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Abstract

A stretch-based hyperelastic material formulation for isogeometric Kirchhoff-Love shells is pre-
sented, particularly useful when experimental material data fitting is involved to capture the
model parameters, for instance using the Ogden material model. Complementing the existing
invariant-based formulation, the stretch-based stress and material tensors are expressed in spec-
tral form and transformed to the covariant curvilinear bases for consistency with the variational
formulation. For both compressible and incompressible material formulations, analytical and
numerical benchmarks show excellent results. In particular, the response of a collapsing conical
shell - a complex collapsing mechanism - was revealed when using the arc-length method.

Keywords: Isogeometric Analysis, Kirchhoff-Love Shell, Stretch-Based Strain Energy Density
Function, Arc-Length Methods

1. Introduction

To model thin shells or membranes that undergo large strains, nonlinear material relations
are required, rather than the commonly used Saint Venant-Kirchhoff model. Nonlinear material
models (i.e. constitutive relations) are often called (finite) hyperelastic models. In general, one
distinguishes between phenomenological continuum mechanics approaches and molecular sta-
tistical approaches [1], which can both be described in terms of invariants or principal stretches
of the deformation. Phenomenological material models include the well-known neo-Hookean,
Mooney-Rivlin and Ogden material models, and statistical ones are for example the Wang-Guth
and Arruda-Boyce models [1]. Numerical implementation of invariant-based material models
require a less extensive computational procedure than stretch-based formulations, since princi-
pal stretches and their directions do not have to be computed. On the other hand, stretch-based
descriptions can be very useful when experimental data fitting is required to capture the model
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parameters [2–4], for instance for materials like rubber.

To model hyperelastic behavior of thin shells thin membranes, invariant-based and stretch-
based formulations for Finite Element Methods (FEM) have been established [5–9]. As an al-
ternative to thin shells in FEM, the isogeometric Kirchhoff-Love shell formulation is a well-
established formulation for thin shells in the context of isogeometric analysis (IGA) [10–12].
Isogeometric Analysis [13] employs spline basis functions, providing higher continuity across
basis functions. The isogeometric Kirchhoff-Love shell formulation is based on the global C1

continuity of the isogeometric basis functions that provides a rotation-free formulation of the
shell kinematics. A hyperelastic isogeometric shell formulation has been developed for general
compressible and incompressible material models [12] and specific formulations for biological
membranes have been obtained [14]. Dedicated approaches haven been established in order to
prevent for numerical thickness integration [15]. Isogeometric Kirchhoff-Love shell formulations
are successfully used for biomedical applications to model aortic valve closure [16] and biopros-
thetic heart valve dynamics [17–21] as well as for industrial applications to perform buckling,
vibration and nonlinear deformation analyses of composite wind turbine blade [22, 23]. All for-
mulations [12, 14–17, 22] are invariant-based, meaning that implementation of - computationally
more expensive - stretch-based models is not possible.

However, aiming to be able to use data fitted material models, finite hyperelasticity formula-
tions in isogeometric Kirchhoff-Love shells for stretch-based (in)compressible material models
are presented. The formulations are more general than the existing invariant-based formilations
from [12] since invariants can be written in terms of stretches. However, the formulations in
the present paper are computationally more expensive, thus complementing the invariant-based
material models [12].

Following the introduction of notations, preliminary identies and the isogeometric Kirchhoff-
Love shell formulation backgrounds (Section 2), the invariant-based isogemetric Kirchhoff-Love
shell formulations for hyperelastic (in)compressible material models [12] are recapitulated first
(Section 3). The stretch-based formulations including numerical procedures (Section 4) and the
isogeometric Kirchhoff-Love shell implementation aspects (Section 5) are benchmarked with
analytical or reference solutions, including an example of a collapsing conical shell (Section 6).
Conclusions complete the presented work (Section 7).

2. The Kirchhoff-Love Shell Model

Using continuum mechanics and tensor calculus [24–26], the isogeometric Kirchhoff-Love
formulations [10, 12, 15, 27] are briefly summarized. For more details and elaborate derivations
reference is made to previous publications.

Firstly, Section 2.1 provides the notations that are used in this paper, as well as some pre-
liminary tensor identities. Section 2.2 introduces the coordinate system and consequently the
curvilinear basis that are used for the Kirchhoff-Love shell formulation. In Section 2.3 we pro-
vide the formulations of the shell kinematics, where the concepts of deformation and strain are
defined. Lastly, Section 2.4 provides the variationel formulation of the Kirchhoff-Love shell,
without specifying the constitutive relations, since those are covered in subsequent Sections 3
and 4.
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2.1. Notations and Preliminary Identities
For the ease of reference, the notations and preliminary identities are based on the ones used

by [12]. Lower-case italic quantities (a) represent scalars, lower-case bold quantities (a) de-
note vectors. Upper-case quantities denote two-dimensional quantities; italic and non-bold (A)
for matrices, italic and bold for second-order tensors (A). Fourth-order tensors are represented
by calligraphic capitals (A). The following products operators are defined: inner product a · b,
cross-product a × b and tensor product a ⊗ b. Furthermore, we represent covariant basis vectors
with subscripts (ai) and contravariant vectors with superscript (a j). Latin indices take values
{1, 2, 3} whereas Greek ones take values {1, 2}. By construction, ai · a j = δ

j
i , with δ j

i the Kro-
necker delta. Second- and fourth-order tensors are denoted by A = Ai j ai ⊗ a j = Ai j ai ⊗ a j and
A = Ai jkl ai⊗a j⊗ak⊗al = Ai jkl ai⊗a j⊗ak⊗al, respectively, where Ai j and Ai jkl denote covariant
components and Ai j and Ai jkl denote contravariant components.

The Einstein summation convention is adopted to represent tensor operations. In this nota-
tion, the trace and determinant of a tensor are defined as follows for tensor A = Ai j ai ⊗ a j as
[12, 24, 25]

tr A = Ai jai j and det{A} =

∣∣∣Ai j

∣∣∣∣∣∣ai j

∣∣∣ (1)

Where
∣∣∣Ai j

∣∣∣ denotes the determinant of the matrix A. The inverse of a tensor A is denoted by
A−1 or Ā. The derivative of the inverse and the determinant of a tensor, with respect to one of its
components become:

∂ tr A
∂Ai j

= ai j,
∂ det{A}
∂Ai j

= det{A}Āi j and
∂Ā
∂Ai j

= −
1
2

{
A−1

ik A−1
l j + A−1

il A−1
k j

}
. (2)

2.2. Shell Coordinate System
The Kirchhoff-Love shell element formulation is based on the Kirchhoff Hypothesis, that is,

the cross-section does not shear and orthogonal vectors in the undeformed configuration remain
orthogonal after deformation. As a consequence, any point in the shell can be represented by a
point on the mid-surface and a contribution in normal direction:

x = r + θ3n, (3)

with the shell mid-surface by r(θ1, θ2) and the unit normal direction n(θ3) for the deformed
configuration x(θ1, θ2, θ3). For the undeformed configuration x̊, the same relation holds with
all quantities decorated with a ·̊. The parametrization utilizes surface coordinates θα and the
through-thickness coordinate θ3. Derivatives with respect to these coordinates are denoted by
(·),i = ∂(·)/∂θi.

The covariant basis of the mid-surface is represented by ai

aα =
∂r
∂θα

, a3 = n =
a1 × a2

|a1 × a2|
, (4)

and the first fundamental form is aαβ = aα · aβ. The curvature tensor bαβ is represented by the
second fundamental form of surfaces, which can be obtained using the Hessian of the surface
aα,β or the derivative of the normal vector n,α

bαβ = n · aa,b = −n,β · aα. (5)
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The derivative of the normal vector can be obtained by Weingarten’s formula n,α = −bβαaβ with
bβα = aαγbγβ as the mixed curvature tensor [27]. Taking the derivative of Eq. (3), the covariant
basis of the shell coordinate system x can be formulated as follows:

gα ≡ x,α = aα + θ3n,α, g3 ≡ x,3 = n. (6)

The metric coefficients are constructed by taking the inner-product of these basis vectors, i.e.

gαβ = gα · gβ = aαβ + θ3
(
n,α · aβ + n,β · aα

)
+

(
θ3

)2
n,α · n,β = aαβ − 2θ3bαβ +

(
θ3

)2
n,α · n,β, (7)

where in the second equality, Eq. (5) is used. Moreover, gα3 = 0 and g33 = 1 [10]. Using
the definition of the covariant metric gi j, the contravariant metric gi j and basis vectors gi can be
found:

gαβ = [gαβ]−1, gα = gαβgβ. (8)

The third contravariant basis vector g3 is again the normal vector n since it has unit-length by
construction (see Eq. (4)).

Remark 1. In the isogeometric Kirchhoff-Love shell formulations [10, 12], the last term in
Eq. (7) is neglected because of the thin shell assumption, meaning (θ3)2 takes small values.
However, the co- and contravariant basis vectors (gα and gα, respectively) are used in the mapping
of the stretch-based material matrix onto the contravariant undeformed basis (Section 5.3). To
enable an accurate comparison of the invariant-based and stretch-based formulation, we do not
neglect the O((θ3)2) term, contrary to previous works [12, 15].

