) and the parameters which do not (i.e., c). The L! distance on the sorted data (y = 0) is effectively fitting
0 based on the quantiles of the x, distribution, so it is incapable of fitting the ¢ parameter. The L! distance on
the unsorted data (y = oo) fits the ¢ parameter best, though without the sorting it struggles to fit the remaining
parameters particularly well. The y = y” tradeoff choice does fit all parameters moderately well. Comparing
time series in ABc is an ongoing and difficult research problem. A promising direction could be to search for an
optimal value of y.
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(a) =50

(b) t = 250

. I

0 50 0 50 0.0 0.1 -10 0 10 0.0 25

s Prior e— Y =00 — 7/:')/* — 7/:0 === True

Figure 11: aBc posterior samples of a CPoisson(a, b, c)-LogNorm(y, o) fitted to simulated data from a model
CPoisson(a = 1,b = 5,c = 1/50)~LogNorm(u = 0,0 = 0.5). The aBc posterior obtained using the L! distance
(y = o), the curve matching distance (y = y*) and the L! distance between sorted data (y = 0) are compared.
Sample sizes of length (a) 50 and (b) 250 are considered.

5.5 Computational runtimes and practical considerations

aBc transforms a difficult statistical problem into a difficult computational problem. Luckily, ABc is ‘embarrass-
ingly parallelizable’, and our Python implementation uses multiprocessing to leverage central processing units
(cpus) which have a large number of physical cores.? Using a cpu with large core count allows us to run asc in
parallel and achieve a near-linear speedup when compared to a single-process implementation.

We ran the previous experiments on a virtual machine rented from Amazon Web Services. In particular,
we used a ‘c6g.16xlarge’ instance which has 64 physical cores in its ARM cPu. Amazon currently charges
$2.8416 USD/hour for this instance type in their Sydney data center. The runtimes and corresponding costs
for each simulation are presented in Table 3 and are based on these rates. We also measured the same runtimes
when running on a Mac Mini (Late 2020 model) which has 8 physical cores (4 high performance cores, and 4
high efficiency cores) with the results given in Table 4. These devices are currently the cheapest Macintosh
computers on sale. If the cpus in the Amazon instance and the Mac Mini were equivalent then we’d expect the
Mac to be ~ 8x slower at aBc, but the Apple’s M1 chip is only ~ 3x slower.

2Most x86 cpus also include ‘hyperthreaded’ virtual cores, which can speed up certain data-intensive workloads. However asc does not
benefit from these virtual cores, and in fact using them is detrimental to overall speed due to the increased context switching costs and
cache invalidation.
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Figure Number
G=7 — G=15 —
3 4 5 6 7 8 9 11
29s 22s 22s 42 s 23s 19s 98 s 173 s

>0 23¢) (17¢ (1.7¢) (33¢) (1.8¢) (1.5¢) (7.7¢) (137¢ °*™

250 55s 35s 18 s 94 s 22s 19s 171 s 607 s ($1.14)
(43¢) (2.8¢) (1.4¢) (74¢) (1.7¢) (1.5¢) (13.5¢) (47.9¢) '

Sample size Total

Table 3: Runtimes (in seconds or minutes) and the associated server rental costs (in USD or cents) for the asc
fits showcased in the figures in this section on a ‘c6g.16xlarge’ (64 arRm Neoverse cores) instance. Each entry
corresponds to one aBc fit, except for the Figure 11 times which are the total of three asc fits.

Figure Number

Sample size Go7 — Go15 — Total
3 4 5 6 7 8 9 11
50 49s 27s 19s 96s 27s 5s 318s 424s 74 m
250 192s 81s 56s 311s 59s 10s 656s 2149s

Table 4: Runtimes (in seconds or minutes) for the aBc fits showcased in the figures in this section on a Late
2020 Mac Mini (8 arm Apple Silicon cores). Each entry corresponds to one asc fit, except for the Figure 11
times which are the total of three asc fits.

