N-Acyliminium Ion Chemistry: Improving the Access to Unsaturated γ-Lactams and Their \mathbf{N} - α-Methoxylated Derivatives: Application to an Expeditive Synthesis of (\pm)-Crispine A

Florence Souquet, Wassila Drici, Sandra Abi Fayssal, Imane Lazouni, Sébastien Thueillon, Joelle Pérard-Viret

To cite this version:

Florence Souquet, Wassila Drici, Sandra Abi Fayssal, Imane Lazouni, Sébastien Thueillon, et al.. N-Acyliminium Ion Chemistry: Improving the Access to Unsaturated γ-Lactams and Their $\mathrm{N}-\alpha$ Methoxylated Derivatives: Application to an Expeditive Synthesis of (\pm)-Crispine A. Synthesis: Journal of Synthetic Organic Chemistry, 2020, synthesis, pp.2970-2978. 10.1055/s-0040-1707886 . hal-02890991

HAL Id: hal-02890991
 https://hal.science/hal-02890991

Submitted on 27 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

N-Acyliminium Ions Chemistry: Improving the Access to Unsaturated γ Lactams and their N - α-Methoxylated Derivatives. Application to an Expeditive Synthesis of (\pm)-Crispin A

Florence Souquet ${ }^{a}$
Wassila Drici ${ }^{\text {b }}$
Sandra Rbi Fayssal ${ }^{2,1}$
Inane Lazouni ${ }^{\text {b }}$
Sébastien Thueillon ${ }^{\text {a }}$
Joëlle Pérard-Viret ${ }^{\text {a* }}$
${ }^{a}$ Université de Paris, CiTCoM, CNRS, 4 avenue de I'observatoire F-75006 Paris, France.
${ }^{\text {b }}$ Université de Tlemcen, Laboratoire de chimie organique, substances naturelles et analyses (COSNA), département de chimie, faculté des sciences, 22 Rue Abi Ayed Abdelkrim Eg Pasteur B.P 119 13000, Tlemcen, Algérie.

$\mathrm{R}-\mathrm{NH}_{2}=$ Allylamine, Aniline, Benzylamine,(S)- α-Methylbenzylamine 2-(3,4)-(Dimethoxyphenyl)ethanamine
L-Lys(Z)-OMe, L-Phe-OMe, L-Val-OMe

Joelle.perard@parisdescartes.fr
Dedicated to Dr Jacques Rover

Abstract

Received: Accepted: Published online

Abstract We describe an improved synthesis of unsaturated γ-lactam by condensation of various primary amines with 2,5-dimethoxy-2,5dihydrofuran. A modified mechanism for this reaction is suggested. Synthesis of their N - α-methoxylated derivatives, as N-acyliminium ions precursors, is also reported. Finally, a short synthesis of (\pm)-crispine A is presented as an illustrative application.

Key words unsaturated γ-lactams, aza-heterocycles, N-acyliminium, 5-methoxypyrrolidin-2-one, crisping A

Isomeric unsaturated γ-lactams $\mathbf{1}$ or $\mathbf{2}$ are useful building blocks: that can be converted easily into silyloxy paroles $\mathbf{3}$ or N-acyliminium derivatives 4 (Scheme 1). ${ }^{2}$

Scheme 1 Reactivity of unsaturated γ-lactams 1 or 2

Compound 3 is reactive towards electrophiles (ketone, aldehyde, imine...) ${ }^{3}$; on the other hand, N-acyliminium ion 4 is prone to nucleophilic (allylTMS, silylenolether, diketone, MeOW...) additions. ${ }^{4}$ Both reactivities are complementary, giving access to advanced intermediates for the preparation of biologically relevant aza-heterocycles, found in many alkaloid natural products (Figure 1). ${ }^{5}$

Figure 1 Aza heterocycle containing natural products synthesized by silyloxy parole 3 or N -acyliminium 4 based methods

In 2015, Pelkey and coworkers ${ }^{6}$ compiled the known syntheses of 3-pyrrolin-2-ones 1. Indeed, compounds 1 or 2 can be synthesized by different methods: oxidation of pyrrole ($\mathrm{R}=\mathrm{H}$ Me), ${ }^{7}$ cyclization (especially for synthesis of substituted unsaturated γ-lactams), ${ }^{8}$ elimination, ${ }^{9}$ via diazo compounds, ${ }^{10}$ condensation with 2,5-dimethoxy-2,5-dihydrofuran ${ }^{11} 5$ and metathesis. ${ }^{12}$ The last two methods are the most popular for the synthesis of unsubstituted compound 1.
As discovered twenty years ago in our laboratory, ${ }^{11 a}$ unsaturated γ-lactams are easily synthesized by condensation between 5 and a primary amine $\mathbf{6}$ in acidic medium (Scheme $2)$.

6

Scheme 2 Synthesis of unsaturated γ-lactams by condensation with 5

We searched to improve this reaction and to understand its mechanism. In fact, we wanted to minimize the formation of red polymeric pyrrole side products. For that purpose, we monitored by NMR in $\mathrm{D}_{2} \mathrm{O}$ the reaction between 5 and Lphenylalanine methyl ester hydrochloride $\mathbf{6 g}$ (Table, entry 7)

By varying temperature, reaction time and the nature of the base used at the end of the reaction, we found a set of optimized conditions to perform the reaction: $40^{\circ} \mathrm{C}$ in acid medium ($\mathrm{pH}=1$) for 7 to 20 minutes (Table 1), following by a neutralization to pH 7 with saturated $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ and addition of dichloromethane. $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ was chosen instead of NaHCO_{3} to decrease the pH from 8 to 7 and to shift the equilibrium from
hydroxypyrrole $\mathbf{8}$ to $\mathbf{2}$ (Scheme 3). Isolated yields are moderate to good (61\% to 78\%) except for aniline (entry 2); this finding can be explained by the different pKa value of aniline (4.6) and other amines $(9-10)$. Thus all amines with pKa of $9-10$ should be able to efficiently form unsaturated lactams.

Table 1 Synthesis of unsaturated γ-lactams			
Entry	Amine 6	Time (min)	Yield ${ }^{\text {a }}$ (\%)
1	Allylamine 6a	15	1a 92 (61)
2	Aniline, HCl 6b	7	1b 99 (39)
3	Benzylamine 6c	10	1c95 (67)
4	(S)- α-Methylbenzylamine 6d	15	1d 98 (77)
5	2-(3,4)-(Dimethoxyphenyl)ethanamine 6e	20	1e 99 (75)
6	L-Lys(Z)-OMe, $\mathrm{HCl} 6 \mathbf{6 f}$	15	1f 99 (78)
7	L-Phe-OMe, HCl 6g	10	1g 95 (67)
8	L-Val-OMe, $\mathrm{HCl} 6 \mathbf{6}$	10	1h 90 (76)

In 1998, Poli et al. ${ }^{11 \mathrm{~b}}$ hypothesized a mechanism in acetic acid. We suggested some modifications (Scheme 3). In the course of our NMR studies of the reaction, we observed the rapid formation (within a few minutes) of 7 in acidic medium (Figure 2 and 3). ${ }^{13}$ The second step consisted of a hydroxyl elimination promoted by hydrogen phosphate dianion acting as a mild base. At first β, γ-unsaturated γ-lactam 2 is the only visible product in the spectra. Afterwards, build-up of compound $\mathbf{1}$ occured by thermodynamically driven conjugation with the carbonyl group. The kinetics of this isomerization depended on the nature of the amine R residue.

