
HAL Id: hal-02890499
https://hal.science/hal-02890499

Submitted on 6 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asymmetry effects driving secondary instabilities in
two-dimensional collisionless magnetic reconnection

D. Grasso, D. Borgogno, E. Tassi, A. Pérona

To cite this version:
D. Grasso, D. Borgogno, E. Tassi, A. Pérona. Asymmetry effects driving secondary instabilities
in two-dimensional collisionless magnetic reconnection. Physics of Plasmas, 2020, 27, pp.012302.
�10.1063/1.5125122�. �hal-02890499�

https://hal.science/hal-02890499
https://hal.archives-ouvertes.fr


Asymmetry effects driving secondary instabilities in

two-dimensional collisionless magnetic reconnection

D. Grasso1, D. Borgogno1, E. Tassi2, A. Perona3

1 Istituto dei Sistemi Complessi - CNR and Dipartimento di Energia,

Politecnico di Torino, Torino 10129, Italy
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Laboratoire J.L. Lagrange, Boulevard de l’Observatoire,

CS 34229, 06304 Nice Cedex 4, France

3 Dipartimento di Energia, Politecnico di Torino, Torino 10129, Italy

(Dated: December 5, 2019)

1



Abstract

In the framework of the studies on magnetic reconnection, much interest has been recently

devoted to asymmetric magnetic configurations, which can naturally be found in solar and astro-

physical environments as well as in laboratory plasmas. Several aspects of this problem have been

investigated, mainly in a two-dimensional geometry and by means of Particle-in-Cell simulations.

Still, there are open questions concerning the onset and the effects of secondary instabilities in the

nonlinear phase of an asymmetric reconnection process. In this work we focus on the conditions

that lead to the appearance of the Kelvin-Helmholtz instability following an asymmetric reconnec-

tion event in a collisionless plasma. The investigation is carried out by means of two-dimensional

numerical simulations based on a reduced fluid model assuming a strong guide field. We show that,

unlike the symmetric case, in the presence of asymmetry, a Kelvin-Helmholtz-like instability can

develop also for a finite equilibrium electron temperature. In particular, simulations indicate the

formation of steep velocity gradients, which drive the instability, when the resonant surface of the

equilibrium magnetic field is located sufficiently far from the peak of the equilibrium current den-

sity. Moreover, a qualitative analysis of the vorticity dynamics shows that the turbulent behavior

induced by the secondary instability is not confined inside the island but can also affect the plasma

outside the separatrices. The comparison between simulations carried out with an adiabatic closure

and a Landau-fluid closure for the electron fluid, indicates that the latter inhibits the secondary

instability by smoothing velocity gradients.
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I. INTRODUCTION

Magnetic reconnection (MR) is a change in the topology of the magnetic field, usually

accompanied by a fast conversion of magnetic energy into plasma kinetic energy and heat,as

well as by a release of accelerated particles following the formation of intense current and

vorticity layers (also referred to as sheets, in the literature and in the present paper). Due

to its relevance in a wide variety of physical phenomena ranging from space to laboratory

plasmas, MR has benefit of a vast amount of studies [4, 31] since the formulation of the first

model by Sweet and Parker [26, 35]. In the past three decades much attention has been paid

to the problem of fast reconnection. Starting in the 90’s many studies [2, 3, 25, 38] focused

on the physical mechanisms that can drive fast reconnection in high temperature and low

collisional plasmas. Electron inertia became the first candidate to explain the occurrence of

MR in this context, where, in the absence of dissipation, the topological constraint on the

magnetic field is transferred to generalized fields associated with infinite families of Casimirs

invariants, while the topological transition in the magnetic field leads to a continuous cascade

of energy towards small scales, thus causing the narrowing of the current and vorticity layers.

It is namely MR caused by electron inertia that we will consider in our analysis.

When the spectrum of the magnetic field is dominated by a single mode, the study

of MR can be carried out under the two-dimensional (2D) approximation. In such 2D

framework it is possible to distinguish between two different configurations, depending on

the presence of finite gradients of the equilibrium current density at the resonant surface,

where the MR instability develops: a symmetric one, in which the peak of the current

density is located at the resonant surface and an asymmetric configuration where the peak

is not located at the resonant surface.

The symmetric case has been extensively studied, analytically and numerically, in the

linear and nonlinear regimes [4]. At the beginning of the 2000s a number of works based

on reduced fluid models, which are suitable when a strong component of the magnetic field

in one direction is present, were devoted to the nonlinear evolution of the current and
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vorticity sheets in symmetric configurations in the cold ion limit and for large values of

the standard instability parameter ∆′ [13]. In particular, these works focused on the onset

of secondary instabilities of the fluid type, like the Kelvin Helmholtz (KH) one, occurring

nonlinearly on top of a MR instability and leading to the generation of turbulence in the

current and vorticity sheets. In the low-βe limit, with βe indicating the ratio between

the equilibrium kinetic pressure of the electrons and the magnetic pressure of the guide

field, past studies carried out in this context [9–11, 14] agreed on two points. In the first

place, it is possible to develop secondary fluid-like instabilities only when the electron

temperature is negligible (or, more in general, when ρs � de, with ρs indicating the ion

sound Larmor radius and de the electron skin depth). In the second place, the fluid-like

instability develops inside the magnetic island generated by the MR process. Still in the

context of symmetric reconnection, further studies, based on reduced fluid models, showed

that secondary KH-like instabilities develop in the plasma vorticity also in the presence of

finite electron temperature, provided that βe is sufficiently high [15, 37].

