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Abstract
Modelling nonlinear phenomena in thin rubber shells calls for stretch-based material models, such as the Ogden model which conve-
niently utilizes eigenvalues of the deformation tensor. Derivation and implementation of such models have been already made in Finite
Element Methods. This is, however, still lacking in shell formulations based on Isogeometric Analysis, where higher-order continuity
of the spline basis is employed for improved accuracy. This paper fills this gap by presenting formulations of stretch-based material
models for isogeometric Kirchhoff-Love shells. We derive general formulations based on explicit treatment in terms of derivatives
of the strain energy density functions with respect to principal stretches for (in)compressible material models where determination of
eigenvalues as well as the spectral basis transformations is required. Using several numerical benchmarks, we verify our formulations
on invariant-based Neo-Hookean and Mooney-Rivlin models and with a stretch-based Ogden model. In addition, the model is applied
to simulate collapsing behaviour of a truncated cone and it is used to simulate tension wrinkling of a thin sheet.
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1. Introduction
To model phenomena like wrinkling in membranes [1–5] or

the deformation of biological tissues [6–8], thin shell formula-
tions with non-linear hyperelastic material models are typically
used. These material models are defined using a strain energy
(density) function, which measures the strain energy stored in the
material when deformed [9]. Material models with strain energy
density functions based on the invariants (i.e. invariant-based
models) of the deformation tensor, such as the Neo-Hookean or
the Mooney-Rivlin formulations, have been widely used to study
wrinkling or deformation of biological tissues. However, for rub-
ber materials or living organs such as the liver, spine, skin, rec-
tum, bladder or the aorta, material models defined by the eigen-
values and eigenvectors of the deformation tensor (i.e. stretch-
based models) such as the Ogden, Sharriff or exponential and
logarithmic models [10–12] provide better accuracy of material
characteristics with respect to experimental tests [13–15].

To include hyperelastic material models into shell formula-
tions, derivatives of the strain energy density function with re-
spect to the components of the deformation tensor are required to
define the stress and material tensors. For invariant-based mod-
els, this is generally a straight-forward exercise, since the invari-
ants of the deformation tensor are defined in terms of the com-
ponents of the deformation tensor. However, for stretch-based
models, these derivatives result in stress and material tensors de-
fined in the spectral basis (i.e. in terms of the eigenvectors),
making incorporation of these models non-trivial. The first in-
corporation of stretch-based material models in the Finite Ele-
ment Method (FEM) was obtained for axisymmetric problems
[16, 17] and later the extension to generally shaped shells was
made [8, 18, 19]. In these works, either closed-form expres-
sions of the tangents of the principal stretches [17, 19] were ob-
tained, or explicit computation of principal directions and values
[16, 20, 21] was performed. In the former case, an unknown
stretching parameter is used, which can be eliminated for incom-
pressible models [22] and, in fact, imposes numerical difficulties
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when applied to compressible shells [22, 23]. In the latter case,
principal directions and values need to be solved using an eigen-
value problem and a tensor transformation is required. However,
for compressible materials no additional parameters are required.

With the advent of isogeometric analysis (IGA) [24], new
spline-based shell formulations have been presented [25–27].
The advantage of these formulations is that the geometry is ex-
actly preserved after discretization and that arbitrary continuity
of the basis functions across element boundaries provides high
convergence rates and allows for achieving necessary continu-
ities in variational formulations, for instance leading to rotation-
free Kirchhoff-Love shell formulations [25, 28]. These formu-
lations have been used to advance the development of refine-
ment splines [29] and to optimize shell structures [30], amongst
other developments. A general hyperelastic isogeometric shell
formulation has been developed for general compressible and in-
compressible material models [31] and specific formulations for
biological membranes have been obtained [32]. Roohbakashan
and Sauer [7] developed formulations to eliminate numerical
through-thickness integration for hyperelastic Kirchhoff-Love
shells. Isogeometric Kirchhoff-Love shell formulations are suc-
cessfully used for biomedical applications to model aortic valve
closure [33] and bioprosthetic heart valve dynamics [34, 35] as
well as for industrial applications to perform buckling, vibration
and nonlinear deformation analyses of composite wind turbine
blades [36, 37]. However, all advances in [7, 31–34, 36] em-
ploy the derivatives of the strain energy density function with
respect to the components of the deformation tensor, thus appli-
cation of these works is possible for invariant-based models. On
the other hand, stretch-based models such as the Ogden model re-
quire specific treatment of the spectral deformation tensor the ex-
isting generalized formulations. Contrary to the aforementioned
developments in the FEM context, stretch-based material mod-
els have not yet been considered in isogeometric Kirchhoff-Love
shell formulations.

In this paper we present mathematical formulations for the in-
corporation of stretch-based material models in the isogeometric
Kirchhoff-Love shell model for (in)compressible material mod-
els. This enables the use of stretch-based material models such as
the Ogden model together with the efficient Kirchhoff-Love shell
formulation in isogeometric analysis, for application on wrin-
kling analysis or biomechanical simulations. The formulations

Preprint submitted to SPM May 25, 2021



hold for material models defined for 3D continua which are in-
tegrated over the shell thickness. We employ explicit determi-
nation of the principal directions and values applicable to com-
pressible and incompressible materials. The tensor transforma-
tion from the spectral to the curvilinear basis - which is needed
for compatibility with existing codes - implies additional com-
putational costs compared to a component-based formulation.
These costs are minimised by using minor and major symme-
try of the hyperelastic material tensor. Besides comparison with
analytical solutions, the model is applied to simulate structural
instabilities: the collapse of a truncated cone [19] and the wrin-
kling phenomenon in a stretched sheet. These instabilities are
captured with (extended) arc-length methods [38, 39], combined
with IGA [40]. The former simulation reveals the complex col-
lapse behaviour of the truncated cone when using the arc-length
method; something that was not reported in literature before. For
the latter simulation, this paper reports the first IGA results for
this case, compared to results from commercial FEM packages.

Following the introduction of notations, preliminary identi-
ties and the isogeometric Kirchhoff-Love shell formulation back-
grounds (Section 2), we derive the stretch-based formulations in-
cluding numerical procedures (Section 3) and discuss the isogeo-
metric Kirchhoff-Love shell implementation aspects (Section 4).
The model is benchmarked with analytical or reference solutions
and it is applied to model the collapse behaviour of a truncated
cone and the wrinkling formation in a stretched thin sheet in Sec-
tion 5. Concluding remarks follow in Section 6.
2. The Kirchhoff-Love Shell Model

Using continuum mechanics and tensor calculus [41–43], the
isogeometric Kirchhoff-Love formulations [7, 25, 31, 44] are
briefly summarized. For more details and elaborate derivations
reference is made to previous publications.

Firstly, Section 2.1 provides the notations that are used in this
paper, as well as some preliminary tensor identities. Section 2.2
introduces the coordinate system and consequently the curvilin-
ear basis that are used for the Kirchhoff-Love shell formulation.
In Section 2.3 we provide the formulations of the shell kinemat-
ics, where the concepts of deformation and strain are defined.
Lastly, Section 2.4 provides the variationel formulation of the
Kirchhoff-Love shell, without specifying the constitutive rela-
tions, since those are covered in Section 3.
2.1. Notations and Preliminary Identities

For the ease of reference, the notations and preliminary identi-
ties are based on the ones used in [31]. Lower-case italic quanti-
ties (a) represent scalars, lower-case bold quantities (a) denote
vectors. Upper-case quantities denote two-dimensional quan-
tities; italic and non-bold (A) for matrices, italic and bold for
second-order tensors (A). Third-order tensors are not used in the
present work, and fourth-order tensors are represented by calli-
graphic capitals (A). The following product operators are de-
fined: inner product a · b, cross-product a× b and tensor product
a ⊗ b. Furthermore, we represent covariant basis vectors with
subscripts (ai) and contravariant vectors with superscript (a j).
Latin indices take values {1, 2, 3}whereas Greek ones take values
{1, 2}. By construction, ai · a j = δ

j
i , with δ j

i the Kronecker delta.
Second- and fourth-order tensors are denoted by A = Ai j ai⊗a j =

Ai j ai⊗a j and A = Ai jkl ai⊗a j⊗ak⊗al = Ai jkl ai⊗a j⊗ak⊗al, re-
spectively, where Ai j and Ai jkl denote covariant components and
Ai j and Ai jkl denote contravariant components.

