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ABSTRACT

Human hair is a crucial biometric characteristic with rich color and texture information. In this paper,
we propose a novel hair segmentation approach integrating a deep shape prior into a carefully designed
two-stage Fully Convolutional Neural Network (FCNN) pipeline. First, we utilize a FCNN with an
Atrous Spatial Pyramid Pooling (ASPP) module to train a human hair shape prior based on a specific
distance transform. In the second stage, we combine the hair shape prior and the original image
to form the input of a symmetric encoder-decoder FCNN with a border refinement module to get the
final hair segmentation output. Both quantitative and qualitative results show that our method achieves
state-of-the-art performance on the LFW-Part and Figaro1k datasets.

1. Introduction

Human hair contains rich color, shape and textural informa-
tion. At the same time, it is generally related to gender, culture
and appearance. Muhammad et al. (2018) argued that hair de-
tection and segmentation is important in two domains. Firstly,
hair segmentation is an essential prior step for 3D hair modeling
from a single portrait image as well as for some Augmented Re-
ality (AR) applications such as hair dying and facial animation.
Secondly, it can be used in biometric recognition applications
such as human presence detection from the back view or gender
and face recognition.

Hair segmentation in the wild consists in performing hair
segmentation in an unconstrained view without any explicit
prior face or head-shoulder detection (Muhammad et al., 2018).
We address this problem as a semantic segmentation problem
by taking texture and shape constraints into account. Hair seg-
mentation, especially under such unconstrained conditions, is
challenging for the three following reasons:

• Cluttered background: textures in the background can
be similar to human hair, which introduce significant diffi-
culties for hair segmentation in the wild.
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• Lack of rigid and consistent form: the form of hair can
be totally different according to the head pose, different
points of view and ambient environment such as wind.
However, we believe that human hair, although in differ-
ent situations, share implicit shape constraints.

• Hair style/color variation: There are numerous appear-
ance variations in terms of hair style such as straight hair,
curly hair, braided hair, short hair, etc. Hair colors are di-
vergent from person to person and can be easily biased by
different environment and cameras.

• Complex lighting conditions: Under complex lighting
conditions, hair texture information is usually distorted. It
is even difficult for a human to figure out the exact bound-
ary of human hair in extreme lighting situations for exam-
ple in shadow or backlight.

In this paper, we aim at improving hair segmentation in the
wild by correctly distinguishing hair texture from similar tex-
ture in the background as well as estimating refined hair bor-
ders. Previous CNN-based methods (Levinshtein et al., 2017;
Liu et al., 2017c) generally adopt a single stage, which is insuf-
ficient under such extreme conditions. We propose a two-stage
pipeline (see Fig. 1.) consisting of a shape prior detection stage
and a hair segmentation stage. Our contributions can be sum-
marized as follows:
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Fig. 1: Our two-stage human hair segmentation pipeline.

1. Before segmentation, we propose to first detect a hair
shape prior which is based on a specific distance trans-
form map. The results show that it helps to improve the
robustness with cluttered background.

2. In the segmentation stage, we propose a border refinement
module along with a symmetric encoder-decoder FCNN to
obtain a more precise segmentation output.

2. Related Work

2.1. Semantic Segmentation

Hair segmentation can be seen as a type of semantic segmen-
tation, a problem for which Convolutional Neural Networks
have achieved remarkable results in the past few years. Ac-
cording to Chen et al. (2018b), there are mainly two types of
CNN models: the encoder-decoder structures which privilege
refined boundaries (Badrinarayanan et al., 2017; Ronneberger
et al., 2015), and structures integrating a spatial pyramid pool-
ing module (Chen et al., 2018a; He et al., 2015; Zhao et al.,
2017), which gather rich multi-scale contextual information.
The former ones normally adopt a symmetric structure with
skip connections which enable low-level information to flow
from the encoder directly to the decoder. This is now widely
used in various applications such as image matting (Xu et al.,
2017), landmark detection (Newell et al., 2016; Bulat and Tz-
imiropoulos, 2017) etc. The latter ones employ “atrous” con-
volutions (Holschneider et al., 1990) at different rates to cap-
ture features in arbitrary resolutions and show excellent perfor-
mance on large-scale semantic segmentation datasets (Evering-
ham et al., 2015; Cordts et al., 2016; Zhou et al., 2017). In
2019, ? proposed to search for an optimal DeepLab structure.