How the current and vorticity layers are affected by such secondary instabilities in an

asymmetric configuration is still an open question, in spite of the relevance of MR in asym-

metric systems. Indeed, the asymmetric case is important for instance in strongly driven,

laser-generated plasmas [32] and in the framework of Tokamak physics, due to the fact

that gradients of the current density at the rational surface naturally occur in toroidal and

cylindrical geometry [1, 23, 24]. The asymmetric problem has recently been studied also in

endogenous reconnection processes relevant to the electron temperature heating in a fusion

burning plasma [8]. A renewed interest in the asymmetric configurations was also gener-

ated, after 2015 by the observations in the subsolar magnetosheath region [29] and from

the Magnetosphere Multiscale Spacecraft (MMS), of reconnection occurring at the Earth’s

dayside between the solar wind and the Earth magnetic field, where the asymmetry arises

both from the different plasma densities on the two sides of the reconnecting layers and

from the configuration of the magnetic field itself [7]. Moreover, the KH instability has
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been observed in conjunction with MR events in several astrophysical and space contexts

such as in the magnetosphere, in the boundaries of the coronal mass ejections, in the solar

corona and in the solar blowout jets (see Ref. [20] and references therein). Many numerical

simulations have been devoted to this particular 2D asymmetric setting, aimed at highlight-

ing the difference with a fully 3D system and explaining the data reported from the MMS

mission [18, 30]. In these studies, mainly conducted using PIC codes, a lot of attention has

been paid to the turbulence developing along the current density layers inside and around

the magnetic island that forms during the reconnection event. The main result of these

investigations is that secondary instabilities leading to turbulence may develop mainly when

a fully 3D setting is considered, while the 2D configurations remain laminar.

The evolution of the narrow vorticity sheets following MR in asymmetric configurations

is the subject of the present paper. We describe asymmetric MR by adopting the 2D limit of

the reduced fluid model of Ref. [36], which accounts for the parallel temperature evolution

and for Landau damping effects as well. The asymmetry is introduced in the equilibrium

magnetic field, while no equilibrium density gradients are assumed. The basic idea of our

approach is to reduce the problem to a few essential ingredients in order to evaluate the

impact of the asymmetry on the stability of the current density and vorticity sheets. We

will show that, contrary to what happens in the symmetric case, turbulence driven by KH-

like instabilities may develop also when de ≤ ρs. Moreover the turbulence, that in the

symmetric case is confined inside the magnetic island, in the asymmetric case may cross the

separatrix, opening new transport scenarios. We investigate the onset of the KH instability

as a function of various parameters characterizing the equilibrium magnetic field. We find

that the crucial parameter for the onset of the instability appears to be the ratio xs/λ,

between the distance xs of the of the rational surface from the location of the peak of the

equilibrium current density, and the equilibrium scale length λ. Finally, the effect of an

electron Landau closure on the development of secondary instabilities is also studied.

The paper is organized as follows. In Sec. II the 2D reduced Landau-gyrofluid model is

reviewed in its cold ion limit. In Sec. III, after introducing the numerical setup, we describe
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the results of our analysis of secondary instabilities following asymmetric MR. We conclude

in Sec. IV.

II. MODEL EQUATIONS

Our analysis is based on the following reduced fluid model for a plasma consisting of

electrons and of a single ionized particle species:

∂∇2
⊥ϕ

∂t
+ [ϕ,∇2

⊥ϕ]− 2

βe
[A‖,∇2

⊥A‖] = 0, (1)

∂

∂t

(
A‖ −

2

βe
δ2∇2

⊥A‖

)
+ [ϕ,A‖ −

2

βe
δ2∇2

⊥A‖] + [A‖,∇2
⊥ϕ] + [A‖, t‖e ] = 0, (2)

∂t‖e
∂t

+ [ϕ, t‖e ]− [A‖, q‖e ]−
4

βe
[A‖,∇2

⊥A‖] = 0. (3)

In Eqs. (1)-(3), the fields ϕ, A‖, t‖e and q‖e are all functions of the time coordinate t and of

the Cartesian spatial coordinates (x, y) ∈ D = {(x, y) : −Lx ≤ x ≤ Lx,−Ly ≤ y ≤ Ly}, with

Lx and Ly positive constants. Translational invariance of the system along the z coordinate

of the Cartesian system is assumed.

The model equations (1)-(3) are formulated in terms of the following normalized variables:

t = Ωit̂, x =
x̂

ρs
, y =

ŷ

ρs
,

ϕ =
eϕ̂

Te
, A‖ =

Â‖
B0ρs

, t‖e =
t̂‖e
Te
, q‖e =

q̂‖e
n0TeρsΩi

,

(4)

where the caret symbol denotes dimensional quantities. We indicate with ϕ the electrostatic

potential whereas A‖ is the magnetic flux function, related to the normalized magnetic

field B by B(x, y, t) = ∇A‖(x, y, t) × ẑ + ẑ, with ẑ indicating the unit vector along the z

direction. The model assumes indeed the presence of a constant and uniform component

of the magnetic field (referred to as guide field) along the z direction. The amplitude of

the guide field is assumed to be much larger than that of the x and y components of the

magnetic field, i.e. |∇A‖| � 1, for all x, y ∈ D.

The fields t‖e and q‖e indicate the fluctuations of the electron temperature and heat flux,

respectively, in the direction parallel to the guide field. In Eq. (4) we indicate with B0 the
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amplitude of the (dimensional) guide field, with Te the constant and uniform equilibrium

electron temperature, with e the proton charge and with n0 the constant and uniform equi-

librium particle density (equal for ions and electrons). The symbols Ωi and ρs, on the other

hand, refer to the ion cyclotron frequency based on the guide field, and to the ion sound

Larmor radius, defined by ρs =
√
Te/mi/Ωi, with mi indicating the ion mass. The system

(1)-(3) is characterized by the two parameters βe and δ. Indicating with me the electron

mass, these two parameters are defined as βe = 8πn0Te/B
2
0 and δ =

√
me/mi. They cor-

respond to the ratio between the equilibrium internal pressure and the magnetic pressure

exerted by the guide field, and to the mass ratio, respectively. The symbol ∇2
⊥ = ∂xx + ∂yy

refers to the Laplacian operator with respect to the coordinates x and y, whereas the bracket

[ , ] is defined by [f, g] = ∂xf∂yg − ∂yf∂xg for two functions f and g.

