
HAL Id: hal-02890475
https://hal.science/hal-02890475v1

Submitted on 15 Jul 2022 (v1), last revised 15 Jun 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Effective neighborhood search with optimal splitting and
adaptive memory for the team orienteering problem

with time windows
Youcef Amarouche, Rym Nesrine Guibadj, Elhadja Chaalal, Aziz Moukrim

To cite this version:
Youcef Amarouche, Rym Nesrine Guibadj, Elhadja Chaalal, Aziz Moukrim. Effective neighborhood
search with optimal splitting and adaptive memory for the team orienteering problem with time
windows. Computers and Operations Research, 2020, 123, pp.105039. �10.1016/j.cor.2020.105039�.
�hal-02890475v1�

https://hal.science/hal-02890475v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Effective Neighborhood Search with Optimal Splitting and Adaptive
Memory for the Team Orienteering Problem with Time Windows

Youcef Amarouchea,b,∗, Rym Nesrine Guibadjc, Elhadja Chaalalb,1, Aziz Moukrimb

aAgence de l’environnement et de la Mâıtrise de l’Energie 20, avenue du Grésillé - BP 90406, 49004, Angers Cedex 01, France
bSorbonne universités, Université de technologie de Compiègne, CNRS, Heudiasyc UMR 7253

CS 60319, 60203 Compiègne cedex, France
cUniversité du Littoral Côte d’Opale, EA 4491 -LISIC - Laboratoire d’Informatique Signal et Image de la Côte d’Opale,

F-62228 Calais, France

Abstract

The Team Orienteering Problem with Time Windows (TOPTW) is an extension of the well-known Orienteer-

ing Problem. Given a set of locations, each one associated with a profit, a service time and a time window,

the objective of the TOPTW is to plan a set of routes, over a subset of locations, that maximizes the total

collected profit while satisfying travel time limitations and time window constraints. Within this paper, we

present an effective neighborhood search for the TOPTW based on (1) the alternation between two different

search spaces, a giant tour search space and a route search space, using a powerful splitting algorithm, and

(2) the use of a long term memory mechanism to keep high quality routes encountered in elite solutions.

We conduct extensive computational experiments to investigate the contribution of these components, and

measure the performance of our method on literature benchmarks. Our approach outperforms state-of-the-

art algorithms in terms of overall solution quality and computational time. It finds the current best known

solutions, or better ones, for 89% of the literature instances within reasonable runtimes. Moreover, it is

able to achieve better average deviation than state-of-the-art algorithms within shorter computation times.

Moreover, new improvements for 57 benchmark instances were found.

Keywords: Routing, Team Orienteering Problem, Time windows, Adaptive memory, Splitting algorithm,

Heuristics

1. Introduction

In the Team Orienteering Problem (TOP), we are given a transportation network in which a starting and

an ending point are specified. The network connects a set of points that correspond to customer locations.

Each one of them is associated with a profit and a service time. For each pair of locations, a travel time is

specified. The aim of the problem is to find a fixed number of disjoint paths from the starting point to the

final destination through a subset of locations, each not exceeding a given time limit, that maximizes the

∗Corresponding author
Email addresses: youcef.amarouche@hds.utc.fr (Youcef Amarouche), rym.guibadj@univ-littoral.fr (Rym Nesrine

Guibadj), de_chaalal@esi.dz (Elhadja Chaalal), aziz.moukrim@hds.utc.fr (Aziz Moukrim)
1Present address: Orange Labs Networks, 22300 Lannion, France.

Preprint submitted to Elsevier June 12, 2020

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0305054820301568
Manuscript_5bfd122f3aa659e8f19a6724a02fd281

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0305054820301568
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0305054820301568


total profit collected from visiting customers. Fig. 1 shows an example of a TOP instance with two available

vehicles, and its solution. Each customer is represented with a circle area proportional to its profit. Given

two available vehicles, the selected customers and their service order are shown in Fig. 1b.

Depot Customer

(a) Example of a TOP instance.

Depot Customer

(b) Example of a TOP solution.

Figure 1: Team Orienteering Problem.