Table 3 clearly shows that aBc is very computationally demanding. Even when fully utilizing the 64 cores of
the cpu it takes some minutes to complete these fits. This is somewhat comparable to fitting a moderate-sized
artificial neural network model. One should definitely not use ABc in scenarios when a likelihood is available!
On the other hand, the overall rental cost for these fits ($1.14) is quite small. As arM processors have a high
performance-per-watt, Amazon can rent us these ARM machines for about half the price of the equivalent x86
machines. Porting aBc to a gpu would further reduce costs.

Another conclusion from Table 3 is that the runtime of ABc does not have a linear relationship to the sample size
of observed data. In some cases, aBc takes longer to fit the 50 observations than it does to fit 250 observations.
This can happen when aBc-smc quickly finds a ‘good’ fit for the 50 observations so it aggressively decreases the
€, targets and then it spends a long time trying to find a ‘great’ fit in the final iterations. In general we observe
an exponential increase in the runtime of each aBc-smc iteration. This is why we set the number of iterations G
by trial-and-error, as a small increase in G can increase the aBc-smc runtime from minutes to days. The Python
code written for this paper may be downloaded from GitHub https://github.com/LaGauffre/ ABCFitLoMo.

6 Application to a real-world insurance dataset

We consider an open source insurance dataset named ausautoBI8999 consisting of 22,036 settled personal
injury insurance claims in Australia, the first five observations are displayed in Table 5.

The data is accessible from the R package CASDatasets, see Dutang and Charpentier [11]. The data is then
aggregated monthly by reporting the number of claims along with the sum of all the compensations associated
to each month, see Table 6.

Descriptive statistics for the claim sizes, claim frequencies and the aggregated claims sizes are reported in
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Date Month Claim Severity

1993-10-01 52 87.75
1994-02-01 56 353.62
1994-02-01 56 688.83
1994-05-01 59 172.80
1994-09-01 63 43.29

Table 5: An extract of the ausautoBI8999 personal injury claim data.

Month  Claim Frequency Total Claim Severity

49 149 1,550,000
50 188 3,210,000
51 196 4,810,000
52 203 4,220,000
53 226 5,270,000

Table 6: An extract of the monthly aggregated data.

Table 7.
Statistics Claim Severity  Claim Frequency Total Claim Severity
Count 22,000 69 69
Mean 38,400 319 12,300,000
Std 91,000 109 5,220,000
Min 9.96 94 1,550,000
25% 6,300 231 8,210,000
50% 13,900 312 12,000,000
75% 35,100 381 15,500,000
Max 4,490,000 606 26,300,000

Table 7: Descriptive statistics of the claim data.

We are going to use aBc to fit and compare loss models using only the monthly aggregated data in Table 6. We
would like to know whether the results differ from fitting the same loss models but using the individual claim
sizes data in Table 5.

We start by studying the individual loss distribution. We fit a gamma, a lognormal and a Weibull model to the
data shown in Table 5 using maximum likelihood estimation. The estimates of the parameters are given in
Table 8 and will serve as benchmark for our ABc posterior samples.

The lognormal distribution seems to provide the best fit when looking at the values of the Bayesian Information
Criteria (Bic). This result is visually confirmed by the quantile-quantile plots displayed in Figure 12.

We then investigate the stationarity of the individual loss distribution by fitting the three loss models to the
data associated to each time period separately. Figures 13 to 15 display the parameters of the gamma, Weibull
and lognormal distribution respectively depending on the time period considered.

The parameters of the Weibull and gamma distributions exhibit a high variability, see Figures 13 and 14, while
the parameters of the lognormal distribution are more stable, see Figure 15. The model evidences, displayed in
Figure 16, are computed using the Schwarz criterion that approximates the Bayes factor using the maximum
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Severity model  Parameters MLE BIC

r 4.09
Gamma m 5,350 64,600
. k 0.708
Weibull 8 28,600 50,300
o 9.56
Lognormal p 1.46 50,000

Table 8: Maximum likelihood estimates of a gamma, Weibull and lognormal distribution based on the
individual claim sizes data.