2.2. Texture Recognition and Segmentation

The most characteristic feature of human hair is texture. Tex-
ture recognition is usually considered as a basic image process-

ing problem without taking more semantic information into ac-
count. As a result, many approaches are based on the Bag of
Words model (Leung and Malik, 2001) to obtain spatially in-
variant features for texture representation (Liu et al., 2018).
Recently, CNN-based methods with orderless feature pooling
(Gong et al., 2014; Cimpoi et al., 2015; Zhang et al., 2017)
have shown good performance on texture recognition, which
was later proved to be beneficial for semantic segmentation
(Zhang et al., 2018). In terms of texture segmentation, many
approaches are based on active contours and integrate different
texture features (Wu et al., 2015; Reska et al., 2015; Varnos-
faderani and Moallem, 2017; Liu et al., 2017a; Yuan et al.,
2015; Gao et al., 2016). Cimpoi et al. (2015) proposed to use
object detection-like region proposal classification to assign the
texture/object labels to each pixel.

2.3. Coarse-to-fine Segmentation
Recently, there are several works concerning the refinement

for the CNN-based semantic segmentation. Chen et al. (2015)
used Conditional Random Field (CRF) to establish an addi-
tional pair-wise supervision between the pixels. Wu et al.
(2018) proposed a guided image filter, which is designed to gen-
erate a high-resolution output and from a low-resolution input
given a guidance input. Liu et al. (2017b) proposed to construct
a linear propagation model, which constitutes a spatial affinity
matrix that models dense, global pairwise relationships of an
image. Similarly, Jiang et al. (2018) proposed DifNet, which
models the pairwise information by cascaded random walks.
Our method uses spatial attention as additional supervision for
boundary refinement. Compared to the previous methods, our
method bears two advantages: (1) Unlike CRF and DifNet, our
approach does not require iterative operations. (2) Our bor-
der refinement module can be easily integrated with the feature
maps of different scales in most of the layers.

Li et al. (2017) found that most of the difficult pixels are lo-
cated on the boundaries. Therefore they proposed a cascaded
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scheme to process all the pixels step-by-step from easy (center
pixels) to hard (boundary pixels). Zhu et al. (2019) proposed a
boundary label relaxation strategy to alleviate the influence of
the hard pixels on the boundary on the overall score. In our ap-
proach, the first stage is trained to learn a general shape without
detailed boundaries, which prevents to mistaking the noises on
the cluttered background.

Recently, more researchers started to use shape and boundary
of the objects to help the semantic segmentation. ? proposed
a shape-variant context in the semantic segmentation to adapt
diverse shapes and scales. Another work (?) used the natural
boundary information to build stronger connections within the
same object. ? proposed a two-stream CNN architecture, in
which the shape information is explicitly processed in parallel
with the main semantic segmentation stream.

2.4. Human Hair Segmentation

Early methods proposed to segment human hair by modeling
color, location and frequency information (Yacoob and Davis,
2006; Lee et al., 2008; Rousset and Coulon, 2008). Wang
et al. (2010, 2012) decompose the hair segmentation into lo-
cal parts and several other approaches (Wang et al., 2009, 2011,
2013) use region growing followed by refining regression on
the coarse mask. Recent work (Chai et al., 2016; Qin et al.,
2017; Guo and Aarabi, 2018; Levinshtein et al., 2017) based
on FCNN models achieved good performance for practical ap-
plications. However, most of the methods only focus on con-
strained conditions such as head-shoulder images.