The Einstein summation convention is adopted to represent
tensor operations and when summations are unclear, it is explic-
itly mentioned. In this notation, the trace and determinant of a
tensor are defined for tensor A = Ai j ai ⊗ a j as in [31, 41, 42]

tr A = Ai jai j and det{A} =
∣∣∣Ai j

∣∣∣/∣∣∣ai j

∣∣∣, (1)

where
∣∣∣Ai j

∣∣∣ denotes the determinant of the matrix A, ai j = ai · a j

and ai j = ai · a j. The inverse of a tensor A is denoted by A−1 or

Ā. The derivative of the inverse and the determinant of a tensor,
with respect to one of its components become:

∂ tr A
∂Ai j

= ai j,
∂ det{A}
∂Ai j

= det{A}Āi j and

∂Ā
∂Ai j

= −
1
2

{
A−1

ik A−1
l j + A−1

il A−1
k j

}
.

(2)

2.2. Shell Coordinate System

The Kirchhoff-Love shell element formulation is based on the
Kirchhoff Hypothesis, that is, the cross-section does not shear
and orthogonal vectors in the undeformed configuration remain
orthogonal after deformation. As a consequence, any point in
the shell can be represented by a point on the mid-surface and a
contribution in normal direction:

x = r + θ3a3, (3)

with the shell mid-surface r(θ1, θ2) and the unit normal direction
a3(θ3) for the deformed configuration x(θ1, θ2, θ3). For the unde-
formed configuration x̊, the same relation holds with all quanti-
ties decorated with a ·̊. The parametrization utilizes surface coor-
dinates θα and the through-thickness coordinate θ3. Derivatives
with respect to these coordinates are denoted by (·),i = ∂(·)/∂θi.

The covariant basis of the mid-surface is represented by ai

aα =
∂r
∂θα

, a3 =
a1 × a2

|a1 × a2|
, (4)

and the first fundamental form is aαβ = aα · aβ. The curvature
tensor b = bαβ aα ⊗ aβ is represented by the second fundamental
form of surfaces, which can be obtained using the Hessian of the
surface aα,β or the derivative of the normal vector a3,α

bαβ = a3 · aα,β = −a3,β · aα. (5)

The derivative of the normal vector is obtained by Weingarten’s
formula a3,α = −bβαaβ with bβα = aαγbγβ as the mixed curvature
tensor [44]. Taking the derivative of Eq. (3), the covariant basis
of the shell coordinate system x can be formulated as follows:

gα = x,α = aα + θ3a3,α, g3 = x,3 = a3. (6)

The metric coefficients are constructed by taking the inner-
product of these basis vectors, i.e.

gαβ = gα · gβ = aαβ − 2θ3bαβ +
(
θ3

)2
a3,α · a3,β, (7)

where in the second equality, Eq. (5) is used. Moreover, gα3 = 0
and g33 = 1 [25]. Using the definition of the covariant metric gi j,
the contravariant metric gi j and basis vectors gi can be found:

gαβ = [gαβ]−1, gα = gαβgβ. (8)

The third contravariant basis vector g3 is again the normal vector
a3 since it has unit-length by construction (see Eq. (4)).

Remark 1. In the isogeometric Kirchhoff-Love shell formula-
tions [25, 31], the last term in Eq. (7) is neglected because of the
thin shell assumption, meaning (θ3)2 takes small values. How-
ever, the co- and contravariant basis vectors (gα and gα, re-
spectively) are used in the mapping of the stretch-based material
matrix onto the contravariant undeformed basis (Section 4.3).
To enable an accurate comparison of the invariant-based and
stretch-based formulation, we do not neglect the O((θ3)2) term,
contrary to previous works [7, 31].
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2.3. Shell Kinematics

The deformed and undeformed configurations (x and x̊, re-
spectively) are related to each other by the mid-plane deforma-
tion vector u by r = r̊+u and a3 = a3(r̊+u). However, in both the
invariant-based and stretch-based forms that are described in this
paper, the deformations are defined using the undeformed and
deformed geometries. In continuum mechanics, the deformation
gradient F and the deformation tensor C are defined as [31, 43]:

F =
dx
dx̊

= gi ⊗ g̊i, C = F>F = gi · g j g̊i ⊗ g̊ j = gi j g̊i ⊗ g̊ j. (9)

Note that the deformation tensor is defined in the contravari-
ant undeformed basis g̊i ⊗ g̊ j. For Kirchhoff-Love shells, it is
known that gα3 = g3α = 0, hence this implies Cα3 = C3α = 0.
Since g33 = 1, which implies C33 to be unity and meaning that
the thickness remains constant under deformation. In hyperelas-
tic Kirchhoff-Love shell formulations, the contribution of C33 is
therefore incorporated by static condensation, where the correc-
tion of C33 is performed analytically for incompressible materials
and iteratively for compressible materials. Therefore, we denote
the deformation tensor C and its inverse C̄ as denoted as:

C = gαβ g̊α ⊗ g̊β + C33å3 ⊗ å3, (10)

C̄ = gαβ g̊α ⊗ g̊β +
1

C33
å3 ⊗ å3. (11)

From Eqs. (10) and (11), it can be observed that the thickness-
contribution (index 3) is decoupled from the in-plane contribu-
tions (Greek indices α, β). This is a consequence of the Kirchhoff
Hypothesis and therefore is only valid for Kirchhoff-Love shells.
Consequently, using the definition C̃ = gαβ g̊α ⊗ g̊β, the trace and
determinant of C can be simplified accordingly [41, 42]:

tr C = tr C̃ + C33 = gαβgαβ + C33, (12)

det{C} = det{F}2 = J2 =

∣∣∣gαβ∣∣∣∣∣∣g̊αβ∣∣∣C33 = J2
0C33 = λ2

1λ
2
2λ

2
3, (13)

where J denotes the Jacobian determinant and J0 is its in-plane
counterpart. Furthermore, the tensor invariants of C simplify to:

I1 := tr{C} = gαβg̊αβ + C33 = λ2
1 + λ2

2 + λ2
3, (14)

I2 :=
1
2

(
tr{C}2 − tr

{
C2

})
= C33gαβg̊αβ + J2

0

= λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

1λ
2
3, (15)

I3 := det{C} = λ2
1λ

2
2λ

2
3, (16)

where λi are the principal stretches of the shell and λ2
i are the

eigenvalues of the deformation tensor C. The squares of the
eigenvalues are the roots of the characteristic polynomial:

(λ2
i )3 − I1(λ2

i )2 + I2λ
2
i − I3 = 0. (17)

Corresponding eigenvectors are denoted by vi, which are nor-
malized to have unit-length. The eigenvalue decomposition (or
spectral decomposition) of the deformation tensor C can be writ-
ten as [41, 42]:

C = Ci jg̊i ⊗ g̊ j = λ2
i vi ⊗ vi. (18)

Where the Einstein summation convention is used. Since C33
is decoupled by construction, one can immediately see from
Eqs. (10) and (18) that λ3 =

√
C33 and v3 = å3.

For the sake of completeness, we recall the definition of the
Green-Lagrange strain tensor E = Eαβ g̊α ⊗ g̊β from [25, 31] and

its decomposition to membrane and bending contributions (ε and
κ, respectively):

Eαβ =
1
2

(
gαβ − g̊αβ

)
=

1
2

(
(aαβ − åαβ) − 2θ3

(
bαβ − b̊αβ

))
= εαβ + θ3καβ.

(19)

Remark 2. Following up on Remark 1; the contribution of the
O((θ3)2) term in Eq. (7) is neglected in the strain tensor and
its derivatives. The O((θ3)2) term is only included in Eq. (7) to
ensure equivalence in comparison of the stretch- and invariant-
based formulations.