2.3. Shell Kinematics
The deformed and undeformed configurations (x and x̊, respectively) are related to each other

by the mid-plane deformation vector u by r = r̊ + u and n = n(r̊ + u). However, in both the
invariant-based and stretch-based forms that are described in this paper, the deformations are
defined using the undeformed and deformed geometries. In continuum mechanics, we define the
deformation gradient F and the deformation tensor C are defined as [12, 26]:

F =
dx
dx̊

= gi ⊗ g̊ j, C = F>F = gi · g j g̊i ⊗ g̊ j = gi j g̊i ⊗ g̊ j. (9)

Note that the deformation tensor is defined in the contravariant undeformed basis gi ⊗ g j. For
shells, it is known that gα3 = g3α = 0, hence this implies Cα3 = C3α = 0. Since g33 = 1, which
implies C33 to be unity and meaning that the thickness remains constant under deformation. In
hyperelastic Kirchhoff-Love shell formulations, the contribution of C33 is therefore incorporated
by static condensation (incompressible materials) or iteratively (compressible materials). There-
fore, we denote the deformation tensor C and its inverse C̄ as denoted as:

C = gαβ g̊α ⊗ g̊β + C33n̊ ⊗ n̊, (10)

C̄ = gαβ g̊α ⊗ g̊β +
1

C33
n̊ ⊗ n̊. (11)

From Eqs. (10) and (11), it can be observed that the thickness-contribution (index 3) is decoupled
from the in-plane contributions (Greek indices α, β). This decoupling is a consequence of the
Kirchhoff Hypothesis and therefore is only valid for Kirchhoff-Love shells. As a consequence,
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using the definition C̃ = gαβ g̊α⊗ g̊β, the trace and determinant of C can be simplified accordingly
[24, 25]:

tr C ≡ tr C̃ + C33 = gαβgαβ + C33, (12)

det{C} = det{F}2 ≡ J2 =

∣∣∣gαβ∣∣∣∣∣∣g̊αβ∣∣∣C33 ≡ J2
0C33 = λ2

1λ
2
2λ

2
3, (13)

where J denotes the Jacobian determinant and J0 is its in-plane counterpart. Furthermore, the
tensor invariants of C simplify to:

I1 := tr{C} = gαβg̊αβ + C33 = λ2
1 + λ2

2 + λ2
3, (14)

I2 :=
1
2

(
tr{C}2 − tr

{
C2

})
= C33gαβg̊αβ + J2

0 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

1λ
2
3, (15)

I3 := det{C} = λ2
1λ

2
2λ

2
3, (16)

where λi denote the principal stretches of the shell and their squares λ2
i are the eigenvalues of

the deformation tensor C. The squares of the eigenvalues are the roots of the characteristic
polynomial:

(λ2
i )3 − I1(λ2

i )2 + I2λ
2
i − I3 = 0. (17)

Corresponding eigenvectors are denoted by vi, which are normalized to have unit-length. The
eigenvalue decomposition (or spectral decomposition) of the deformation tensor C can be written
as [24, 25]:

C = Ci jg̊i ⊗ g̊ j ≡ λ
2
i vi ⊗ vi. (18)

Where the Einstein summation convention is used. Since C33 is decoupled by construction, one
can immediately see from Eqs. (10) and (18) that λ3 =

√
C33 and v3 = n̊.

For the sake of completeness, we recall the definition of the Green-Lagrange strain tensor
E = Eαβ g̊α ⊗ g̊β from [10, 12] and its decomposition to membrane and bending contributions (ε
and κ, respectively):

Eαβ =
1
2

(
gαβ − g̊αβ

)
=

1
2

(
(aαβ − åαβ) − 2θ3

(
bαβ − b̊αβ

))
+ ≡ εαβ + θ3καβ. (19)

Remark 2. Following up on Remark 1; the contribution of the O
((
θ3

)2
)

term in Eq. (7) is ne-

glected in the strain tensor and its derivatives. The O
((
θ3

)2
)

term is only included in Eq. (7) to
ensure equivalence in comparison of the stretch- and invariant-based formulations.

2.4. Variational Formulation
The shell internal and external equilibrium equations in variational form are derived by the

principle of virtual work [10, 12]. The variations of internal and external work are defined as:

δW(u, δu) = δW int − δWext =

∫
Ω

n : δε + m : δκ dΩ −

∫
Ω

f · δu dΩ , (20)

with δu being the virtual displacement, δε and δκ the virtual strain components, Ω the mid-

surface and dΩ =

√∣∣∣åαβ∣∣∣dθ1dθ2 the differential area in the undeformed configuration, mapped
5



to the integration domain Ω∗ = [0, 1]2 using the undeformed mid-plane measure. Furthermore,
with slight abuse of notation, the tensors n = nαβ g̊α ⊗ g̊β and m = mαβ g̊α ⊗ g̊β denote the shell
normal force and bending moment tensors, respectively, represented by:

nαβ =

∫
[−t/2,t/2]

S αβ dθ3 , mαβ =

∫
[−t/2,t/2]

θ3S αβ dθ3 . (21)

Here, S αβ denotes the coefficients of the stress tensor following from the constitutive relations
that will be derived in Sections 3 and 4 and t stands for the shell thickness. The total differentials
of the stress resultants are:

dnαβ =

∫
[−t/2,t/2]

Cαβγδ dθ3 dεγδ +

∫
[−t/2,t/2]

Cαβγδθ3 dθ3 dκγδ ,

dmαβ =

∫
[−t/2,t/2]

Cαβγδθ3 dθ3 dεγδ +

∫
[−t/2,t/2]

Cαβγδ
(
θ3

)2
dθ3 dκγδ .

(22)

Discretizing the equations using known formulations from previous publications [10, 12, 27],
the solution u is represented by a finite sum of weighted basis functions and the tensors n, m,
ε and κ are linearized around the weights using Gateaux derivatives. The linearized tensors are
denoted by (·)′ =

∂(·)
∂ur

in the following, where ur are individual weights of the solution vector.
Note that u′ denotes the basis functions [12]. Using the discretized system, the residual vector is
defined by:

Rr = F int
r − Fext

r =

∫
Ω

n :
∂ε

∂ur
+ m :

∂κ

∂ur
dΩ −

∫
Ω

f ·
∂u
∂ur

dΩ , (23)

and must be equal to the zero vector for the weights u corresponding to the exact solution. To
solve the residual equation R = 0, another linearization is performed, yielding the Jacobian
matrix or tangential stiffness matrix K:

Krs = Kint
rs −Kext

rs =

∫
Ω

∂n
∂us

:
∂ε

∂ur
+ n :

∂2ε

∂ur∂us
+
∂m
∂us

:
∂κ

∂ur
+ m :

∂2κ

∂ur∂us
dΩ−

∫
Ω

∂f
∂us
·
∂u
∂ur

dΩ .

(24)
Note that the matrix contains a contribution for the external load depending on the solution vector
(f(u)). For instance, follower-pressures are defined by f(u) = pn(u), where n is the surface
normal. In order to solve for nonlinear equation, Newton iterations are performed for solution u
and increment ∆u by solving

K∆u = −R. (25)

3. Invariant-Based Constitutive Relations

Adopting an invariant-based formulation [12], the constitutive relations for hyperelastic shells
are derived and illustrated for the Mooney-Rivlin material model. That is, the constitutive laws
are derived using derivatives of the strain energy density function Ψ(C) with respect to the com-
ponents Ci j of the deformation tensor C. The aim of this section is to keep the paper self-
contained and to show the relation between the state-of-the-art [12] and the novel formulations
that will be presented in Section 4.
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The section is structured as follows: Section 3.1 provides general formulations and back-
ground that are valid for both compressible and incompressible material formulations. There-
after, Section 3.2 and Section 3.3 provide the derivations for incompressible and compressible
material models, respectively, in the invariant-based formulations. As mentioned before, these
formulations are based on [12].

3.1. General Relations

Firstly, the second Piola-Kirchhoff stress tensor S = S i j g̊i ⊗ g̊ j and the (tangent) material
tensor C = Ci jkl g̊i ⊗ g̊ j ⊗ g̊k ⊗ g̊l are defined by the following well-established relations [12, 24–
26]:

S i j =
∂Ψ

∂Ei j
= 2

∂Ψ

∂Ci j
, Ci jkl =

∂2Ψ

∂Ei j∂Ekl
= 4

∂2Ψ

∂Ci j∂Ckl
. (26)

These equations are valid for 3D continua and hence need to be modified for the shell equations
to incorporate the through-thickness stress components. Reading Eq. (10), Cαβ = gαβ but C33 ,
g33 = 1 to avoid violation of the plane stress condition. To correctly incorporate the plane-stress
condition (S 33 = 0), the material tensor C is modified using static condensation, which implies
that the material tensor Ĉ corrected for plane-stress is defined by [12]:

Ĉαβγδ = Cαβδγ −
Cαβ33C33δγ

C3333 . (27)

For incompressible materials, this term is derived analytically using the incompressibility condi-
tion (J = 1) whereas for compressible materials, it is corrected iteratively.