Muhammad et al. (2018) proposed a challenging hair analy-
sis dataset along with a method to realize hair detection, seg-
mentation and style classification. Their method renders quite
good detection. However, they perform a sliding window tex-
ture recognition operation on the whole image, which is com-
putationally very expensive.

3. Proposed Approach

We decouple the hair segmentation task into two important
steps: (a) find the general hair shape prior and (b) find the re-
fined border of the hair. In the hair shape detection stage, in-
spired by the hair occurrence probability mask used in previous
methods (Wang et al., 2011, 2012; Muhammad et al., 2018) and
soft segmentation, we aim at finding a coarse hair mask that in-
dicates the hair texture presence (a coarse hair shape prior) re-
gardless of the exact border. In the hair segmentation stage, we
aim at identifying the exact hair border by integrating a border
refinement module in a symmetric encoder-decoder FCNN.

3.1. Hair Shape Prior Detection

Distance map regression. As stated before, two signifi-
cant challenges for hair segmentation in the wild are: to dis-
tinguish hair appearance from similar background texture and
learning challenging hair shape geometries. In most of the pre-
viously proposed FCNN models for semantic segmentation, ob-
ject shape constraints are not explicitly imposed. We propose
to introduce a coarse mask without precise boundary as a shape
prior for hair segmentation. We transform the binary ground

(a) (b) (c) (d)

Fig. 2: An illustration of our distance map transformation. From left to right:
(a) Original image (b) Ground truth hair mask (c) Clipped distance transform
map overlaid on original image (d) Clipped distance transform map with “ero-
sion” overlaid on the original image. With “erosion”, an uncertain region is
created on both sides of the hair boundary.

truth hair mask to a boundary-less coarse hair mask by using a
specific type of distance transform.

An illustration of our distance map transform is shown in Fig.
2. Consider a binary ground truth hair mask I(x, y) in Fig. 2(b).
Hair pixels and non-hair pixels can be denoted respectively as
I+ = {I(x, y) = 1} and I− = {I(x, y) = 0}. We define a clipped
distance transform map dtmask on the image positions p(x, y) as:

dtmask(p) = dmax −min(dmax, min
p+∈I+

∥∥∥p+ − p
∥∥∥) (1)

where dmax denotes the maximum clipping threshold for dis-
tance values (see Fig. 2(c)). And, similarly, we define a clipped
inverse distance transform map with respect to the background
pixels:

dtinv(p) = emax −min(emax, min
p−∈I−

∥∥∥p− − p
∥∥∥) (2)

where emax(< dmax) denotes the second clipping threshold.
Then, the final distance transform map dt is obtained by:

dt = dtmask − dtinv (3)

which is then normalized between -1 and +1 to form as a re-
gression target (see Fig. 2(d)). The use of dtinv “erodes” the
initial distance transform dtmask and produces an uncertain hair
boundary region for the target image. emax can be considered
as the magnitude of “erosion”. We do not use traditional mor-
phological erosion to do this because some small hair regions
on the binary mask might be ignored while small holes might
be filled. We use “HardTanh” as final activation function (see
Fig. 4). This activation function is a linear approximation of
Tanh function and clipped from -1 to +1, which naturally fits
the range of our shape prior regression target. We use L1 loss
to train our distance map regression. In our implementation, we
empirically set dmax to 25 and emax to 10.

Atrous Spatial Pyramid Pooling (ASPP) encoder. Al-
though texture is considered as very local information, in the
setting of hair segmentation in the wild, the scale of the hair
region varies considerably. ASPP with different atrous rates ef-
fectively captures multi-scale information to learn the presence
of hair texture. We use DeeplabV3 (Chen et al., 2018a) struc-
ture with Resnet18 (He et al., 2016) pre-trained on ImageNet as
backbone encoder in our hair detection network. Finally we up-
sample the multi-scale feature map to obtain the final distance
transform map at the original image size.
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Fig. 3: An illustration of our border refinement module. The input feature map
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tional layer with sigmoid activation. The Connectivity Map is then multiplied
with each channel in the input feature map before output.
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Fig. 4: An illustration of Hard Tanh activation function.