2.4. Variational Formulation

The shell internal and external equilibrium equations in varia-
tional form are derived by the principle of virtual work [25, 31].
The variations of internal and external work are defined as:

δW(u, δu) = δW int − δWext

=

∫
Ω

n : δε + m : δκ dΩ −

∫
Ω

f · δu dΩ ,
(20)

with δu being the virtual displacement, δε and δκ the virtual

strain components, Ω the mid-surface and dΩ =

√∣∣∣åαβ∣∣∣dθ1dθ2

the differential area in the undeformed configuration, mapped to
the integration domain Ω∗ = [0, 1]2 using the undeformed mid-
plane measure. Furthermore, with slight abuse of notation, the
tensors n = nαβ g̊α ⊗ g̊β and m = mαβ g̊α ⊗ g̊β denote the shell
normal force and bending moment tensors, respectively, with

nαβ =

∫
[−t/2,t/2]

S αβ dθ3 , mαβ =

∫
[−t/2,t/2]

θ3S αβ dθ3 . (21)

Here, S αβ denotes the coefficients of the stress tensor following
from the constitutive relations that will be derived in Section 3
and t stands for the shell thickness. The total differentials of the
stress resultants are:

dnαβ =

∫
[−t/2,t/2]

Cαβγδ dθ3 dεγδ +

∫
[−t/2,t/2]

Cαβγδθ3 dθ3 dκγδ ,

dmαβ =

∫
[−t/2,t/2]

Cαβγδθ3 dθ3 dεγδ +

∫
[−t/2,t/2]

Cαβγδ
(
θ3

)2
dθ3 dκγδ .

(22)
Discretizing the equations using known formulations from

previous publications [25, 31, 44], the solution u is represented
by a finite sum of weighted basis functions and the tensors n, m,
ε and κ are linearized around the weights using Gateaux deriva-
tives. The linearized tensors are denoted by (·)′ =

∂(·)
∂ur

in the
following, where ur are individual weights of the solution vec-
tor. Note that u′ denotes the basis functions [31]. Using the
discretized system, the residual vector is defined by:

Rr = F int
r −Fext

r =

∫
Ω

n :
∂ε

∂ur
+m :

∂κ

∂ur
dΩ−

∫
Ω

f ·
∂u
∂ur

dΩ , (23)

and must be equal to the zero vector for the weights u corre-
sponding to the exact solution. To solve the residual equation
R = 0, another linearization is performed, yielding the Jacobian
matrix or tangential stiffness matrix K:

Krs = Kint
rs − Kext

rs (24)

=

∫
Ω

∂n
∂us

:
∂ε

∂ur
+ n :

∂2ε

∂ur∂us
+
∂m
∂us

:
∂κ

∂ur
+ m :

∂2κ

∂ur∂us
dΩ

−

∫
Ω

∂f
∂us
·
∂u
∂ur

dΩ .
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Note that the matrix contains a contribution for the external load
depending on the solution vector (f(u)). For instance, follower-
pressures are defined by f(u) = pn(u), where n is the surface
normal. In order to solve for nonlinear equation, Newton itera-
tions are performed for solution u and increment ∆u by solving

K∆u = −R. (25)

3. Stretch-Based Constitutive Relations
Invariant-based (in)compressible material model formulations

have been obtained for the strain energy density functions Ψ(C)
in component-form based on [31]. However, when experimen-
tal material data fitting is involved a formulation in terms of
stretches (i.e. in terms of the eigenvalues of C, Ψ(λ) with
λ = (λ1, λ2, λ3) might be preferred, meaning that a transforma-
tion to spectral form is required. Therefore, this section provides
the main contribution of this paper: the generalized formulations
for the implementation of stretch-based material models in the
isogeometric Kirchhoff-Love shell model. Throughout this sec-
tion, reference is made to equations of [31] for comparison pur-
poses.

The section is structured as follows: Section 3.1 provides the
basics for the derivation of the stretch-based constitutive rela-
tions. Thereafter, Section 3.2 and Section 3.3 provide the deriva-
tions for incompressible and compressible material models, re-
spectively, in the stretch-based formulations. These formulations
are the novelty of the present paper.
3.1. General Relations

Assuming Ψ(λ), we derive relations for the stress and material
tensor in terms of the (normalized) eigenvector bases (Eq. (18)):

S =

3∑
i, j=1

S i j vi ⊗ v j, C =

3∑
i, j,k,l=1

Ci jkl vi ⊗ v j ⊗ vk ⊗ vl. (26)

These equations are valid for 3D continua and hence need to be
modified to incorporate the through-thickness stress components.
Reading Eq. (10), Cαβ = gαβ but C33 , g33 = 1 to avoid viola-
tion of the plane stress condition. To correctly incorporate the
plane-stress condition (S 33 = 0), the material tensor C is mod-
ified using static condensation, which implies that the material
tensor Ĉ corrected for plane-stress is defined by [31]:

Ĉαβγδ = Cαβδγ −
Cαβ33C33δγ

C3333 . (27)

For incompressible materials, this term is derived analytically us-
ing the incompressibility condition (J = 1) whereas for com-
pressible materials, it is corrected iteratively.

When S and C are known, these tensors are transformed to the
bases g̊i ⊗ g̊ j and g̊i ⊗ g̊ j ⊗ g̊k ⊗ g̊l, respectively. This will be
discussed in Section 4.3.

The derivative of any scalar function with respect to the defor-
mation tensor C can be written as a derivative with respect to the
stretch by applying the chain rule [41]:

∂(·)
∂C

=

3∑
i=1

∂(·)
∂λ2

i

∂λ2
i

∂C
=

3∑
i=1

∂(·)
∂λ2

i

vi ⊗ vi =

3∑
i=1

1
2λi

∂(·)
∂λi

vi ⊗ vi. (28)

From this, it follows that:

S i j =


1
λi

∂Ψ

∂λi
, i = j

0, i , j
(29)

which shows that the coefficients of the stress tensor are purely
diagonal and we thus refer with S ii, i = 1, ..., 3 to the non-zero
components of S.

Remark 3. From Eq. (18) and Eq. (28), it follows that

∂C
∂(λ2

i )
= vi ⊗ vi =

∂λ2
i

∂C
. (30)

Due to the fact that the eigenvector basis with vi is orthogonal
and normalized (i.e. orthonormal), the product the basis vectors
vi span the identity tensor: I = vi ⊗ vi.

Furthermore, it can also be shown that for the material tensor,
the following holds [17–19, 21, 41]:

Ci jkl =
1
λk

∂S ii

∂λk
δ

j
i δ

l
k +

S j j − S ii

λ2
j − λ

2
i

(δk
i δ

l
j + δl

iδ
k
j)(1 − δ

j
i ). (31)

where the indices (i, j, k, l) refer to specific components of the
fourth-order material tensor, thus no summation over the indices
is applied. The first part of Ci jkl represents the normal compo-
nents (diagonal elements) and the second part denotes the shear
components (off-diagonal elements). In the formulation of the
component-based counterpart of this equation ([31, eq. 36])
these parts are not explicitly visible, since the spectral form by
definition uses the principal directions of the deformation tensor,
whereas shear and normal contributions are mixed in the curvi-
linear form of the material tensor. Note that for the second part
of this equation, the case λi = λ j results in an undefined result.
Hence, using L’Hopital’s rule, this limit case can be identified:

lim
λ j→λi

S j j − S ii

λ2
j − λ

2
i

= lim
λ j→λi

∂S j j

∂λ j
− ∂S ii

∂λ j

2λ j
=

1
2λi

(
∂S j j

∂λ j
−
∂S ii

∂λ j

)
. (32)

Since J = λ1λ2λ3, the derivatives of J are:

∂J
∂λi

=
J
λi
,

∂2J
∂λ j∂λ j

= (1 − δ j
i )

J
λiλ j

. (33)

3.2. Incompressible Material Models

For incompressible materials, the incompressibility condition
(J = 1) is enforced using a Lagrange multiplier p in the strain
energy density function [31, 41]:

Ψ(λi) = Ψel(λi) − p(J − 1). (34)

where Ψel is the original strain energy density function. Using
Eq. (29), the stress tensor becomes:

S ii =
1
λi

(
∂Ψel

∂λi
−
∂p
∂λi
− p

∂J
∂λi

)
. (35)

Where again, we do not sum over repeated indices. Compar-
ing S ii with the component-based result in [31, eq. 41] shows
that all components can easily be obtained using substitution in
Eq. (28). To comply with the plane-stress condition (S 33 = 0),
the equation to be solved for the Langrange multiplier p using
the incompressibility condition (J = 1) denotes:

1
λ3

(
∂Ψel

∂λ3
− p

∂J
∂λ3

)
= 0, (36)

which implies, using the derivative of J from Eq. (33):

p =

(
∂J
∂λ3

)−1
∂Ψel

∂λ3
= λ3

∂Ψel

∂λ3
. (37)

It can easily be shown that Eq. (37) is similar to the expression
of p in the component-based form [31, eq. 46] using λ2

3 = C33.
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The derivative of the stress tensor with respect to the stretch is
required to find the material tensor, as observed in Eq. (31). From
Eq. (35) it follows that:

∂S ii

∂λ j
=

∂

∂λ j

(
1
λi

∂Ψ

∂λi

)
=

1
λi

∂2Ψ

∂λi∂λ j
− δ

j
i

1
λ2

i

∂Ψ

∂λi

=
1
λi

(
∂2Ψel

∂λi∂λ j
−
∂p
∂λi

∂J
∂λ j
−
∂p
∂λ j

∂J
∂λi

(38)

− p
∂2J
∂λi∂λ j

− δ
j
i

1
λi

(
∂Ψel

∂λi
− p

∂J
∂λi

))
,

where the incompressibility condition (J = 1) is used again and
where no summation over repeated indices is applied. Note that
the Kronecker delta δ j

i covers the case when i = j. The derivative
of p follows from Eq. (37) and reads:

∂p
∂λi

= λ3
∂2Ψel

∂λ3∂λi
+ δ3

i
∂Ψel

∂λ3
. (39)

Again, this result can be compared to its component-based coun-
terpart in [31, eq. 47] and using Eq. (28) it can be observed that
these equations are similar. Substituting Eqs. (33), (37) and (39)
and J = 1 into Eqs. (35) and (38) then yields:

S αα =
1
λα

(
∂Ψel

∂λα
−
λ3

λα

∂Ψel

∂λ3

)
, (40)

∂S αα

∂λβ
=

1
λα

[
∂2Ψel

∂λα∂λβ
−

1
λβ

(
λ3

∂2Ψel

∂λ3∂λα
+ δ3

α

∂Ψel

∂λ3

)
−

1
λα

(
λ3

∂2Ψel

∂λ3∂λβ
+ δ3

β

∂Ψel

∂λ3

)
− λ3

∂Ψel

∂λ3

(1 − δβα)
λαλβ

(41)

− δ
β
α

1
λα

(
∂Ψel

∂λα
−

1
λα
λ3
∂Ψel

∂λ3

)]
.

Here, we do not apply summation over repeated indices. Com-
parison with the invariant-based formulation shows that λ−1

i in
front of the second term in Eq. (40) translates to C̄i j in [31, eq.
49]. Using these identities, the material tensor can be derived
from Eq. (31). For the static condensation term, reference is
made to Eq. (27), hence the components Cαβ33, C33αβ and C3333

need to be evaluated. From Eq. (31) it follows that:

Cαβ33 =
1
λ3

∂S αα

∂λ3
δ
β
α = −

1
λ3λ2

α

λ3
∂2Ψel

∂λ2
3

+ 2
∂Ψel

∂λ3

δβα, (42)

C33γδ =
1
λγ

∂S 3

∂λγ
δδγ = −

1
λ3λ2

γ

λ3
∂2Ψel

∂λ2
3

+ 2
∂Ψel

∂λ3

δδγ, (43)

C3333 =
1
λ3

∂S 3

∂λ3
= −

1
λ3

3

[
λ3
∂2Ψel

∂λ2
3

+ 2
∂Ψel

∂λ3

]
, (44)

such that the static condensation term becomes:

Cαβ33C33γδ

C3333 = −

1
λ2

3λ
2
αλ

2
γ

[
λ3

∂2Ψel

∂λ2
3

+ 2 ∂Ψel
∂λ3

]2

1
λ3

3

[
λ3

∂2Ψel

∂λ2
3

+ 2 ∂Ψel
∂λ3

] δ
β
αδ

δ
γ (45)

= −
1

λ2
αλ

2
γ

λ3
∂2Ψel

∂λ2
3

+ 2
∂Ψel

∂λ3

δβαδδγ. (46)

Using this result, the in-plane incompressible material tensor can
be evaluated as:

Cαβγδ =
1
λγ

∂S αα

∂λγ
δ
β
αδ

δ
γ +

S ββ − S αα

λ2
β − λ

2
α

(δγαδδβ + δδαδ
γ
β)(1 − δβα)

−
1

λ2
αλ

2
γ

λ3
∂2Ψel

∂λ2
3

+ 2
∂Ψel

∂λ3

δβαδδγ, (47)

where the second term should be replaced by Eq. (32) if λα = λβ.
3.3. Compressible Material Models

For compressible models, the Jacobian determinant J is not
necessarily equal to 1. As a consequence, the deformation gra-
dient F and deformation tensor C are modified such that F and
C are a multiplicative decomposition of a volume-changing (di-
lational) part depending on J and a volume preserving (distor-
tional) part depending on the modified deformation gradient and
deformation tensors, Ċ and Ḟ, respectively [45]:

Ḟ = J−
1
3 F, Ċ = J−

2
3 C. (48)

The modified deformation gradient and deformation tensor have
determinants which are equal to 1 (corresponding to volume
preservation), meaning:

det
{
Ḟ
}

= λ̇1λ̇2λ̇3 = 1, det
{
Ċ
}

= 1, (49)

where the modified principal stretches λ̇i are defined as:

λ̇i = J−
1
3 λi. (50)

Consequently, the invariants of the modified deformation tensor
Ċ become:

İ1 = J−2/3I1, İ2 = J−4/3I2, İ3 = 1, (51)

with Ii the invariants of the deformation tensor C. With Ḟ, Ċ and
İk as defined above, the strain energy density function Ψ(C) for
a compressible material can be described in a decoupled form,
separating the response in a isochoric (or distortional) elastic part
Ψiso(λ̇) and an volumetric (or dilational) elastic part Ψvol(J) [41,
42, 45]:

Ψ(λ) = Ψiso(λ̇) + Ψvol(J). (52)
The volumetric elastic part Ψvol is required to be strictly convex
and equal to zero if and only if J = 1 and Ċ = I [41].

For compressible materials, the plane stress condition is incor-
porated by solving S 33 = 0 for C33 using Newton linearizations
[31, 46]:

S 33 +
1
2
C3333∆C33 = 0, (53)

where C33 is incrementally updated by C(n+1)
33 = C(n)

33 +∆C(n)
33 with

the increment on iteration n:

∆C(n)
33 = −2

S 33
(n)

C3333
(n)

. (54)

In each iteration, the updated stress tensor S and material tensor
C can be computed and iterations are continued until the plane
stress condition is satisfied within a certain tolerance, i.e.

∣∣∣S 33
∣∣∣ <

tol. When converged, static condensation can be performed for
the material tensor using Eq. (27). Rather than using C(0)

33 = 1
[31], C(0)

33 = J−2
0 is used for incompressible materials, although

the difference for the two approaches is negligible.
Using Eq. (50), any volumetric strain energy density function

for incompressible materials can be transformed to its compress-
ible material equivalent by substituting Eq. (50) into Eq. (52) and
by selecting a volumetric component Ψvol. Static condensation
(Eq. (27)) is performed before transforming the material tensor.
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4. Implementation Aspects

In this section, we recall the assembly of the nonlinear system
for isogeometric Kirchhoff-Love shells (Section 4.1) as well as
the computation of the eigenvalues and eigenvectors of the de-
formation tensor C (Section 4.2). Then we provide details about
the transformation of the stress and material tensors S and C from
spectral to curvilinear bases (Section 4.3).

4.1. System Assembly

For the implementation of Kirchhoff-Love shells recall that the
vector of internal forces and the tangential stiffness matrix read
[25, 31]:

F int
r =

∫
Ω

(
n̄>

∂ε̄

∂ur
+ m̄>

∂κ̄

∂ur

)
dΩ , (55)

Krs =

∫
Ω

((
D̄0 ∂ε̄

∂us
+ D̄1 ∂κ̄

∂us

)
∂ε̄

∂ur
+ n̄>

∂2ε̄

∂ur∂us
(56)

+

(
D̄1 ∂ε̄

∂us
+ D̄2 ∂κ̄

∂us

)
∂ε̄

∂ur
+ m̄>

∂2κ̄

∂ur∂us

)
dΩ . (57)

Here, we note that the matrices D̄k, k = 0, 1, 2, are kth thickness
moments of the material tensor represented as a 3 × 3 matrix
and n̄ and m̄ are the zero-th and first thickness moments of the
stress tensor, see [31]. The thickness integrals are, in the present
paper and in [31], computed using numerical through-thickness
integration with four Gaussian points. As discussed in [7], the
matrices D̄1 can differ in the variations of the normal force tensor
n̄ and the moment tensor m̄ depending the analytic projected or
directly decoupled alternatives for thickness integration.