3.2. Incompressible Material Models

For incompressible materials, the incompressibility condition (J = 1) is enforced using a
Lagrange multiplier p in the strain energy density function [12, 24]:

Ψ(C) = Ψel(C) − p(J − 1), (28)

where Ψel is the original strain energy density function. Using Eq. (28), Eq. (26) reduces to [12]:

S i j = 2
∂Ψel

∂Ci j
− 2

∂p
∂Ci j

(J − 1) − 2p
∂J
∂Ci j

, (29)

Ci jkl = 4
∂2Ψel

∂Ci j∂Ckl
− 4

∂2 p
∂Ci j∂Ckl

(J − 1) − 4
∂p
∂Ci j

∂J
∂Ckl

− 4
∂J
∂Ci j

∂p
∂Ckl

− 4p
∂2J

∂Ci j∂Ckl
. (30)

The plane stress condition (S 33 = 0) together with the incompressibility condition (J = 1) lead
to the expression for the Lagrange multiplier p, from which its derivative with respect to Ci j can
easily be obtained [12]:

p = 2
∂Ψel

∂C33
C33, (31) ∂p

∂Ci j
= 2

(
∂2Ψel

∂C33∂Ci j
C33 +

∂Ψel

∂C33
δi3δ j3

)
(32)
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Substituting the derivatives of the Jacobian determinant J (see Eqs. (A.2) and (A.4) in Ap-
pendix A), Eqs. (29) and (30) reduce to the following equations, which are valid for incompress-
ible materials in general with S 33 = 0 enforced [12]:

S i j = 2
∂Ψel

∂Ci j
− 2

∂Ψel

∂C33
C33C̄i j, (33)

Ci jkl = 4
∂2Ψel

∂Ci j∂Ckl
− 4

(
∂2Ψel

∂C33∂Ci j
C33 +

∂Ψel

∂C33
δi3δ j3

)
C̄kl − 4C̄i j

(
∂2Ψel

∂C33∂Ckl
C33 +

∂Ψel

∂C33
δk3δl3

)
− 2

∂Ψel

∂C33
C33

(
C̄i jC̄kl − C̄ikC̄ jl − C̄ilC̄ jk

)
. (34)

For a shell, note that only the in-plane components S αβ and Cαβγδ are only considered and that
C−1
αβ = C̄αβ = gαβ, C33 = J−2

0 . The stress-tensor and the material tensor for incompressible
Kirchhoff-Love shells become, by substituting Eqs. (10) and (11):

S αβ = 2
∂Ψel

∂Cαβ
− 2

∂Ψel

∂C33
J−2

0 gαβ, (35)

Ĉαβγδ = 4
∂2Ψel

∂Cαβ∂Cγδ
+ 4J−4

0 gαβgγδ
∂2Ψel

∂C2
33

− 4
∂2Ψel

∂C33∂Cαβ
J−2

0 gγδ (36)

− 4gαβJ−2
0

∂2Ψel

∂C33∂Cγδ
+ 2

∂Ψel

∂C33
J−2

0

(
2gαβgγδ + gαγgβδ + gαδgβγ

)
. (37)

Example 1 (Incompressible Mooney-Rivlin Model). The strain energy density function of the
incompressible Mooney-Rivlin material model is defined as follows [28, 29]:

Ψel =
c1

2
(I1 − 3) +

c2

2
(I2 − 3), (38)

where c1 and c2 are the material parameters such that the Lamé parameter µ satisfies µ = c1 + c2.
Using the derivatives of the invariants I1 and I2 and the Jacobian determinant J with respect
to Ci j, the derivatives of Ψ can be found using the identities in Appendix A (see Eqs. (A.2)
and (A.4) to (A.9)):

∂Ψ

∂Cαβ
=

c1

2
g̊αβ +

c2

2

(
C33g̊αβ + J2

0gαβ
)
,

∂Ψ

∂C33
=

c1

2
+

c2

2
tr C̃, (39)

∂2Ψ

∂Cαβ∂Cγδ
=

c2

2

(
J2

0gαβgγδ −
1
2

J2
0

(
gαγgβδ + gαδgβγ

))
,

∂2Ψ

∂C33∂Cαβ
=

∂2Ψ

∂Cαβ∂C33
=

c2

2
g̊αβ,

(40)

and all other derivatives are equal to zero. As a consequence, Eqs. (35) and (37) reduce to:

S αβ = c1

(
g̊αβ − J−2

0 gαβ
)

+ c2

(
J−2

0 g̊αβ + J2
0gαβ − tr C̃J−2

0 gαβ
)
, (41)

Cαβγδ =
(
c1 + c2 tr C̃

)(
2gαβgγδ + gαγgβδ + gαδgβγ

)
− 2c2J−2

0

(
g̊αβgγδ + gαβg̊γδ

)
(42)

+ c2J2
0

(
2gαβgγδ − gαγgβδ − gαδgβγ

)
. (43)

Note that for c1 = µ and c2 = 0, this model reduces to the incompressible Neo-Hookean material
model (see Eq. (96)) [12].
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3.3. Compressible Material Models
For compressible models, the Jacobian determinant J is not necessarily equal to 1. As a

consequence, the deformation gradient F and deformation tensor C are modified such that F
and C are a multiplicative decomposition of a volume-changing (dilational) part depending on J
and a volume preserving (distortional) part depending on the modified deformation gradient and
deformation tensors, Ċ and Ḟ, respectively [30]:

Ḟ = J−
1
3 F, Ċ = J−

2
3 C. (44)

The modified deformation gradient and deformation tensor have determinants which are equal to
1 (corresponding to volume preservation), meaning:

det
{
Ḟ
}

= λ̇1λ̇2λ̇3 = 1, det
{
Ċ
}

= 1, (45)

where the modified principal stretches λ̇i are defined as:

λ̇i = J−
1
3 λi. (46)

As a consequence, the invariants of the modified deformation tensor Ċ become:

İ1 = J−2/3I1, İ2 = J−4/3I2, İ3 = 1, (47)

with Ii the invariants of the deformation tensor C. With Ḟ, Ċ and İk defined above, the strain
energy density function Ψ(C) for a compressible material can be described in a decoupled form,
separating the response in a isochoric (or distortional) elastic part Ψiso(Ċ) and an volumetric (or
dilational) elastic part Ψvol(J) [24, 25, 30]:

Ψ(C) = Ψiso(Ċ) + Ψvol(J). (48)

The volumetric elastic part Ψvol is required to be strictly convex and equal to zero if and only if
J = 1 and Ċ = I [24].

For compressible materials, the plane stress condition is incorporated by iteratively solving
S 33 = 0 for C33 using Newton linearizations [12, 31]:

S 33 +
1
2

∆C3333∆C33 = 0. (49)

where C33 is incrementally updated by C(n+1)
33 = C(n)

33 + ∆C(n)
33 with the increment on iteration n:

∆C(n)
33 = −2

S 33
(n)

C3333
(n)

. (50)

In each iteration, the updated stress tensor S and material tensor C can be computed and iter-
ations are continued until the plane stress condition is satisfied within a certain tolerance, i.e.∣∣∣S 33

∣∣∣ < tol. When converged, static condensation can be performed for the material tensor using
Eq. (27). Rather than using C(0)

33 = 0 [12], C(0)
33 = J−2

0 is used for incompressible materials, al-
though the difference for the two approaches is negligible.
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Example 2 (Compressible Mooney-Rivlin Model). The strain energy density function of the
Mooney-Rivlin material model is defined as:[24]

Ψ = Ψvol(Ċ) + Ψiso(J) =
c1

2

(
J−

2
3 I1 − 3

)
+

c2

2

(
J−

4
3 I2 − 3

)
+ KG(J), (51)

where c1 and c2 are the material parameters such that the Lamé parameter µ satisfies µ = c1 + c2.
The bulk modulus of the material is K = 2µ(1 + ν)/(3 − 6ν) and the function contribution KG(J)
is the volumetric contribution function of which G is defined as [32]:

G(J) = β−2
(
β log(J) + J−β − 1

)
. (52)

The parameter β is an empirical coefficient and a value of −2 can be adopted [33]. Note that for
the volumetric strain energy density function Ψvol other functions can be selected as well [34].
Using the derivatives of the invariants I1 and I2 and the Jacobian determinant J with respect to
Ci j, the derivatives of Ψ can be obtained:

∂Ψ

∂Ci j
=

c1

2

(
J−

2
3
∂I1

∂Ci j
−

1
3

J−
2
3 I1C̄i j

)
+

c2

2

(
J−

4
3
∂I2

∂Ci j
−

2
3

J−
4
3 I2C̄i j

)
+

K
2β

(
1 − J−β

)
C̄i j, (53)

∂2Ψ

∂Ci j∂Ckl
=

1
9

c1

2
J−

2
3

(
I1C̄i jC̄kl − 3

∂I1

∂Ci j
C̄kl − 3

∂I1

∂Ckl
C̄i j − 3I1

∂C̄i j

∂Ckl
+ 9

∂2I1

∂Ci j∂Ckl

)
+

1
9

c2

2
J−

4
3

(
4I1C̄i jC̄kl − 6

∂I1

∂Ci j
C̄kl − 6

∂I1

∂Ckl
C̄i j − 6I1

∂C̄i j

∂Ckl
+ 9

∂2I1

∂Ci j∂Ckl

)
+

K
4β

(
βJ−βC̄i jC̄kl + 2

(
1 − J−β

)∂C̄i j

∂Ckl

)
, (54)

where for the sake of brevity, reference is made to Eqs. (A.5) to (A.9) in Appendix A for the
derivatives of the invariants and to Eq. (2) for the derivative of the inverse of the deformation
tensor. Note that from Eq. (A.6) it follows that the second derivative of I1 is equal to zero. The
other derivatives of the invariants and the derivative of the inverse of the deformation tensor are
not substituted for conciseness. Substituting Eqs. (53) and (54) into Eq. (26) yields expressions
for the stress and material tensors:

S αβ = c1J−
2
3

(
∂I1

∂Ci j
−

1
3

I1C̄i j
)

+ c2J−
4
3

(
∂I2

∂Ci j
−

2
3

I2C̄i j
)

+
K
β

(
1 − J−β

)
C̄i j, (55)

Ci jkl =
1
9

c1J−
2
3

(
2I1C̄i jC̄kl − 6

∂I1

∂Ci j
C̄kl − 6

∂I1

∂Ckl
C̄i j − 6I1

∂C̄i j

∂Ckl

)
+

1
9

c2J−
4
3

(
8I2C̄i jC̄kl − 12

∂I2

∂Ci j
C̄kl − 12

∂I2

∂Ckl
C̄i j − 12I2

∂C̄i j

∂Ckl
+ 18

∂2I2

∂Ci j∂Ckl

)
+

K
β

(
βJ−βC̄i jC̄kl + 2

(
1 − J−β

)∂C̄i j

∂Ckl

)
. (56)

Again, for c1 = µ and c2 = 0, this material model reduces to the Neo-Hookean model (see
Eq. (95)) [12].