3.2. Refined Hair Segmentation
Symmetric encoder-decoder. In hair segmentation stage,

we implement a symmetric encoder-decoder structure with skip
connections. At each level, we use a ResNet block in both the
encoder and the decoder part. Additionally, as in Newell et al.
(2016), we add a ResNet block in the skip connections to pro-
cess the low-level information transferred from the decoder.

Border refinement module. The boundary of the human
hair is difficult to segment due to the presence of tiny details.
These tiny details only concern limited number of pixels. How-
ever, the final rendering might be visually unsatisfying if they
are not well treated. To refine the hair boundary, we propose to
use spatial attention, which will help the CNN to focus on the
pixels around the hair boundary.

In Zhang et al. (2018), the authors implemented a squeeze-
and-excitation channel-wise attention (Hu et al., 2018) module
for semantic segmentation. Here in refinement segmentation
stage, we are more interested in pixel-wise attention to recover
refined hair border. Inspired by this work, we propose a refine-
ment module which generates spatial attention. The input fea-
ture map is passed through a 1 × 1 kernel convolutional layer
with a sigmoid activation function to a single-channel feature
map. We call it connectivity map. It is multiplied by each chan-
nel of the input feature maps afterwards to obtain the “squeezed
and excited” output feature map. The module is illustrated in
Fig. 3. We place this module at each level of the decoder part
before upsampling. We noticed that this module helps to im-
prove the performance, smooth the boundary and get better vi-
sual result.

4. Experiments

4.1. Datasets

We conducted our experiments on LFW-Part dataset (Kae
et al., 2013) and the newly-released Figaro-1k (Muhammad
et al., 2018) dataset. The LFW-Part dataset is a face parsing
dataset with hair annotation which consists of 2927 images. To
the best of our knowledge, Figaro-1k is the only hair analy-
sis dataset in the wild with precise hair annotation. It consists
of 1050 images (210 for validation) and manually annotated
ground truth hair masks, which varies in seven hair styles, dif-
ferent hair colors, length and levels of background complexity.

4.2. Experimental Settings

For quantitative evaluation, we adopted several standard
measures e.g. mean Intersection over Union (mIoU), accuracy
and F1-score. The images are resized to 256 × 256 for train-
ing. The evaluation is performed at their original size. For data
augmentation, due to limited number of images in the Figaro1k
dataset, we apply various data augmentation skills on input im-
ages during training: (1) a random resize of ± 20 % on image
width and height (2) a random translation of ± 60 % in hori-
zon and ± 30 % in vertical (3) a random crop/pad of ± 20 %
on image width and height (4) a random horizontal flip (5) a
color jitter (on brightness, contrast and saturation) of ± 30 %
(6) a random gaussian lighting noise based on ImageNet PCA
analysis.

4.3. Hyperparameter settings

Distance transform map regression in the hair detection stage
is trained by using L1 loss while final refinement segmentation
in the second stage is trained by using standard softmax loss.
The first stage is pre-trained for several epochs before being
jointly trained with the second stage. We use RMSprop to train
the networks in both stages at the same time for 190 epochs with
a initial learning rate of 0.0005 and batch size of 6. The learning
rate is decayed by 0.3 for the first 30 epochs and then decayed in
the same manner each 40 epochs. We use PyTorch to implement
the training on a single NVIDIA GTX 1080Ti. The training
stage finishes in around 13 hours for Figaro1k dataset. Each
inference takes around 15ms compared to 1.79s in (Muhammad
et al., 2018) and 3.3ms in (Liu et al., 2017c).