In this paper, we consider the Team Orienteering Problem with Time Windows (TOPTW), a natural

extension of the TOP motivated by different practical situations. Possible applications of the problem

range from logistics (Golden et al., 1987; Tang and Miller-Hooks, 2005) to leisure related applications like

tourism (Vansteenwegen et al., 2009). In the TOPTW, each customer must be visited within a predefined

time interval, specified by an earliest and a latest time, into which the service must start. We assume that

the time windows are hard constraints. This means that early arrivals to a location are permitted, but the

agent must wait for it to be “open” before the service can start. Late arrivals, however, are not allowed.

Herein, we propose an effective approach that follows the basic structure of a Multi-Start Iterated Local

Search (MS-ILS) to solve the TOPTW. We design a rather straightforward method that is able to effectively

explore the search space to achieve high-quality solutions within very short computational times.

• First, we investigate the alternation between two search spaces: a giant tour search space and a route

search space. In the route space, solutions are represented as genuine TOPTW solutions i.e., a set of

feasible routes, one for each vehicle in use, while in the giant tour space, they are represented with

an ordered list of customers with no route delimiters. The transition from the giant tour search space

to the route search space is achieved using a powerful split algorithm. This idea is a follow up on

preliminary work carried out by Guibadj and Moukrim (2014). They proposed a Memetic Algorithm

for the TOPTW, which uses a giant tour representation for encoding individuals. MS-ILS, however,

uses the giant tour representation more efficiently within an algorithm that is conceptually simpler and

much faster than the MA.

• Second, we integrate an adaptive memory mechanism to overcome the drawbacks due to pure multi-

start heuristics being memoryless. The adaptive memory is used to store individual routes extracted

2



from diverse high quality solutions. These routes are then combined to construct promising new starting

solutions at each iteration of the multi-start algorithm.

• Third, we conduct extensive computational experiments to investigate the contribution of these com-

ponents to the search performance of a basic MS-ILS, and measure the performance of our approach

on literature benchmarks. The obtained results show that our MS-ILS outperforms state-of-the-art

algorithms in terms of solution quality and computation time. It is able to find the current best-known

solutions, or better ones, for 78% of the available benchmark instances. It achieves an overall average

relative gap of 0.30% and 0.26% on the two benchmarks of the literature, respectively, while being faster

than most state-of-the-art algorithms. Additionally, it was able to improve the solutions of 57 instances

for which no optimal solutions have yet been found. In comparison, the previous best performing ap-

proach in the literature finds 65% of the current best-known solutions, and achieves a relative gap of

0.80% and 0.34% respectively, on the two benchmarks.

• Finally, we show that our algorithm can be tuned to either favor solution quality at the cost of more

computational effort, or to considerably reduce computation times while maintaining good solution

quality. As such, it can serve as a good basis for future developments on more complex variants of

selective vehicle routing problems.

The remainder of this paper is organized as follows. Section 2 provides a brief overview of the literature

related to the TOPTW, and Section 3 gives a formal description of the problem. Section 4 gives a detailed

description of our proposed algorithm. First, the general framework of the method is introduced, and then

each of its aspects is described in detail, including the solution representation, the optimal split procedure,

and other components and parameters. The effectiveness of our approach is shown in Section 5. Finally,

Section 6 concludes this paper and provides possible directions for future research.

2. Literature review

Orienteering problems are well-known NP-hard optimization problems, and solving them within a rea-

sonable amount of time may prove to be rather difficult.

2.1. Exact solution methods

There are relatively few studies that deal with exact methods for the OPTW and TOPTW, and most of

them are designed for the OPTW. Righini and Salani (2009) solve the OPTW using a dynamic programming

(DP) algorithm with Decremental State Space Relaxation (DSSR) (Righini and Salani, 2008), a relaxation

of the problem so that customers can be visited more than once. The solution process consists in solving

the DSSR, and then incrementally tightening the relaxed problem by disallowing multiple visits to a critical

customer set of increasing size. Duque et al. (2015) extend the pulse algorithm (Lozano and Medaglia, 2013;

Cabrera et al., 2020) to solve the OPTW. The algorithm is presented as a general-purpose framework for

3



hard shortest path problems, and includes two novel pruning strategies to discard sub-optimal and infeasible

solutions. The proposed algorithm performs better than the dynamic programming approach of Righini and

Salani (2009). The authors, however, only reported results on a subset of the benchmark instances.