4. Stretch-Based Constitutive Relations

Invariant-based (in)compressible material model formulations have been obtained for the
strain energy density functions Ψ(C) in Section 3 based on [12]. However, when experimental
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material data fitting is involved a formulation in terms of stretches (i.e. in terms of the eigenval-
ues of C, Ψ(λwith λ = (λ1, λ2, λ3)) might be preferred, meaning the invariant-based formulations
(Section 3) are not directly applicable. Therefore, this section provides the main contribution of
this paper: the generalized formulations for the implementation of stretch-based material models
in the isogeometric Kirchhoff-Love shell model.

The section is structured as follows: Section 4.1 provides the basics for the derivation of the
stretch-based constitutive relations. Thereafter, Section 4.2 and Section 4.3 provide the deriva-
tions for incompressible and compressible material models, respectively, in the stretch-based
formulations. These formulations are the novelty of the present paper.

4.1. General Relations
Assuming Ψ(λ), relations for the stress and material tensor will be derived in terms of the

(normalized) eigenvector bases (Eq. (18)):

S = S i vi ⊗ vi, C = Ci jkl vi ⊗ v j ⊗ vk ⊗ vl. (57)

When S and C are known, a transformation to the bases g̊i ⊗ g̊ j and g̊i ⊗ g̊ j ⊗ g̊k ⊗ g̊l for the stress
and material tensors, respectively. This will be discussed in Section 5.3.

The derivative of any scalar function with respect to the deformation tensor C can be written
as a derivative with respect to the stretch by applying the chain rule [24]:

∂(·)
∂C

=
∂(·)
∂λ2

i

∂λ2
i

∂C
=
∂(·)
∂λ2

i

vi ⊗ vi =
1

2λi

∂(·)
∂λi

vi ⊗ vi. (58)

Consequently, the second derivatives are:

∂2(·)
∂C∂C

=
∂

∂C

(
1

2λi

∂(·)
∂λi

vi ⊗ vi

)
=

1
4λiλ j

∂2(·)
∂λi∂λi

vi ⊗ vi ⊗ v j ⊗ v j. (59)

From this, it follows that:

S = 2
∂Ψ

∂C
=

1
λi

∂Ψ

∂λi
vi ⊗ vi ≡ S ivi ⊗ vi. (60)

Furthermore, it can also be shown that for the material tensor, the following holds [5, 6, 8, 24, 35]:

Ci jkl =
1
λk

∂S i

∂λk
δ

j
i δ

l
k +

S j − S i

λ2
j − λ

2
i

(δk
i δ

l
j + δl

iδ
k
j)(1 − δ

j
i ). (61)

The first part of Ci jkl represents the normal components (diagonal elements) and the second part
denotes the shear components (off-diagonal elements). In the formulation of the invariant-based
counterpart of this equation (Eq. (26)) these parts are not explicitly visible, since the spectral form
by definition uses the principal directions of the deformation tensor, whereas shear and normal
contributions are mixed in the curvilinear form of the material tensor. Note that for the second
part of this equation, the case λi = λ j results in an undefined result. Hence, using L’Hopital’s
rule, this limit case can be identified:

lim
λ j→λi

S j − S i

λ2
j − λ

2
i

= lim
λ j→λi

∂S j

∂λ j
−

∂S i
∂λ j

2λ j
=

1
2λi

(
∂S j

∂λ j
−
∂S i

∂λ j

)
. (62)
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Similar to the derivations in terms of the components (see Section 3) static condensation is also
applied to enforce plane-stress. For incompressible material models, the stretch-based static con-
densation term will be derived. For compressible models, static condensation will be performed
iteratively in spectral form and afterwards it will be transformed to the covariant undeformed
basis. Since J = λ1λ2λ3, the derivatives of J are:

∂J
∂λi

=
J
λi
,

∂2J
∂λ j∂λ j

= (1 − δ j
i )

J
λiλ j

. (63)

4.2. Incompressible Material Models

Similar to the invariant-based formulation (Section 3.2), the incompressibility condition J =

1 is imposed using the Lagrange multiplier p in the strain energy density function for incom-
pressible materials, i.e.

Ψ(λi) = Ψel(λi) − p(J − 1). (64)

Using Eq. (60), the stress tensor becomes:

S i =
1
λi

(
∂Ψel

∂λi
−
∂p
∂λi

(J − 1) − p
∂J
∂λi

)
. (65)

Comparing S i with the invariant-based stress tensor in Eq. (29) shows that all components can
easily be obtained using Eq. (58). To comply with the plane-stress condition S 33 = 0, the
equation to be solved for p using J = 1 denotes:

1
λ3

(
∂Ψel

∂λ3
− p

∂J
∂λ3

)
= 0, (66)

which implies, using the derivative of J from Eq. (A.13):

p =

(
∂J
∂λ3

)−1
∂Ψel

∂λ3
= λ3

∂Ψel

∂λ3
. (67)

It can easily be shown that Eq. (67) is similar to the expression of p in the invariant-based form
(Eq. (31)) using Eq. (59) and using λ2

3 = C33. The derivative of the stress tensor with respect
to the stretch is required to find the material tensor, as observed in Eq. (61). From Eq. (65) it
follows that:

∂S i

∂λ j
=

∂

∂λ j

(
1
λi

∂Ψ

∂λi

)
=

1
λi

∂2Ψ

∂λi∂λ j
− δ

j
i

1
λ2

i

∂Ψ

∂λi

=
1
λi

(
∂2Ψel

∂λi∂λ j
−
∂p
∂λi

∂J
∂λ j
−
∂p
∂λ j

∂J
∂λi
− p

∂2J
∂λi∂λ j

− δ
j
i

1
λi

(
∂Ψel

∂λi
− p

∂J
∂λi

))
, (68)

where the incompressibility condition (J = 1) is used again. Note that the Kronecker delta δ j
i

covers the case when i = j. The derivative of p follows from Eq. (67) and yields:

∂p
∂λi

= λ3
∂2Ψel

∂λ3∂λi
+ δ3

i
∂Ψel

∂λ3
. (69)
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Again, this result can be compared to its invariant-based counterpart in Eq. (32) and using
Eqs. (58) and (59) it can be observed that these equations are similar. Substituting Eqs. (63),
(67) and (69) and J = 1 into Eqs. (65) and (68) then provides:

S i =
1
λi

(
∂Ψel

∂λi
−
λ3

λi

∂Ψel

∂λ3

)
, (70)

∂S i

∂λ j
=

1
λi

[
∂2Ψel

∂λi∂λ j
−

1
λ j

(
λ3

∂2Ψel

∂λ3∂λi
+ δ3

i
∂Ψel

∂λ3

)
−

1
λi

(
λ3

∂2Ψel

∂λ3∂λ j
+ δ3

j
∂Ψel

∂λ3

)
− λ3

∂Ψel

∂λ3

(1 − δ j
i )

λiλ j
− δ

j
i

1
λi

(
∂Ψel

∂λi
−

1
λi
λ3
∂Ψel

∂λ3

)]
. (71)

Comparison with the invariant-based formulation shows that λ−1
i in front of the second term in

Eq. (70) translates to C̄i j in Eq. (34). Using these identities, the material tensor can be derived
from Eq. (61). For the static condensation term, reference is made to Eq. (27), hence the compo-
nents Cαβ33, C33αβ and C3333 need to be evaluated. From Eq. (61) it follows that:

Cαβ33 =
1
λ3

∂S αα

∂λ3
δ
β
α = −

1
λ3λ2

α

λ3
∂2Ψel

∂λ2
3

+ 2
∂Ψel

∂λ3

δβα, (72)

C33γδ =
1
λγ

∂S 33

∂λγ
δδγ = −

1
λ3λ2

γ

λ3
∂2Ψel

∂λ2
3

+ 2
∂Ψel

∂λ3

δδγ, (73)

C3333 =
1
λ3

∂S 33

∂λ3
= −

1
λ3

3

[
λ3
∂2Ψel

∂λ2
3

+ 2
∂Ψel

∂λ3

]
, (74)

such that the static condensation term becomes:

Cαβ33C33γδ

C3333 = −

1
λ2

3λ
2
αλ

2
γ

[
λ3

∂2Ψel

∂λ2
3

+ 2 ∂Ψel
∂λ3

]2

1
λ3

3

[
λ3

∂2Ψel

∂λ2
3

+ 2 ∂Ψel
∂λ3

] δ
β
αδ

δ
γ (75)

= −
1

λ2
αλ

2
γ

λ3
∂2Ψel

∂λ2
3

+ 2
∂Ψel

∂λ3

δβαδδγ. (76)

Using this result, the in-plane incompressible material tensor can be evaluated as:

Cαβγδ =
1
λγ

∂S αα

∂λγ
δ
β
αδ

δ
γ +

S ββ − S αα

λ2
β − λ

2
α

(δγαδδβ + δδαδ
γ
β)(1 − δ j

i ) −
1

λ2
αλ

2
γ

λ3
∂2Ψel

∂λ2
3

+ 2
∂Ψel

∂λ3

δβαδδγ, (77)

where the second term needs to be replaced by Eq. (62) if λα = λβ.

Example 3 (Incompressible Ogden Material Model). The (incompressible) Ogden material model
is an example of a (class of) material model(s) that is expressed in terms of stretches. The strain
energy density function reads [24, 25, 32]:

Ψ =

N∑
p=1

µp

αp

(
λ
αp

1 + λ
αp

2 + λ
αp

3 − 3
)

=

3∑
q=1

 N∑
p=1

µp

αp
(λαp

q − 1)

 =

3∑
q=1

ω(λq). (78)
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The last equality signs show that the function can be written as a sum of three separate functions
ω(λi) depending on different stretches. This separated form is known as the Valanis-Landel
hypothesis [24, 36]. Using this form, the derivatives of Ψ with respect to the stretches are:

∂Ψ

∂λi
=
∂ω(λi)
∂λi

=

N∑
p=1

µpλ
αp−1
i , (79)

∂2Ψ

∂λi∂λ j
= δ

j
i
∂2ω(λi)
∂λ2

i

= δ
j
i

N∑
p=1

µpλ
αp−2
i (αp − 1). (80)

From which again the stress and material tensors can be derived using Eqs. (70), (71) and (77).