Pelkey and coworkers reviewed the reactivity of compounds 2 in 2019. ${ }^{14}$ Herein, we focused on the possibility to transform
them in N-acyliminium ions 4 by treatment with Brønsted acids (Scheme 1). Iminium ion intermediates could be trapped with methanol leading to stable N - α-methoxylated derivatives 9 (Table 2).
N-acyliminium ions precursors 9 or 10 were mostly synthesized via reduction of succinimides. ${ }^{15}$ Typical reducing reagents such as $\mathrm{NaBH}_{4},{ }^{16}$ DIBAL-H, ${ }^{17} \mathrm{LiBH}_{4},{ }^{18} \mathrm{LiEt}_{3} \mathrm{BH}^{19}$ required careful control of temperature and pH to avoid undesired side products. Hydrogenation with Co or Ru catalysis, ${ }^{20,} \mathrm{Zn}$-catalysis with hydroxysilane ${ }^{21}$ were used more
recently. We describe here an alternate practical synthetic route to γ-lactams 9 (table 2)
Treatment of unsaturated γ-lactams 1 or 2 with concentrated $(12 \mathrm{M}) \mathrm{HCl}$ (2 equivalents) in MeOH for 4 hours at room temperature furnished the N - α-methoxylated compounds 9 in good yields (Table 2). The amount of hydrochloric acid has to be kept as small as possible to avoid the formation of $N-\alpha-$ hydroxy- γ-lactam 10. This reaction could be performed from crude product 1 or 2, global yields are almost the same (entry 3 and 7). ${ }^{22}$

| Ent | Lactam 1 | Product 9 | Yield $^{\text {a }}$ | Ent | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ry | (\%) | ry | Lactam 1 | Product 9 | Yield $^{\text {a }}$ |
| | | | | (\%) | |

a) Purified product b) From crude $\mathbf{1}$ or $\mathbf{2}$

The procedure is simple, efficient, green and cheap. Indeed, starting materials are inexpensive and neither boron nor any metal catalysis was necessary. Ester and carbamate functions were unaffected unlike in the reduction with hydrides.
N - α-methoxylated derivatives 9 could be engaged in nucleophilic addition via N-acyliminium ions 4 generated by Brønsted or Lewis acid. To illustrate this application we selected two representative compounds $\mathbf{9 d}$ and $\mathbf{9 h}$ and reacted them with allyltrimethylsilane by using boron trifluoride diethyl
etherate as Lewis acid in acetonitrile (Scheme 4) to give 5 -allyl-pyrrolidin-2-one 11d and 11h in good yield (79\% and 85\% respectively) and moderate diastereoselectivity (dr 77/23 and $70 / 30$). These building blocks could be converted to natural alkaloids ${ }^{5 c}, 23$ or to peptidomimetics ${ }^{24}$ by functionalization of the double bond. It should be noted that direct treatment of unsaturated γ-lactams $\mathbf{1}$ with Lewis acid and allyltrimethylsilane did not provide compounds $\mathbf{1 1}$ and only starting material was recovered. Migration of the double bond of unsaturated γ-lactams $\mathbf{1}$ or $\mathbf{2}$ requires proton catalysis, thereby addition of Brønsted acid. ${ }^{5 a}$

Scheme 4 Addition of allylTMS via N -acyliminium ion
Compound 11d was also obtained from N - α-hydroxy- γ-lactam 10d instead of the methoxy derivative 9d. The reactivities of both these precursors for N-acyliminium are very close (90% vs 79% yield, dr $82 / 18$ vs $77 / 23$). ${ }^{18,23 a}$ However, the synthetic route involving the methoxy derivative $9 \mathbf{d}$ is more convenient, since compound 9d is easier to handle and to purify, due to its high level of chemical stability compared to the hemiaminal 10d.

Twenty years ago, Katritzky ${ }^{25}$ et al. synthesized compound 12 by reaction of $\mathbf{6 e}, \mathbf{5}$ and benzotriazole followed by cyclization using TiCl_{4} as Lewis acid. Royer ${ }^{26}$ et al. were able to obtain $\mathbf{1 2}$ by refluxing amine $\mathbf{6 e}$ and $\mathbf{5}$ in acetic acid. In 2016, compound $\mathbf{1 e}$ was obtained by Le Breton et al. by metathesis ${ }^{8 b}$ followed by cyclization using trifluoroacetic acid to give 12. We took up this synthesis starting from unsaturated γ-lactams 1e prepared in good yield (75%) as described in Table 1 (entry 5). Treatment of $\mathbf{1 e}$ with two equivalents of concentrated HCl in methanol led to isoquinolinone $\mathbf{1 2}$ in 60% yield. The benefits of our synthesis of 12 consist in shorter reaction time, no heating and no use of metal, compared with those described previously. Reduction with LiAlH_{4} gave (\pm)-crispine A 13 in 75\% yield (Scheme 5). ${ }^{27}$

Scheme 5 synthesis of (\pm)-crispine A
In conclusion, we have developed a practical, scale up (up to 100 mmol on 1f), low cost, green synthesis of pyrolidinone $\alpha, \beta-$ unsaturated γ-lactams 1 and their N - α-methoxylated derivatives 9. These compounds are useful synthetic scaffolds, as exemplified by a 3 steps preparation of racemic crispine A from 2,5-dimethoxy-2,5-dihydrofuran in 34% overall yield.

The experimental section has no title; please leave this line here.

All reagents were purchased from commercial suppliers and used without further purification. Acetonitrile was dried on $3 \AA$ molecular sieves and stocked under inert atmosphere prior to its use. The reactions were monitored by thin layer chromatography. TLC analyses were performed using aluminium plates coated with silica gel 60F 254 from Macherey Nagel and revealed under ultraviolet light (254 nm) and with a

5\% ethanolic phosphomolybdic acid bath. Common silica gel (40-70 mesh) was used for column chromatography purifications. IR spectra were recorded on a Perkin Elmer Spectrum 65 FT-IR spectrometer. NMR spectra were recorded on a Bruker Avance 400 spectrometer operating at 400 MHz for ${ }^{1} \mathrm{H}$ and at 100 MHz for ${ }^{13} \mathrm{C}$ and on a Bruker Avance 300 spectrometer operating at 300 MHz for ${ }^{1} \mathrm{H}$ and at 75 MHz for ${ }^{13} \mathrm{C}$. For ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra analyses, $\mathrm{CHCl}_{3}(7.26 \mathrm{ppm})$ and ${ }^{13} \mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$ were used as the internal references, respectively. The NMR spectra were processed with TopSpin 3.61 software. High-resolution mass spectra (HRMS) were performed on a Bruker maXi spectrometer by the "Fédération de Recherche" ICOA/CBM (FR2708) platform. Melting points (mp) were measured on a Kofler apparatus. Optical rotation data were obtained on a Perkin Elmer 541 polarimeter at ambient temperature using a 100 mm cell with a 1 mL capacity.