4.2. Eigenvalue Computation

The eigenvalues of tensor quantity can be computed by solv-
ing Eq. (17) or, alternatively, by computing the eigenvalues of
the matrix that results from computation of C = Ci j g̊i ⊗ g̊ j in-
cluding the outer product. Since λ2

3 =
√

C33 is decoupled by
construction, it suffices to compute λ2

1 and λ2
2 by computing the

eigenvectors and eigenvalues of the 3 × 3 matrix following from
computation of C = Cαβ g̊α⊗g̊β. This computation results in three
eigenpairs (eigenvalues and eigenvector) of which one eigenpair
contains the zero-vector due to the decoupled construction. The
other two eigenpairs (λα ∈ R, vα ∈ R3) are the in-plane principle
stretches and their directions.

4.3. Tensor Transformation

Since the stretch-based stress and material tensor are derived
in spectral form (i.e. in the eigenvector space) a transformation
towards the curvilinear basis needs required in order to use these
entities in further computations. Recall that the spectral forms of
S and C are:

S =

3∑
i=1

S ii vi ⊗ vi, C =

3∑
i, j,k,l=1

Ci jkl vi ⊗ v j ⊗ vk ⊗ vl. (58)

The invariant-based stress and material tensors are defined in the
curvilinear basis, as follows:

S =

3∑
i, j=1

S i j g̊i ⊗ g̊ j C =

3∑
i, j,k,l=1

Ci jkl g̊i ⊗ g̊ j ⊗ g̊k ⊗ g̊l. (59)

Since the strain tensors (c.f. Eq. (19)) are defined in the curvilin-
ear basis, it is convenient to define the quantities in the variational
form (c.f. Eq. (20)) defined in the curvilinear basis. Hence, the
stretch-based stress and material tensors are transformed to the

undeformed covariant curvilinear basis by:

S̃ i j =

3∑
p,q=1

S pq(vp · g̊i)(vq · g̊ j),

C̃i jkl =

3∑
p,q,r,s=1

Cpqrs(vp · g̊i)(vq · g̊ j)(vr · g̊k)(vs · g̊l),

(60)

where S̃ i j and C̃i jkl are the coefficients of the stress and material
tensors in the curvilinear basis.

Obviously, the tensor transformation only needs to be com-
puted for non-zero components of Cpqrs. For incompressible ma-
terial models, the plane-stress correction for C33 is applied ana-
lytically, which implies that the transformations only need to be
applied for indices ranging from α, β, γ, δ = 1, 2, thus the trans-
formation consists of mapping 24 = 16 entries. However, it is
known that for hyperelastic materials the contravariant compo-
nents of the material tensor, Ci jkl, posses minor and major sym-
metry [41, 42], i.e.

Cabcd = Cbacd = Cabdc minor symmetry, (61)

= Ccdab major symmetry, (62)

so that only six unique components exists for the 2 × 2 × 2 × 2
tensor. Furthermore, Eq. (31) implies that the non-zero compo-
nents of Ci jkl are of the form Ciiii, Cii j j, Ci ji j and Ci j ji of which
the last two are equal by virtue of the minor symmetry property.
This implies that the 2 × 2 × 2 × 2 tensor has only four uniquely
defined components, namely C1111, C1122, C2222 and C1212.

For compressible material models, the static condensation
term is computed in the spectral basis, i.e. on the tensor C before
it is transformed to the covariant undeformed tensor basis. From
Eq. (54) we see that the iterative procedure to find C33 requires
the computation of C3333, Cαβ33 and C33αβ, where the last two
are equal by virtue of the major symmetry property. Reusing the
minor and major symmetries, the computation is reduced to four
distinct components, namely C1133, C2233, C1233 and C3333.

Accordingly, it can be concluded that for incompressible ma-
terials four and for compressible materials eight unique compo-
nents of the spectral material tensor need to be computed, when
exploiting minor and major symmetry, as well as the nature of
Eq. (31). In summary, the transformations give rise to certain
additional costs, which can be limited, however, by exploiting
symmetry properties efficiently.
5. Numerical experiments

For benchmarking purposes, the results of four numerical ex-
periments have been used for verification and validation of the
presented formulations for incompressible and compressible ma-
terial models. For the uniaxial tension and pressurized balloon
benchmarks (Sections 5.1 and 5.2, respectively), analytical so-
lutions are available, therefore they will serve as verification of
the stretch-based material model formulations. Combining the
present method with (extended) arc-length methods, we inves-
tigate the collapsing behaviour of a truncated conical shell [19]
(Section 5.3) and we simulate wrinkling of a stretched thin sheet
(Section 5.4).

In order to verify the presented isogemetric Kirchhoff-Love
formulation for a stretch-based Ogden material with its FEM
couterpart, the conical shell collapse (Section 5.3) is incorpo-
rated. Finally, we will apply our approach to model wrinkling
of a thin sheet subject to tension. Our models have been imple-
mented in the open-source library G+Smo (Geometry + Simula-
tion Modules) [47, 48] and download and installation instructions
to reproduce the data presented in the following are provided in
the Supplementary Material.

In the numerical experiments, compressible and incompress-
ible formulations of the Neo-Hookean (NH), Mooney-Rivlin
(MR) and Ogden (OG) material models have been used. The
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Neo-Hookean models are given by (compressible and incom-
pressible, respectively):

Ψ(C) =
µ

2

(
J−

2
3 I1 − 3

)
+ Ψvol(J), (63)

Ψ(C) =
µ

2
(I1 − 3). (64)

The Mooney-Rivlin models are given by [49, 50] (compressible
and incompressible, respectively):

Ψ(C) =
c1

2

(
J−

2
3 I1 − 3

)
+

c2

2

(
J−

4
3 I2 − 3

)
+ Ψvol(J), (65)

Ψ(C) =
c1

2
(I1 − 3) +

c2

2
(I2 − 3). (66)

For Ogden models, the following formulations are used (com-
pressible and incompressible, respectively):

Ψ(λ) =

N∑
p=1

µp

αp
J−

1
3

(
λ
αp

1 + λ
αp

2 + λ
αp

3 − 3
)

+ Ψvol(J), (67)

Ψ(λ) =

3∑
q=1

 N∑
p=1

µp

αp
(λαp

q − 1)

. (68)

For all models, the following volumetric part of the strain energy
density function is adopted:

Ψvol = KG(J) = Kβ−2
(
β log(J) + J−β − 1

)
. (69)

To check consistency of invariant based models (i.e. the NH and
MR models), the invariants can be replaced by Eqs. (14) to (16)
to obtain stretch-based forms, which is thus equivalent to the
component-based form from [31]. Unless stated otherwise, for
the compressible models β = −2, and for the Mooney-Rivlin
model c1/c2 = 7 [50] is used. For the Ogden model the coeffi-
cients from [51] are re-scaled to the value of µ:

µ1 =
6.300
µ0

µ, α1 = 1.3,

µ2 =
0.012
µ0

µ, α2 = 5.0,

µ3 = −
0.100
µ0

µ, α3 = −2.0,

(70)

where µ0 = 4.225.
5.1. Uniaxial Tension

The first benchmark case is uniaxial tension of a material
block. A block with dimensions L×W × t = 1×1×0.001 [m3] is
considered. The shear modulus is µ = E/(2(1 + ν)) where E and
ν are the Young’s modulus and Poisson ratio, respectively, such
that µ = 1.5·106[N/m2]. The block is modeled by shell elements,
i.e. the L ×W plane is considered and all edges are restrained in
vertical direction (z = 0). The left edge (x = 0) is restrained in
x direction and on the right edge (x = L) a distributed load σt is
applied. The bottom edge (y = 0) is restrained in y direction and
the top edge (y = B) is free to move (see Fig. 1).