4.4. Quantitative Comparison

We compared our method with the encoder-decoder fully
convolutional neural network U-Net (Ronneberger et al.,
2015), the state-of-the-art semantic segmentation approach
DeeplabV3+ (Chen et al., 2018b) based on ImageNet pre-
trained ResNet18 and the previous work on hair analysis in the
wild (Muhammad et al., 2018) on the Figaro-1k dataset. The
result is reported in Table 1. Our approach outperforms all the
previous methods for hair segmentation in the wild. By adding
a detection stage, a gain of more than 1% point on IoU and F1-
score can be achieved. The larger improvement on precision
shows that our method is effective for removing false positives
on the background. With the border refinement module, the per-
formance is additionally improved by only a small margin but
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Table 1: Hair Segmentation Results on Figaro1k.

Method Precision(%) F1(%) mIoU(%) Accuracy(%)
U-Net (Ronneberger et al., 2015) 95.63 94.39 89.69 96.36
DeeplabV3+ (Chen et al., 2018b) 96.86 95.05 91.11 97.07

Muhammad et al. (2018) - 84.90 - 91.50
Only Seg Stage 95.64 94.53 89.91 96.56

Det Stage + Seg Stage 97.25 95.09 91.15 97.20
Det Stage + Seg Stage + Refinement 97.33 95.15 91.25 97.23

Table 2: Hair Segmentation Results on LFW-Part.

Method Precision(%) F1-hair(%) mIoU(%) Accuracy(%)
U-Net (Ronneberger et al., 2015) 89.11 87.66 88.33 96.58
DeeplabV3+ (Chen et al., 2018b) 91.66 88.36 90.64 96.82

Liu et al. (2017c) - 83.43 - 95.46
Only Seg Stage 89.13 88.07 90.12 96.71

Det Stage + Seg Stage 98.24 88.94 90.53 96.76
Det Stage + Seg Stage + Refinement 98.34 89.42 90.60 97.05

Fig. 5: Challenging examples in Figaro1k. First row: Input image. Second
row: Segmentation results by our model without detection stage. Third row:
Segmentation results by ImageNet pre-trained DeepLabV3+. Fourth row: Seg-
mentation results by our two-stage model. Many tiny isolated false positives
can still be observed on the man’s shirt in the first image of DeepLabV3+ re-
sults.

gives better visual results. On the LFW-Part dataset, by adding
a hair detection stage, our method outperforms other methods
by more than 1% point on the hair F1-score (see Table. 2).

4.5. Discussions

Ablation study: Necessity of using hair shape prior. Fig.
5 shows several challenging images where the hair segmenta-
tion fails without shape prior. In these images, there are either
similar textures or complicated lighting conditions present. We
notice that (a) false positive segmentation on similar texture in
the background is rectified and (b) tiny isolated false positive
hair parts are suppressed. We think that the improvement origi-
nates from (1) the ImageNet pre-trained features, (2) our trained

Fig. 6: An illustration of relation between shape prior and final segmentation.
GT refers to ground truth and Pred denotes our two-stage network prediction.
Weaker values are observed inside the red rectangles on the detection predic-
tion.

hair shape prior. To study the influence of (1), we compare our
results with the ImageNet pre-trained DeepLabV3+. We find
that our shape prior-integrated approach is more robust to clut-
tered background and renders hair shapes more reasonable in
complex situations.

To investigate how the FCNN in the segmentation stage pro-
cesses the shape constraint prior from the detection stage, we
give an illustration in Fig. 6. With the help of the eroded dis-
tance map, the two small hair regions in the red rectangles are
assigned weaker values. We note that both of them are elimi-
nated by the FCNN in the segmentation stage, which removes
one false positive but creates one false negative as well. Intu-
itively, this amounts to a learnable “thresholding”.