The first exact method for the TOPTW was presented by Tae and Kim (2015). They proposed a Branch-

&-Price (B&P) algorithm where the pricing problem is expressed as a Resource Constrained Elementary

Shortest Path Problem (RCESPP). They tested their approach on the benchmark instances of Righini and

Salani (2008), but omitted those of Montemanni and Gambardella (2009), stating their difficulty, and those

of Vansteenwegen et al. (2009) since their optimal solutions are already known. More recently, Gedik et al.

(2017) introduced an exact approach for the TOPTW based on a constraint programming (CP) formulation

of the problem. Compared to the B&P, the CP-optimizer was able to solve benchmark instances from

Montemanni and Gambardella (2009) and Vansteenwegen et al. (2009) which, were omitted by Tae and Kim

(2015), and provides good upper bounds within smaller runtimes, for the instance of Righini and Salani

(2008). However, the B&P is able to provide optimal solutions for more instances from the latter set.

2.2. Heuristic solution methods

Most of the research on orienteering problems with time windows focuses on the design of heuristic

approaches. The fact that profits and travel times are independent, and that a good solution with respect to

one criterion is often unsatisfactory with respect to the other, make it more difficult to devise consistently

good heuristics to solve orienteering problems, despite them being seemingly simple (Gendreau et al., 1998).

The presence of time window constraints increases this difficulty since it becomes harder to pinpoint the

customers that should be included in the solution. Since the OPTW is a special case of the TOPTW where

the fleet consists of a single vehicle, recent contributions tend to not make the distinction between single and

multi-vehicle variants. Apart from the algorithm of Gunawan et al. (2015a), the heuristic methods that were

introduced during the last decade were designed to solve both the OPTW and the TOPTW.

Montemanni and Gambardella (2009) proposed a heuristic method to solve the TOPTW using an Ant

Colony System (ACS) algorithm. The ACS was later improved by Montemanni et al. (2011) who identified

some of its drawbacks and provided ways to overcome them by only considering the best solution found

during the construction phase, and only applying the local search procedure on solutions on which it has not

yet been applied. Vansteenwegen et al. (2009) introduced a fast and simple Iterated Local Search (ILS) for

the problem. Their algorithm was made fast and simple by only keeping the insert and shake steps. The

authors also introduced a new data set with more difficult instances constructed from the instances of Solomon

(1987) and Cordeau et al. (1997). Tricoire et al. (2010) defined the Multi-Period Orienteering Problem with

Multiple Time Windows (MuPOPTW) as a means for scheduling sale representatives to visit customers.

The MuPOPTW is a generalization of the TOPTW where visits to customers span a period of time (days),

and where multiple time windows are allowed. As such, each customer may be visited on a different day,

and may have several time windows for each given day. To solve the MuPOPTW, the authors designed

a Variable Neighborhood Search (VNS) algorithm, which also provides good solutions for the TOPTW.

4



However, their algorithm requires relatively large computation times. An algorithm that combines a Greedy

Randomized Adaptive Search Procedure (GRASP) and an Evolutionary Local Search algorithm (ELS) was

introduced by Labadie et al. (2011). Their method uses simple constructive heuristics inside the GRASP

to generate distinct initial solutions, which are then improved using the ELS algorithm. In another study,

Labadie et al. (2012) applied the concept of granularity to a VNS approach in order to reduce the size of the

local search neighborhoods to moves that are more likely to lead to good quality solutions. Using the dual

optimal solutions of an LP-problem, they partition the arc set into intervals of granularity from which they

choose those with the most promising arcs. Two Simulated Annealing based algorithms for the TOPTW

were presented by Lin and Yu (2012). The first one is a Fast Simulated Annealing (FSA) that is directed

towards applications that require quick responses, while the second one is a Slow Simulated Annealing (SSA)

that focuses on solution quality. Souffriau et al. (2013) introduced the Multi-Constraint Team Orienteering