In Fig. 2 the results for uniaxial tension are depicted. For both
compressible and incompressible materials, the analytical solu-
tion for the Cauchy stress are obtained from [41, ex. 1]. The
numerical and analytical solutions for incompressible and com-
pressible materials show a perfect match for all quantities studied
(thickness decrease λ3, axial Cauchy stress σ and Jacobian deter-
minant J). Note that the Jacobian determinant for incompress-
ible materials is equal to 1 and hence not shown. The residual
norms of the non-linear iteration convergence for the invariant-
based and stretch-based Neo-Hookean and Mooney-Rivlin mod-
els as well as the stretch-based Ogden model are equal in all

L

W

x

y σt

Figure 1: Geometry for the uniaxial tension case. The filled geometry represents
the undeformed configuration and the dashed line indicates the undeformed ge-
ometry. The bottom side of the undeformed sheet is fixed in y-direction and the
left side of the sheet is fixed in x-direction. The applied load is σt where σ is the
actual Cauchy stress and t is the thickness of the sheet.

Table 1: Residual norms per iteration for the 10th load-step for uniaxial tension
for all material models in compressible and incompressible forms. For the Neo-
Hookean and Mooney-Rivlin models, the iteration residuals are provided for the
stretch-based and invariant-based approaches. For the Ogden model, only the
results for the stretch-based formulations are given, since no invariant-based for-
mulation exists. For the Neo-Hookean and Mooney-Rivlin models, results are
only observed in the last iteration, due to machine precision of the arithmetic.
The Supplementary Material provides instructions to reproduce this table.

It. Neo-Hookean Mooney-Rivlin Ogden
Stretch Invariant Stretch Invariant Stretch

Incompressible

1 2.033 · 10−4 2.033 · 10−4 4.021 · 10−3 3.999 · 10−3 4.442 · 10−2

2 1.129 · 10−6 1.129 · 10−6 2.248 · 10−5 2.253 · 10−5 1.313 · 10−6

3 3.575 · 10−11 3.575 · 10−11 7.106 · 10−10 7.229 · 10−10 4.149 · 10−11

4 2.554 · 10−16 6.929 · 10−16 5.088 · 10−16 1.776 · 10−15 1.602 · 10−16

Compressible

1 1.617 · 10−3 1.617 · 10−3 2.100 · 10−3 2.100 · 10−3 5.215 · 10−3

2 2.296 · 10−7 2.296 · 10−7 2.890 · 10−6 2.890 · 10−6 1.759 · 10−7

3 9.443 · 10−13 9.440 · 10−13 1.344 · 10−11 1.344 · 10−11 2.584 · 10−13

4 1.153 · 10−15 1.252 · 10−16 1.115 · 10−15 1.988 · 10−16 1.625 · 10−15

iterations (see Table 1), showing that the present formulation
provides exactly the same rates of convergence as the invariant-
based method. Last but not least, Newton iterations converge
with optimal speed (second-order convergence rate).

5.2. Pressurized Balloon

The response affected pressure of a spherical balloon is used
for benchmarking purposes as well. The analytical pressure for-
mulation is obtained from [41, eq. 6.132]. The numerical model
results are based on follower pressures, i.e. f = p0a3 where a3 is
the unit normal in the current configuration. The balloon is mod-
eled as a quarter of a hemi-sphere, of which the bottom point is
fixed in all directions, and on the sides a symmetry condition is
applied by clamping the sides in normal direction and restriction
deflections orthogonal to the symmetry boundary (see Fig. 3).
The geometry is modelled by 2 elements over the height and 2
elements over the quarter-circumference, both of quadratic order.

For R = 10 [m], t = 0.1 [m] and µ = 4.2255 · 105 [N/m2], a
perfect agreement is obtained for all presented material models
in comparison to the analytical solutions Fig. 4.

In Table 2 we represent the total CPU times related to sys-
tem assembly for different material models for different mesh
refinement levels and quadratic order for p0 = 104. The assem-
bly times for both the invariant-based formulations and for the
stretch-based formulations are given for the Neo-Hookean and
Mooney-Rivlin material models, whereas the stretch-based for-
mulation is only available for the Ogden model. The total num-
ber of nonlinear iterations is the same in all cases, and so is the
number of assembly operations. The table shows that the stretch-
based formulations are slower than the invariant-based formula-
tions, which is expected by the requirement for the transforma-
tion of the basis of the deformation tensor. It can also be seen
that the Ogden model requires significantly more CPU time than
the other models, which is due to the large number of terms in
the strain energy density function.
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Figure 2: Results for uniaxial tension for compressible (C, left column) and in-
compressible materials (I, right column); where the first row presents the thick-
ness decrease λ3, the second row the axial Cauchy stress or true axial stress σ and
the last row the Jacobian determinant J for compressible materials; all against
the stretch λ. The material models that are used are the Neo-Hookean (NH) the
Mooney-Rivlin (MR) and the Ogden (OG) material models and comparison is
made to analytical (A) solutions from [41, ex. 1]. The Supplementary Material
provides instructions to reproduce these figures.
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Figure 3: Geometry of the inflated balloon with 4 quadratic elements. Symmetry
conditions are applied on the boundaries Γ1, Γ2 and Γ4, which means that rota-
tions around these boundaries and displacements in-plane normal to the bound-
aries are fixed. The bottom of the balloon (Γ3) is an edge with a radius of 0.01
and is fixed in all directions.

1 2 3 4 5

0

2,000

4,000

6,000

Stretch λ

In
te

rn
al

pr
es

su
re

p

incomp. ana.

NH
MR
OG

Figure 4: Inflation of a balloon. The vertical axis depicts the internally applied
pressure and the horizontal axis depicts the stretch λ1 = λ2 = λ. The different
lines and markers represent different material models, including Neo-Hookean
(NH), Mooney-Rivlin (MR) and Ogden (OG). The radius of the sphere is R =
10 [m] and the thickness of the sphere t = 0.1 [m]. The Supplementary Material
provides instructions to reproduce this figure.

Table 2: Total CPU assembly times (seconds) for the different material models
(invariant-based where applicable) for different mesh sizes (#El.) for the inflated
balloon benchmark. All results are obtained for the incompressible material mod-
els.

#El. Neo-Hookean Mooney-Rivlin Ogden
Invariant Stretch Invariant Stretch

1 0.18 0.13 0.18 0.13 0.41
4 0.42 0.28 0.43 0.29 1.07

16 1.42 0.93 1.45 0.94 3.95
64 6.19 4.55 6.69 4.35 18.49
256 40.67 26.77 44.10 28.60 119.65

5.3. Conical Shell Collapse

A collapsing conical shell (or frustrum) is presented as a
benchmark for modelling of strong non-linearities [19]. A con-
ical shell with height H = 1 [m], top radius r = 1 [m], bottom
radius R = 2[m] and thickness t = 0.1[m] as depicted in Fig. 5 is
considered. Since the reference solution models the frustrum ax-
isymmetrically, a quarter of the geometry is modelled with 32
quadratic elements over the height and one quadratic element
over the quarter-circumference to represent axial symmetry. The
corresponding material model is of the Ogden type and has the
following parameters:

µ1 = 6.300 [N/m2], α1 = 1.3,

µ2 = 0.012 [N/m2], α2 = 5.0,

µ3 = −0.100 [N/m2], α3 = −2.0,

implying that µ = 4.225 [N/m2]. Two sets of boundary condi-
tions are considered for this geometry. In both sets the bottom of
the shell (Γ2) is hinged, hence the displacements are restricted in
all directions. The top shell edge (Γ1) is either kept rigid (no x
and y displacements) or free, referred to as constant or variable
radius, respectively [19]. On the top edge, a uniform load p is
applied, providing a uniform displacement ∆. Due to symme-
try, only one quarter of the geometry is modelled, which means
that symmetry boundary conditions are applied on the x = 0
and y = 0 planes (Γ3, Γ4, see Fig. 5); restricting in-plane de-
formations normal to the boundaries and restricting rotations on
the boundary by applying clamped boundary conditions as de-
scribed in [25]. The quarter-conical shell is modelled with 32
quartic shell elements over the width.

