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The cytochrome bc1 complex is a key component of the mitochondrial respi-

ratory chains of many eukaryotic microorganisms that are pathogenic for

plants or humans, such as fungi responsible for crop diseases and Plasmod-

ium falciparum, which causes human malaria. Cytochrome bc1 is an enzyme

that contains two (ubi)quinone/quinol-binding sites, which can be exploited

for the development of fungicidal and chemotherapeutic agents. Here, we

review recent progress in determination of the structure and mechanism of

action of cytochrome bc1, and the associated development of antimicrobial

agents (and associated resistance mechanisms) targeting its activity.

Keywords: cytochrome bc1; electron transport; fungicide; G143A; malaria;

QoI/QiI; resistance

Introduction and general enzymatic
mechanism of the cytochrome bc1

complex

The cytochrome bc1 complex (respiratory complex III,

Cyt bc1, EC: 1.10.2.2) of eukaryotic mitochondrial and

prokaryotic energy-transducing membranes is a proven

target for antimicrobial agents of medical and agricul-

tural interest [1–7]. This enzyme, which is widespread

in nature, functions as a protonmotive ubiquinol:cy-

tochrome c oxidoreductase, conserving and converting

the Gibbs energy obtained from the exergonic oxida-

tion of ubiquinol by cytochrome c into a transmem-

brane proton gradient which may be harnessed for

other endergonic processes, typically ATP synthesis by

an FoF1 ATP synthase [8,9].

Cyt bc1 is a multimeric, homodimeric complex. In

eukaryotes (the focus of this review), the monomer

consists of 10–11 discrete polypeptides, with a

molecular mass of approximately 240 kDa [8,10]. All

subunits are nuclearly encoded with the exception of

cytochrome b (cyt b), which is encoded by the mito-

chondrial genome. Three subunits – cyt b, the Rieske

[2Fe2S] iron–sulfur protein (ISP) and cytochrome c1
(cyt c1) – form the highly conserved electron- and pro-

ton-transferring catalytic engine of the enzyme

(Fig. 1), embedded within the inner mitochondrial

membrane (IMM). The [2Fe2S] cluster and haem

group of cyt c1 form the ‘high potential’ chain of cyt

bc1, with midpoint redox potentials (Em,7) of approxi-

mately +280 and +240 mV, respectively. The cyto-

chrome b polypeptide forms the ‘low potential’

transmembrane electron transfer pathway and binds

two b-type haems, designated bL and bH, with Em,7

values of approximately �100 and +50 mV, respec-

tively. (For reference, the Em,7 for the 2 electron redox
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chemistry of the ubiquinone/ubiquinol redox couple is

approximately +60 mV.) During the catalytic cycle,

which is described in more detail below, cyt bc1 oxi-

dises two molecules of ubiquinol in a stepwise manner,

reducing two molecules of the soluble acceptor cyto-

chrome c and one molecule of ubiquinone. The pro-

tonmotive activity inherent to this catalytic cycle

results in the deposition of four protons against the

electrochemical gradient into the intermembrane space,

per two electrons transferred to cyt c, with the con-

comitant uptake of two protons from the mitochon-

drial matrix [9,11,12].

The ubiquinol- and ubiquinone-binding sites of cyt

bc1 are termed Qo and Qi, for the sites of (ubi)quinol

oxidation and (ubi)quinone reduction, respectively.

They form exploitable targets for competitive inhibi-

tors and are located within cyt b, disposed on opposite

sides of the IMM and linked by haems bL and bH. The

bifurcating electron transfer chemistry between the

high and low potential chains of cyt bc1 is highly unu-

sual and best understood through the framework of

the Q-cycle model (Fig. 2), originally proposed by

Peter Mitchell in 1975 and substantially developed by

others since [13–18]. The basic tenets of the model are

this. A ubiquinol molecule binds at the quinol oxida-

tion (Qo) site of cyt b, located towards the intermem-

brane space (i.e. electrochemically positive) side of the

IMM. This ubiquinol serves as a one-electron

reductant for the [2Fe2S] cluster of the mobile extrin-

sic domain of the ISP (the ISP-ED), the entry point

for the high potential chain within bc1. The ISP-ED

effectively acts as a tethered substrate and kinetic gate

facilitating electron bifurcation, although it is impor-

tant to note that this in itself is not the only factor

controlling the bifurcation reaction [19–22]. This elec-

tron transfer reaction from ubiquinol to the ISP-ED

(which is rate-limiting for the chemistry at Qo) gener-

ates a strongly reducing semiquinone (SQo) radical at

Qo. The reactivity of SQo must be carefully controlled

to minimise energetically wasteful (and potentially

harmful) side reactions with molecular oxygen. The

mechanisms by which this radical intermediate – an

elusive species – is managed at Qo are subject to much

investigation, discussion of which is beyond the scope

of this review, but the interested reader is referred to

[23–26] for further details. Protons released from

Fig. 1. Cartoon representation of the atomic structure of cyt b

(green) and the ISP (orange) of yeast cyt bc1 (1EZV.PDB [39]) with

stigmatellin (Stg, pink) bound at Qo. The ISP [2Fe2S] cluster, cyt b

haems (red) and side chains of interest as discussed in the text are

represented in wireframe form.

Fig. 2. Schematic sketch of the electron and proton transfer

pathways of the cyt bc1 Q cycle. Cyt b is represented in light grey,

with the Qo/Qi pockets in dark grey. ‘Red’ and ’ox’ refer to the

reduced and oxidised states of the various redox carriers. The

positive and negative sides of the energised inner mitochondrial

membrane are indicated accordingly.
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ubiquinol oxidation at Qo are deposited into the inter-

membrane space (IMS) bulk phase. SQo is of suffi-

ciently negative redox potential (c. �160 mV) to

reduce the low potential chain within cyt b, with elec-

tron entry at haem bL, which is then rapidly oxidised

by haem bH, the electron donor to Qi-bound ubiqui-

none. This one-electron transfer reaction creates a

tightly bound (and relatively stable) semiquinone spe-

cies at Qi (SQi), which is reduced to ubiquinol by a

second turnover of the Qo site and uptake of two pro-

tons from the mitochondrial matrix, and the cycle is

complete. The tight binding of SQi at Qi ensures that

the thermodynamics are favourable for the first one-

electron transfer reaction to substrate ubiquinone at

this site, which otherwise would be energetically uphill

[9].