Problem with Multiple Time Windows (MC-TOP-MTW), a variant of the TOPTW that includes additional

knapsack constraints to limit node selection. Such constraints can be used, for example, to model entrance

fees in the case of tourist trip planning applications. The authors proposed a hybridization of GRASP and

ILS, and evaluated the performance of their algorithm on benchmarks for the related problems, including the

TOPTW. An iterative framework comprising three components, namely I3CH, was proposed by Hu and Lim

(2014). The first two components are a Local Search (LS) and a Simulated Annealing (SA) that are used

to explore the solution space and to discover a set of routes that are stored in a pool. The last component

recombines the stored routes using a Set Packing formulation to produce good quality solutions. Cura (2014)

solves the TOPTW using an Artificial Bee Colony (ABC) approach that mimics the foraging behavior of

honey bees. He introduced a new food source acceptance criterion based on SA and a new scout bee search

behavior based on a local search procedure. Guibadj and Moukrim (2014) designed a Memetic Algorithm

(MA) that uses the route-first cluster-second approach to solve the TOPTW. Solutions are represented as

permutations of a subset of reachable customers called giant tours, and a splitting procedure is applied to

extract the optimal set of feasible routes with respect to the order of visits in the giant tour. In Gunawan

et al. (2015c), the authors extend the ILS algorithm of Gunawan et al. (2015a) to solve the TOPTW. The

algorithm generates an initial solution using a greedy insertion heuristic that chooses the customers to be

inserted based on roulette-wheel selection. The initial solution is then improved using an ILS that uses

different local search operators and a combination of acceptance criteria and perturbation mechanisms to

balance between diversification and intensification in the search process. In a later work, Gunawan et al.

(2015b) presented a hybridization that embeds an ILS into a SA algorithm to address the drawback that is the

early termination of the ILS. Schmid and Ehmke (2017) proposed an “Effective Large Neighborhood Search”

(ELNS) approach to solve the TOPTW. The algorithm starts by generating an initial solution. During each

iteration of the algorithm, the solution is destroyed and repaired through operators specifically designed for

the TOPTW. To the extent of our knowledge, the ELNS is currently the approach that provides the largest

proportion of best-known solutions for the TOPTW benchmark instances.

5



Finally, for a more detailed overview of the literature about orienteering problems, we invite the reader

to refer to Vansteenwegen et al. (2011) and Gunawan et al. (2016) who provide reviews on several relevant

variants of the orienteering problem, including the TOPTW, and discuss applications and solution methods,

both exact and heuristic, for OP variants.

3. Problem definition

The TOPTW is defined on a complete directed graph G = (V,A), where V = {0, 1, 2, ..., n} is the vertex

set, and A = {(i, j) : i 6= j, i, j ∈ V } the arc set. Vertex 0 represents the depot, which corresponds to the

starting and ending points, and each vertex i ∈ V \ {0} represents a customer associated with a non-negative

profit (score) pi, a non-negative service time σi, and a predefined time window [ei, li]. The profit of each

customer i ∈ V \ {0} can be collected at most once by a vehicle within its associated time window, i.e., a

vehicle cannot visit the customer i if it arrives later than li, and in the event that it arrives earlier than ei,

it has to wait until ei before the service can start. A time window [e0, l0] is associated with the depot, where

e0 = 0 refers to the earliest departure time and l0 refers to the latest possible arrival time at the depot. A

non-negative travel time ci,j is associated with each arc (i, j) ∈ A. Travel times are assumed to satisfy the

triangle inequality.

A fleet of m identical vehicles is available at the depot, and each of them performs at most one route.

A route is an ordered subset of customers that are visited by the same vehicle. Routes must start and

end at the depot. We note the total profit collected during a route r, P (r) =
∑i=size(r)
i=1 pr[i], and its total

duration (travel cost) C(r) = c0,r[1] +
∑i=size(r)
i=2 (cr[i−1],r[i] +Wr[i] + σr[i]) + cr[size(r)],0, where r[i] denotes

the ith customer of the route and Wu the vehicle’s waiting time at customer u. Note that this travel cost

corresponds to the arrival time at the depot. The total duration of each route is constrained within a

predefined time limit Lmax. We assume that Lmax equals the latest possible arrival time at the depot, i.e.,

Lmax = l0. A route is considered feasible if and only if C(r) ≤ Lmax and if each customer is visited within

its time window. Thus, a feasible TOPTW solution S consists of at most m feasible routes in which each

customer is visited at most once. The objective is to find a solution S that maximizes the total collected

profit, i.e., that maximizes
∑
r∈S P (r). For mixed integer linear programming formulations of TOPTW

see (Montemanni and Gambardella, 2009; Vansteenwegen et al., 2009).