The system (1)-(3) is evidently not closed, as long as one does not provide an expression

for the parallel heat flux q‖e in terms of lower order moments. For the present analysis, we

will consider two possible closures. The first one corresponds to the adiabatic closure

q‖e = 0. (5)

In this case the heat transport along the magnetic field lines is neglected and the resulting

system possesses a Hamiltonian structure [36].

The second closure is given by

q‖e = −2

δ

√
2

π
Lt‖e . (6)

with L an operator accounting for the Landau damping. More precisely, we follow the Lan-

dau closure previously implemented in Ref. [36] and derived from Refs. [17, 27, 34]. When

periodic boundary conditions are imposed along the x and y directions we can indicate with

f(x, y, t) =
∑+∞

k=−∞ fk(t) exp(i(kxx + kyy)) the Fourier series for a generic time-dependent

function f satisfying periodic boundary conditions over D. The symbol k is defined by

k = (kx, ky) where kx = πp/Lx and ky = πm/Ly are the wave numbers along the x and y

direction, respectively, with p,m ∈ Z. In the present two-dimensional setting, the action of
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the operator L on a function f is given by Lf(x, y, t) =
∑+∞

k=−∞(Lf)k(t) exp(i(kxx + kyy))

where

(Lf)k(t) = −[(k0 · τ̄ · k0)
−1/2][A‖, f ]k(t). (7)

In Eq. (7), τ̄ = 〈b⊗ b〉 with 〈 〉 indicating the spatial average over the domain D and b =

B/|B|. We indicate with k0 the vector (kx, ky, 0) and with [A‖, f ]k(t) the Fourier coefficient,

associated with the wave number k, of the Fourier series of the function [A‖, f ](x, y, t). The

expression (7) descends from the original formulation of the Landau closure of Ref. [33] and

applies, as mentioned above, to the case where periodic boundary conditions are imposed

along both the x and y directions. In the present analysis, however, periodic boundary

conditions will be imposed only along the y direction. Also, the ordering on which the

model (1)-(3) is based, admits only quadratic nonlinearities. Therefore, as already applied

in Ref. [36], a variant of the expression (7), specified in Sec. III A, will be adopted.

The model (1)-(3) applies to collisionless plasmas with βe ∼ δ2 � 1. Ions are assumed

to be cold and the characteristic frequency of the phenomena under consideration has to

be much smaller than the ion cyclotron frequency Ωi. For the derivation of the model we

refer to Ref. [36], where the model is obtained from the more general gyrofluid model of

Ref. [33] by making use of an asymptotic ordering. Eq. (1) can be seen as the evolution

equation for the vorticity ∇2
⊥ϕ associated with the E×B velocity vE×B = ẑ×∇ϕ. From the

quasi-neutrality equation, it follows that for this model the relation ne = ∇2
⊥ϕ holds [36],

with ne indicating the fluctuations of the electron density with respect to the equilibrium

value n0. Therefore, Eq. (1) can also be seen as a continuity equation for the electron

species. Eq. (2) corresponds to the parallel electron momentum equation or, equivalently,

to the parallel Ohm’s law, where the terms associated with the electron inertia, i.e. those

multiplied by the coefficient δ2, break the frozen-in condition and allow for MR. Finally,

Eq. (3) governs the evolution of the parallel electron temperature. Perpendicular electron

temperature fluctuations as well a fluctuations of the ion gyrofluid moments are neglected.
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III. SIMULATION RESULTS AND ANALYSIS

A. Numerical setup

We solve numerically the system (1)-(3) (adopting the closure (5) or (6)) over the domain

D with Lx = 46.26 and Ly = 12π. The initial condition on the fields ϕ, A‖ and t‖e

corresponds to

ϕ(x, y, 0) = 0, A‖(x, y, 0) = Aeq(x) + A0

(
x− xs
λ

)
exp(ikyy) + c.c., t‖e(x, y, 0) = 0.

(8)

In Eq. (8), Aeq(x) = −A ln cosh (x/λ) + αx, where A, λ > 0 and α are three constant

parameters. The function Aeq is the equilibrium magnetic flux function, which yields the

following asymmetric sheared component of the equilibrium magnetic field:

Beq(x) = ∇Aeq(x)× ẑ =

(
A

λ
tanh

(x
λ

)
− α

)
ŷ, (9)

where ŷ is the unit vector along the y direction. The parameter A is the amplitude of

the equilibrium magnetic field, while λ and α control its scale of variation and asymmetry,

respectively. In the numerical simulations, the mode number m, associated with the wave

number ky of the initial perturbation, has been fixed by the condition m = 1. We indicate

with x = xs the position of the resonant surface which, in this 2D setting, is identified by

the condition kyBeq(xs) = 0, i.e. by

xs = λ arctanh

(
λα

A

)
. (10)

In particular, for α = 0 one recovers a symmetric equilibrium, with the resonant surface at

x = 0, equidistant from the boundaries x = Lx and x = −Lx. For α 6= 0 one obtains an

asymmetric equilibrium, in which the equilibrium parallel current density (whose amplitude

is given by jeq(x) = −(d2Aeq/dx
2)(x) = −A/(λ2 cosh2(x/λ))) does not have an extremum

value at the resonant surface. We recall that a 2D problem for fields depending on x, y

and t with an asymmetric equilibrium such as that of Eq. (9), can also be mapped to a

single-helicity problem with fields depending on x, y + αz and t, where α = kz/ky, and kz
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indicates the wave number of the perturbation along the z direction [5] . We recall, however,

that the three-dimensional (3D) extension of the model (1)-(3) requires |α| � 1.

In Eq. (8) we also indicated with A0 a function, peaked around (x − xs)/λ = 0, which

determines the profile of the amplitude of the perturbation.

At a given time t, the values of the fields correspond to ϕ(x, y, t) = ϕ̃(x, y, t),

A‖(x, y, t) = Aeq(x) + Ã‖(x, y, t) and t‖e(x, y, t) = t̃‖e(x, y, t), where ϕ̃, Ã‖ and t̃‖e indi-

cate the perturbations of the fields, which satisfy the relation ϕ̃(x, y, 0) = t̃‖e(x, y, 0) = 0

and Ã‖(x, y, 0) = A0((x−xs)/λ) exp(ikyy) + c.c.. We impose that such perturbations vanish

at x = −Lx and x = Lx and that they are periodic along the y direction.