Procedures

Experimental procedure for unsaturated $\boldsymbol{\gamma}$-lactams (1) or (2)
In a round bottom flask, 5 mmol of amines or amino hydrochloride salts were dissolved in 5 mL of a 1M hydrochloric acid solution (5 mmol) or in 5 mL of water (for hydrochloride salts). A few drops of aqueous HCl 1 M could be added to adjust pH to 1 . The solution was kept at $40^{\circ} \mathrm{C}$ and $5 \mathrm{mmol}(610 \mu \mathrm{~L})$ of 2,5-dimethoxy-2,5-dihydrofuran were added. The reaction was allowed to progress until it became lightly yellow (7 to 20 min .). The solution was then refrigerated with a cool bath $\left(0^{\circ} \mathrm{C}\right)$ and the reaction quenched by 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 12 mL of a saturated solution of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$: the pH should increase to 7 . The cooling bath was removed and the mixture stirred vigorously for 2 hours at room temperature then extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$). After drying of the combined organic phases with MgSO_{4}, the solvent was evaporated under vacuum. The crude product could be used without further purification in the next step or purified by flash chromatography on silica gel.

Experimental procedure for α methoxy- γ-lactam synthesis (9)

Unsaturated γ-lactams $\mathbf{1}$ or $\mathbf{2}$ (6.3 mmol) were dissolved in 25 mL of MeOH . After cooling with an ice bath, $1 \mathrm{~mL}(12 \mathrm{mmol})$ of concentrated $\mathrm{HCl}(12 \mathrm{M})$ was added. The mixture was kept at room temperature under stirring for 4 h . The reaction was quenched with a saturated NaHCO_{3} solution (17 mL , imperatively until $\mathrm{pH} \approx 8$). Most of the MeOH could be evaporated and the mixture extracted with ethyl acetate ($2 \times 150 \mathrm{~mL}$) then washed with saturated brine. After drying of the combined organic phases with MgSO_{4}, the solvent was evaporated under vacuum. The crude product could be used in the next step or purified by flash chromatography on silica gel.

Experimental procedure for allylation synthesis, compounds (11)
Alpha methoxy- γ-lactam (0.5 mmol) was dissolved in 2.5 mL anhydrous acetonitrile cooled at $-78^{\circ} \mathrm{C}$ with a dry ice bath under argon, $158 \mu \mathrm{~L}$ ($1 \mathrm{mmol}, 2 \mathrm{eq}$.) of allylTMS was added then $125 \mu \mathrm{~L}$ ($1 \mathrm{mmol}, 2$ eq.) of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$. The mixture was allowed to warm slowly to room temperature under stirring for 3 h . The reaction was quenched with a saturated NaHCO_{3} solution (3 mL) and extracted with ethyl acetate (2 x 25 mL). After drying of the combined organic phases with $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, the solvent was removed under vacuum. Compounds were purified by flash chromatography on silica gel.

The known compounds 1a, 1b, 1c, 1d, 1e, 9a, 9b, 9c, 9d, 11d, 12, 13 showed characterization data in full agreement with those previously reported.

1-Allyl-1,5-dihydro-2H-pyrrol-2-one (1a) ${ }^{\text {9b }}$

Following general procedure on 4 mmol of $\mathbf{6 a}$ and after purification by column chromatography on silica gel, a mixture of compounds 1a and 2a was obtained as a brown oil in 61% yield (300 mg).
$R_{f}=0.52$ (2a), 0.25 (1a) (EtOAc).
IR (neat): 2928, 1663, 1415, 1331, 1176, 1060, 989, $928 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=7.11(\mathrm{td}, J=5.9,1.8,1 \mathrm{H}, \mathbf{1 a}), 6.40(\mathrm{td}, J=$ $4.9,2.1,1 \mathrm{H}, 2 \mathrm{a}), 5.32(\mathrm{td}, J=4.9,2.5,1 \mathrm{H}, 2 \mathrm{a}), 5.8(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.26(\mathrm{~m}$, $2 \mathrm{H}, \mathbf{1 a}), 4.08(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{t}, 1.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{a}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): $\delta=171.3$, 133.2 (1a), 132.8 (2a), 132.7 (2a) 128.0 (1a), 117.7 (2a), 117.6 (1a), 143.0 (1a), 104.5 (2a), 52.5 (1a), 44.6 (1a), 44.2 (2a), 37.5 (2a) ppm.
HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{NO}: 124.0757$; found: 124.0762.

1-Phenyl-1,5-dihydro-2H-pyrrol-2-one (1b) ${ }^{10}$

Following general procedure on 5 mmol of $\mathbf{6 b}$ and after purification by column chromatography on silica gel, compound $\mathbf{1 b}$ was obtained as a beige solid in 39% yield (310 mg).
$\mathrm{R}_{\mathrm{f}}=0.46\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}, 10: 1\right) . \mathrm{mp}=90^{\circ} \mathrm{C}$.
IR (neat): 3080, 2906, 1683, 1500, 1429, 1371, 1210, 1143, 796, 754 , $660 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=7.71(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~m}, 2 \mathrm{H})$, $6.24(\mathrm{td}, J=6.0,1.9,1 \mathrm{H}), 4.40(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=170.2,142.6,139.1,129.1,129.0,124.2$, 118.8, 53.2 ppm.

HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}$: 160.0757; found: 160.0759 .

1-Benzyl-1,5-dihydro-2H-pyrrol-2-one (1c) ${ }^{9 b}$

Following general procedure on 20 mmol of $\mathbf{6 c}$ and after purification by column chromatography on silica gel, compound 1c was obtained as a lightly yellow solid in 67% yield (2.32 g).
$\mathrm{R}_{\mathrm{f}}=0.24$ (EtOAc-cyclohexane, $60: 40$). $\mathrm{mp}=60^{\circ} \mathrm{C}$.
IR (neat): 3089, 2923, 1699, 1668, 1450, 1404, 1341, 1242, 799, 698 cm^{-1}.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta=7.42-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.09(\mathrm{dt}, J=6.0,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.25(\mathrm{dt}, J=6.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{t}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H})$ ppm.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=171.4,142.9,137.3,128.8,127.9,127.6$, 52.3, 45.9 ppm .

HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NO}$: 174.0913; found: 174.0919.

(S)-1-(1-Phenylethyl)-1,5-dihydro-2H-pyrrol-2-one (1d) ${ }^{11 \mathrm{~b}}$

Following general procedure on 2.5 mmol of $\mathbf{6 d}$ and after purification by column chromatography on silica gel, compound 1d was obtained as a yellow oil in 48% yield (225 mg) and compound 2d in 29% (135 mg).
$\mathrm{R}_{\mathrm{f}}=0.22$ (EtOAc-cyclohexane, 50:50).
$[\alpha]{ }^{20} \mathrm{D}=-154.7\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right)$.
IR (neat): 2978, 1685, 1658, 1446, 1239, 1220, $801,748,698 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta=7.35-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.01(\mathrm{dt}, J=5.9,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.39(\mathrm{dt}, J=5.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dt}, J=$ $20.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dt}, J=20.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$ ppm.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=171.1,143.1,140.9,128.6,127.7,127.5$, 126.9, 48.9, 48.7, 17.8 ppm .

HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}$: 188.1070; found: 188.1073.
(S)-1-(1-Phenylethyl)-1,3-dihydro-2H-pyrrol-2-one (2d)
$\mathrm{R}_{\mathrm{f}}=0.62(\mathrm{EtOAc}-\mathrm{cyclohexane}, 50: 50)$.
${ }^{1}{ }^{\mathrm{H}}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta 7.39-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.39(\mathrm{dt}, J=5.0,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.47(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{dt}, J=5.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{t}, J=2.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.61(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=176.5,140.9,130.2,128.7,127.6,126.7$, 104.6, 49.2, 37.8, 18.8 ppm .

1-(3-(3,4-Dimethoxyphenyl)propyl)-1,5-dihydro-2H-pyrrol-2-one $(1 e)^{8 b}$

Following general procedure on 24 mmol of $\mathbf{6 e}$ and after purification by column chromatography on silica gel, compound $\mathbf{1 e}$ was obtained as a yellow oil in 75% yield (4.44 g).
$\mathrm{R}_{\mathrm{f}}=0.21$ (EtOAc).
IR (neat): 2934, 1659, 1514, 1451, 1260, 1233, 1139, 1024, $800 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta=7.02(\mathrm{td}, J=6.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.72(\mathrm{~m}$, 3 H), 6.18 (td, $J=6.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{tl}, J=1.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.71(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=171.5148 .9,147.6,142.8,131.3,128.1$, $120.6,111.8,111.3,55.9,53.7,43.9,34.5 \mathrm{ppm}$.
HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{3}$: 248.1287; found: 248.1278.

Methyl (S)-6-(((benzyloxy)carbonyl)amino)-2-(2-oxo-2,5-dihydro-1H-pyrrol-1-yl)hexanoate (1f)

Following general procedure on 97 mmol of $\mathbf{6 f}$ and after purification by column chromatography on silica gel, compound $\mathbf{1 f}$ was obtained as a yellow oil in 78\% yield (27.3 g).
$\mathrm{R}_{\mathrm{f}}=0.31$ (EtOAc-cyclohexane, 70:30).
$[\alpha]^{20}{ }_{D}=+3.8\left(\mathrm{c}=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
IR (neat): 3322, 2930, 2864, 1673, 1529, 1444, 1239, 1203, 802, 739, $697 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta=7.36(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{dt}, J=6.11 .7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.19(\mathrm{dt}, J=6.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 4.99(\mathrm{brt}, 1 \mathrm{H}, \mathrm{NH}), 4.90(\mathrm{dd}, J=$ $10.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=20.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=20.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (s, 3H), 3.19 (dd, $J=13.1,6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.96-2.13 (m, 1H), 1.89-1.74 (m, $1 \mathrm{H}), 1.58(\mathrm{~m}, 2 \mathrm{H}), \delta 1.30(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): $\delta=172.0,171.9,156.5,144.1,136.7,128.5$, 128.1, 127.2, 66.6, 53.0, 52.3, 49.7, 40.6, 29.7, 29.2, 23.1 ppm.

HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5}$: 361.1758; found: 361.1756.

Methyl-(S)-2-(2-oxo-2,5-dihydro-1H-pyrrol-1-yl)-3phenylpropanoate $(1 \mathrm{~g})$

Following general procedure on 10 mmol of $\mathbf{6 g}$ and after purification by column chromatography on silica gel, compound 1 g was obtained as a yellow oil in 65% yield (1.6 g) and compound $\mathbf{2 g}$ in $2 \% ~(50 \mathrm{mg})$.
$\mathrm{R}_{\mathrm{f}}=0.27$ (EtOAc-cyclohexane, 50:50).
$[\alpha]^{20}{ }_{D}=-36.1\left(\mathrm{c}=0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
IR (neat): 3029, 2952, 1739, 1682, 1662, 1436, 1241, 1207, 1168, 802, $748,699 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta=7.36-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{dt}, J=6.1,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.15(\mathrm{dt}, J=6.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=10.5,5.8 \mathrm{~Hz}, 1 \mathrm{H})$,), 4.20 (dt, $J=19.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.95(\mathrm{dt}, J=19.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.45$ (dd, $J=14.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.13 (dd, $J=14.310 .3 \mathrm{~Hz}, 1 \mathrm{H}$) ppm.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=171.7,171.5,143.9,136.3,128.7,128.6$, $127.1,127.2,54.4,52.4,50.5,36.1 \mathrm{ppm}$.
HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{3}$: 246.1125; found: 240.1124.

Methyl-(S)-2-(2-oxo-2,3-dihydro-1H-pyrrol-1-yl)-3phenylpropanoate $2(\mathrm{~g})$
$\mathrm{R}_{\mathrm{f}}=0.50$ (EtOAc-cyclohexane, 50:50)
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta=7.36-7.15(\mathrm{~m}, 5 \mathrm{H}), 6.57(\mathrm{dt}, J=5.1,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.29(\mathrm{dq}, J=2.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=9.8,5.8,1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, $3.35(\mathrm{dd}, J=14.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=14.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{t}, J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=176.7,170.8,135.9,130.8,129.0,128.6$, 127.1, 104.2, 54.5, 52.5, 37.1, 36.9 ppm .

Methyl-(S)-3-methyl-2-(2-oxo-2,5-dihydro-1H-pyrrol-1yl)butanoate (1h)
Following general procedure on 2 mmol of $\mathbf{6 h}$ and after purification by column chromatography on silica gel, compound $\mathbf{2 h}$ was obtained as a yellow oil in 51% yield (200 mg) and compound $\mathbf{1 h}$ in 25% (98 mg).
Rf : 0.28 (EtOAc-cyclohexane, 50:50).
$[\alpha]{ }^{\mathbf{2 0}}{ }_{\mathbf{D}}=-61.7\left(\mathrm{c}=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
IR (neat): 2963, 2877, 1739, 1669, 1436, 1243, 1199, 1175, $803 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=7.14(\mathrm{dt}, J=6.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dt}, J=$ $6.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dt}, J=20.6,1.7,1 \mathrm{H}), 3.99$ ($\mathrm{dt}, J=20.6,1.7,1 \mathrm{H}$), $3.68(\mathrm{~s}, 3 \mathrm{H}), 2.2(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.85$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$) ppm.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=171.8,171.6,144.1,126.9,59.4,51.9,50.2$, 29.3, 19.3, 19.0 ppm .

HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{3}$: 198.1125; found: 198.1126.

Methyl-(S)-3-methyl-2-(2-oxo-2,3-dihydro-1H-pyrrol-1yl)butanoate (2h)

$\mathrm{R}_{\mathrm{f}}=0.57$ (EtOAc-cyclohexane, 50:50).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=6.76(\mathrm{dt}, J=4.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{q}, J=2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H})$, $1.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H} \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=177.0,171.2,131.0,104.0,59.0,52.1,36.9$, 30.4, 19.2, 18.8 ppm .