Theoretical Quantiles

Empirical Quantiles
mmm—= Gamma === Weibul]] == ] ognormal

Figure 12: Quantile-quantile plots associated to the gamma, Weibull and lognormal models fitted to the
individual claim sizes data.
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Figure 13: Parameters of the gamma model.
likelihood estimators and the Bic.

The model probabilities mostly favor the lognormal model.

We use asc to fit a NegBin(a, p)-LogNorm(y, o) model to the total claim severities data in Table 6 which consists
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Figure 14: Parameters of the Weibull model.
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Figure 15: Parameters of the lognormal model.
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Figure 16: Model evidence for the gamma, lognormal and Weibull models.

of t = 69 summaries of the form .
S
Xy = Zus’k’ s=1,...,t.
k=1

We consider two sets of prior assumptions over the parameters:

1. a ~Unif(0,20), p ~ Unif(lolw, 1), 1~ Unif(0,20), and o ~ Unif(0,10),
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2. a ~Unif(0,20), p ~ Unif(1gq5, 1), # ~ Unif(=10,10), and & ~ Unif(0, 10).

Prior settings 1 and 2 only differ in the boundaries of the uniform distribution of . We opt for a more
intensive ABc calibration compared to that of Section 5. The number of iterations is fixed at G = 20 when the
claim frequencies are known and G = 15 when they are not. The aBc posterior samples of the NegBin(a, p)-
LogNorm(y, ) model using only the summaries x, in (18) are shown in Figure 17.

=== ABC (Prior 1) === ABC (Prior 2) === MLE

Figure 17: aBc posterior samples of a NegBin(«a, p)-LogNorm(y, o) model fitted to a real world insurance
dataset. The data includes the total claim severities (18) data in Table 6. The posterior samples are closer to the
MLE estimates with prior 2 than with prior 1.

The results with prior settings 1 and 2 are noticeably different. More specifically, the aBc posterior are tighter
and more centered around the MLE estimates with prior 2 at least when it comes to estimating the parameters
p, pando.

The aBc posterior samples when including the claim frequency information are shown in Figure 18. We keep
the same prior assumptions over y and o. These posteriors which use the claim frequency data are less affected
by the differing prior settings.

We now turn to the problem of selecting a model for the claim sizes, so we specify a negative binomial
distribution NegBin(«, p) with uniform prior distributions

a ~Unif(0,20), p~ Unif(0,1)

to model the claim frequency and let our aBc algorithm pick a claim amounts models among the following:

» Weib(k, B) with prior distributions

k ~ Unif(1g5, 1), B ~ Unif(0,4 x 10%),

e Gammay(r, m) with prior distributions

r ~ Unif(0,100), B ~ Unif(0,1.5x10°),

* LogNorm(p, o) with prior distributions

u~Unif(5,10), o ~ Unif(0, 3).
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mmm= Prior 1 (x4’s & ny’s) mmm= Prior 2 (x,’s & ny’s)

Figure 18: aBc posterior samples of a LogNorm(y, o) model fitted to a real world insurance dataset. The
data includes the total claim severities and the claim frequencies in Table 6. When the x,’s and n,’s are both
observed, the posterior samples with Prior 1 and Prior 2 almost totally overlap and are reasonably close to the
MLE estimates.

Frequency Model Severity Model

Gamma Lognormal Weibull
Negative Binomial 0.92 0.01 0.07
Observed Frequencies 0.00 0.49 0.51

Table 9: aBc model evidence with the claim frequency and the aggregated claim sizes data.

The bounds of the uniform distributions are set to reflect the variability of the parameters in Figures 13 to 15.
The model evidences are reported in Table 9.