As anticipated in Sec. II, a variant of the original Landau closure (6), adapted to

this model, is used for non-adiabatic simulations. This form respects the requirement on

quadratic nonlinearities and permits to apply the operator L to functions which are periodic

only along the y direction. The explicit expression of the operator can be provided in terms

of the coefficients of the Fourier series of the function Lf(x, y, t). The expression for the

generic Fourier coefficient associated with the wave number ky is given by

(Lf)ky(x, t) =

=
1√

(A2/λ2 − (A2/(λLx)) tanh(Lx/λ) + α2)k2y

((A/λ) tanh(x/λ)− α)iky) fky(x, t). (11)

The expression (11) is analogous to the one adopted in Ref. [36] and is obtained from

the original expression (7) by removing nonlinearities in the perturbations, by adopting the

expression (9) for the magnetic equilibrium and by using differential operators in the real

space along the x coordinate.

Simulations have been carried out with the numerical code described in Ref. [36]. This

code is 3D, explicit in time, assuming a third order Adams-Bashfort scheme, and parallelized

along both the periodic directions y and z, while a compact finite difference scheme is

implemented on a non-equispaced grid along the magnetic field shear direction [36]. For the

purpose of this paper the code has been run in the 2D limit, avoiding dependence on the z-

direction, while a resolution of ny = 960 grid points has been adopted along the y-direction.
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For the x-direction nx = 1200 grid points have been adopted on the non equispaced grid so

as to guarantee a resolution of dx = 0.02 around x = 0, where the secondary instabilitiy

takes place.

B. Secondary instability induced by asymmetry in the adiabatic case

We consider first the model (1)-(3) with the adiabatic closure (5).

We fix the values of the parameters δ and βe by setting δ = 0.1 and βe = 0.05. The

values of these two parameters were not changed throughout the whole paper because we

focused on the dependence on parameters characterizing the equilibrium magnetic field and,

in particular, its asymmetry.

We begin our analysis illustrating the results from a simulation of an asymmetric case with

the following parameters: A = 1, α = 1/4, λ = 3. In this Subsection, these results will be

presented in comparison with a symmetric case possessing the same values of the parameters

except for α = 0. In Fig. 1 a comparison of the growth of the perturbed magnetic flux at

the X-point, A‖X , in the two cases, is shown, up to the nonlinear stage when the saturation

of the magnetic island is reached. Note that the symmetric and asymmetric case differ in

the initial x coordinate of the X-points, which are at x = 0 and x = 2.92 respectively.

The simulation times have been rescaled in order to start with the same amplitude. The

perturbed magnetic flux A‖X provides also a measure of the linear growth rate. We see then

that the asymmetry causes a decrease of the growth rate. Incidentally we mention (although

we do not show it here) that for the m = 1 mode considered here, which is the most unstable

one for our equilibrium configuration, we observe in general a decrease of the growth rate as

the value of the asymmetry parameter increases. We point out that linearly this is not true

for the less unstable modes, as shown in Ref. [6]. In the same plot we show also the drift,

present in the asymmetric case, of the X-point location from the initial position at x = 2.92

towards x = 0.

The drift along the x-direction can be clarified by equating the time evolution, in the
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Lagrangian and Eulerian frames of reference, of the generalized magnetic flux function F =

A‖ − 2
βe
δ2∇2

⊥A‖, evaluated at the magnetic island X-point of coordinates (xX(t), yX(t)).

This yields

dF (xX(t), yX(t), t)

dt
=
∂F (x, y, t)

∂t
|X + vX · ∇F |X (12)

where the subscript X indicates the value of the field at the istantaneous position of the

X− point and vX is the drift velocity of the X-point.

At each time, the eq. (2), evaluated at the X-point, reads as

∂F (x, y, t)

∂t
|X = −[ϕ, F ]|X (13)

where [A‖,∇2
⊥ϕ]|X = [A‖, t‖e ]|X = 0 because of the cancellation of the reconnecting compo-

nent of the magnetic field at the X-point, i.e. ∇A‖(x, y, t) × ẑ|X = 0. Since the magnetic

flux A‖ is an even function of y it follows that the first derivative of F along y vanishes at

the magnetic field null point. Hence the X-point position varies only with respect to the

x-coordinate, and its velocity along the x direction, denoted as vXx, becomes

vXx =

(
dF (xX(t), yX(t), t)

dt
+ [ϕ, F ]|X

)(
∂F

∂x
|X
)−1

(14)

Note that, in the symmetric case, the denominator ∂F/∂x|X in Eq. (14) vanishes, which

means that also the numerator must be zero for the relation not to become singular. This

condition is fulfilled only for a constant value of the X-point position.

The blue circle in Fig. 1 shows the time evolution of the X-point position according to

the theoretical prediction obtained at each time step by the relation xX(t+ ∆t) = xX(t) +

vXx(t)∆t. The agreement with the the curve obtained from the simulation is quite relevant

as long as the fields exhibit a rather smooth nonlinear behavior, while the post-processing

evaluation of the field gradients (which appear at the denominator of Eq. (14) across the

X-line are not reliable any more in the advanced nonlinear phase.

The reader might be surprised by the abrupt jump in the position of the X-point visible

at around t = 330 in Fig. 1. We claim that this displacement is a consequence of the

nonlinear evolution, described later on in this section, in which the turbulence propagating
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along the separatrix has reached the X-point.