Ablation study: Necessity of using border refinement
module. In order to disconnect the influence of different
shape priors from the detection stage, we pre-trained the detec-
tion network and fixed the weights during the training of the
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Fig. 7: Impact of the border refinement module (a) Original image (b)(c) Global
and zoomed-in segmentation result w/o refinement module (d)(e) Global and
zoomed-in segmentation results with border refinement module.

segmentation network to explore this necessity. Even though
we remark only a slight quantitative improvement on mIoU in
both datasets, we find that the results are visually better because
of smooth boundaries as shown in Fig. 7. It provides more con-
sistent hair regions and eliminates spurious small detection in
the background thanks to the use of the pixel connectivity map.

To measure the number of the spurious small detection, we
calculated the average number of connected components (hair
regions) per image on the test set (see Tab. 3). The output given
by the model with border refinement module has less connected
components, indicating that the tiny isolated hair segmentation
(as shown in Fig.7 (c)) appears less frequently when border re-
finement module is used.

Table 3: Number of connected components on Figaro-1k.

Models Num. of connected components
w/o Refinement 3.94
w/ Refinement 3.73

Smoothed boundaries do not necessarily translate into a bet-
ter mIoU, but are visually more appealing, even compared to
the ground truth. In fact, even for humans, it is challenging to
annotate the boundary in a very precise way by using only a bi-
nary mask. A promising future work to further improve the hair
boundary could be image matting (Xu et al., 2017; Levinshtein
et al., 2017).

Visual Comparison with Stae-of-the-art Methods. We
visualize the output of our method on Figaro dataset in
Fig. 8. We compare our method with the state-of-the-art
method (Muhammad et al., 2018). We observe that our de-
tection, especially the hair boundary, is much finer compared
to Muhammad et al. (2018), which is more appealing for the
practical applications such as virtual hair coloring.

We show some challenging examples on LFW-Part dataset
in Fig. 9. We compare the visual results from (1) our model

Fig. 8: Visual results compared to Muhammad et al. (2018). First row: In-
put image. Second row: Groundtruth. Third row: Results from Muhammad
et al. (2018). Fourth row: Results from our two-stage human hair segmentation
model. Best viewed in color.

without detection stage, (2) DeepLabV3+ [5] with ImageNet
pretrained Resnet18 as backbone and (3) our model with both
detection and segmentation stage. We observed that our method
outperforms the others by suppressing the spurious detection on
the cluttered background. It shows the importance of perform-
ing shape prior detection before segmentation stage.

Failure cases. In Fig 10, we provide several examples
where our model fails. Our approach still cannot completely
ensure the identification of the correct textures on the clut-
tered background especially when they are very close to the
hair or has a similar form for example in (a) and (b). Further-
more, complex lighting conditions in (c) and irregular upside
down pose in (d) introduce big challenges for our methods.
Nonetheless, our method still suppressed more false positive
detection than the segmentation-only-models such as ImageNet
pre-trained DeepLabV3+. From (e), (f) and (g), we observe
that our method is less sensitive to weakly-textured and small
hair regions compared to other methods.

5. Conclusions

In this paper, we presented a two-stage pipeline for hair seg-
mentation in the wild. We train a distance map-based hair shape
prior from data, and then estimate the final segmentation by
a symmetric FCNN using a border refinement module. Our
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Fig. 9: Challenging examples on LFW-Part dataset. First row: Input image.
Second row: Groundtruth. Third row: Results from our model without de-
tection stage. Fourth row: Results from ImageNet pre-trained DeepLabV3+.
Fifth row: Results from our model with both detection and segmentation stage.
Red-Hair, Green-Face, Blue-Background. Best viewed in color.

approach outperforms previous state-of-the-art methods, being
more robust to cluttered background and giving visually more
consistent hair borders. Our approach can be further extended
to textured object segmentation with difficult boundaries such
as clothes parsing (Yamaguchi et al., 2012) and road scene pars-
ing (Fritsch et al., 2013).

Acknowledgments

This work is supported by Région Auvergne-Rhône-Alpes,
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