Loads are applied using displacement-control (DC) or arc-
length control. In the former case, displacements are applied on
the top-side of the cone and the deformation of the cone as well
as the corresponding load on the top-boundary are computed. In
the latter case, Crisfield’s spherical arc-length procedure [38] is
used with extensions for resolving complex roots [52, 53]. If this
method does not converge to an equilibrium point, the step size
is bisected until a converged step is found. After this step, the
step size is reset to its original value [40].

Figs. 6 and 7 present the result of the collapsing conical
shell (constant and variable radius, respectively) of the present
study and the reference results from [19]. The results for the
displacement-controlled (DC) solution procedure shows that the
difference between the used material models are negligible, since
the actual strains are relatively small. The results also agree
with the displacement-controlled reference results of [19], and
minor differences between the results might be a result of FE
shear locking as involved for the reference results. Since more
steps have been used for the displacement-controlled calcula-
tions, sharp corners in the curve can be observed for ∆ ∼ 1.9
for constant radius and ∆ ∼ 1.8 for variable radius.

An arc-length based calculation was used as well. From the
results, one can observe revelation of the collapsing mechanism
of the conical shell. For both cases (constant and variable radius)
an almost anti-symmetric pattern in the load-deflection space can
be observed, which initiates and finishes at the kinks in the curve
that was found with the displacement-control procedure. For the
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Figure 5: Geometry of the collapsing conical shell with 32 quadratic elements
over the height.
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(a) Load-displacement diagram.
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Figure 6: Result of the collapsing conical shell with constant radius;(a) load-
displacement diagram,(b) undeformed geometries matching with the points indi-
cated with capital letters in the diagram. The lines represent solutions obtained
using the Arc-Length Method (ALM) and the markers represent solutions ob-
tained by Displacement Control (DC). Note that the solution for the NH and MR
models are overlapping on most parts of the path. The material models are Neo-
Hookean (NH), Mooney-Rivlin (MR) and Ogden (OG). Since variation between
the material models is rather small for the DC solutions, only the results for the
OG material model are given. The reference results are obtained from [19]. A
movie of the collapse (video 1) and instructions to reproduce the data are given
as Supplementary Material.
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Figure 7: Result of the collapsing conical shell with variable radius; (a) load-
displacement diagram, (b) undeformed geometries matching with the points in-
dicated with capital letters in the diagram. The lines represent solutions obtained
using the Arc-Length Method (ALM) and the markers represent solutions ob-
tained by Displacement Control (DC). The material models are Neo-Hookean
(NH), Mooney-Rivlin (MR) and Ogden (OG). Since variation between the ma-
terial models is rather small for the DC solutions, only the results for the OG
material model are given. The reference results are obtained from [19]. A movie
of the collapse (video 2) and instructions to reproduce the data are given as Sup-
plementary Material.
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Figure 8: Modeling geometry for the uniaxially loaded restrained sheet.
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constant-radius shell, Fig. 6a shows two loops of large magni-
tude. In Figs. 6b and 7b it can be seen that collapsing behaviour
of the conical shell consists of states in which multiple waves in
radial direction occur. For both cases, it can be seen that after the
loops with the highest force-amplitude, the shell and its collapse-
path invert and continue on the path that can be obtained with
displacement-control.

To the best of the authors’ knowledge, the collapsing of
a conical shell was not investigated before. Complex load-
displacement paths from Figs. 6a and 7a show that displacement-
controlled simulations in this case ignore the collapsing be-
haviour of the shell with multiple limit points. The authors highly
encourage further investigations on this benchmark for verifica-
tion and validation.
5.4. Wrinkling of a stretched sheet

As an application of the model, we consider the wrinkling phe-
nomenon of a stretched, thin membrane (see Fig. 11). Scaling
laws based on experiments were first published in [1, 2] and an-
alytical formulations related to this problem were established in
[54]. Numerical results to this problem have been established
for sheets with different aspect ratios β and different dimension-
less thickness α [3–5, 55–59]. In most numerical studies, Neo-
Hookean or Mooney-Rivlin models were used to model the wrin-
kling phenomenon, since strains usually reach high values (typ-
ically ε ∼ 10 − 50%). In this paper, we model tension wrin-
kling for the sake of benchmarking using incompressible Neo-
Hookean, Mooney-Rivlin and Ogden models and Isogeometric
Kirchhoff-Love shells, which is a novelty to the best of the au-
thors’ knowledge. In the first part of this section, the model is
benchmarked on a restrained sheet without wrinkling formation
and material parameter determination is performed. Thereafter,
the results of wrinkling simulations are presented.
Material test

Related to the first benchmark in the work of [7] and on the
experiments of [3], a tensile load is applied on a strip of which
the short edges are fixed and the long edges are free (see Fig. 8).
Focus is on the non-domensional load versus end-point displace-
ment in longitudinal (load and displacement) direction.

Firstly, for the geometric parameters, L = 9[mm], W = 3[mm]
and t = 0.3 [mm] are used, leading to L/W = 3 and t/W = 0.1.
The material has Poisson’s ratio ν = 0.5 and for the NH material
model a Young’s modulus of E = 30 [kPa] is involved and for
the MR material model one of E = 90 [kPa] leading to, µ =
10 [kPa] and µ = 30 [kPa], respectively. For the MR model,
c1/c2 = 1/2 such that c1 = 1/9 and c2 = 2/9. Scaling according
to Eq. (70) is applied for the Ogden material model and 8 × 8
quadratic elements are used. A good match with the results of
the directly decoupled method of [7] for the incompressible Neo-
Hookean and Mooney-Rivlin models can be observed in Fig. 9a.
Note that the forces in the reference paper are normalized by
E = 3c1 for both the Neo-Hookean and Mooney-Rivlin models,
whereas in the present simulations, the forces are normalized by
E = 3µ (since ν = 0.5 in the comparison with [7]).

In Fig. 10, we provide convergence plots of the present model
(NH and OG stretch-based models) with respect to the relative
error in the strains given a nondimensional load of P/EA = 0.5.
The errors are plotted with respect to the Richardson extrapola-
tion from the three finest meshes, since analytical solutions to the
problem are not available. The results obtained for the NH model
obtained from the invariant-based form are exactly the same and
hence not provided here. The figures show that the convergence
of the method is around second-order, independent of the order
of the spline basis. Reference papers [7, 31] do not provide esti-
mates of the order of convergence for the invariant-based mate-
rial models or convergence plots for similar simulations. Hence,
further comparison and investigations on the order of conver-
gence for such membrane-dominated responses for shells with
nonlinear material models are recommended.

Secondly, we compare our numerical model to the experi-
mental results from a similar setup as depicted in Fig. 8 [3].
The corresponding geometric parameters are L = 280 [mm],
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(a) Benchmarking results comparing to [7]. The reference results are obtained numerically.
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(b) Benchmarking results for comparison with [3]. Experimental results are depicted by
markers for different aspect ratios L/W of the sheet. Numerical results from [3] are not
included since they are indistinquishable from the present MR results.

Figure 9: Uniaxial tension of a restrained sheet using incompressible material
models. The dimensionless force is obtained by normalization of the applied
force P by the Young’s modulus E and the cross sectional area A. The Supple-
mentary Material provides instructions to reproduce these figures.
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(a) Neo-Hookean (NH): the orders of conver-
gence following from Richardson extrapola-
tion are 2.11 (p = 2), 2.15 (p = 3) and 2.17
(p = 4).
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(b) Ogden (OG): the orders of conver-
gence following from Richardson extrap-
olation are 2.27 (p = 2), 2.40 (p = 3) and
2.52 (p = 4).

Figure 10: Convergence rate of the restrained sheet under uniaxial tension with
values from [7] for different material models (a-b). The error is relative error
ε = |εnum − εR |/εR where εnum is the numerical value of the strain and εR is the
Richardson-extrapolated value of the strain related to the last three meshes, all for
a dimensionless force P/EA = 0.5. The orders of convergence following from
the Richardson extrapolation are provided in the captions below the subfigures.
The Supplementary Material provides instructions to reproduce the strain data.

W = 140 [mm] and t = 0.14 [mm], leading to L/W = 2 and
t/W = 103. The material models are incompressible and for the
NH material model, a parameter µ = 1.91 · 105 [Pa] is used,
while for the MR model the parameters c1 = 3.16 · 105 [Pa]
and c2 = 1.24 · 105 [Pa] are used. The results are depicted in
Fig. 9b, from which it can be seen that there is an excellent agree-
ment between the numerical results from [3] (obtained using the
ABAQUS S4R element) and with the experimental results. In ad-
dition, the depicted fit for the Ogden material model was found,
using parameters α1 = 1.1 [-], µ1 = 1.0µ0 [Pa], α2 = −7 [-],
µ2 = −0.003µ0 [Pa], α3 = −3 [-] and µ3 = −0.4µ0 [Pa] with
µ0 = 1.91 · 105 Pa.