In Fig. 2 we show a comparison between the contour plots of the vorticity for the asym-

metric and symmetric cases at a comparable time in terms of the island width. The current

densities, not shown here, have analogous distribution. It is worth mentioning that in the

low βe regime considered here the current density and vorticity layers are coupled together

and undergo a similar nonlinear evolution [9, 15]. Contour plots show that, in both cases,

vorticity tends to concentrate along the separatrices of the magnetic island, although the

asymmetry leads to an island with a D-shaped structure. In the symmetric case the phase

mixing process of the Lagrangian invariants associated with the infinite families of Casimirs,

characterizing the adiabatic and isothermal limits of this model [16], generates laminar vor-

ticity layers also inside the magnetic island, as the nonlinear evolution proceeds. This is

no longer true in the asymmetric case, where the layers remain concentrated mainly along

the separatrix. Moreover, as the color bar reveals, the asymmetric vorticity layers are more

intense. This latter feature can be better appreciated when analyzing the velocity fields

shown in Fig. 3. In the top right panel of Fig. 3 the profiles, for the asymmetric case, of

the x and y components of the velocity field v = vE×B = ẑ ×∇ϕ are plotted as a function

of x at y = 10 in comparison with the symmetric case (left top panel). The dashed lines

represent the location of the two branches of the separatrix for the chosen y value. We first

highlight the difference between the peaks in the vy profiles. In the symmetric case they are

larger and contained within the island, while in the asymmetric case the profile of vy is more

peaked on the lower branch of the separatrix (the one located at a position with x slightly

less than x = 0), where the thinnest velocity layers appear. Second, focusing on this layer

close to x = 0, we observe that the vy profile is steeper in the inner side of the magnetic

island with respect to the outer side. The shape of this peak resembles a kind of asym-

metric Bickley jet which, according to the shear flow instability theory [4], may be prone

to the KH instability. We recall that the Bickley jet, defined as vy(x) = 1/ cosh(x)2, is the

standard shear flow adopted in fluid mechanics for studying the onset of the KH instability.

According to the linear theory, in absence of magnetic field this jet is unstable for any wave
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vector below a marginal value. However, in the case of a magnetized plasma a stabilizing

role can be exerted by a magnetic field parallel to the flow. In this case in fact the plasma

motion associated with the instability is counteracted by the tension that is developed by

the distortion of magnetic field lines trapped into the plasma. As a consequence for an ideal

plasma when the jet is embedded in a sheared magnetic field like By(x) = B0 tanh(x) the

linear growth rate of the KH instability progressively decreases with increasing B0, up to a

critical value, as well as the number of linearly unstable modes, both at small and high ky.

In the nonlinear regime, even for field intensities significantly below the critical threshold

derived in the linear limit, the stabilizing effect is dramatic.

In the bottom panel of Fig. 3 the profiles of the x and y components of the magnetic field are

also plotted. We observe that, as expected, the Bx component is almost negligible inside the

magnetic island in both the symmetric and asymmetric case. On the contrary the absolute

value of the By component has a different behavior. In the symmetric case it has comparable

values on the two sides of the lower branch of the separatrix, while in the asymmetric case it

shows a steep gradient through the lower branch itself dropping to almost a constant value

inside the island. This balance between the velocity and magnetic fields justifies the onset

of the KH instability [4], that we observe later on in the nonlinear evolution, on the side of

the layer facing the inner part of the magnetic island where the stabilizing effect of By is

weaker.

The development of the KH instability is illustrated by three snapshots taken at subsequent

times in Fig. 4 and by the movie provided in the supplemental material. From the dynam-

ical point of view the velocity layers can be seen as counter streaming plasma jets starting

from the X-point and propagating at the beginning towards y = 0, where they collide form-

ing vortices. Subsequently, jets propagate backward towards the X-point undergoing KH

instability, which increases the amplitude of the vortices. When the first vortex has reached

the X-point we observe an acceleration of the process of vortex formation and propagation.

Moreover the vortices start propagating also on the other branch of the separatrix, where

they are stretched by the more intense magnetic field. The current density layers, not shown
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here, exhibit a similar behavior.

This indicates a crucial difference with respect to the symmetric case. We point out that the

values of the parameters correspond to a regime where ρs/de =
√
βe/(2δ2) ≈ 1.6. According

to previous analyses [9–11, 14] in such regime with ρs ≥ de, even though the current density

and vorticity fields exhibit small scale structures, in the symmetric case their behavior re-

mains laminar, as in Fig. 2(a), throughout the whole nonlinear evolution and no secondary

instabilities develop. Also, we remark that here we are adopting an adiabatic closure, unlike

Refs. [9–11, 14], where an isothermal closure was assumed for the electron fluid. When the

same initial conditions, as is the case here, are considered for ∇2
⊥ϕ and t‖e , the solution

t‖e = 2∇2
⊥ϕ can be taken for the system (1)-(3) with q‖e = 0. Replacing this solution in the

last term of Eq. (2) casts the system in the form

∂∇2
⊥ϕ

∂t
+ [ϕ,∇2

⊥ϕ]− 2

βe
[A‖,∇2

⊥A‖] = 0, (15)

∂

∂t

(
A‖ −

2

βe
δ2∇2

⊥A‖

)
+ [ϕ,A‖ −

2

βe
δ2∇2

⊥A‖] + 3[A‖,∇2
⊥ϕ] = 0. (16)

This form differs from that of the isothermal system (which descends from replacing Eq.

(3) with t‖e = 0) by the factor 3 that multiplies the last term on the left-hand side of Eq.

(16). This term is denoted as the electron compressibility term and is the one responsible

for suppressing the secondary instability in the cases studied in Refs. [9–11, 14]. With

the adiabatic assumption, the relative strength of this term is thus even greater than in the

isothermal case. In spite of this, the asymmetry appears to be able to overcome the damping

effect associated with this term.

We remark that a secondary KH instability was indeed observed also in the symmetric

case but in a different regime of the physical parameters, more precisely in the cold electron

limit, where ρs/de << 1. In the latter case, however, the head of the colliding jets have a

typical symmetric (mushroom) shape (see for instance Ref. [9]). These jets collide at the

O-point and then propagate along a direction perpendicular to the initial one. This behavior

is inhibited in the asymmetric configuration, where only one side of the jets exhibits vortex

formation and cannot propagate outward the separatrix, but is forced to move along the
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separatrix itself.