4.3. Compressible Material Models

Similar to the compressible invariant-based formulation (Section 3.3), S and C for compress-
ible material models will be derived for stretch-based material models. This means that the
thickness-correction is applied iteratively. On the stretch-based terms of the stress and material
tensors, that will be derived in this section, a transformation from the eigenvector space to the
undeformed covariant tensor basis is required (Section 5.3) is applied to transform the material
model to the curvilinear basis. Using the transformed stretch-based quantities, the same iterative
procedure as in Section 3.3 can be used to converge towards the compressible stress and material
tensors. Static condensation (Eq. (27)) is performed before transforming the material tensor.

For computation of the stress and material tensors, the relations in Eqs. (60) and (61) are used.
As described in Section 3.3, the strain energy density function Ψ for compressible materials can
be decomposed in an isochoric and volumetric part (see Eq. (48)) [30]. For stretch-based forms,
this implies:

Ψ(λ) = Ψiso(λ̇) + Ψvol(J). (81)

The stretches λ̇i are the modified principal stretches, defined as:

λ̇i := J−
1
3 λi. (82)

Using Eq. (82), any volumetric strain energy density function for incompressible materials can
be transformed to its compressible material equivalent by substitution of Eq. (82) into Eq. (81)
and by selecting an volumetric component Ψvol.

Example 4 (Compressible Ogden Material Model). The compressible Ogden material model
can be derived by substituting Eq. (82) into Eq. (78):

Ψ =

N∑
p=1

µp

αp
J−

1
3

(
λ
αp

1 + λ
αp

2 + λ
αp

3 − 3
)

+ Ψvol. (83)

In this equation, Ψvol can be chosen according to Eq. (52) but is not specified in the further
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derivation. Using this form, the derivatives of Ψ with respect to the stretches are:

∂Ψ

∂λi
=

N∑
p=1

µp

αp

∂
(
J−

αp
3

)
∂λi

(Λ − 3) + J−
αp
3 αpλ

αp−1
i

 +
∂Ψvol

∂λi
(84)

=

N∑
p=1

µpJ−
αp
3

[
λ
αp−1
i −

1
3λi

(Λ − 3)
]

+
∂Ψvol

∂λi
, (85)

∂2Ψ

∂λi∂λ j
=

N∑
p=1

µp

∂
(
J−

αp
3

)
∂λi

(Λ − 3) + J−
αp
3

(
δ

j
i

(
(αp − 1)λαp−2

i −
1
3
λ−2

i (Λ − 3)
)
−

1
3λi

αpλ
αp−1

)
+
∂2Ψvol

∂λi∂λ j
(86)

=

N∑
p=1

µpJ−
αp
3

αp

3

 Λ

3λiλ j
−
λ
αp−1
a

λb
−
λ
αp−1
b

λa

 + δ
j
i

(αp − 1)λαp−1
i +

Λ

3λ2
i

 +
∂2Ψvol

∂λi∂λ j
, (87)

where Λ = λ
αp

1 + λ
αp

2 + λ
αp

3 .

5. Implementation Aspects

In order to provide some implementation aspects for the presented formulations (Section 4),
the assembly of the nonlinear system for isogeometric Kirchhoff-Love shells will be recalled
(Section 5.1) as well as the computation of the eigenvalues and eigenvectors of the deformation
tensor C (Section 5.2). Lastly, we will provide details about the transformation of the stress and
material tensors S and C from spectral to curvilinear bases (Section 5.3).

5.1. System Assembly

For the implementation of Kirchhoff-Love shells recall that the vector of internal forces and
the tangential stiffness matrix read [10, 12]:

F int
r =

∫
Ω

(
n̄>

∂ε̄

∂ur
+ m̄>

∂κ̄

∂ur

)
dΩ , (88)

Krs =

∫
Ω

((
D̄0 ∂ε̄

∂us
+ D̄1 ∂κ̄

∂us

)
∂ε̄

∂ur
+ n̄>

∂2ε̄

∂ur∂us
+

(
D̄1 ∂ε̄

∂us
+ D̄2 ∂κ̄

∂us

)
∂ε̄

∂ur
+ m̄>

∂2κ̄

∂ur∂us

)
dΩ .

(89)

Here, we note that the matrices D̄k, k = 0, 1, 2, are kth thickness moments of the material tensor
represented as a 3×3 matrix and n̄ and m̄ are the zero-th and first thickness moments of the stress
tensor, see [12]. The thickness integrals are, in the present paper and in [12], computed using
numerical through-thickness integration with four Gaussian points. As discussed before by [15],
the matrices D̄1 can differ in the variations of the normal force tensor n̄ and the moment tensor
m̄ depending the analytic projected or directly decoupled alternatives for thickness integration.
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5.2. Eigenvalue Computation

The eigenvalues a tensor quantity can be computed by solving Eq. (17) or, alternatively, by
computing the eigenvalues of the matrix that results from symbolic computation of C = Ci jg̊i⊗g̊ j.
Since λ2

3 =
√

C33 is decoupled by construction, the other two eigenvalues λ2
1 and λ2

2 are to be
computed. Here, an basic routine for the eigenvalues and eigenvectors for 3 × 3 matrices is em-
ployed on the matrix that follows from explicit computation of C = Cαβ g̊α ⊗ g̊β.

5.3. Tensor Transformation

Since the stretch-based stress and material tensor are derived in spectral form (i.e. in the
eigenvector space) a transformation towards the curvilinear basis needsis required in order to use
these entities in further computations. Recall that the spectral forms of S and C are:

S = S i vi ⊗ vi, C = Ci jkl vi ⊗ v j ⊗ vk ⊗ vl. (90)

The the invariant-based stress and material tensors are defined in the curvilinear basis, as follows:

S = S i j g̊i ⊗ g̊ j C = Ci jkl g̊i ⊗ g̊ j ⊗ g̊k ⊗ g̊l. (91)

Since the strain tensors (c.f. Eq. (19)) are defined in the curvilinear basis, it is convenient to define
the quantities in the variational form (c.f. Eq. (20)) defined in the curvilinear basis. Hence, the
stretch-based stress and material tensors have to be transformed to the undeformed covariant
curvilinear basis by:

S̃ i j = S pq(vp · g̊i)(vq · g̊ j),

C̃i jkl = Cpqrs(vp · g̊i)(vq · g̊ j)(vr · g̊k)(vs · g̊l),
(92)

where S̃ i j and C̃i jkl are the coefficients of the stress and material tensors in the curvilinear basis.

Obviously, the tensor transformation only needs to be computed for non-zero components
of Cpqrs. For incompressible material models, static condensation is applied analytically, which
implies that the transformations only need to be applied for indices ranging from α, β, γ, δ = 1, 2,
thus the transformation consists of mapping 24 = 16 entries. However, it is known that for
hyperelastic materials the contravariant components of the material tensor, Ci jkl, posses minor
and major symmetry [24, 25], i.e.

Cabcd = Cbacd = Cabdc minor symmetry, (93)

= Ccdab major symmetry, (94)

So that only six unique components exists for the 2 × 2 × 2 × 2 tensor. Furthermore, Eq. (61)
implies that the non-zero components of Ci jkl are of the form Ciiii, Cii j j, Ci ji j and Ci j ji of which
the last two are equal by virtue of the minor symmetry property. This implies that the 2×2×2×2
tensor has only four uniquely defined components, namely C1111, C1122, C2222 and C1212.

For compressible material models, static condensation is applied in the spectral basis, i.e. on
the tensor C before it is transformed to the covariant undeformed tensor basis. From Eq. (27) we
see that the static condensation procedure requires the computation of C3333, Cαβ33 and C33αβ,
where the last two are equal by virtue of the major symmetry property. Using the minor and
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major symmetries again, this implies computation of four extra (unique) components, namely
C1133, C2233, C1233 and C3333.

Accordingly, it can be concluded that for incompressible materials four and for compressible
materials eight unique components of the spectral material tensor need to be computed, when
exploiting minor and major symmetry, as well as the nature of Eq. (61). Hence, the additional
costs of the transformation are existent, but limited due to symmetries of the spectral form.

6. Numerical experiments

For benchmarking purposes, the results of five numerical experiments have been used for ver-
ification and validation of the presented formulations for incompressible and compressible mate-
rial models. For the uniaxial tension and pressurized balloon benchmarks (Sections 6.1 and 6.3,
respectively), analytical solutions are available, meaning the results will serve as verification
of the stretch-based material model formulations. The restrained sheet elongation (Section 6.2)
will serve as validation of the stretch-based material model formulations because of the involved
numerical (IGA and FEM) and experimental data. The benchmark of the pinched cylinder (Sec-
tion 6.4) provides additional comparison of selected material models with reference works. In
order to verify the presented isogemetric Kirchhoff-Love formulation for a stretch-based Ogden
material with its FEM couterpart, the conical shell collapse (Section 6.5) is incorporated. The
described models have been implemented in the open-source library G+Smo (Geometry + Sim-
ulation Modules) [37].