Structure, function and inhibition of
the cyt bc1 Qo and Qi sites

High-resolution (< 3.0 �A) atomic structures of cyt bc1
cocrystallised with a variety of Qo/Qi-site occupants are

available for the chicken, bovine, yeast (Saccharomyces

cerevisiae) and bacterial (Rhodobacter sphaeroides, R.

capsulatus and Paracoccus denitrificans) enzymes (see

survey in Ref. [10]). Recently, single-particle cryo-

electron microscopy has proven to be useful tool for

structural investigation of this enzyme [27]. No crystal

structures of cyt bc1 are available from human or plant

pathogen sources; however, the yeast enzyme has proved

a useful and genetically amenable model in many

instances [1,4,28–32].
The Qo site within cyt b is composed from compo-

nents encompassing the C-terminal domain of trans-

membrane helix C, surface helix cd1 and the region

encompassing the ‘PEWY’ (Pro271-Glu-Trp-Tyr274,

yeast notation) loop/ef helix to transmembrane helix

F1 (Fig. 3). It forms a large, bifurcated and predomi-

nantly hydrophobic volume [33,34]. Cyt bc1 has been

cocrystallised with a variety of competitive inhibitors

for the Qo site (see Ref. [10,34] and references therein,

also Ref. [4]), but despite extensive efforts, there are

no atomic structures available for the enzyme with

substrate ubiquinol bound at Qo. Ligands binding

within Qo may be broadly classified as ‘bL-distal’ or

‘bL-proximal’ species depending on their positioning

within the site with respect to haem bL. bL-distal inhi-

bitors, such as stigmatellin, n-nonyl quinoline N-oxide

(NQNO), n-undecyl hydroxy dibenzothiazole

(UHDBT) and atovaquone, bind in a region of Qo in

close proximity to the ISP (Fig. 1), often forming a

strong hydrogen bond to a histidine ligand (H181) of

the [2Fe2S] cluster, and restricting the movement of

the ISP-ED in crystallographic studies [10,19,34]. As

such, this class of inhibitor may also be classified as

‘Pf’ [‘P’ referring to Qp, an alternative nomenclature

for Qo (i.e. the positive side of the energy coupling

membrane), with ‘f’ indicating that the ISP-ED is fixed

in position] [34]. These inhibitors may also alter the

redox and EPR spectroscopic properties of the [2Fe2S]

cluster, a clue to their mode of action prior to the elu-

cidation of the atomic structure of cyt bc1. To compli-

cate matters, it should be noted that not all bL-distal/

Pf inhibitors form H-bonding associations with the

ISP-ED. Famoxadone (an oxazolidinedione-containing

synthetic fungicide) is a useful case in point here,

demonstrating direct Qo ligand/ISP-ED interactions

are in themselves insufficient to retard the movement

of the ISP-ED, and may arise from ligand-induced

perturbation of the protein fold around this region of

cyt b [35]. bL-distal inhibitors may also form hydro-

gen-bonding interactions with the carboxylate moiety

of E272 in the cyt b Qo ef helix (this residue is in close

proximity to haem bL), causing this side chain to

rotate away from its inward pointing disposition in the

uninhibited enzyme. This is observed with stigmatellin

and NQNO, but not UHDBT [34,36].

In contrast to bL-distal inhibitors, bL-proximal inhi-

bitors, such as the natural antibiotics myxothiazol

and strobilurin, and synthetic fungicides such as

azoxystrobin characteristically have hydrogen-bonding

interactions with the backbone amide moiety of cyt b

residue E272 at Qo (Fig. 1), with the side chain of

this residue oriented away from the aqueous phase.

Often such inhibitors possess a methoxyacrylate phar-

macophore, or derivative of such [34,37]. Generally,

bL-proximal inhibitors do not interact with the ISP-

ED or affect its mobility, and so this class of com-

pound is also referred to as ‘Pm’ (with ‘m’ indicating

that the ISP-ED is mobile, or, at least, not docked at

the IMS-facing surface of the Qo site within cyt b)

[34].

The Qi site, located within cyt b on the opposite side

of the IMM to Qo, forms the site of quinone reduction

within cyt bc1. Structurally, it is formed from the C-

terminal region of surface helix a, the N-terminal

region of transmembrane helices A and E and the C-

terminal regions of helices D (Fig. 3), and, in contrast

to Qo, contains no contributions from the ISP. Cyt bc1
has been cocrystallised with Qi-bound substrate ubi-

quinone in the chicken, bovine and yeast enzyme,

where it is observed that the benzoquinone moiety

forms hydrogen bonds with Qi residues H202 and

S206 (yeast notation) [38–41]. Qi-bound quinone is in

close proximity (3.5 �A shortest separation) to haem

bH, facilitating rapid electron transfer [12,17].
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Cyt bc1has been cocrystallised with a variety of Qi

inhibitors (QiIs), such as the natural antibiotics anti-

mycin A and ascochlorin, and synthetic pyridones

[5,10,41–43]. These inhibitors tend to be structurally

diverse molecules, and may not resemble simple vari-

ants of benzoquinones, as is often observed for Qo

inhibitors (QoI). Mechanistically, the redox chemistry

catalysed at Qi is less elaborate than that at Qo [9,17],

and there is no equivalent of the haem proximal/distal

classification for QiI as observed with QoI. Notably,

Qi inhibition can lead to increased superoxide produc-

tion from cyt bc1 due to electron accumulation on the

low potential chain (and increased SQo occupancy)

within this enzyme [44–46], which, due to the resulting

oxidative stress, may increase the efficacy of such com-

pounds as antimicrobial agents. It is often overlooked

that bL-proximal QoI (such as myxothiazol) can also

stimulate ROS production by cyt bc1, presumably as

SQo generation can still proceed due to dual-site occu-

pancy at Qo, allowing one-electron oxidation of sub-

strate quinol by the ISP (but blocking reduction in cyt

b) [47].

Finally, we note that some compounds, such as the

fungal antibiotic ascochlorin, the synthetic fungicide

ametoctradin and the synthetic antimalarial compound

endochin ELQ-400, may act as dual-site Qo/Qi inhibi-

tors [31,32,43]. Such molecules are of particular inter-

est as antimicrobial agents as cyt b mutation-based

resistance is unlikely to develop without significant fit-

ness cost to the target organism [48].