In Fig. 7 a snapshot of the advanced nonlinear phase shows that the turbulent behavior

spreads out of the magnetic island when the deformation of the magnetic island separatrix

at the O-point latitude is faster than the dynamics of the vorticity layers, which temporarily

remain outside the island before being reabsorbed at later times. This vortices motion

through the magnetic island separatrix opens a new transport scenario as suggested also in

Refs. [18, 19, 30].

In Ref. [19] the electron KH instability was the mechanism allowing for the transport of

particles, while in Refs. [18, 30] the authors suggested that the transport of particles from the

solar wind across the magnetopause into the magnetosphere is favoured by the turbulence

generated by the lower hybrid drift instability driven by the steep density gradients at

the magnetopause. We recall that in the cold ion limit adopted here the electron density

coincides with the vorticity [36], which also exhibits steep gradients, associated with the

above described velocity profiles that generate the KH instability leading to turbulence in

our model. We also note that previous 2D simulations described in the literature report

a very weak turbulence [18, 30] around the separatrix. Here we have shown that also in

2D configurations a significant level of turbulence may arise in the presence of a strongly

asymmetric configuration.

C. Role of the location of the rational surface

We stress that the secondary KH instability previously observed in the asymmetric case

is purely due to the geometry of the equilibrium magnetic field, α being the only parameter

that has been changed between the two cases presented so far. Nonetheless we observed

that, in general, a finite value of α is a necessary but not sufficient condition to trigger this

instability. Indeed we performed different simulations keeping the same values of δ = 0.1

and βe = 0.05, but varying α, λ and the equilibrium magnetic field amplitude A. The

results are summarized in Table I and discussed hereafter. By keeping A = 1, λ = 3 but

16



with α = 1/8, i.e. by decreasing the value of the asymmetry parameter α with respect to

the previously investigated asymmetric case, no instability has been found. This shows

that, as above anticipated, a finite value of α is not sufficient to trigger the instability.

Assuming A = 1.35, but keeping α = 1/4 and λ = 3 we do not find any instability either,

which indicates that the amplitude of the equilibrium magnetic field can suppress the

instability. A simulation with A = 1, λ = 3 and α = 6/25 shows the occurrence of the KH

instability, confirming the crucial role of the α parameter. The simulations with A = 0.67,

λ = 2, α = 1/4, and A = 0.33, λ = 1, α = 1/4 lead again to the occurrence of the KH

instability. We note that all the parameters α, A and λ contribute to the definition of the

location of the resonant surface given in Eq. (10). However, the data in the fourth column

of Table I show that the value of the distance of the rational surface from the location of the

current density peak alone is not sufficient to determine whether the instability takes place

or not. Indeed, the last case in the table exhibits the KH instability but is characterized by

a value xs = 0.97, smaller than the values of xs of the second and third cases, which did

not lead to a KH instability. It emerges that, among the seven cases discussed here, only

those that have a value of xs/λ sufficiently large, exhibit the turbulent behavior induced

by the instability, while the other cases persist in a laminar behavior throughout all the

advanced nonlinear phase. To understand the physical reason of the observed difference, it

is interesting to compare the profiles of the y-component of the velocity field shown in Fig.

5 for different values of the resonant surface of the corresponding equilibrium. In particular,

we selected one stable case and two cases leading to instability. The profiles have been

normalized to their maximum value and have been shifted along the x axis in such a way

that their maxima are located at the same value of the x coordinate. We note that, as

the resonant surface goes further away from x = 0, the width of the peak narrows and the

gradient on the right side becomes steeper. In particular, this makes the part of the layer

inside the magnetic island more prone to the KH instability as the value of xs/λ exceeds a

certain threshold, in agreement with the subsequent development of the instability shown

by the simulations.
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α λ A xs xs/λ KH inst.

0 3 1 0 0 No

1
8 3 1 1.18 0.39 No

1
4 3 1.35 1.88 0.63 No

6
25 3 1 2.72 0.91 Yes

1
4 2 0.67 1.95 0.97 Yes

1
4 3 1 2.92 0.97 Yes

1
4 1 0.33 0.97 0.97 Yes

TABLE I: Table summarizing whether the secondary KH instability occurs or not, depending on

the values of the equilibrium parameters α, λ and A, on the location of the resonant surface xs

and on the ratio xs/λ. One observes that the instability takes place if xs/λ is sufficiently large.

All these considerations permit to formulate a further condition that must be satisfied

for an asymmetric case to develop the KH instability. The resonant surface must be

located far enough from the x = 0 surface. How to define what is “enough” is a

subtle question, which requires a more detailed parametric analysis, which is beyond

the scope of this paper. However we note that, for the simulation campaign carried

out here, the xs threshold value is of the order of the equilibrium scale length, i.e.

xs/λ ∼ 1 appears to be an estimate for the instability threshold in the adiabatic case.

Although the results reported here have been obtained keeping constant the box length

2Ly = 24π, other simulations carried out with 2Ly = 12π have shown an analogous behavior.

D. Effect of Landau dissipation on the secondary instabilities

In this Subsection we analyze the effect of the dissipation by switching on the Landau

damping term in a simulation with the same parameters of the case with α = 1/4 reported

in Subsection III B. We recall that α = 1/4 corresponds to kz = 1/48 ≈ 0.021, according to

the mapping with the single helicity problem mentioned in Sec. III A. We confirm that for
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such a small value of kz the effect on the linear growth rate is almost negligible, as already

shown in Ref. [36].

The major effects of the Landau damping term can be appreciated when looking into the

nonlinear phase of the reconnection process, where the presence of dissipation inhibits the

secondary instabilities observed in the adiabatic case. Indeed the evolution of the vorticity

field remains laminar until the end of the simulation. In Fig. 6 a comparison of the y

component of the velocity profiles is shown for the two cases under consideration, at a time

just before the onset of the KH instability occurring in the adiabatic case. The profiles have

been normalized to their maximum. It is clear that the Landau effect prevents the velocity

peaks from narrowing and smooths their gradients across the separatrix (dashed line), thus

eliminating the conditions that make the colliding jet unstable to the KH instability.