4. Solution approach

4.1. Method overview

In this paper, we propose a randomized Multi-Start Iterated Local Search procedure (MS-ILS) enhanced

by an adaptive memory mechanism. Originally, MS procedures are simple memoryless algorithms that

sample the solution space by applying a local or neighborhood search from multiple randomly generated

initial solutions. If an initial solution falls inside the attraction basin of a global optimum, the local search

6



will pull it to this global optimum. Due to their simplicity, more often than not, MS procedures alone have

difficulties to compete with more aggressive metaheuristics and must be strengthened by complementary

diversification techniques to help surmount local optima.

Our approach employs an Iterated Local Search (ILS) procedure as the local search step of the MS

metaheuristic. The ILS is a simple metaheuristic whose principle is to build a sequence of improved local

optima to explore the search space. More specifically, starting from a solution S, at each iteration, the ILS

generates a new solution S′ by perturbation of S, then improves it using a local search to obtain S′′. If S′′

satisfies an acceptance criterion, it becomes starting solution for the next iteration; otherwise the algorithm

goes back to S.

The efficiency of our algorithm stems from two key aspects. The first one is to alternate between two

search spaces, each one using a different solution representation. This idea has proven to be very effective for

various vehicle routing problems (Prins, 2004; Prins et al., 2009; Mendoza and Villegas, 2013; Montoya et al.,

2016), including the Team Orienteering Problem (TOP) (Bouly et al., 2010; Dang et al., 2013). In our case,

the two solution representations are the route representation and the giant tour representation. The route

representation is a genuine TOPTW solution, i.e., a set of feasible routes, one for each vehicle in use. To

ensure fast feasibility checks upon insertion of a customer, we record, for each route, additional information

on the arrival time, the waiting time and the maximum delay allowed for the service at each customer. On

the other hand, the giant tour representation consists of an ordered list T of all the accessible customers in

V with no route delimiters. It is a permutation T = (T [1], T [2], ..., T [n]) of n customers that ignores route

length constraints and time windows. The interesting part about this indirect solution representation is (1)

the fact that one giant tour corresponds to multiple TOPTW solutions, and (2) that it is possible to retrieve

the optimal solution with respect to the order of customers in polynomial time using a splitting procedure.

Thus, it is possible to search the space of giant tours instead of the TOPTW solution set, without loss of

information. The reverse transformation from the route representation to the giant tour representation is

achieved through a simple concatenation procedure.

The second key component is the integration of a long-term memory mechanism in order to improve the

performance of the algorithm by learning from local optima found during previous iterations. One important

drawback of a pure multi-start procedure is being a memoryless method: each iteration is independent of the

previous one and no information about the solutions is passed from one iteration to the other. In our approach,

we integrate an adaptive memory mechanism to retain information about interesting customer sequences

observed in high-quality solutions. The use of a memory mechanism is inspired from the probabilistic tabu

search of Rochat and Taillard (1995). It consists in storing routes extracted from high-quality solutions inside

a pool of elite but diverse routes, and then using them to generate new starting solutions. In our approach,

the stored routes are used to construct giant tours using a probabilistic function that is biased towards the

selection of elements that appear more frequently in high-quality solutions.

Algorithm 1 describes the general structure of our MS-ILS approach. At the beginning, an iterative

7



Algorithm 1: MS-ILS algorithm for the TOPTW

Data: TOPTW instance;

M: adaptive memory;

iterILS : number of iterations of the ILS;

itermax: maximum number of restarts.

Result: Sbest overall best solution for the TOPTW instance.