QoI/QiI binding may result in bathochromic shifts

in the visible absorption spectra of reduced

cytochrome bL/bH [37], and this technique is conve-

nient test for the predictions of in silico modelling

approaches. The bL-proximal inhibitors strobilurin and

myxoythiazol have been observed to induce 1–2 nm

redshifts of haem bL, shifting the absorption maximum

of the a-band to 566 nm. A similar spectral shift is

observed with the bL-distal inhibitor stigmatellin

(Fig. 1) [37]. At Qi, the binding of the antagonist anti-

mycin A induces a 2 nm bathochromic shift in the visi-

ble absorption spectrum of haem bH, shifting the

absorption maximum of the a-band to 564 nm. Relat-

edly, the phenomenon of ‘oxidant-induced reduction’ –
the reduction in the low potential chain within cyt bc1
in the presence of QiI and ascorbate or substrate qui-

nol upon addition of an oxidant such as ferricyanide

due to the bifurcated electron transfer chemistry at Qo

– can also provide clues as to the mode of action of

cyt bc1 Q-site inhibitors [11,49,50]. We recommend the

use of these relatively simple spectrophotometric mea-

surements, which can be performed with crude mem-

brane preparations, as complementary to in silico

binding predictions. Study of the enzymology of inhi-

bition in Qo/Qi-site-directed mutants of yeast (and bac-

terial) cyt bc1 can also provide useful information with

regard to the mode of action of potential QoI/QiI

[1,29,30,51].

Cytochrome bc1 as a fungicide target
in crop phytopathogens

Plant disease control is a major issue in agriculture.

The fungicide market in Europe, for instance,

Fig. 3. Cartoon of the secondary structure

and membrane disposition of cyt b,

displaying the location of Qo (red) and Qi

(blue) residues of interest

(Saccharomyces cerevisiae notation) as

discussed in the text. Transmembrane and

surface helices are identified in upper and

lower cases, respectively. ‘n’ and ‘p’ refer

to the negative and positive sides of the

energised inner mitochondrial membrane.
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represents € 1.8 bn�year�1; of this, € 1.3 bn�year�1 is

for wheat disease control [52]. A wide panel of fungi-

cides is available with different modes of action and

targets, such as the large group of fungal sterol biosyn-

thesis inhibitors, the growing family of complex II

inhibitors or the cyt bc1 inhibitors.

The QoI fungicides and the rapid
spread of target-site resistance

Cyt bc1 is a successful target for agricultural fungi-

cides, with most of the compounds in use being Qo-site

inhibitors (QoIs). They are (and have been) used to

control a wide range of plant pathogen fungi belong-

ing to the ascomycetes, basidiomycetes and oomycetes.

Some of the pathogens are the causative agents of dis-

eases of economically important crops, such as cereals

and vines.

The QoIs available on the market include several

synthetic strobilurins [53] such as azoxystrobin,

dimoxystrobin, fluoxastrobin, kresoxim-methyl,

picoxystrobin, pyraclostrobin, trifloxystrobin, but also

the benzyl-carbamate pyribencarb, the oxazolidine-

dione famoxadone and the imidazolone fenamidone.

These compounds are likely to share the same binding

mode as the resistance mutation G143A in the cyt b

Qo site confers cross-resistance to all of these inhibi-

tors.

The first QoI marketed for agricultural use, azoxys-

trobin, was launched in 1996. Unfortunately, its effi-

ciency was rapidly challenged within a few years, with

resistant isolates reported in populations of pathogens,

such as Blumeria graminis (wheat and barley powdery

mildew) [54] and Plasmopara viticola (grape downy

mildew) [55]. We will address additional fungal resis-

tance mechanisms, namely the upregulation of alterna-

tive respiratory pathways and activity of membrane

efflux pumps later in this review.

Fungal phytopathogen resistance to azoxystrobin

was found to be caused by the cyt b mutation G143A

in the Qo site (Figs 1 and 3), and interestingly, A143 is

found natively in cyt b of the strobilurin-producing

basidiomycete Mycena galopoda [56]. The G143A sub-

stitution has been now found in isolates from over 25

species of phytopathogenic fungi [see Fungicide Resis-

tance Action Committee (FRAC): www.frac.info]. As

such, FRAC often recommend mixing two or more

fungicides with differing modes of action to try and

overcome this problem of resistance. The G143A

mutation confers a high level of resistance that can

result in a severe loss in disease control by QoIs.

Inspection of the atomic structure of bovine cyt bc1
with bound azoxystrobin indicates that the

replacement of G143 by alanine results in a destabilis-

ing steric clash with the MOA-bearing phenyl moiety

of the fungicide. In yeast, G143A dramatically

increases resistance to azoxystrobin (40009) but has

no effect on cyt bc1 enzymatic activity [29], indicating

that the binding of substrate ubiquinol is not hindered

by the mutation. The high level of resistance without

penalty on the enzyme activity – combined perhaps

with a heavy use of QoIs in fields and thus a strong

selection pressure – could explain the rapid emergence

and spread of G143A in many fungi.

In some species, however, the exon–intron structure

of the cyt b gene prevents the appearance of the

G143A mutation [57]. In these species, an intron is

located immediately after the codon for G143. When

the G143-encoding codon GGT is located at the exon/

intron boundary and is replaced by codon GCT (en-

coding alanine), the intron splicing is altered, resulting

in a severe decrease in the amount of mature mRNA.

Accordingly, the resulting loss of cyt b due to muta-

tion at this mRNA splice junction has been demon-

strated in the yeast model [58]. G143A would thus

have a deleterious effect in the intron-containing spe-

cies, affect the fitness of the resistant cells and be

counter-selected in field.

Three other cyt b mutations have been reported in

isolates resistant to QoIs – including ‘G143’ intron-

containing species. F129L, found for instance in Plas-

mopara viticola and Pyrenophora teres (Barley net

blotch) [59] [and G137R, such as is found for in iso-

lates of Pyrenophora. Tritici-repentis (wheat tan spot)

and G137S, found in Venturia effusa (pecan scab)]

(Figs 1 and 3) [59,60].