Methyl-(2S)-2-(2,5-dihydroxy-2,5-dihydro-1H-pyrrol-1-yl)-3-

 phenylpropanoate (7 g)In a NMR tube, 43 mg (0.2 mmol) of L-Phenylalanine methyl ester hydrochloride $\mathbf{6 g}$ were dissolved in 0.6 mL of $\mathrm{D}_{2} \mathrm{O}$. A few drops of HCl 1 M were added to adjust pH to 1 , followed by $25 \mu \mathrm{~L}(0.2 \mathrm{mmol})$ of $2,5-$ dimethoxy-2,5-dihydrofuran. After 10 min at $25^{\circ} \mathrm{C}$, the reaction was complete (see NMR spectra).
${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 300 \mathrm{MHz}$): $\delta=7.28-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.00$ (m, 3H), $5.70(\mathrm{~m}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 4.28$ (dd, $J=7.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ (s, 3 H), $3.22(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 6 \mathrm{H}, \mathrm{MeOH}), 3.11(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 75 \mathrm{MHz}$): $\delta=169.9,133.6,131.9,131.5,129.3,129.2$, $128.0,101.6,100.4,54.0,53.5,48.8(\mathrm{MeOH}), 35.5 \mathrm{ppm}$.

1-Allyl-5-methoxypyrrolidin-2-one (9a) ${ }^{16 b}$

Following general procedure on 1.54 mmol of purified $\mathbf{1 a}$, after evaporation, compound 9a was obtained as a lightly yellow oil in 67% yield (160 mg).

IR (neat): 2935, 1685, 1444, 1414, 1245, 1188, 1075, $884,656 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=5.87-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.30-5.19(\mathrm{~m}, 2 \mathrm{H}), 4.93$ (dd, $J=6.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.30 (dddd, $J=15.3,4.6,3.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.63 (dddd, $J=15.3,7.5,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.56$ (ddd, $J=17.2,9.0$, $9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.38 (ddd, $J=17.2,9.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.10-$ $1.98(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=174.8,132.4,117.9,89.4,53.0,42.8,29.0$, 23.9 ppm .

HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NO}_{2}$: 156.1025; found: 156.1018.

5-Methoxy-1-phenylpyrrolidin-2-one (9b) ${ }^{20 b}$

Following general procedure (except stirring for 22 h) on 0.7 mmol of purified 1b and after purification by column chromatography on silica gel, compound $9 \mathbf{9}$ was obtained as a lightly yellow oil in 75% yield (102 mg).
$\mathrm{R}_{\mathrm{f}}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 10: 1\right)$.
IR (neat): 2935, 2828, 1698, 1497, 1394, 1293, 1193, 1067, 756, 692 cm^{-1}.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=7.54(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 1 \mathrm{H})$, $5.34(\mathrm{dd}, J=5.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.77$ (ddd, $J=17.3,9.3,9.3 \mathrm{~Hz}$, 1 H), 2.50 (ddd, $J=17.3,9.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.09(\mathrm{~m}$, 1H) ppm.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): $\delta=174.5,137.9,129.0,126.1,123.2,92.0$, $53.6,30.0,24.4 \mathrm{ppm}$.

HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{2}$: 192.1025; found: 192.1017.

1-Benzyl-5-methoxypyrrolidin-2-one (9c) ${ }^{\mathbf{2 0}}$

Following general procedure on 0.8 mmol of crude $\mathbf{1 c}$ and after purification by column chromatography on silica gel, compound 9 c was obtained as a lightly yellow oil in 65% yield (107 mg).
Rf : 0.65 (EtOAc).
IR (neat): 2933, 2828, 1691, 1442, 1417, 1244, 1171, 1073, $703 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=7.40-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.96(\mathrm{~d}, J=14.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.74(\mathrm{dd}, J=6.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H})$, 2.59 (ddd, $J=17.2,8.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.39$ (ddd, $J=17.2,9.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.17-1.93 (m, 2H) ppm.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=23.7,29.0,43.8,53.0,89.0,127.6,128.4$, 128.7, 136.4, 174.9.

HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{2}:$ 206.1181; found: 2061187.

5-Methoxy-1-((S)-1-phenylethyl)pyrrolidin-2-one (9d) ${ }^{11 \mathrm{~b}}$

Following general procedure on 1.5 mmol of purified 1d and after purification by column chromatography on silica gel, compound 9d was obtained as a yellow oil in 74% yield (243 mg) as 2 diastereoisomers (dr 33/67).

Rf : 0.53 (dia major), 0.44 (dia minor) (EtOAc-cyclohexane 70:30).
IR (neat): 2935, 2828, 1691, 1462, 1425, 1244, 1182, 1078, $745 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta=7.46-7.17(\mathrm{~m}, 5 \mathrm{H}), 5.35(\mathrm{q}, J=7.2 \mathrm{~Hz}, 0.7 \mathrm{H}$, dia major), 5.12 ($\mathrm{q}, J=7.2 \mathrm{~Hz}, 0.3 \mathrm{H}$, dia minor), 5.03 (dd, $J=6.2,1.1 \mathrm{~Hz}$, 0.3 H , dia minor), $4.46(\mathrm{~m}, 0.7 \mathrm{H}$, dia major), 3.13 ($\mathrm{s}, 2 \mathrm{H}$, dia minor), 2.94 (s, 1H, dia minor), 2.6-2.46 (m, 1H), 2.22-2.36 (m, 1H), 2.17-1.94 (m, 0.6 H , dia minor), 1.94-1.82 (m, 1.4H, dia major), $1.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, dia minor), 1.61 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, dia major) ppm.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): $\delta=175.0$ (dia minor), 174.8 (dia major), 141.4 (dia minor), 139.9 (dia major), 128.6 (dia major), 127.7 (dia major + minor), 128.1 (dia minor), 127.4 (dia major), 127.2 (dia minor), 89.1 (dia major), 88.9 (dia minor), 52.6 (dia major), 52.1 (dia minor), 51.3 (dia minor), 50.5 (dia major), 29.5 (dia minor), 29.2 (dia major), 24.2 (dia minor), 24.0 (dia major), 18.1 (dia major), 17.6 (dia minor) ppm.
HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}: 220.1337$; found: 220.1341.

Methyl-(2S)-6-(((benzyloxy)carbonyl)amino)-2-(2-methoxy-5-oxopyrrolidin-1-yl)hexanoate (9f)

Following general procedure on 18.4 mmol of purified $\mathbf{1 f}$ and after purification by column chromatography on silica gel, compound $\mathbf{9 f}$ was obtained as a yellow oil in 82% yield (5.9 g) as 2 diastereoisomers (dr 53/47).