1 begin

2 iter ← 0

3 (M, Sbest)← initializeMemory() // see Algorithm 2

4 repeat // Multi-start loop

5 T ← constructGiantTour(M)

6 S ← split(T ) // see Section 4.5

7 for j ← 1 to iterILS do // ILS loop

8 T ′ ← randomRotation(T ) // Perturbation

9 S′ ← split(T ′)

10 S′ ← localSearch(S′) // see Section 4.6

11 updateMemory(M, S′) // see Section 4.3

12 if f(S′) ≥ f(S) then

13 T ← concat(S′)

14 S ← S′

15 if f(S) ≥ f(Sbest) then Sbest ← S

16 if new routes have been added into M then // see Section 4.3

17 iter ← 0

18 else

19 iter ← iter + 1

20 until iter = itermax

21 return Sbest

8



heuristic (described in Section 4.2) is called to initialize the adaptive memoryM and the overall best solution

Sbest. At each iteration of the main loop, the algorithm constructs a giant tour T using the routes stored

inside the adaptive memory M and extracts the solution S associated with tour T using the split procedure

described in Section 4.5. It then performs an ILS (ILS loop) with T as the starting point. The ILS loop is

executed until the maximum number of iterations iterILS is reached. At each iteration of the ILS loop, T is

perturbed by applying a random rotation, and a new giant tour T ′ is derived. The perturbation procedure

considers T as a circular array and shifts its elements by a random number of positions. Afterwards, the

associated solution S′ is extracted from T ′, improved using the local search procedure described in Section 4.6,

and the obtained routes are inserted into M if they are of good enough quality; otherwise they are ignored.

If S′ is better than S, it is concatenated into a new giant tour which replaces T in the next ILS iteration,

and S is updated. After the ILS loop, Sbest is updated and the number of main loop iterations iter is reset

to 0. Otherwise, iter is incremented and the main loop restarts. The algorithms stops when it fails to insert

new routes in the adaptive memory during itermax consecutive iterations.

4.2. Memory initialization

The initial set of routes that compose the adaptive memory is generated using a fast heuristic procedure

that relies on a Best Insertion Algorithm (BIA) to build feasible solutions. At each iteration, the BIA

evaluates all the feasible insertions of unrouted customers then selects and carries out the best one.

The insertion of a customer u between two successive nodes i and j is feasible if and only if u is visited

within its time window, the visits to j and to the subsequent nodes remain within their respective time

windows, and the length of the route remains less than Lmax. Note that i and j can be either customers or

the depot. Similar to Vansteenwegen et al. (2009), in order to ensure that the feasibility of an insertion is

checked in O(1), we record, for each customer included in the solution, its waiting time Wi and the maximum

duration by which its service can be delayed without rendering the route infeasible MaxShifti. These two

measures are given by the following formulas:

Wi = max{0, ei − ai}

MaxShifti = min{li − (ai +Wi),Wj +MaxShiftj}

where ai is the arrival time at node i, [ei, li] the time window associated with node i, and j is the node

visited after i in the solution. The insertion of u between the nodes i and j delays the arrival at node j by

Shiftu,i = (ci,u+Wu+σu+cu,j−ci,j). The insertion of u is feasible if au ≤ lu and Shiftu,i ≤Wj+MaxShiftj .

Fig. 2, illustrates a route containing four customers. The maximum length of the route is Lmax = 40.

For each visited customer, we display information on its time window, arrival time, waiting time, and the

maximum duration by which its service can be delayed. Customer u can be inserted between customers 2

and 3 since Shiftu,2 = (c2,u +Wu + σu + cu,3 − c2,3) = 6 ≤ 12 = W3 +MaxShift3.