G137 is at the N-terminal region of helix cd1 and is

close to the interfacial region for ISP-ED binding.

Substitution of glycine by arginine, a bulky and catio-

nic residue, is expected to lead to local distortion of

the loop connecting helices C and cd1. In yeast, the

mutation causes in a significant defect in respiratory

growth and cytochrome bc1 activity [61]. In pathogenic

fungi, the nonconservative substitution may be

expected to result in a fitness penalty, which could

explain the rare occurrence of G137R/S in the field

[59,60].

The side chain of F129 is oriented towards the

hydrophobic cavity that facilitates substrate access to

Qo. The residue is involved in binding the hydrophobic

tail of stigmatellin and also presumably that of ubiqui-

nol [62]. In yeast, the F129L mutation has little effect

on the enzyme activity but decreases its sensitivity to

QoIs azoxystrobin and stigmatellin [29]. F129 partici-

pates in side-chain van der Waals associations with

these inhibitors in the respective cytochrome bc1

2939FEBS Letters 594 (2020) 2935–2952 ª 2020 Federation of European Biochemical Societies

N. Fisher et al. Cytochrome bc1 as an antipathogenic target

http://www.frac.info


structures, and the F129L substitution removes stabil-

ising aromatic–aromatic interactions between the pro-

tein and bound azoxystrobin. F129L is not as widely

spread in plant pathogen fungi as G143A and confers

a moderate level of resistance.

G143A, now widespread in fungi in the field, is thus

a major problem as the mutation confers high level of

resistance and cross-resistance to the whole family of

QoIs in use, compromising their efficiency in disease

control. As such, new compounds are needed that

either target the Qi site or bind at Qo but in a different

mode, circumventing G143A-mediated resistance.

Metyltetraprole is a novel QoI that is not affected

by the resistance mutation G143A [63]. It is active

against ascomycetes, for instance Zymoseptoria tritici

(wheat leaf blotch), a major threat for wheat produc-

tion in western Europe. The compound has side chain

similar to that of the synthetic strobilurin pyra-

clostrobin, but has a unique tetrazolinone moiety. It is

suggested that this tetrazolinone moiety will not form

the same highly specific interactions with the Qo site as

do other strobilurin-based QoIs and in consequence

can accommodate changes in the target, such as

G143A [64]. Thus, the steric clash due to G143A that

can compromise the binding of QoIs would be limited

by the unique size and shape of the tetrazolinone. The

atomic structure of wt and G143A cytochrome bc1
with bound metyltetraprole would be needed to con-

firm its distinct binding interactions with the target.

QiI fungicides in use and under
development, and appearance of
resistance mutations

To date, only three QiI fungicides have been commer-

cialised and are oomycete-specific, namely the dimethyl-

sulfonamide amisulbrom and cyazofamid, and the

triazolopyrimidine ametoctradin.

In the FRAC repertory of fungicides (www.frac.inf

o), ametoctradin was listed as QoSI, that is binding at

the Qo site in a manner similar to stigmatellin but dis-

tinct to QoIs [6]. Further spectroscopic studies indi-

cated that the compound could target both Qo and Qi

sites [31] and the fungicide was re-classified as QioI

(https://osf.io/qwg42/). However, the appearance of

the ametoctradin resistance mutation S34L in the Qi

site of Plasmopara viticola-resistant isolates showed

that the fungicide preferentially targets the Qi site,

which was confirmed by the study of the mutation in

the yeast model [51,65]. Analysis of in silico docking

of ametoctradin into a homology model of the Qi site

of Plasmopara viticola suggests a binding mode similar

to that of ubiquinol in yeast cyt bc1. The aliphatic

octyl and ethyl substituents of ametoctradin are pre-

dicted to form stabilising hydrophobic interactions

with the side chains of L17 (helix A), V194 and L198

(C-terminal region of helix D) (Fig. 3). The interac-

tions between the amino-substituted triazolopyrim-

idinyl headgroup of the fungicide and the Qi site

appear more hydrophilic, with a putative H bond with

the carboxylate side chain of residue D229. A weaker

H-bonding interaction between this amino moiety of

ametoctradin and the serinyl side chain of S34 is also

predicted, which would be lost when serine is replaced

by leucine. In addition, the bulky leucine is expected

to sterically destabilise the fungicide binding, which

would explain the resistance [31,51].

A cyazofamid resistance mutation was reported in

field isolates of Plasmopara viticola. Interestingly, the

mutation is short sequence duplication of six nucleo-

tides resulting in the insertion of two residues E203-

DE-V204 [66], located in the linker region between

helices D and E, proximal to the benzoquinone head-

group of Qi-site-bound quinone in yeast cyt bc1. The

insertion is likely to perturb the local fold around this

region, and interfere with cyazofamid access or bind-

ing into the Qi site.

Fenpicoxamid is a new QiI active against a broad

range of ascomycetes, such as the wheat pathogen

Z. tritici. It is still under commercial development.

Fenpicoxamid is derived from UK-2A, a natural pro-

duct of Streptomyces sp. that is structurally related to

antimycin [67]. In Z. tritici, fenpicoxamid is readily

converted into UK-2A by removing the isopropylcar-

boxymethylether group [68]. UK-2A is 100-fold more

potent than fenpicoxamid in inhibiting cyt bc1 [69].

Using the yeast model, three cytochrome b mutations

causing fenpicoxamid resistance were identified, L198F

and G37C and N31K [69]. Notably, mutations of these

residues L198, N31 and G37 have been reported to

cause resistance to different Qi-site inhibitors in differ-

ent organisms. Residue G37, in particular, seems a hot

spot of resistance mutations [51].

The binding of UK-2A to yeast cyt bc1 has been

modelled in silico [69]. The results suggested a struc-

tural overlap between UK-2A and antimycin A in the

Qi binding pocket, with differences, in particular the

pyridine head of UK-2A, is flipped by 180°. In this

model, the N atom in the pyridine ring is protonated

and can form a salt bridge with the carboxyl group of

D229, a key residue in Qi-site inhibitor binding. How-

ever, in contrast to UK-2A, other Qi-site inhibitors

form a hydrogen bond with an O atom of D229. It is

likely that the local electrostatic environment around

D229 is affected by the replacement of the nearby resi-

due N31 by lysine (N31K), disrupting the salt bridge
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(or bound water molecules, which may also interact

with the Qi antagonist [69]) and in consequence weak-

ening the inhibitor binding. Destabilising steric hin-

drance is likely to explain the resistance caused by

G37C and L198F, as the substitutions result in bulkier

residues.