Rf: 0.4 (EtOAc-cyclohexane, 70:30).
IR (neat): 3339, 2948, 1693, 1243, 1075, 731, $697 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=7.37(\mathrm{~m}, 5 \mathrm{H}) 5.12(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{Brd}, 1 \mathrm{H}$, NH), 4.86 ($\mathrm{Brd}, J=5.4 \mathrm{~Hz}, 0.8 \mathrm{H}$), 4.69 (dd, $J=5.3,10.0 \mathrm{~Hz}, 0.6 \mathrm{H}$), 4.49 (dd, $J=9.1,6.1 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.78 ($\mathrm{s}, 1.4 \mathrm{H}$, dia minor), 3.71 ($\mathrm{s}, 1.6 \mathrm{H}$, dia major), 3.29 ($\mathrm{s}, 1.4$, dia minor), 3.26 ($\mathrm{s}, 1.6 \mathrm{H}$, dia major), 3.19 ($\mathrm{m}, 2 \mathrm{H}$), 2.60 (m , $1 \mathrm{H}), 2.43-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.23-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.26(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): $\delta=176.1,175.1,171.8,171.3,156.5,136.6$, 128.5, 128.1, 90.3, 88.9, 66.6, 54.1, 53.9, 53.5, 52.7, 52.4, 52.3, 40.6, 40.5, 30.0, 29.3, 29.2, 28.8, 28.4, 27.4, 24.5, 24.3, 23.2, 23.0 ppm .

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NNaO}_{6}: 415.1840$; found: 415.1838.

Methyl-(2S)-2-(2-methoxy-5-oxopyrrolidin-1-yl)-3phenylpropanoate (9g)

Following general procedure on 6.3 mmol of purified $\mathbf{1 g}$ and after purification by column chromatography on silica gel, compound 9 g was obtained as a yellow oil in 81% yield (1.41 g) as 2 diastereoisomers dr 57/43.

Rf : 0.3 (EtOAc-cyclohexane, 40:60).
IR (neat): 2950, 1739, 1694, 1436, 1416, 1240, 1194, 1169, 1075, 749 $699 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta=7.18-7.36(\mathrm{~m}, 5 \mathrm{H})$), $4.92(\mathrm{~m}, 0.83 \mathrm{H}$, dia minor), 4.50 (dd, $J=9.5,6.5 \mathrm{~Hz}, 0.58 \mathrm{H}$, dia major), $4.41(\mathrm{t}, J=3.7 \mathrm{~Hz}$, 0.58 H , dia major), 3.75 ($\mathrm{s}, 1.7 \mathrm{H}$, dia major), 3.71 ($\mathrm{s}, 1.3 \mathrm{H}$, dia minor), 3.27-3.47 ($\mathrm{m}, 2 \mathrm{H}$), $3.22(\mathrm{~s}, 1.7 \mathrm{H}$, dia major), $3.16(\mathrm{~s}, 1.3 \mathrm{H}$, dia minor), 2.46-2.62 (m, 1H), 2.17-2.35 (m, 1H), 1.89-2.02 (m, 2H) ppm.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): $\delta=23.9$ (dia minor), 24.0 (dia major), 28.7 dia minor), 28.8 (dia major), 34.1 (dia minor), 35.7 (dia major), 52.4 (dia minor), 52.5 (dia major), 52.5 (dia major), 53.7 (dia minor), 56.6 (dia major), 88.7 (dia minor), 90.6 (dia major), 126.7 (dia minor), 126.8 (dia major), 128.5,128.9, 129.1, 136.8 (dia minor), 137.7 (dia major), 170.7 (dia major), 171.0 (dia minor), 174.9 (dia minor), 175.0 (dia major).

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NNaO}_{4}: 300.1206$; found: 300.1205 .

Methyl-(2S)-2-(2-methoxy-5-oxopyrrolidin-1-yl)-3methylbutanoate (9h)

Following general procedure on 6.4 mmol of purified $\mathbf{1 h}$ and after purification by column chromatography on silica gel, compound $\mathbf{9 h}$ was obtained as a yellow oil in 70% yield $(1.08 \mathrm{~g})$ as 2 diastereoisomers (dr 60/40).
Rf : 0.32 (dia major), 0.41 (dia minor), (EtOAc-cyclohexane 50:50).
IR (neat): 2955, 2829, 1740, 1699, 1415, 1243, 1192, 1174, $1072 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $4.81(\mathrm{~m}, 0.6 \mathrm{H}$, dia major), $4.81(\mathrm{~m}, 0.34 \mathrm{H}$, dia minor), 4.43 (d, $0.34 \mathrm{H}, J=10.9 \mathrm{~Hz}$, dia minor), 4.31 ($\mathrm{d}, 0.6 \mathrm{H}, J=9.4 \mathrm{~Hz}$, dia major), 3.71 ($\mathrm{s}, 1.1 \mathrm{H}$, dia minor), 3.68 ($\mathrm{s}, 1.9 \mathrm{H}$, dia major), 3.31 (s , 1.1 H , dia minor), 3.20 ($\mathrm{s}, 1.9 \mathrm{H}$, dia major), $2.60(\mathrm{~m}, 1 \mathrm{H}$), 2.40-2.22 (m, 2H), 2.09-2.00 (m, 2H), 1.01 (d, 1.9H, J = 6.6 Hz , dia major), 0.98 (d, 1.1H, $J=6.8 \mathrm{~Hz}$, dia minor), $0.96(\mathrm{~d}, 1.1 \mathrm{H}, J=6.8 \mathrm{~Hz}$, dia minor), $0.81(\mathrm{~d}, 1.9 \mathrm{H}, J$ $=6.6 \mathrm{~Hz}$, dia major) ppm.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): $\delta=175.9$ (dia minor), 175.0 (dia major), 171.5 (dia minor), 170.8 (dia major), 90.3 (dia minor), 88.5 (dia major), 58.3 (dia major), 54.2 (dia major), 54.0 (dia minor), 52.0 (dia major), 51.8 (dia minor), 29.8 (dia minor), 28.3 (dia major and minor), 27.0 (dia major), 24.7 (dia minor), 24.6 (dia major), 19.8 (dia major), 19.7 (dia minor), 19.4 (dia minor), 18.6 (dia major) ppm.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NNaO}_{4}: 252.1206$; found: 252.1207.

5-Allyl-1-((S)-1-phenylethyl)pyrrolidin-2-one (11d) ${ }^{19,23 a}$

Following general procedure on 0.5 mmol and after purification by column chromatography on silica gel, compound 11d was obtained as a colorless oil in 79\% yield (90 mg) as 2 diastereoisomers dr 77/23.

Rf : 0.38 (EtOAc-cyclohexane, 50:50).
IR (neat): 2974, 2935, 1675, 1411, 1260, 1026, $699 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): 7.45-7.23 (m, 5H), 5.70-5.38 (m, 2H), 5.11$4.85(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{tt}, J=8.2,3.2 \mathrm{~Hz}, 0.77 \mathrm{H}$, dia major), $3.34(\mathrm{tt}, J=8.2$, $3.1 \mathrm{~Hz}, 0.23 \mathrm{H}$, dia minor), 2.59-2.44 (m, 1H), 2.41-2.27 (m, 1H), 2.17-2.01 (m, 1H), 1.98-1.85 (m, 1H), 1.83-1.67 (m, 2H), 1.66 (d, J=7.1 Hz, 3H) ppm.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): $\delta=175.4$ (dia major), 175.3 (dia minor), 141.9 (dia major), 139.7 (dia minor), 133.3 (dia major), 133.2 (dia minor), 128.6 (dia minor), 128.4 (dia major), 127.6 (dia minor), 127.4 (dia major), 127.2 (dia major), 118.2 (dia major), 56.5 (dia minor), 56.2 (dia major), 50.6 (dia minor), 49.4 (dia major), 39.6 (dia minor), 38.8 (dia major), 30.3, 23.9 (dia major), 23.7 (dia minor), 18.3 (dia minor), 16.3 (dia major) ppm.

HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}: 230.1545$; found: 230.1548.

Methyl-(2S)-2-(2-allyl-5-oxopyrrolidin-1-yl)-3-methylbutanoate (11h)

Following general procedure on 0.5 mmol and after purification by column chromatography on silica gel, compound $\mathbf{1 1 h}$ was obtained as a colorless oil in 85% yield (102 mg) as 2 diastereoisomers (dr 70/30).

Rf : 0.5 (EtOAc-cyclohexane, 50:50)
IR (neat): 2965, 2875, 1739, 1686, 1412, 1252, 1203, 1008, $916 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta=5.84-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.21-5.10(\mathrm{~m}, 2 \mathrm{H}), 4.36$ (d, $J=10.7 \mathrm{~Hz}, 0.3 \mathrm{H}$, dia minor), 4.10 (d, $J=10.2 \mathrm{~Hz}, 0.7 \mathrm{H}$, dia major), $3.74(\mathrm{~s}, 2.1 \mathrm{H}$, dia major), 3.72 ($\mathrm{s}, 1.0 \mathrm{H}$, dia minor), 3.77-3.71 (m, 0.3H, dia minor), 3.70-3.60 (m, 0.7H, dia major), 2.70-2.60 ($\mathrm{m}, 0.7 \mathrm{H}$, dia major), 2.54-2.03 (m, 5.6H), 1.92-1.76 (m, 1H), $1.05(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 0.9 \mathrm{H}$, dia minor), 1.04 (d, $J=6.6 \mathrm{~Hz}, 2.1 \mathrm{H}$, dia major), 0.96 (d, $J=6.6 \mathrm{~Hz}, 2.1 \mathrm{H}$, dia major), $0.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 0.9 \mathrm{H}$, dia minor) ppm .
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): $\delta=176.0$ (dia minor), 175.6 (dia major), 171.7 (dia minor), 170.5 (dia major), 133.4 (dia major), 133.3 (dia minor), 118.6 (dia minor), 118.5 (dia major), 61.6 (dia major), 59.8 (dia minor), 59.1 (dia major), 56.3 (dia minor), 51.9, 38.5 (dia major), 37.8 (dia minor), 29.6 (dia major), 29.5 (dia minor), 29.1 (dia major), 26.7 (dia minor), 24.2 (dia minor), 24.0 (dia major), 20.5 (dia major), 20.1 (dia minor), 19.3 (dia minor), 19.2 (dia major) ppm.

HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NO}_{3}: 240.1594$; found: 240.1596.

8,9-Dimethoxy-1,5,6,10b-tetrahydropyrrolo[2,1-a]isoquinolin3 (2H)-one (12) ${ }^{8 \mathrm{~b}, 25,26}$
Following general procedure on 0.5 mmol on purified $\mathbf{1 e}$ and after purification by column chromatography on silica gel, compound $\mathbf{1 2}$ was obtained as a brown solid in 60% yield (72 mg).

Rf : $=0.22$ (EtOAc). $\mathrm{mp}=100-104^{\circ} \mathrm{C}$.
IR (neat): 2937, 1674, 1513, 1417, 1253, 1229, 1117, 1027, 1005, 861, $766 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=6.60(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33$ (dd, $J=12.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.04$ (ddd, $J=11.9,11.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.90 (ddd, $J=11.4,11.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.43$ (m, 4H), $1.86(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=173.2,148.1,147.9,129.3,125.5,111.7$ $107.6,56.6,56.1,55.9,37.1,31.8,28.1,27.8 \mathrm{ppm}$.

HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{3}: 248.1281$; found: 248.1283.

\pm Crispine A (13) ${ }^{27}$

Under an argon atmosphere, lithium aluminum hydride (50 mg , 1.3 mmol) was dissolved in anhydrous tetrahydrofuran (7 mL) and the solution cooled to $0^{\circ} \mathrm{C}$. Compound 12 ($60 \mathrm{mg}, 0.24 \mathrm{mmol}$) dissolved in anhydrous tetrahydrofuran (3 mL) was added dropwise to the hydride solution at $0{ }^{\circ} \mathrm{C}$ then the resulting solution heated under reflux for 3 h and stirred for a further 18 h at room temperature. Diethyl ether (3 mL) was added and the reaction was quenched by careful addition of saturated sodium potassium tartrate (0.5 mL). The mixture was stirred for a further 1 h before the addition of anhydrous magnesium sulfate prior to filtration on a Büchner funnel. The filtrate was evaporated under reduced pressure and the resultant yellow solid was purified by column chromatography on silica gel and $10: 1.5 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ methanol was used as eluent. Compound 13 was obtained as a white solid in 75% yield (42 mg).

Rf : $=0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 10: 1.5\right) . \mathrm{mp} 86^{\circ} \mathrm{C}$ (lit. mp 88-89 ${ }^{\circ} \mathrm{C}$).
IR (neat): 2936, 2789, 1607, 1508, 1372, 1211, 1135, 1014, 856, 761 cm^{-1}.
${ }^{1} \mathrm{H}$ NMR (CDCl $3,300 \mathrm{MHz}$): $\delta=6.65(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.88$ ($\mathrm{s}, 3 \mathrm{H}$), $3.44(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-3.17(\mathrm{~m}, 1 \mathrm{H}), 3.17-2.99(\mathrm{~m}, 2 \mathrm{H})$, 2.82-2.52 (m, 3H), 2.42-2.29 (m, 1H), 2.07-1.84 (m, 2H), 1.84-1.68 (m, 1H) ppm.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): $\delta=147.3,147.2,131.0,126.2,111.3,108.8$ 63.0, 56.0, 55.9, 53.2, 48.4, 30.5, 28.1, 22.2 ppm.

HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2}$: 234.1488; found: 234.1493.

Funding Information

Financial support of this work by Université de Paris (grant to Sébastien Thueillon).

Acknowledgment

The authors wish to thank Dr. Jean-François Betzer (ICSN, CNRS) for fruitful scientific discussions during the preparation of this manuscript.