For each feasible insertion, the following criterion is calculated:

zu,i = Shiftu,i/(pu)α

9



0 1 2 3 4

u

05 623 4

3 2

[0,10] [10,25][5,25] [30,40] [0,40]

a1 = 5
W1 = 0 

MaxShift1 = 5

a2 = 10
W2 = 0 

MaxShift2 = 12

a3 = 13
W3 = 0 

MaxShift3 = 12 

a4 = 22
W4 = 8 

MaxShift4 = 4 

a0 = 36

MaxShift0 = 4

au = 14
Wu = 1 

Shiftu,2 = 6
[15,30]

σ1= 2

σu= 2

σ3= 3 σ4= 2σ2= 1

a0 = 36

MaxShift0 = 4

Figure 2: Feasibility check.

where α is a control parameter. The best insertion is determined by the couple (u, i) for which the criterion

zu,i is minimized. The aim of this criterion is to favor the insertions which offer a good trade-off between the

increase of the tour length and the collected profit. The parameter α is used to prioritize profit over the time

consumption of an insertion. The value of α is discussed in Section 5.2. After the insertion of u between i and

j, the information associated with the successors of u in the route are updated using the following formulas:

W ∗j = max{0,Wj − Shiftu,i}

Delayj = max{0, Shiftu,i −Wj}

MaxShift∗j = MaxShiftj −Delayj

where Delayj represents the amount of time by which the service of customer j is delayed. When updating

the data of a visit after j, Shiftu,i is replaced with the delay of the visit that precedes it.

A pseudo-code of the initialization heuristic is given in Algorithm 2. First, a feasible solution is constructed

from scratch using the BIA described above. After that, at each iteration of the heuristic, a sequence of

consecutive customers is removed from each route of the solution. The solution is then rebuilt by inserting

unrouted customers using the BIA. The sequences to remove are identified by a starting position start and a

length of q customers. The length of the removed sequences q is first set to 1, and at the end of each iteration,

start is moved by q positions and q is incremented by one. If the solution is improved after repair, q is reset

to its initial value. Destruction is applied in a circular manner, i.e., when the end of a route is reached, the

removal continues from its beginning. This part of the algorithm is similar to the parallel remove-and-repair

operator described in Section 4.6. In order to keep q from becoming too big and causing a large part of

the solution to be destroyed at each iteration, it is reset to 1 each time its value reaches half the number of

routed customers of the largest route (rmax) in the solution, in terms of the number of visited customers.

The destruction and construction phases are repeated until the algorithm reaches iterinit iterations without

improving the best solution.

10



Algorithm 2: Memory initialization algorithm

Data: V : a vector of n customers

Result: Sbest: overall best solution

M: an adaptive memory containing a set of routes

1 begin

2 S ← applyBIA({}, V )

3 iter ← 0

4 start← 0

5 q ← 1

6 while iter < iterinit do

7 S ← applyParallelDestruction(S, start, l)

8 U ← getUnroutedCustomers(V, S)

9 S ← applyBIA(S,U)

10 updateMemory(M, S) // see Section 4.3

11 if f(S) ≥ f(Sbest) then

12 Sbest ← S

13 iter ← 0

14 q ← 0

15 else

16 iter ← iter + 1

17 start← start+ q

18 q ← q + 1

19 if q ≥ size(rmax)/2 then q ← 1

20 return (M, Sbest)

4.3. Memory update

For performance reasons, we limit the size of the adaptive memory to SizeM. When it becomes full,

we need to remove some routes to be able to insert new ones. In order to keep promising routes, we apply

the following strategy. Before its insertion, each route is labeled with the total collected profit and the total

duration of the solution to which it belongs. The adaptive memory is then sorted in decreasing order of profits

using the duration to resolve any equality. When the adaptive memory is full, the route to be inserted is first

compared to the weakest route of the memory. If the new route’s label is weaker, i.e., it has a lower total

collected profit, the route is ignored. Otherwise, it is added to the memory and the weakest route is deleted.

The idea is that routes that belong to solutions with higher scores are more likely to contain elements of

optimal or sub-optimal solutions. To speed up the initialization of the adaptive memory, the routes of each

11



solution generated by the BIA are considered for inclusion in the memory, so the heuristic is only used once.