In the numerical experiments, compressible and incompressible formulations of the Neo-
Hookean (NH), Mooney-Rivlin (MR) and Ogden (OG) material models have been used. The
Neo-Hookean models are given by:

Ψ(C) =
µ

2

(
J−

2
3 I1 − 3

)
+ Ψvol(J) NH Compressible, (95)

Ψ(C) =
µ

2
(I1 − 3) NH Incompressible. (96)

For the MR and OG models, the established formulations (respectivelyEqs. (38) and (51) and
Eqs. (78) and (83)) are used. For all models, the following volumetric part of the strain energy
density function is adopted (see Eq. (52)):

Ψvol = KG(J) = Kβ−2
(
β log(J) + J−β − 1

)
. (97)

For the NR and MR models, the invariants can be replaced by Eqs. (14) to (16) to obtain stretch-
based forms (see also Appendix B). Unless stated otherwise, for the compressible models
β = −2, and for the Mooney-Rivlin model c1/c2 = 7 [29] is used. For the Ogden model the
coefficients from [38] are re-scaled to the value of µ:

µ1 =
6.300
µ0

µ, α1 = 1.3,

µ2 =
0.012
µ0

µ, α2 = 5.0,

µ3 = −
0.100
µ0

µ, α3 = −2.0,

(98)
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Figure 1: Geometry for the uniaxial tension case. The filled geometry represents the undeformed configuration and the
dashed line indicates the undeformed geometry. The bottom side of the undeformed sheet is fixed in y-direction and
the left side of the sheet is fixed in x-direction. The applied load is σt where σ is the actual Cauchy stress and t is the
thickness of the sheet.

where µ0 = 4.225. Lastly, for obtaining the analytical solutions, we note that the principal
Cauchy stresses are defined as :

σi = J−1λi
∂Ψ

∂λi
. (99)

6.1. Uniaxial Tension

The first benchmark case is uniaxial tension of a material block. In this case, a block with di-
mensions L×W×t = 1×1×0.001[m2] is considered. The shear modulus is µ = E/(2(1+ν)) where
E and ν are the Young’s modulus and Poisson ratio, respectively, such that µ = 1.5 · 106 [N/m2].
The block is modeled by shell elements, which means that the L × W plane is considered and
all edges are restrained in vertical direction (z = 0). The left edge (x = 0) is restrained in x
direction and on the right edge (x = L) a distributed load σt is applied. The bottom edge (y = 0)
is restrained in y direction and the top edge (y = B) is free to move (see Fig. 1.

For incompressible materials, the analytical solution is obtained by the incompressibility
constraint J = λ1λ2λ3 = 1 and λ1 = λ as the stretch of the block. As a consequence, λ2 =

λ3 = 1/
√
λ are the changes in width and thickness of the block and the Cauchy-stresses are

σ2 = σ3 = 0 and

Neo-Hookean: σ1 = σ = µ
(
λ2 − λ−1

)
,

Mooney-Rivlin: σ1 = σ = c1

(
λ2 − λ−1

)
+ c2

(
λ − λ−2

)
,

Ogden: σ1 = σ =

N∑
p=1

µp

(
λαp − λ

αp
2

)
.

(100)

For compressible materials, the incompressibility constraint is not valid, hence J = λ1λ2λ3 , 1,
and λ1 = λ and λ2 = λ3 =

√
J/λ. The plane-stress condition σ3 = 0 using Eq. (100) is adopted

to obtain J for any value of λ. Using this result, the Cauchy-stress for any λ can then be obtained
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Table 1: Residual norms per iteration for the 10th load-step for uniaxial tension for all material models in compressible
and incompressible forms. For the Neo-Hookean and Mooney-Rivlin models, the iteration residuals are provided for
the stretch-based and invariant-based implementations. For the Ogden model, only the results for the stretch-based
implementation are given, since no invariant-based formulation exists. For the Neo-Hookean and Mooney-Rivlin models,
results are only observed in the last iteration, due to machine precision of the arithmetic.

Iteration Neo-Hookean Mooney-Rivlin Ogden
Stretch Invariant Stretch Invariant Stretch

Incomp.
1 1.8799 · 10−4 1.8799 · 10−4 3.9993 · 10−3 3.9993 · 10−3 1.6073 · 10−3

2 1.0523 · 10−6 1.0523 · 10−6 2.2532 · 10−5 2.2532 · 10−5 2.0652 · 10−7

3 3.3816 · 10−11 3.3816 · 10−11 7.2294 · 10−10 7.2294 · 10−10 8.2372 · 10−13

4 2.6535 · 10−16 2.8834 · 10−16 2.3197 · 10−15 5.1781 · 10−16 2.3283 · 10−15

Comp.
1 1.6073 · 10−03 1.6073 · 10−03 2.0643 · 10−03 2.0643 · 10−03 1.60731 · 10−3

2 2.0652 · 10−7 2.0652 · 10−7 2.7452 · 10−6 2.7452 · 10−6 2.0652 · 10−7

3 8.2372 · 10−13 8.2254 · 10−13 1.2340 · 10−11 1.2340 · 10−11 8.2372 · 10−13

4 2.3283 · 10−15 4.8586 · 10−16 2.1144 · 10−15 6.9650 · 10−16 2.32830 · 10−15

using:

Neo-Hookean: σ1 = σ =
2
3
µJ

2
3

(
λ2J−1 − λ−1

)
+

K
2

(
J − J−1

)
,

Mooney-Rivlin: σ1 = σ =
2
3

c1J
2
3

(
λ2J−1 − λ−1

)
+

4
3

c2J
1
3

(
λJ−1 − λ−2

)
+

K
2

(
J − J−1

)
,

Ogden: σ1 = σ =

N∑
p=1

[
2
3
µp

J

((
λJ−

1
3

)αp
−

(
λ−1J

2
3

) αp
2

)]
+

K
2

(
J − J−1

)
.

(101)

In Fig. 2 the results for uniaxial tension are depicted. The numerical and analytical solutions
for incompressible and compressible materials show a perfect match for all quantities studied
(thickness decrease λ3, axial Cauchy stress σ and Jacobian determinant J). Note that the Jaco-
bian determinant for incompressible materials is equal to 1 and hence not shown. The residual
norms of the non-linear iteration convergence for the invariant-based and stretch-based Neo-
Hookean and Mooney-Rivlin models as well as the stretch-based Ogden model are equal in all
iterationsTable 1, showing that the present formulation provides exactly the same rates of conver-
gence as the invariant-based method. Last but not least, the iterations converge with the second
order, as can be expected when using Newton iterations.

6.2. Restrained Sheet Elongation

Related to the first benchmark in the work of [15] and on the experiments of [39], a ten-
sile load is applied on a strip of which the short edges are fixed and the long edges are free
(see Fig. 3). Focus is on the non-domensional load versus end-point displacement in longi-
tudinal (load and displacement) direction. For incompressible materials, comparison is made
with the numerical results of [15] and for compressible materials, comparison is made with
the experimental and numerical results of [39]. In both cases, the geometric parameters of the
sheet are L = 157.895 [mm], W = 78.947 [mm] and t = 0.15 [mm] leading to L/W = 2 and
t/W = 1.90·10−3 as in [39]. Furthermore, for comparison with [15] Young’s modulus E = 1[Pa]],
and a Poisson’s ratio ν = 0.5 (due to incompressibility) are used, which leads to µ = 1/3[Pa]. For
the Mooney-Rivlin model, c1/c2 = 1/2 such that c1 = 1/9 and c2 = 2/9. Scaling according to
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Figure 2: Results for uniaxial tension for compressible (left column) and incompressible materials (right column); where
the first row presents the thickness decrease λ3, the second row the axial Cauchy stress or true axial stress σ and the last
row the Jacobian determinant J for compressible materials; all against the stretch λ. The material models that are used
are the Neo-Hookean (NH) the Mooney-Rivlin (MR) and the Ogden (OG) material models
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Figure 4: Uniaxial tension of a restrained sheet using
incompressible material models. The reference results
are obtained from the work of [15], specifically for
their directly decoupled method. The dimensionless
force is obtained by normalization of the applied force
P by the Young’s modulus E and the cross sectional
area A.

Eq. (98) is applied for the Ogden material model. For the sake of comparison with [39], a Neo-
Hookean material model with Young’s modulus 1 [Pa] and Poisson ratio ν = 0.45 is adopted.
In the comparison with the data from [15] 16 × 8 quadratic B-spline elements are used and for
comparison with [39] 32 × 16 cubic elements are used.

A good match with the results of [15] for the incompressible Neo-Hookean and Mooney-
Rivlin models can be seen in Fig. 4. Note that the forces in the reference paper are normal-
ized by E = 3c1 for both the Neo-Hookean and Mooney-Rivlin models, whereas in the present
simulations, the are normalized by E = 3µ (since ν = 0.5 in the comparison with [15]). Fur-
thermore, the deflection contour at the sheet sides (Fig. 5) shows a good agreement with the
numerical/experimental results of [39] as well. The curves are presented for different strains
which shows that dispite strain-normalization on the vertical axis strain dependence is still visi-
ble, meaning that there is non-linear dependence of the strains in the scaling laws.

6.3. Pressurized Balloon

The response affected pressure of a spherical balloon is used for benchmarking purposes as
well. The analytical pressure formulation denotes [24]:

p = 2
t
R
σ, (102)

where h and r are the undeformed thickness and radius of the balloon, respectively, σ1 = σ2 = σ
since λ1 = λ2 = λ and λ3 = 1/λ by the incompressibility condition. Substituting in Eq. (99)
yields σ, which can be substituted in Eq. (102) to obtain the internal pressure. For the Ogden
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Figure 5: Poisson-effect of a stretched restrained sheet under uniaxial tension with L/W = 2, T/W = 1.9 · 10−3,
t = 0.15 [mm], using the compressible Neo-Hookean model. The horizontal axis denotes the non-dimensional location
on the length of the sheet and the vertical axis denotes the contraction over the width-axis, made nondimensional using
the applied strain ε and the width of the sheet. The markers denote the experimental data from Ref. [39] and the markers
are grouped on strain level (ε ∼ 0.09 − 0.30) and colored using the same colors as in their work. The black dashed
line denotes the result of the FEM model used by [39]. The other lines represent present results for different meshes on
ε ∼ 0.1.

material model, this yields:

Neo-Hookean: p = 2
t
R
µ

λ

(
1 − λ−6

)
,

Mooney-Rivlin: p = 2
t
R

(c1

λ

(
1 − λ−6

))
+

c2

λ

(
λ−6 − λ

)
,

Ogden: p = 2
t
R

N∑
p=1

µp

(
λαp−3 − λ−2αp−3

)
.