Supporting Information

YES (this text will be updated with links prior to publication)

Primary Data

NO (this text will be deleted prior to publication)

References

(1) a) Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Laboratoire de Catalyse Moléculaire, Bâtiment 420, 91405 Orsay, France. b) NOVECAL, 86 rue de Paris, 91400 Orsay, France.
(2) Baussanne, I.; Dudot, B.; Perard-Viret, J.; Planas, L.; Royer, J. Arkivoc 2006, 57-66.
(3) Toffano, M.; Dudot, B.; Zaparucha, A.; Royer, J.; Sevrin, M.; George, P.; Chiaroni, A. Tetrahedron: Asymmetry 2003, 14, 3365-3370.
(4) (a) Wu, P.; Nielsen, T. E. Chem. Rev. 2017, 117, 7811-7856. (b) Speckamp, W. N.; Moolenaar, M. J. Tetrahedron 2000, 56, 38173856.
(5) (a) Planas, L.; Pérard-Viret, J.; Royer, J. J. Org. Chem. 2004, 69, 30873092. (b) Yoritate, M.; Takahashi, Y.; Tajima, H.; Ogihara, C.;

Yokoyama, T.; Soda, Y.; Oishi, T.; Sato, T.; Chida, N. J. Am. Chem. Soc. 2017, 139, 18386-18391. (c) Bosque, I.; Gonzalez-Gomez, J. C.; Loza, M. I.; Brea, J. J. Org. Chem. 2014, 79, 3982-3991. (d) Toyooka, N.; Zhou, D.; Nemoto, H. J. Org. Chem. 2008, 73, 4575-4577.
(6) Pelkey, E. T.; Pelkey, Sarah, J.; Greger, J. G. Adv. Heterocycl. Chem. 2015, 115, 151-285.
(7) . Bocchi, V.; Chierici, L.; Gardini, G. P.; Mondelli, R. Tetrahedron 1970, 26, 4073-4082.
(8) (a) Rio, G.; Masure, D. Bull. Soc. Chim. Fr. 1972, 4598-4604. (b) Jebali, K.; Planchat, A.; Amri, H.; Mathé-Allainmat, M.; Lebreton, J. Synthesis 2016, 48, 1502-1517. (c) del Corte, X.; Marigorta, E. M. De; Palacios, F.; Vicario, J.; Corte, X.; Marigorta, E. M. De; Palacios, F.; Vicario, J. Molecules 2019, 24, 2951.
(9) (a)Santaniello, E.; Casati, R.; Manzocchi, A. J. Chem. Soc. Perkin Trans 1 1985, 2389-2392. (b) Curti, C.; Ranieri, B.; Battistini, L.; Rassu, G.; Zambrano, V.; Pelosi, G.; Casiraghi, G.; Zanardi, F. Adv. Synth. Catal. 2010, 352, 2011-2022.
(10) Zhukovsky, D.; Dar'in, D.; Kantin, G.; Krasavin, M. European J. Org. Chem. 2019, 2019, 2397-2400.
(11) (a) Baussanne, I.; Chiaroni, A.; Husson, H. P.; Riche, C.; Royer, J. Tetrahedron Lett. 1994, 35, 3931-3934. (b) Poli, G.; Baffoni, S. C.; Giambastiani, G.; Reginato, G. Tetrahedron 1998, 54, 10403-10418. (c) Katritzky, A. R.; Mehta, S.; He, H. Y.; Cui, X. J. Org. Chem. 2000, 65, 4364-4369. (d) Saygili, N.; Altunbas, A.; Yesilada, A. Turkish J. Chem. 2006, 30, 125-130. (e) Halie, D.; Pérard-Viret, J.; Royer, J. Heterocycles 2006, 57-66. (f) Alves, J. C. F. J. Braz. Chem. Soc. 2007, 18, 855-859.
(12) (a) Petersen, M. T.; Nielsen, T. E. Org. Lett. 2013, 15, 1986-1989. (b) Gratais, A.; Pannecoucke, X.; Bouzbouz, S. Synlett 2014, 25, 15551560. (c) Ye, L. W.; Shu, C.; Gagosz, F. Org. Biomol. Chem. 2014, 12, 1833-1845.
(13) Integration area at 5.7 and 6.0 ppm accounts for 3.6 protons instead of 4 , as reaction took place in $D_{2} \mathrm{O}$ and some deuterium was incorporated. A HSQC spectrum (see supporting information) confirmed the structure.
(14) Pelkey, E. T.; P elkey, S. J.; Greger, J. G. Adv. Heterocycl. Chem. 2019, 128, 433-565.
(15) Zaragoza-Galicia, I.; Santos-Sánchez, Z. A.; Hidalgo-Mercado, Y. I.; Olivo, H. F.; Romero-Ortega, M. Synthesis. 2019, 51, 4650-4656.
(16) (a) Hubert, J. C.; Steege, W.; Speckamp, W. N.; Huisman, H. O. Synth. Commun. 1971, 1, 103-109. (b) Berthet, M.; Beauseigneur, A.; Moine, C.; Taillier, C.; Othman, M.; Dalla, V. Chem. - A Eur. J. 2018, 24, 1278-1282.
(17) Bennett, D. J.; Blake, A. J.; Cooke, P. A.; Godfrey, C. R. A.; Pickering, P. L.; Simpkins, N. S.; Walker, M. D.; Wilson, C. Tetrahedron 2004, 60, 4491-4511.
(18) Bailey, P. D.; Baker, S. R.; Boa, A. N.; Clayson, J.; Rosair, G. M. Tetrahedron Lett. 1998, 39, 7755-7758.
(19) Polniaszek, R. P.; Belmont, S. E.; Alvarez, R. J. Org. Chem. 1990, 55, 215-223.
(20) (a) Holsten, M.; Beller, M.; Papa, V.; Junge, K.; Adam, R.; CabreroAntonino, J. R. Chem. Sci. 2017, 8, 5536-5546. (b) Cabrero-Antonino, J. R.; Sorribes, I.; Junge, K.; Beller, M. Angew. Chemie - Int. Ed. 2016, 55, 387-391.
(21) Ding, G.; Lu, B.; Li, Y.; Wan, J.; Zhang, Z.; Xie, X. Adv. Synth. Catal. 2015, 357, 1013-1021.
(22) The reaction with aqueous HCl 12 M could be done in ethanol to give N - α-ethoxylated derivatives and in acetonitrile to obtain the $N-\alpha$ hydroxylated derivatives with less efficiency.
(23) (a) Butters, M.; Davies, C. D.; Elliott, M. C.; Hill-Cousins, J.; Kariuki, B. M.; Ooi, L. L.; Wood, J. L.; Wordingham, S. V. Org. Biomol. Chem. 2009, 7, 5001-5009. (b) Kotha, S.; Pulletikurti, S. Synthesis. 2019, 51, 3981-3988.
(24) Toum, V.; Bolley, J.; Lalatonne, Y.; Barbey, C.; Motte, L.; Lecouvey, M.; Royer, J.; Dupont, N.; Pérard-Viret, J. Eur. J. Med. Chem. 2015, 93, 360-372.
(25) Katritzky, A. R.; Mehta, S.; He, H. Y. J. Org. Chem. 2001, 66, 148-15.
(26) Fontaine, H.; Baussanne, I.; Royer, J. Synth. Commun. 1997, 27, 2817-2824.
(27) (a) Allin, S. M.; Gaskell, S. N.; Towler, J. M. R.; Bulman Page, P. C.; Saha, B.; McKenzie, M. J.; Martin, W. P. J. Org. Chem. 2007, 72 8972-8975. (b) Mons, E.; Wanner, M. J.; Ingemann, S.; Maarseveen, J. H. Van; Hiemstra, H. J. Org. Chem. 2014, 79, 7380-7390.