Wrinkling simulations

For the wrinkling simulations, we follow the work of [3] with
the same parameters for the Mooney-Rivlin and Ogden models as
in Fig. 9b. The model setup for the wrinkling simulations is de-
picted in Fig. 11. The modeling domain is depicted in the shaded
area and surrounded by boundaries Γk, k = 1, .., 4. Firstly, the
boundary Γ1 is free, meaning that no displacement constraints are
involved. Furthermore, the boundary at Γ2 is clamped (matching
the adjacent control points parallel to the symmetry axes) and
displacements in y-direction and out-of-plane displacements are
restricted. The displacements in x-direction are all equal over Γ2.
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Figure 11: Modeling geometry for the wrinkled sheet.

Symmetry is imposed over Γ4 by clamping the edges and by re-
stricting deformations orthogonal to the axes (ux = 0). Lastly,
anti-symmetry is imposed over Γ3 by restricting displacements
in vertical direction and orthogonal to the boundary (uy = 0).
Similar to [3], we apply a anti-symmetry condition over Γ3 since
the symmetric and anti-symmetric wrinkling patterns can appear
at the same critical load [5, 57]. For continuation, Crisfield’s
spherical arc-length method [38] is used with an extension for
approaching bifurcation points [39], branch switching [60] and
complex-root resolving [52, 53], all summarised and applied to
IGA in [40].

Furthermore, for comparison, results from LS-DYNA (R11.0)
and ANSYS (R19.1) simulations are presented for the same ge-
ometry and a Mooney-Rivlin model with the same parameters,
however ν = 0.499 in the LS-DYNA simulations since incom-
pressible materials (ν = 0.5) are not implemented. A displace-
ment control approach is employed with an initial perturbation
based on the first buckling mode corresponding to a tension load
situation, perturbed with a factor of 10−4. In LS-DYNA, the
Hughes-Liu, the Hughes-Liu selective/reduced and the fully in-
tegrated shell elements are used, all with 4 quadrature points
through-thickness and a shear correction factor equal to zero
[61]. The results for the ANSYS SHELL181 element [62] are ob-
tained using default options, which includes reduced integration
and hour-glassing control. For both the LS-DYNA and ANSYS
simulations, mesh refinements were applied until convergence.

From Fig. 12a large difference between the different solvers
and between the material models can be observed. Firstly, it
can be concluded that the MR results from the Isogeometric
Kirchhoff-Love shell correspond most with the results obtained
with LS-DYNA. Additionally, these results show good corre-
spondence with the experimental results both in the low strain
regime (until ε ∼ 0.08) as well as towards restabilization of the
wrinkles (between ε ∼ 0.2 and ε ∼ 0.3), only the maximum
amplitude is slightly underestimated and the restabilization point
(i.e. the point where the wrinkles vanish again) is predicted too
early. Secondly, it can be observed that there is a large difference
between the results from IGA or LS-DYNA and from ANSYS.
Although different shell options in the FEA libraries have been
varied (e.g. reduced/full integration, shear correction factors),
the origin of these differences is yet unknown to the authors and
requires further investigations. Lastly, significant differences be-
tween the Ogden and Mooney-Rivlin results can be observed, al-
though the similarities in the material behaviour in Fig. 9b. From
this it can be concluded that material fitting possibly needs to be
done using experimental tests of different loading configurations,
e.g. testing the bending response of the material.
6. Conclusions and recommendations

This paper provides mathematical formulations to accurately
and efficiently model thin rubbers and several biological tissues
by combining stretch-based material formulations such as the
Ogden material model and smooth spline formulations of the Iso-
geometric Kirchhoff-Love shell. The formulations apply to com-
pressible and incompressible material models and are based on
an eigenvalue computation to obtain the principal stretches and
their direction (i.e. the spectral basis). The spectral stress and
material tensors are transformed to the curvilinear basis accord-
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(a) Strain-amplitude diagram of the tension wrinkling of a thin sheet. The vertical axis rep-
resents the maximum amplitude normalized by the shell thickness t and the horizontal axis
represents the strain ε of the sheet. The present model is used to obtain the Mooney-Rivlin
(MR) and Ogden (OG) results. The fully integrated (FI), Hughes-Liu (H-L) and Hughes-Liu
Selective/Reduced (H-L S/R) results are obtained using LS-DYNA and the SHELL181 re-
sults are obtained using ANSYS.

ε = 0.1 ε = 0.2

(b) Contour plot of out-of-plane displace-
ments w for different strains ε for the MR
model.
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(c) Contour plot of out-of-plane displace-
ments w for different strains ε for the OG
model.

Figure 12: Wrinkling formation in a thin sheet subject to tension. The Supple-
mentary Material provides instructions to reproduce these figures.

ingly with limited computational costs due to tensor symmetries.
The results from numerical experiments with Neo-Hookean

and Mooney-Rivlin material models, which can be represented
in terms of invariants as well as in terms of stretches, shows
that identical iteration residuals and correct Newton-convergence
rates have been obtained. This confirms that the stretch-based
and invariant-based shell formulations are equivalent. For these
models it is also shown that the present formulation leads to
higher CPU times due to the projection of the stress and mate-
rial tensor; therefore, the advantage of the present formulation
is mainly related to stretch-based material models (e.g. the Og-
den model) and not to models that can be expressed explicitly
in terms of the curvilinear tensor components of the deforma-
tion tensor (e.g. the invariant-based Neo-Hookean and Mooney
Rivlin models). The analytical benchmarks have shown very
good agreements confirming that the formulations and imple-
mentation are correct.

Employing (extended) arc-length methods in combination
with the present model, we investigated the collapsing behaviour
of a truncated conical shell and the wrinkling behaviour of a
stretched thin sheet. In case of the collapsing truncated coni-
cal shell, the Ogden model was used in combination with either
displacement controlled or arc-length controlled loads on the top
boundary. The displacement controlled results show good agree-
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ment with reference results from literature. Using the arc-length
method, the previously unnoticed response of the cone during
collapse was obtained, while overlapping with the displacement
controlled results on the stable part of the equilibrium path.

We also used the present formulations to model the phe-
nomenon of wrinkling of a stretched thin sheet. To the best of the
authors’ knowledge, such simulations have only been published
for finite element methods and not with Ogden material models.
Hence, we fitted an Ogden material model based on previously
published experimental data and from the Mooney-Rivlin ma-
terial relation and applied isogeometric Kirchoff-Love shells on
this case.

The result of the wrinkling case, which was also modeled us-
ing commercial finite element codes, show that large deviations
between commercial finite element codes are observed. The re-
sults of our model are in good agreement with the Hughes-Liu
shells (reduced and full integration) in LS-DYNA. Furthermore,
it was found that the Mooney-Rivlin model provides more ac-
curate results to the experimental results than the Ogden mate-
rial model, although their fits in the restrained tension test are
similar. Based on the variation between the results from the Og-
den and Mooney-Rivlin material models and the results obtained
from LS-DYNA and ANSYS, we conclude that the results for
this benchmark are sensitive to differences in element assump-
tions. This motivates the future use of this case as a challenging
benchmark problem.

As a topic for future research, we suggest to develop analytical
projection and direct decoupling [7] methods of the constitutive
equations in order to prevent numerical through-thickness inte-
gration (i.e. eigenvalue computations for all through-thickness
Gaussian points). These improvements could lead to a signifi-
cant reduction of computational times.
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[40] H. Verhelst, M. Möller, J. den Besten, M. Kaminski, F. Vermolen, Equi-
librium Path Analysis Including Bifurcations with a Fully-Integrated Arc-
Length Method Avoiding A Priori Perturbations, in: Proceedings of ENU-
MATH2019 Conference, 2020.

[41] G. Holzapfel, Nonlinear solid mechanics: A continuum approach for engi-
neering, 2000.

[42] P. Wriggers, Nonlinear finite element methods, 2008.
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