We find it appropriate also to comment our results with respect to the role played by the

invariants that the model possesses in the adiabatic limit and whose conservation is violated

by the presence of the Landau term. Indeed, the model (1)-(3), in the adiabatic limit q‖e = 0

can be cast in the form [36]

∂ν+
∂t

+ [ϕ+, ν+] = 0, (17)

∂ν−
∂t

+ [ϕ−, ν−] = 0, (18)

∂s

∂t
+ [ϕ, s] = 0, (19)

where

ν± = A‖ −
2

βe
δ2∇2

⊥A‖ ±
δ√
3

(∇2
⊥ϕ+ t‖e), s = ∇2

⊥ϕ−
t‖e
2
, (20)

ϕ± = ϕ±
√

3

δ
A‖. (21)

The fields ν± and s correspond to Lagrangian invariants advected by generalized incom-

pressible velocity fields. The presence of such Lagrangian invariants is associated with the

existence of infinite families of Casimir invariants given by

C± =

∫
d2x f±(ν±), C =

∫
d2x f(s), (22)
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where f± and f are arbitrary functions. In particular, for the initial conditions considered

in the present analysis, as already mentioned, the relation t‖e = 2∇2
⊥ϕ holds. In this case

one has

ν± = A‖ −
2

βe
δ2∇2

⊥A‖ ±
√

3δ∇2
⊥ϕ, s = 0, (23)

ϕ± = ϕ±
√

3

δ
A‖. (24)

Thus, only the two Lagrangian invariants ν± lead to a non trivial dynamics. In previous

works, such as those of Refs. [11, 16], the isothermal two-field model reduction of our three-

field model was used. Such two-field model also admits a reformulation in terms of two

Lagrangian invariants analogous to ν±. In these References it was shown that the system

tends to form small scale structures concentrated in particular along the separatrices of

the magnetic island, caused by the phase mixing process of these invariants. This prevents

the formation of strong gradients representing the necessary condition for a secondary KH-

like instability. However, when the system cannot be completely reformulated in terms of

advection equations for Lagrangian invariants, for instance due to the assumption of cold

electrons [9] or of higher βe [15, 37], the secondary instability can take place. Our conclusion

in Sec. III B can then be re-expressed in this context, stating that a secondary KH-like

instability can take place even if the system can be recast in the form of advection equations

for Lagrangian invariants. This can happen if a sufficiently asymmetric equilibrium (in the

sense described in Sec. III B) is adopted.

On the other hand, in the presence of the Landau damping term, a reformulation of the

model in the form (17)-(19) is no longer possible. For instance, one can easily see that the

Landau term tends to damp temperature fluctuations, without affecting in the same man-

ner the vorticity [36]. As a consequence, the difference between t‖e and ∇2
⊥ϕ is no longer

constant along the flow, which expresses the fact that s is no longer a Lagrangian invariant.

As mentioned above, the Landau damping term appears to inhibit the KH instability.

Clearly, this inhibition is of different nature with respect to that due to the phase mixing of

the Lagrangian invariants observed in the symmetric case as it is due to the smoothing of
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the velocity gradients that form in the asymmetric adiabatic case.

In order to have an estimate of the impact of Landau damping on the non-conservation

of Casimir invariants, we considered the temporal evolution of the quantities
∫
d2x ν+ and∫

d2x ν2+ both in the adiabatic and Landau case. Because these two integral quantities are

of the form C+ indicated in Eq. (22), they are Casimir invariants in the adiabatic limit.

It turns out that, for our choice of the equilibrium parameters, the conservation of the

quantities
∫
d2x ν+ and

∫
d2x ν2+ does not differ significantly between the adiabatic and the

Landau cases. As shown in Fig. 8, the curves are almost coincident. This behavior reflects

also in the feeble differences between the energy distributions (not shown here) and mainly

depends on the strength of the sheared equilibrium magnetic field (for a higher equilibrium

magnetic field strength the Landau damping effect on the energy is more evident, see [36]).

However, while the Landau damping seems not to play a significant role in the conservation

of integral quantities, it significantly affects the plasma behavior locally by preventing the

Kelvin-Helmoltz instability onset.

Finally, we would like to point out that the linearized Landau-fluid model exhibits a very

good agreement, in terms of the estimation of the linear growth rates for reconnecting modes,

with the analytical theory based on a hybrid fluid-kinetic model [36]. This could justify the

choice of the Landau-fluid closure as an effort in the direction of providing fluid models

retaining features of the kinetic theory. On the other hand, the quality of the agreement

between the Landau-fluid and the kinetic dynamics in the nonlinear phase is a more deli-

cate issue. Also, when considering the present Landau-fluid model as a step toward kinetic

models, it should be pointed out that, as mentioned above, the Landau damping term in

the fluid model breaks the Hamiltonian structure, which, on the other hand, is present in

the drift-kinetic model from which the Landau-fluid model can be derived. In particular,

as shown in Ref. [21], according to a Hamiltonian drift-kinetic model, the phase space of

gyrocenters can be foliated into leaves, each hosting a dynamics analogous to that of the

Lagrangian invariants of the fluid model takes place. Thus, although the Landau-fluid clo-

sure provides in general a better matching with the linear kinetic theory with respect to the
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adiabatic closure, one has to be aware of possible discrepancies emerging in the advanced

nonlinear phase.

FIG. 1: Time evolution of the perturbed magnetic flux at the X-point for the symmetric (dashed

line) and the asymmetric case (solid line). The presence of asymmetry decreases the linear growth

rate. The drift along the x coordinate (represented on the right axis) of the X-point location

is plotted in blue. This drift, typical of the asymmetric case, shows how the X-point tends to

migrate toward the x = 0 line. The blue circles represent the approximation of the X-point

displacement according to the velocity field in Eq. (14). The fit between the curves is restricted to

a limited section of the total simulated time, because the post-processing treatement of the data

does not allow a reliable evaluation of the F field gradient across the X-line (which appear at the

denominator of the Eq. (14)) in the advanced nonlinear phase.
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(a) (b)

FIG. 2: Contour plots of the vorticity ∇2
⊥ϕ, at comparable times in terms of the island width,

for different values of the asymmetry parameters. The left panel corresponds to a symmetric case,

α = 0, while the right panel corresponds to an asymmetric case with α = 1/4. In both cases

vorticity concentrates along the separatrices but in the symmetric case an elliptic structure is

visible also inside the island. Note that the asymmetric layers are more intense.