(103)

The numerical model results are based on follower pressures, i.e. f = pn where n is the unit nor-
mal in the current configuration. The balloon is modeled as a quarter sphere, of which the bottom
point is fixed in all directions, and on the sides a symmetry condition is applied by clamping the
sides in normal direction and restriction deflections orthogonal to the symmetry boundary (see
Fig. 6). The geometry is modelled by 4 elements over the height and 2 element over the quarter-
circumference, both of quadratic order.

For R = 10 [m], t = 0.1 [m] and µ = 4.2255 · 105 [N/m2], a perfect agreement is obtained for
all presented material models in comparison to the analytical solutions Fig. 7.

6.4. Pinched Cylinder

The response of a pinched cylinder (Fig. 8) [12, 40–42] is also benchmarked. Although
the response is bending dominated - meaning the influence of Ogden materials is expected to
be minimal - the present model is benchmarked for a variety of material models for the sake
of completeness. The geometry of the problem is depicted in Fig. 8. The dimensions include
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Figure 6: Geometry of the inflated balloon with 4 quadratic
elements over the height. Symmetry conditions are applied
on the boundaries Γ1 and Γ2.
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Figure 7: Inflation of a balloon. The vertical axis de-
picts the internally applied pressure and the horizontal axis
depicts the stretch λ1 = λ2 = λ. The different lines
and markers represent different material models, includ-
ing Neo-Hookean (NH), Mooney-Rivlin (MR) and Ogden
(OG). The radius of the sphere is R = 10 [m] and the thick-
ness of the sphere t = 0.1 [m].

L = 0.30 [m], R = 0.09 [m] and t = 2 [mm]. Only a quarter of the geometry is modelled, by
applying symmetry boundary conditions on the top and bottom edges Γ1 and Γ3 (y-displacements
restrained and clamped edges) and on the mid-plane Γ4 (x-displacement restrained and clamped
edge). The bottom edge Γ3 is restrained in the x and z directions as well. The geometry is meshed
using 8 × 16 quartic shell elements. Furthermore, the material is represented by a compressible
Neo-Hookean model

Ψ =
µ

2
(I1 − 3) − µ log(J) +

λ

4

(
J2 − 1 − 2 log(J)

)
. (104)

Here, µ = 60[GPa] and λ = 60[GPa] represent the Lamé parameters and are equivalent to choos-
ing E = 168 [GPa] and ν = 0.4. It can be observed that this model is not based on the modified
deformation tensor as in Eq. (44). In this paper, we furthermore model the benchmark with the
compressible Neo-Hookean, Mooney-Rivlin and Ogden models from Eqs. (51), (83) and (B.4)
to enrich the reference data for future benchmarking.

Fig. 10 presents the results of the pinched cylinder, with the vertical displacement of the end-
point A on the horizontal axis and the total applied load F on the cylinder (which is obtained
by integrating f over Γ1) on the vertical axis. The reference results are plotted for a vertical
displacement of 0.16 [m]. We conclude that the results for the Neo-Hookean model of Eq. (104)
correspond to the bounds of the reference results. Furthermore, the results with the models from
Eqs. (51), (83) and (B.4) show marginal differences with the references and the influence of
higher-order nonlinear material models (MR and OG) show minor differences as well; this is
expected behaviour due to the bending dominated response. The minor difference with the iso-
geometric Kirchhoff-Love shell model of [12] is explained by the fact that the mesh size of the
present study is slightly finer (16 vs. 12 elements over the half-circumference).
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Figure 10: Results for the pinched cylinder with the vertical deflection on the horizontal axis and the total applied load
on the vertical axis. The table on the right presents the relation of the present results with respect to reference results,
where the present results are obtained with a 8×16 quartic isogeometric Kirchhoff-Love shell element on a quarter of the
shell domain. All reference results employ the material model from Eq. (104). Ref [12] uses 16×12 quartic isogeometric
Kirchhoff-Love shell elements and models half of the cylinder. Ref [41] uses (a) a 7-parameter model with exact strains;
and (b) 6-parameter model with exact strains and an multiplicative strain-decomposition used in the incompatible mode
method. Ref [42] employ solid-shell finite elements with (a) 1 element over the tickness; and with (b) 2 elements over the
thickness. Ref [40] represents solutions obtained using finite elements with quadratic strains and a 7-parameter theory
with condensation.

24



6.5. Conical Shell Collapse
A collapsing conical shell (or frustrum) is presented as a benchmark for modelling of strong

non-linearities [8]. A conical shell with height H = 1 [m], top radius r = 1 [m], bottom radius
R = 2[m] and thickness t = 0.1[m] as depicted in Fig. 9 is considered. The geometry is modelled
with 32 quadratic elements over the height and one quadratic element over the circumference to
represent axial symmetry. The corresponding material model is of the Ogden type and has the
following parameters:

µ1 = 6.300 [N/m2], α1 = 1.3,

µ2 = 0.012 [N/m2], α2 = 5.0,

µ3 = −0.100 [N/m2], α3 = −2.0,

implying that µ = 4.225 [N/m2]. Two sets of boundary conditions are considered for this geom-
etry. In both sets the bottom of the shell (Γ2) is hinged, hence the displacements are restricted
in all directions. The top shell edge (Γ1) is either kept rigid (no x and y displacements) or free,
referred to as constant or variable radius, respectively [8]. On the top edge, a uniform load p is
applied, providing a uniform displacement ∆. Due to symmetry, only one quarter of the geometry
is modelled, which means that symmetry boundary conditions are applied on the x = 0 and y = 0
planes (Γ3, Γ4, see Fig. 9). The quarter-conical shell is modelled with 32 quartic shell elements
over the width.

Loads are applied using displacement-control (DC) or arc-length control. In the former case,
displacements are applied on the top-side of the cone and the deformation of the cone as well as
the corresponding load on the top-boundary are computed. In the latter case, Crisfield’s spherical
arc-length procedure is used with extensions for resolving complex roots. If this method does
not converge to an equilibrium point, the step size is bisected until a converged step is found.
After this step, the step size is reset to its original value [43].

Figs. 11 and 12 present the result of the collapsing conical shell (constant and variable ra-
dius, respectively) of the present study and the reference results from [8]. The results for the
displacement-controlled (DC) solution procedure shows that the different between the used ma-
terial models are negligible, since the actual strains are relatively small. The results also agree
with the displacement-controlled reference results of [8], and minor differences between the re-
sults might be a result of FE shear locking as involved for the reference results. Since more steps
have been used for the displacement-controlled calculations, sharp corners in the curve can be
observed for ∆ ∼ 1.9 for constant radius and ∆ ∼ 1.8 for variable radius.

An arc-length based calculation was used as well. From the results, one can observe reve-
lation of the collapsing mechanism of the conical shell. For both cases (constant and variable
radius) an almost anti-symmetric pattern in the load-deflection space can be observed, which
initates and finishes at the kinks in the curve that was found with the displacement-control pro-
cedure. For the constant-radius shell, Fig. 11a shows two loops of large magnitude. In Figs. 11b
and 12b it can be seen that collapsing behavior of the conical shell consists of states in which
multiple waves in radial direction occur. For both cases, it can be seen that after the loops with
the highest force-amplitude, the shell and its collapse-path invert and continue on the path that
can be obtained with displacement-control.
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Figure 11: Result of the collapsing conical shell with constant radius;(a) load-displacement diagram,(b) undeformed
geometries matching with the points indicated with capital letters in the diagram. The lines represent solutions obtained
using the Arc-Length Method (ALM) and the markers represent solutions obtained by Displacement Control (DC). Note
that the solution for the NH and MR models are overlapping on most parts of the path. The material models are Neo-
Hookean (NH), Mooney-Rivlin (MR) and Ogden (OG). Since variation between the material models is rather small for
the DC solutions, only the results for the OG material model are given. The reference results are obtained from [8]. A
movie of the collapse is available as supplementary material to this paper (video 1).
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Figure 12: Result of the collapsing conical shell with variable radius; (a) load-displacement diagram, (b) undeformed
geometries matching with the points indicated with capital letters in the diagram. The lines represent solutions obtained
using the Arc-Length Method (ALM) and the markers represent solutions obtained by Displacement Control (DC). The
material models are Neo-Hookean (NH), Mooney-Rivlin (MR) and Ogden (OG). Since variation between the material
models is rather small for the DC solutions, only the results for the OG material model are given. The reference results
are obtained from [8]. A movie of the collapse is available as supplementary material to this paper (video 2).
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To the best of the author’s knowledge, the collapsing of a collapsing conical shell was
not investigated before. Complex load-displacement paths from Figs. 11a and 12a show that
displacement-controlled simulations in this case ignore the collapsing behaviour of the shell with
multiple limit points. The authors highly encourage further investigations on this benchmark for
verification and validation.

7. Conclusions and recommendations

A stretch-based hyperelastic material formulation for isogeometric Kirchhoff-Love shells is
presented, particularly useful when experimental material data fitting is involved to capture the
model parameters. Complementing the existing invariant-based formulation [12], the imple-
mentation is based on a spectral decomposition of the stress and material tensors, which are
transformed to the covariant curvilinear basis for consistency in the variational formulation. The
eigenvalue computation and the transformation of the spectral entities imply additional compu-
tational costs, although limited due spectral material tensor symmetries. At the same time, the
possibility to translate the stretch-based formulations into invariant-based ones is considered to
be an advantage since it is not possible the other way around. There is still room for optimization
of the eigenvalue computation, for instance by only evaluating the eigenvalues at the mid-plane
of the shell.