Alternative QoI/QiI resistance
mechanisms in fungal phytopathogens

In addition to mutations in the inhibitor binding site

within cyt b that account for most of the cases of

reported resistance, other mechanisms may induce

resistance towards QoIs and QiIs, such as increased

efflux of fungicides and activation of a mitochondrial

alternative oxidase (AOX) [70–72]. These mechanisms

need to be taken into account in the strategies for

monitoring and controlling the development of resis-

tance.

Increased drug efflux is less prevalent and result in

lower resistance level than cyt b mutations. It is caused

by the upregulation of membrane transporters. As

these efflux pumps can often transport different com-

pounds, their increased activity leads to multiple drug

resistance (MDR). In Z. tritici, for instance, MDR

was reported and found be caused by the overexpres-

sion of the transporter MFS1, induced by insertions in

the promoter of its encoding gene [72,73].

AOX forms an alternative respiratory pathway

within the mitochondria of the phytopathogen which

may be upregulated when cyt bc1 is inhibited. AOX is

a single-subunit, (non-haem) di-iron containing mono-

topic membrane protein which functions as a nonpro-

tonmotive quinol oxidase, which is widespread in

plant, fungal and protist mitochondria (but notably

absent from the Plasmodium sp.) [74–76]. The activity

of AOX allows ubiquinol-linked respiration from

NADH (via mitochondrial complex I) to oxygen,

bypassing the inhibition of cyt bc1, although at much

reduced energetic efficiency. Four protons may be

expected to be pumped into the IMS per 2 electrons

transferred to oxygen in this alternative respiratory

pathway due to the activity of protonmotive complex I

alone (i.e. 4H+/2e�) [75]. This represents a significant

decrease from the 10H+/2e� yield expected for cyt bc1/

cytochrome c oxidase-linked respiration. Putatively

AOX-linked fungicide resistance was first noted in lab-

oratory-generated strains of Z. tritici, that were resis-

tant to the (then) newly developed QoI azoxystrobin

[77], and has subsequently has been observed in QoI/

QiI-treated field isolates of the phytopathogens Plas-

mopara viticola, Z. tritici, Magnaporthe grisea and

Mycosphaerella fijensis [65,78–80]. In vitro studies

suggest that, in the absence of selective pressure, AOX

overexpression in Plasmopara viticola sporangia comes

with an associated fitness penalty [6], presumably due

to the decreased energetic efficiency of mitochondrial

respiration as outlined above. Accordingly, the fungal

preinfection stages of spore germination and host pen-

etration may be unlikely to develop AOX-associated

QoI/QiI resistance due to the ATP demand of these

processes [53,70,77,80]. In vitro, AOX activity can be

inhibited by the benzhydroxamic compound salicylhy-

droxamic acid (SHAM), a presumed competitive inhi-

bitor for ubiquinol. SHAM is a relatively poor

inhibitor of the AOX, with an inhibition constant (Ki)

of 21 lM against the Trypanosoma brucei enzyme (as

measured by glycerophosphate-linked oxygen uptake

assay) [81]. As an antifungal agent, SHAM has also

been observed to act synergistically with QoIs in vitro,

but this response is species (and QoI)-dependent

[65,70,82]. Unfortunately, SHAM is a relatively non-

specific inhibitor and poorly taken up by plants, and

so is unsuitable for use in the field [70]. It must also be

noted that the native AOX activity is important for

maintaining redox (and metabolite) homeostasis in

plants, and inhibition of this enzyme may be deleteri-

ous under osmotic and light stress conditions [83,84].

Nevertheless, the intriguing possibility exists of the

development of dual fungal cyt bc1/AOX inhibitors, as

compounds such as the quinoline aurachins, produced

by the myxobacterium Stigmatella aurantiaca, are inhi-

bitors of both enzymes [85–88]. We note also the

potential for complex I/cyt bc1 inhibition for fungicidal

activity as Dp would be expected to be severely dimin-

ished under such circumstances, regardless of the activ-

ity of AOX. Complex I-targeting fungicides are not in

widespread use, although the methylpyrimidin-4-amine

compound diflumetorim is approved for use in Japan

for the treatment of rust and powdery mildew infec-

tion of ornamental crops [89].

The QoI alkoxy amino acetamide fungicide SSF-126

has been reported to increase superoxide production in

M. grisea [90], and although the Qo site of cyt bc1 is

the likely source of origin (presumably SSF-126 is act-

ing as a bL-proximal inhibitor in this instance, or there

is cross reactivity of this compound with Qi), this has

not been tested directly. AOX expression was observed

to be strongly induced on treatment with SSF-126,

although interestingly the addition of exogenous

hydrogen peroxide was also observed to increase AOX

mRNA transcript levels [78]. Earlier studies reported a

possible ROS-associated link with AOX expression in

the yeast Hansenula anomala (syn. Pichia anomala)

[91], and more recently, in tomato leaves [92]. The sig-

nalling pathway controlling this mechanism is
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unknown, but it potentially may be exploited in the

development of future cyt bc1-targeted fungicides (by,

for instance, stimulating mitochondrial catalase or per-

oxidase expression) to minimise AOX-associated resis-

tance mechanisms.

The significance of phytopathogen AOX activity

with regard to QoI/QiI fungicide resistance in the field

has been debated [6,70]. Its increasing prevalence,

however, warrants close attention, particularly as this

respiratory shunt (and MDR activity, as described

above) may facilitate the development of QoI/QiI-re-

sistant cyt b mutants [65].

Finally, we note the potential of the new, bifunc-

tional ‘hybrid’ antifungal agents under development

that combine strobilurin and aromatic amide pharma-

cophores. Such compounds are thus capable of target-

ing both cyt bc1 and succinate dehydrogenase (an

additional antipathogenic target). These hybrid com-

pounds have demonstrated notable efficacy against the

plant pathogens Pyricularia oryzae and Sclero-

tinia sclerotiorum under laboratory conditions [93].