IV. CONCLUSIONS

In this paper we analyzed how the intense vorticity layers, that form when a MR event

takes place, evolve in an asymmetric low βe 2D configuration. In the finite electron tem-

perature regime with ρs/de > 1 that we considered here, these layers are aligned along the

separatrices of the magnetic island and have a laminar behavior in the symmetric configura-

tion [11]. We have shown that this paradigm breaks down when an asymmetric equilibrium
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(a) (b)

FIG. 3: Profiles of vx, vy (top panels), Bx and By (bottom panels) plotted as a function of x at

y = 10. The symmetric case, α = 0, is on the left and the asymmetric case, α = 1/4, is on the

right. The dashed lines represent the location of the two branches of the separatrix for the chosen

y value.

magnetic field is taken into account. In the asymmetric configuration the vorticity may

undergo a secondary instability of the KH type, which drives a turbulent plasma behavior

around the magnetic island. In this case the velocity gradients, which develop firstly along

the branch of the separatrix close to the x = 0 axis, tend to peak like an asymmetric Bick-

ley jet that is well known to be prone to secondary instabilities. However, the presence of

an asymmetry in the equilibrium configuration turns out to be a necessary but not suffi-

cient condition for the occurrence of secondary instabilities. We have shown that the actual

driving parameter for the onset of such an instability depends on the radial position of the

resonant surface in the linear phase, i.e. in our 2D setting, where the sheared component of

the equilibrium magnetic field goes to zero. In particular, for the instability to take place,

the value of the rational surface, xs, must be of the order of the equilibrium scale length.
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FIG. 4: Contour plots of the vorticity at three subsequent times: t = 300 (top frame), t = 306

(middle frame), t = 318 (bottom frame). The arrows indicate the direction of propagation of

the instability front. The dashed line in each figure shows the magnetic island separatrix at the

corresponding time.

Moreover in the asymmetric configuration the turbulence is not confined into the magnetic

island but is allowed to spread out of the separatrix, opening transport channels otherwise

closed. Our results highlight that a fully developed turbulent behavior can be achieved in

2D asymmetric configurations, differently from previous results mainly obtained with PIC

simulations, where a strong turbulent behavior was observed only in 3D settings [18, 30].

We also analyzed the stabilizing effect of a non-adiabatic closure on these secondary insta-
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FIG. 5: Profiles of vy for different values of the resonant surface of the equilibrium magnetic field.

The profiles have been normalized to their maximum value and have been shifted along the x axis

so that the location of their maxima coincides at the same x coordinate. Note the narrowing of

the peak as the value of xs increases. The cases with xs = 1.95 and xs = 2.92 correspond to values

of xs/λ sufficiently large to yield the KH instability.

bilities, by including a Landau damping term in our model. This term prevents the velocity

peaks from narrowing, so inhibiting their destabilization.

In the future we intend to address this problem in a full 3D setting, where several modes can

be nonlinearly excited driving a secondary instability on their own. Moreover, the presence

of several modes may influence this scenario because of the magnetic chaos that can be
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FIG. 6: Profiles of vy, normalized to their maximum, comparing the effect of the Landau damping

term with the adiabatic case. The values of the parameters are α = 1/4, λ = 3, A = 1 for both

cases. The presence of the Landau damping leads to weaker velocity gradients.

generated by their interaction.

Another interesting aspect worth of a deeper attention concerns the particle density, which,

in our model, is proportional to the vorticity. In the minimal asymmetric framework where

we have described the onset and the behavior of the KH instability, the equilibrium density is

uniform and, considering the magnetospheric context, the equilibrium magnetic asymmetry

depends only on the direction of the solar wind. In other works with a different equilibrium

configuration, equilibrium density gradients are assumed and secondary Rayleigh-Taylor
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FIG. 7: Contour plots of the vorticity at three subsequent times: t = 354 (top frame), t = 360

(middle frame), t = 375 (bottom frame). The white dashed lines identify the corresponding

magnetic island separatrices.

modes associated with the density inhomogeneities are induced by the KH instability in the

nonlinear phase ([12, 22] and references therein). In Ref. [12], the role of the small-scale KH

structures in the mass transfer between the solar wind and the magnetosphere is also dis-

cussed. In this perspective, a further development of our investigation is represented by the

particle transport in the turbulent region produced by the KH instability and, in particular,

across the island’s boundaries, which could be carried out through a test particle approach

([28] and references therein).
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FIG. 8: Time evolution of the quantities C1 =
∫
d2x ν+ (black lines) and C2 =

∫
d2x ν2+ (blue lines)

for the adiabatic (solid lines) and the Landau (dashed lines) cases. The times are normalized with

respect to the linear growth rate of the reconnection process. The values of the parameters are

α = 1/4, λ = 3, A = 1 for both cases.

In conclusion, the use of the presently adopted reduced fluid model implies evident limita-

tions, in terms of the range of applicability, when compared to kinetic models. In order to

reduce the gap with kinetic descriptions and in view of possible applications to asymmetric

reconnection events in the magnetosphere, we also intend to adopt more refined fluid models

valid for larger βe values and including finite ion Larmor radius effects as well as equilibrium

temperature anisotropies.
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Supplementary material

See the movie in the supplementary material for a complete description of the evolution of

the KH instability. The movie shows the time evolution of the vorticity spatial distribution

U(x, y, t) = ∇2
⊥ϕ(x, y, t) for the case α = 1/4, A = 1 and λ = 3 in the left frame. The

superposed dashed lines correspond to the magnetic island separatrices. The time evolution

of A‖X is plotted on the right frame, in order to highlight the link between KH and MR

instability.
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