For benchmarking purposes, incompressible and compressible Neo-Hookean, MOney-Rivlin
and Ogden models have been considered; the latter being only defined in terms of stretches. Iden-
tical iteration residuals and correct convergence rates have been obtained. The analytical bench-
marks (Sections 6.1 and 6.3) have shown a perfect agreement for the Ogden material model using
the stretch-based formulation. Very good agreement was obtained for the numerical benchmarks.
Benchmarking the response of a collapsing cylindrical shell, the displacement-controlled results
are in good agreement. At the same time, a complex collapsing mechanism - not observed in
literature before - was revealed when using the arc-length method.

Inspired by the results of the uniaxially stretched restrained sheet, we aim to further apply
the present model on the modeling of wrinkling in our future work. The presented stretch-
based formulation performance could be improved applying an analytical projection and direct
decoupling [15] of the constitutive equations in order to prevent for numerical through-thickness
integration (i.e. eigenvalue computations for all through-thickness Gaussian points).
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Appendix A. Some useful derivatives

In this appendix, we provide the derivatives of the Jacobian determinant J, the invariants of
the deformation tensor C and the inverse of the deformation tensor with respect to the compo-
nents of C, i.e. Ci j, as well as the stretches λi.

Appendix A.1. Derivatives with respect to the components of C
Firstly, the derivatives of J are derived based on the derivative of J2 [24], that is:

∂J2

∂Ci j
=
∂ det{C}
∂Ci j

= det{C}C̄i j = J2C̄i j, (A.1)

which implies the derivative of J is:

∂J
∂Ci j

=
∂J
∂J2

∂J
∂Ci j

=
1

2J
J2C̄i j =

1
2

JC̄i j, (A.2)

and the derivative of an arbitrary power k ∈ R of J is found by the chain rule:

∂
(
Jk

)
∂Ci j

=
∂
(
Jk

)
∂J

∂J
∂Ci j

= kJk−1 1
2

JC̄i j =
k
2

JkC̄i j. (A.3)

The second derivative of J is simply evaluated by taking the second derivative of Eq. (A.2). This
gives:

∂2J
∂Ci j∂Ckl

=
1
4

J2C̄i jC̄kl +
1
2

J
∂C̄i j

∂Ckl
=

1
4

(
J2C̄i jC̄kl + J

(
C̄ikC̄ jl + C̄ilC̄ jk

))
, (A.4)

where we used the derivative of an inverse of a tensor, from Eq. (2). From the definitions of the
invariants in Eqs. (14) to (16) together with basic tensor identities from Eq. (2), we can evaluate
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the derivatives of the invariants with respect to the components of C:

∂I1

∂Cαβ
= g̊αβ,

∂I1

∂C33
= 1, (A.5)

∂2I1

∂Ci j∂Ckl
= 0, (A.6)

∂I2

∂Cαβ
= C33g̊αβ + J2

0C̄i j,
∂I2

∂C33
= gαβg̊αβ, (A.7)

∂2I2

∂Cαβ∂Cγδ
= J2

0

(
C̄i jC̄kl +

∂C̄i j

∂Ckl

)
= J2

0

(
C̄i jC̄kl −

1
2

(
C̄ikC̄ jl + C̄ilC̄ jk

))
, (A.8)

∂2I2

∂Cαβ∂C33
=

∂2I2

∂C33∂Cαβ
= g̊αβ,

∂2I2

∂C2
33

= 1, (A.9)

∂I3

∂Cαβ
= C̄αβ,

∂I3

∂C33
= 1, (A.10)

∂2I3

∂Cαβ∂Cγδ
= −

1
2

(
C̄ikC̄ jl + C̄ilC̄ jk

)
, (A.11)

∂2I3

∂C2
33

=
∂2I3

∂Cαβ∂C33
=

∂2I3

∂C33∂Cαβ
= 0. (A.12)

Appendix A.2. Derivatives with respect to the stretches

We start by defining the derivatives of the Jacobian determinant. By definition, J = λ1λ2λ3
and thus, the following holds for the derivative with respect to λi:

∂J
∂λi

=
J
λi
. (A.13)

The derivative of an arbitrary power k of J is:

∂
(
Jk

)
∂λi

=
∂
(
Jk

)
∂J

∂J
∂λi

=
kJk

λi
, k ∈ R, (A.14)

and the second derivative of J is:
∂2J
∂λi∂λ j

=
J
λiλ j

. (A.15)

Furthermore, from the definitions of the invariants in terms of stretches in Eqs. (14) to (16),

I1 = λ2
1 + λ2

2 + λ2
3, (A.16)

I2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

1λ
2
3, (A.17)

I3 = λ2
1λ

2
2λ

2
3, (A.18)
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we can easily evaluate their derivatives:

∂I1

∂λi
= 2λi, (A.19)

∂2I1

∂λi∂λ j
= 2δ j

i , (A.20)

∂I2

∂λi
= 2λi

(
I1 − λ

2
i

)
, (A.21)

∂2I2

∂λi∂λ j
= 2δ j

i

(
I1 − λ

2
i

)
+ 4

(
1 − δ j

i

)
λiλ j, (A.22)

∂I3

∂λi
= 2

I3

λi
, (A.23)

∂2I3

∂λi∂λ j
= 2I3

 2
λiλ j

−
δ

j
i

λ2
i

. (A.24)

Appendix B. Stretch-based material implementations

In this appendix, we briefly provide the derivatives of the strain energy density functions Ψ

for the Neo-Hookean and Mooney-Rivlin models in the stretch-based context. In this way, they
can be used for verification purpose of the stretch-based implementations.

Appendix B.1. Neo-Hookean Model
The strain energy density function for an incompressible Neo-Hookean material model is:

Ψ(λ1, λ2, λ3) =
µ

2
(I1 − 3) =

µ

2

(
λ2

1 + λ2
2 + λ2

3 − 3
)
. (B.1)

Using Eqs. (A.19) and (A.24) this gives:

∂Ψ

∂λi
=
µ

2
∂I1

∂λi
= µλi, (B.2)

∂2Ψ

∂λi∂λ j
=
µ

2
∂2I1

∂λi∂λ j
= µδ

j
i . (B.3)

The strain energy density function for the compressible Neo-Hookean model is:

Ψ(λ1, λ2, λ3) =
µ

2

(
J−

2
3 I1 − 3

)
=
µ

2

[
J−

2
3

(
λ2

1 + λ2
2 + λ2

3

)
− 3

]
+ Kβ−2

(
β log(J) + J−β − 1

)
. (B.4)

using Eqs. (A.14), (A.19) and (A.24) this gives:

∂Ψ

∂λi
= µJ−

2
3

(
λi −

1
3

I1

λi

)
+

K
λiβ

(
1 − J−β

)
, (B.5)

∂2Ψ

∂λi∂λ j
= µJ−

2
3

(
4
9

I1

λiλ j
−

2
3

(
λ j

λi
+
λi

λ j

)
+ δ

j
i

(
2 +

2
3

I1

λ2
a

))
+

K
λiλ jβ

(
βJ−β + δ

j
i

(
J−β − 1

))
. (B.6)

Here, we used the volumetric strain energy density function Ψvol from Eq. (52).
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Appendix B.2. Mooney-Rivlin Model

The strain energy density function for an incompressible Mooney-Rivlin material model is:

Ψ(λ1, λ2, λ3) =
c1

2
(I1 − 3) +

c2

2
(I2 − 3) =

c1

2

(
λ2

1 + λ2
2 + λ2

3 − 3
)

+
c2

2

(
λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

1λ
2
3 − 3

)
.

(B.7)
Using Eqs. (A.19) and (A.24), the derivatives of this function with respect to the stretches can be
written as:

∂Ψ

∂λi
=

c1

2
∂I1

∂λi
+

c2

2
I2

λi
= c1λi + c2λi(I1 − λ

2
i ), (B.8)

∂2Ψ

∂λi∂λ j
=

c1

2
∂2I1

∂λi∂λ j
+

c2

2
I2

λi
λ j = c1δ

j
i + c2(I1 − λ

2
i )δ j

i + 2c2λiλ j(1 − δ
j
i ). (B.9)

The strain energy density function for the compressible Mooney-Rivlin model is:

Ψ(λ1, λ2, λ3) =
c1

2

(
J−

2
3 I1 − 3

)
+

c2

2

(
J−

4
3 I2 − 3

)
(B.10)

=
c1

2

[
J−

2
3

(
λ2

1 + λ2
2 + λ2

3

)
− 3

]
+

c1

2

[
J−

4
3

(
λ2

1 + λ2
2 + λ2

3

)
− 3

]
+ Kβ−2

(
β log(J) + J−β − 1

)
. (B.11)

Using Eqs. (A.14), (A.19) and (A.24) this gives:

∂Ψ

∂λi
= c1J−

2
3

(
λi −

1
3

I1

λi

)
+ c2J−

4
3

((
I1 − λ

2
i

)
λi −

2
3

I2

λi

)
+

K
λiβ

(
1 − J−β

)
, (B.12)

∂2Ψ

∂λi∂λ j
= c1J−

2
3

(
4
9

I1

λiλ j
−

2
3

(
λ j

λi
+
λi

λ j

)
+ δ

j
i

(
2 +

2
3

I1

λ2
a

))
+ c2J−

4
3

(
16
9

I2

λiλ j
−

4
3

 (I1 − λ
2
j )λ j

λi
+

(I1 − λ
2
i )λi

λ j


+ δ

j
i

(
2(I1 − λ

2
i ) +

4
3

I2

λ2
a

)
+

(
1 − δ j

i

)
λiλ j

)
+

K
λiλ jβ

(
βJ−β + δ

j
i

(
J−β − 1

))
. (B.13)
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