Cyt bc1 as a chemotherapeutic target
of the human malaria parasite

The cytochrome bc1 complex of the human malaria

parasite Plasmodium falciparum has a number of

unique features that enable drug selectivity in humans.

Notably, a four-residue deletion in the cd2 helix

(Fig. 3) of plasmodial cyt b, a region of the protein in

close proximity to key structural components of the

Qo site and the mobile domain of the ISP may modify

the conformation of Qo in the parasite, forming an

exploitable element for antagonist selectivity. Sequence

differences between Plasmodia and humans in the C-

terminal region of the E-ef loop of cyt b (notably the

loss of histidine and lysine residues in the parasite), a

region of the protein adjacent to catalytically essential

ef helix element of Qo, may also help drive drug selec-

tivity [2,94,95].

Besides contributing to the mitochondrial Dp [76,96-

98], the quinol oxidase function of cyt bc1 performs an

important role within Plasmodium mitochondria, oxi-

dising the electron acceptor pool for DHODH-medi-

ated pyrimidine biosynthesis. As noted previously, the

mitochondria of Plasmodium sp. lack the AOX found

in plants, fungi and other protists, and so are reliant

upon cyt bc1 activity for this function [76]. During the

intraerythrocytic stage of parasite development within

the human host, provision of quinol oxidase function

is believed to be essential for parasite survival. Consis-

tent with this, inhibition of cyt bc1 results in an

increase in carbamoyl-aspartate and a reduction in

UTP, CTP and dTTP [3,99–101]. Further evidence of

an essential link between mitochondrial function and

pyrimidine biosynthesis is supported by the generation

of an atovaquone-resistant phenotype in transgenic

Plasmodium falciparum parasites expressing ubiqui-

none-independent yeast DHODH [102]. Inhibition of

Plasmodium cyt bc1 has been shown to affect the con-

version of fumarate to aspartate, further linking mito-

chondrial function with pyrimidine biosynthesis and

also possibly purine metabolism [103].

Inhibition of Plasmodium falciparum cyt bc1 during

the intraerythrocytic (blood) stages of parasite devel-

opment result in a relatively slow death phenotype

compared with other antimalarials such as artemisinin

and semisynthetic derivatives thereof [3,104,105]. This

feature appears to be consistent with other mitochon-

drially acting antimalarials and is possibly due to the

drug acting only on late trophozoites and not on the

earlier ‘ring’ stages [3,106,107]. Inhibition of Plasmod-

ium falciparum cyt bc1 has also been validated against

liver stages of the malaria parasite, resulting in the

utility of any developed inhibitors as prophylactic

agents; however, inhibition of the parasite cyt bc1 is

not believed to be active against ‘dormant’ P. vivax/

ovale hypnozoites and therefore not suitable for poten-

tial radical cure of relapse malaria [108,109].

Development and pharmacology of
the cyt bc1 Qo inhibitor atovaquone

Atovaquone (Fig. 4) is the prototypal inhibitor of the

Plasmodium cyt bc1 that was successfully developed

and registered for clinical use [110]. Currently, ato-

vaquone is used as a fixed-dose combination with pro-

guanil (Malarone) for the treatment of children and

adults with uncomplicated malaria or as a chemopro-

phylactic agent for preventing malaria in travellers

[108,111]. In recent years in the United States, Malar-

one has been estimated to account for ca. 70% of all

antimalarial pretravel prescriptions [112]. Atovaquone

is the product of over 50 years of research-intensive

efforts to develop a safe and effective antimalarial

[110]. Much of what is known of the essentiality of the

parasite cyt bc1 target and the physiological role of cyt

bc1 in mitochondrial function and linked biosynthetic

pathways, for example the pyrimidine pathway, is

through the use of atovaquone.

Atovaquone binding to cyt b was initially hypothe-

sised based on studies performed on model organisms

and molecular modelling. These studies, which include

electron paramagnetic resonance spectroscopy of the

Rieske [2Fe2S] cluster, site-directed mutagenesis of

model organism cyt b and gene sequencing of
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atovaquone-resistant Plasmodium species, demonstrate

that atovaquone is most likely a competitive inhibitor

of the parasite’s cyt b Qo site [1,2]. These studies were

further supported by the demonstration using the X-

ray structure of mitochondrial cyt bc1 from S. cere-

visiae, of atovaquone bound in the bL-distal region of

the Qo site, at 3.0-�A resolution [4]. This study again

confirmed the critical role of a polarised H bond to

His181 of the extrinsic domain of the Rieske protein

that interacts with the ionised hydroxyl group of the

drug. The side chain of PEWY residue Y279 (Figs 1

and 3) provides an important (and orienting) aro-

matic–aromatic interaction with the hydroxynaphtho-

quinone moiety of the drug, stabilising its binding

within Qo. The carbonyl groups of the Qo-bound ato-

vaquone molecule do not appear to be directly

involved in H-bonding associations with the polypep-

tide backbone of cyt b, with the glutamyl side chain of

E272 pointing away from the drug, and towards haem

bL, in a manner reminiscent of that for the interaction

with HDBT [36].

Malarone drug failure has been associated with ato-

vaquone resistance, specifically with a missense point

mutation at position 279 in cyt b (yeast notation, cor-

responding to 268 in the Plasmodium falciparum pro-

tein sequence), exchanging tyrosine for serine or

cysteine (Y279S/C) or, less frequently, asparagine

(Y279N) [1,113–117].
Position 279 in cyt b is highly conserved across all

phyla and is located within the ‘ef’ helix component

of the Qo site (Figs 1 and 3), which is putatively

involved in ubiquinol binding. The resultant ato-

vaquone-resistant growth IC50 (half-maximal inhibi-

tory concentration) phenotype of these mutants is

some 1000-fold higher than susceptible strains; how-

ever, this is accompanied by a ~ 40% reduction in

the Vmax of cyt bc1, suggestive of a significant fitness

cost to the parasite [48]. We note that the Y279S

mutation in Plasmodium falciparum confers weak

cross-resistance to Qo bL-proximal inhibitor myxothia-

zol in vitro [48] (although this naturally occurring

antibiotic is unsuitable for use as an antimalarial

agent). Interestingly, the G143A resistance mutation,

as discussed earlier, and so prevalent in fungal phy-

topathogens, has yet to be observed in laboratory or

field isolates of this organism.