We see that aBc strongly favors the gamma model when the claim frequency is assumed to have a negative
binomial distribution. When including the claim count, aBc discards the gamma model but is unable to decide
between the Weibull or the lognormal model. This result is of course a little disappointing but probably means
that aBc would need more than 69 observations to pick the right model.

7 Conclusion

This paper is a case study of an aBc applications in insurance. We showed how to use this method to calibrate
insurance loss models with limited information (one data point per time period). As aBc is not restricted
to models which have a known likelihood, we can explore more realist models and discard the classical
assumptions of independence in and between the claim frequencies and claim sizes.

An aBc routines essentially relies on two things: (i) an efficient sampling strategy and (ii) a reliable measure of
dissimilarity between samples of data. We put together an aBc routine that implements a parallel sequential
Monte Carlo sampler and uses the Wasserstein distance to compare the synthetic data to the observed one. Our
Python code which reproduces the results in this work, as well as a Python package to apply aBc-smc more
generally, are available on Github.

ABC has become over the years a common practice in a variety of fields ranging from ecology to genetics.
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We believe that aBc could be also applied to a wide range of sophisticated models that arise in finance and
insurance.
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A Convergence of the ABc posterior to the true posterior with mixed data

The following result shows the convergence of 7t toward the true posterior as we let € approach 0.
Proposition 1. Suppose that
sup p(x|0) <o,
(%,0)€B %O

for some € > 0. Then, for each 6 € ®, we have
7.(0 | x) — 71(0 | x), as € = 0.

Proof. The modified prior 7.(0 | x) is defined as

n(0)|.. Iz (X)p(x|0)dx 0 2]
(8] )= Ji I5,,DPFIOAT __  n(O)pe(x10) .
Jo 7(6) [ 5. (®)p(X]16)dxd6 [ 7(6)pe(x|6)dO
where p.(x | 8) is an approximation of the likelihood
I5. (%) p(x]6)dx
pe(x10) = Ju 1. = (20)
Jgi 15, (%) %
Since the data is i, we rearrange the vectors x and X to set aside the zeros in the data, so x = (x%,x*) and
x = (x°,X"), respectively. It allows us to write the indicator function in (20) as the product
I, (%) = Ljxo_z0) - Lip(x+ 5+)<e)- (21)
Inserting (21) into the quasi-likelihood (20) leads to
- xt0)dx
pe(x10) = px(0]6)°[1-px(0]6)]'" Juo Lt .21
JIRI to H{D(x* x+<e} dx
—>Px0|9 )°[1-px(016)]p(x*| 6) =p(x|6), (22)

where the limit in (22) follows from applying Proposition 1 of Rubio and Johansen [30], see also Bernton et al.
[4, Proposition 2]. Taking the limit as e tends to 0 in (19) yields the announced result. O
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B Model selection algorithm

Algorithm 4 aBc-smc for model selection

1: fork=1—K do

2 repeat

3 generate m}( ~ mt(m)

4 generate 0, ~ 7(6 | m})

5: generate xj ~ p(x | m}(,@é)

6 until xj € By, «

7: end for

8: form=1,...,M do

9 compute e, (m|x) =% Zk T —

10: compute ¢, (0 | m,x) = sz 17 (m|x)Km(9 ol Al (i =m)

11: end for
12: forg=2—1do
13: fork=1—Kdo

14: repeat

15: generate m‘Z ~ 1t(m)

16: generate Gl‘g ~ ﬁ\eg_l 0] mi, x)
17: generate xj ~ p(x | m‘i, 91‘3)
18: until x; € Begfl,x

19: end for
20: set €¢ 50 the sum of the Esss is K/2
21: fork=1—Kdo

I (0f |mf)

22: set w 71[ x
k< Tfe 1(9;§|m}§rx) Beg’x( k)

23: end for
24: form=1,...,M do

25: compute ﬁeg(m |x)= Zle wiﬂ{mg:m}
g
26: compute ﬁeg(e | m,x) = Zk |7 mlx)K’"(G Gg) {mf:m}

27: end for
28: end for
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