Atovaquone monotherapy gives rise to de novo resis-

tance very rapidly [118,119]. The underlying reason for

this phenomenon has not been determined but phar-

macodynamic/pharmacokinetic considerations as well

as the multiple copy number of mtDNA (ca. 30 in

Plasmodium falciparum and up to 150 in P. yoelli

[120]) and the effect of an increased mutation rate of

mitochondrially encoded genes have been discussed as

potential contributing factors [110]. Whilst de novo

resistance to atovaquone can occur rapidly in the

blood stages of Plasmodium falciparum, malaria trans-

mission studies suggest that resistant parasites har-

bouring specific cyt b mutations are not able to

complete their development in the mosquito and are

therefore unlikely to spread in the field [121].

A further notable recent development has been in

the formulation of atovaquone slow-release strategies

for chemoprotection. In rodent malaria models, ato-

vaquone solid drug nanoparticles have been demon-

strated to confer long-lived prophylaxis against

malaria [122]. Pharmacokinetic–pharmacodynamic

analysis indicates that if translated to humans, this

Fig. 4. Structures of selected antimalarial compounds in use and under development discussed in the text.
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could potentially result in protection for at least one

month after a single administration.

Development of second-generation
Plasmodium falciparum cyt bc1

inhibitors: pyridones, acridinediones,
acridones and quinolones

Whilst the development of atovaquone gave rise to a

new antimalarial therapy, its suboptimal efficacy when

used for malaria treatment (versus prophylaxis), the

cost and complexity of synthesis resulting in a high

cost of goods, as well as the observed rapid emergence

of parasite resistance, limited its potential use for the

treatment of patients in malaria-endemic settings [110].

However, the malaria parasite cyt bc1 offered a rare

opportunity to drug developers as one of the few

known validated drug targets resulting in the develop-

ment of several inhibitor chemotypes.

Pyridones have been shown to possess antimalarial

activity since the 1960s with the demonstration that

clopidol possessed antimalarial efficacy against chloro-

quine-resistant parasites [2]. In the early 2000s, GSK

Pharmaceuticals reported the preclinical development

of pyridones targeting cyt bc1 of Plasmodium falci-

parum displaying activity against atovaquone-resistant

parasites [123]. Development of pyridones by GSK

containing an atovaquone-like bicyclic side chain gave

rise to a clinical candidate GSK932121 (Fig. 4) which

entered phase 1 clinical trials in 2008 [124]. However,

the trial was suspended due to the concurrent discov-

ery of cardiotoxicity in animal studies dosed with the

phosphate ester of the drug [125]. The toxicity was

attributed to higher systemic exposure of the parent

drug which was later confirmed when similar toxicity

was observed in rats dosed with the parent drug by

the intraperitoneal route. A subsequent study in which

bovine cyt bc1 was cocrystallised with the GSK932121

and other 4(1H)-pyridone class of inhibitors demon-

strated that these inhibitors do not bind at the Qo site

but bind at the Qi site, thereby providing an explana-

tion for the apparent activity against atovaquone-resis-

tant parasites (harbouring Qo-site mutations) [5].

However, the study also demonstrated a much lower

therapeutic index of the pyridones against bovine cyt

bc1 compared with atovaquone, thereby also providing

a molecular explanation for the cardiotoxicity and

eventual failure of GSK932121 in the phase 1 clinical

trial.

Nevertheless, the Qi site of Plasmodium falciparum

cyt bc1 offers itself as a promising target for drug

development, particularly in combination with a Qo-di-

rected antagonist, such as atovaquone. We present a

protein sequence alignment of the cyt b Qi site from

Plasmodium falciparum in comparison with yeast and

selected vertebrates in Fig. 5. This figure also high-

lights residues in the atomic structure of bovine cyt b

(PDB accessions 1NTK, 4D6T and 4D6U in hydro-

gen-bonding or hydrophobic (side chain/ligand) inter-

action with antimycin and the 4(1H)-pyridone-class

inhibitors GW844520 and GSK932121 [5,35]. The N-

terminal region of transmembrane helix E within Plas-

modium falciparum cyt b Qi appears to offer consider-

able sequence diversity compared with mammalian

counterparts, which may form exploitable differences

for drug development. In particular, we highlight the

single residue deletion in the loop connecting helices D

and E, and the presence of aliphatic for ionic side-

chain substitutions at L206, L217 and K220 (Plasmod-

ium falciparum notation) for aspartate, lysine and leu-

cine, respectively, in the human sequence data at the

N terminus of transmembrane helix E. Y211/N213 in

the parasite sequence in the same region also appear

to offer significant steric (and electrostatic) diversity

from the His/Tyr dyad at the equivalent position in

the human sequence. Given the considerable challenge

of obtaining an atomic structure for Plasmodium falci-

parum cyt bc1, it is likely that yeast cyt b site-directed

mutants may provide suitable surrogates for the study

of antagonist binding at Qi.

Drugs based on the acridine chemotype have a long

history in malaria chemotherapy, indeed mepacrine

was the first synthetic antimalarial blood schizontocide

used clinically [126] and the related drug pyronaridine

is still in use today in the form of Pyramax (pyronar-

idine–artesunate combination). Additional acridine

derivatives include the acridones and the dihy-

droacridinediones, all of which display potent anti-

malarial activity for example [127] Whilst the

antimalarial efficacy of acridine congeners has been

shown to derive from their ability to bind haem and

thereby interfere with the parasite process of haem

crystallisation [94,128–132], some potent dihy-

droacridinediones and acridones have been demon-

strated to inhibit malaria parasite O2 consumption

[133] and specifically inhibit parasite cyt bc1 [94,127].

Experiments performed with yeast manifesting muta-

tions in cyt bc1 reveal that binding of dihydroacridine-

diones is directed to the quinol oxidation site (Qo) of

cyt bc1 [94].

Quinolones have been studied extensively as bc1-tar-

geting antimalarials [2,95,134]. A comprehensive set of

alkyl and alkoxy 4(1H)quinolones have been synthe-

sised in an effort to determine the structure–activity
relationship (SAR) for antimalarial efficacy against

asexual Plasmodium falciparum parasites, including
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atovaquone-resistant lines [135]. This work led to the

discovery of ELQ-300 and P4Q-391 which were even-

tually selected as the preclinical candidate and backup

molecule, respectively, by the Medicines for Malaria

Venture (MMV) [136]. ELQ300 and P4Q-391 (Fig. 4)

were developed based on endochin, which was discov-

ered over 70 years ago [137]. However, whilst endo-

chin and related alkyl-4(1H)quinolones possess

antimalarial efficacy, the barrier to development was

the metabolic instability due to the long alkyl chain.

Replacement of the alkyl chain by the side chain from

the previously described GSK pyridone series [124]

proved to be a breakthrough for this chemotype as the

molecules demonstrated improved metabolic stability

whilst retaining antimalarial efficacy. Crucially,

ELQ300 displays improved selectivity over human cyt

bc1 relative to the withdrawn pyridone series [136].

Inhibition of the parasite cyt bc1 is believed to be at

the Qi site (Fig. 5) [5], probably as a consequence of

the QSAR being directed against atovaquone-resistant

parasites harbouring Qo-site mutations. Interestingly,

in vitro isobole analysis of atovaquone and ELQ300

combination efficacy displays a synergistic interaction,

suggesting that Qo and Qi inhibitors are a favourable

combination strategy.

As outlined earlier, dual-site resistance may be

expected to be unlikely to develop due to the increased

probability of an associated organismal fitness penalty

[48]. Additionally, inhibition at Qi is likely to lead to

increased (superoxide-linked) oxidative stress within

the pathogenic organism [46]. (We also note that puta-

tive dual Plasmodium falciparum cyt bc1/NADH

Fig. 5. Protein sequence alignment of the Qi-site region of cytochrome b from Plasmodium falciparum (Pf, UniProtKB accession: Q02768),

Saccharomyces cerevisiae (Sc, P00163), Gallus gallus (chicken, Gg, P18946), Homo sapiens (Hs, P00156) and Bos taurus (cow, Bt,

PB00157). Sequence conservation in the aligned sequences is indicated using the CLUSTAL OMEGA convention [144], with asterisks, colons and

periods indicating complete conservation, conservative substitutions and semi-conservative substitutions, respectively. Sequence data were

obtained from the UniProt database. Arrows underneath the alignment indicate a-helices as identified in Fig. 3. Residues in the bovine

cytochrome b atomic structures 1NTK [35], 4D6T [5] and 4D6U (ibid) in potential hydrogen-bonding association with bound antimycin, and

the 4(1H)-pyridones GW844520 and GSK932121 are indicated by red, blue and green circles, respectively. Residues forming stabilising

hydrophobic contacts with bound GW844520 in the bovine 4D6T structure are shaded in yellow. (GSK932121 displays similar binding

interactions.) Protein–ligand associations indicated in this figure were predicted and analysed using the LPC software package [145].

2945FEBS Letters 594 (2020) 2935–2952 ª 2020 Federation of European Biochemical Societies

N. Fisher et al. Cytochrome bc1 as an antipathogenic target

http://Q02768
http://P00163
http://P18946
http://P00156
http://PB00157
http://1NTK
http://4D6T
http://4D6U
http://4D6T


dehydrogenase inhibitors, such as the quinolone lead

compound SL-2-25 [3] may also increase oxidative

stress within the pathogen due to dehydrogenase-asso-

ciated flavosemiquinone formation [138]. In addition,

the Qo-Y279S mutation does not confer appreciable

resistance to this compound, nor to the related com-

pound CK-2-68 [3,139].)

The ELQ class, however, does have some limita-

tions, most notably the class suffers from poor aque-

ous solubility which in vivo is reflected in limited

absorption and bioavailability – whilst this is not an

issue in terms of reaching adequate in vivo exposures

for efficacy, it is not possible to establish maximum

tolerated doses to establish a therapeutic index. This

issue stalled ELQ-300 development. However, more

recently prodrug approaches are attempting to over-

come this issue. ELQ-331, an alkoxycarbonate ester of

ELQ-300, is currently the lead prodrug that is reported

to have significantly increased ELQ-300 exposure after

oral dosing [140]. ELQ-331 is currently advancing pre-

clinical development as an oral formulation and is also

being progressed as a long-acting injectable chemopro-

tection agent [141].

Other notable quinolone-based cyt bc1 inhibitor

developments include the identification of decoquinate

[142] and quinolone esters [143], and these projects

have thus far not developed further as they have not

demonstrated superiority over existing molecules under

development described above.

Cyt bc1 as an antipathogenic target –
general outlook and future prospects

The above discussion about atovaquone makes it clear

that the development of parasite resistance is a con-

cern for the continuing efficacy of cyt bc1 Qo-targeted

antimalarial agents. However, this problem does not

seem insurmountable, given the potential for the dual-

site (Qo/Qi) combination therapy, or indeed, the devel-

opment of true dual-site inhibitors, as proposed for

the mode of action of the endochin compound ELQ-

400 in yeast models of Plasmodium falciparum cyt bc1
[32]. Furthermore, the lack of cross-resistance to lead

compounds such as quinolone Qo-antagonist CK-2-68

in the atovaquone-resistant Plasmodium falciparum

strain TM90C2B [3] offers hope for the future

exploitation of the Qo site as an antimalarial

chemotherapeutic target.

With regard to fungal phytopathogens, the question

of QoI/QiI efficacy is even more pressing, in the light of

the additional issues of the inducible AOX-mediated

respiratory bypass and MDR efflux pumps. Neverthe-

less, and as with human malaria parasite, the

development of novel fungicidal QoI/QiI continues, par-

ticularly with the example set by the new QiI for the

treatment of Ascomycete plant pathogens, fenpicox-

amid [69], insensitive to G143A-mediated resistance. As

above, dual-site (Qo/Qi) fungicidal activity would seem

to offer the best chances against developing viable resis-

tant strains, particularly if the issue of G143A resistance

can be bypassed by the development of non-strobilurin-

based inhibitors, occupying the bL-distal region of Qo.

The recent exciting development of ‘hybrid’ bifunctional

fungicides also deserves close observation [93]. Finally,

we note that in the absence of suitable AOX inhibitors,

the spread of respiratory bypass-based inhibition must

be carefully monitored, and the necessity of the ener-

getic role played by AOX during the various develop-

mental stages of fungal growth.
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