4.4. Giant tour construction

The construction of giant tours plays an important role in our algorithm since it allows us to use infor-

mation collected through past iterations for diversification and intensification purposes. To construct a giant

tour, we select m routes from the adaptive memory and combine them as follows. Let M′ be a copy of the

current memory. First, we extract a route r from M′ in a probabilistic way, and discard from M′ all the

routes r′ that share at least one common customer with r. This process is then repeated until m routes

are extracted, or until M′ becomes empty. When selecting routes, we favor those extracted from solutions

with higher quality. To that effect, we use the roulette wheel selection mechanism. After that, the depot is

removed from each of the selected routes. The resulting routes are then concatenated into a random order

to form a partial giant tour, which we complete by randomly spreading out the unrouted customers over the

tour. These unrouted customers are randomly inserted at the beginning of the tour, at the end, or between

the routes in such a way that the m selected routes remain untouched, as can be seen in the example depicted

in Fig. 3.

4.5. Splitting algorithm

In this section, we present the optimal splitting algorithm used to extract a TOPTW solution from a giant

tour. Splitting a giant-tour T consists of extracting m distinct sub-sequences from T such that, (1) each

extracted sub-sequence corresponds to a feasible TOPTW route, (2) there are no shared customers between

the extracted sub-sequences, and (3) the total profit of the extracted sub-sequences is maximized. In the

remainder of this section, we will refer to the above sub-sequences of T by extracted routes or simply routes,

for convenience.

When splitting a giant-tour T , not all the feasible sub-sequences of T need to be considered to select

m routes that maximize the total profit. Bouly et al. (2010) introduced the notion of saturated routes and

showed that solutions containing only saturated routes are dominant when splitting giant-tours for the TOP.

In the following, we provide an adapted definition of “saturated routes”, and show that the same dominance

property holds when splitting giant-tours for the TOPTW.

Definition 1. Given a giant tour T = (T [1], T [2], . . . T [n]), a “saturated route” in T is a sub-sequence

πi = (T [i], T [i + 1], . . . T [j]), 1 ≤ i ≤ j ≤ n, such that the route r = (0, T [i], T [i + 1], . . . , T [j], 0) is feasible

and either j = n, or the route r′ = (0, T [i], T [i+ 1], . . . , T [j], T [j + 1], 0) is infeasible.

Proposition 1. For any instance of the TOPTW where m is the number of available vehicles, for any giant-

tour T of this instance, there exists an optimal solution to the splitting problem of T where all the extracted

routes are saturated.

Proof. Let T be a giant-tour visiting all the customers of a TOPTW instance in any order, and let S

be an optimal solution obtained when T is split into m routes. S contains at most m extracted routes

12



copy of the adaptive memory 

0 2 5 6 0

0 3 4 1 8 0

0 7 5 4 8 0

0 2 6 3 1 0

0 2 5 6 0

0 9 1 10 0

0 4 1 8 10 0

0 2 9 0

(a) Adaptive memory containing routes from 4 different

solutions (n = 10 and m = 2).

Chosen routes

0 9 1 10 0

0 2 5 6 0

0 3 4 1 8 0

0 7 5 4 8 0

0 2 6 3 1 0

0 2 5 6 0

0 9 1 10 0

0 4 1 8 10 0

0 2 9 0

(b) Choose one route and discard all that share at least one

customer with it from the adaptive memory.

Chosen routes

0 9 1 10 0

0 2 5 6 0

0 3 4 1 8 0

0 7 5 4 8 0

0 2 6 3 1 0

0 2 5 6 0

0 9 1 10 0

0 4 1 8 10 0

0 2 9 0

0 7 5 4 8 0

(c) Choose a second route the same way as in Fig. 3b.

Resulting sub-sequence

Giant tour

7 5 4 8

9 1 10 2 7 5 4 8 6 3

9 1 10

(d) Arrange the chosen routes and complete the giant tour by

inserting the remaining customers at random.

Figure 3: Illustration of the giant tour construction process.

πik = (T [ik], T [ik + 1], . . . , T [jk]), 1 ≤ k ≤ m, 1 ≤ ik ≤ jk ≤ n which, can be re-ordered in such a way that

1 ≤ i1 ≤ j1 < i2 ≤ j2 < · · · < im ≤ jm ≤ n. Let πik be the k-th route in S. Two cases are identified:

- Case 1 : route πik is such that jk + 1 < ik+1 (i.e. there are unrouted customers between the end of πik

and the start of πik+1
). If πik were not saturated, then route π′ik = (T [ik], T [ik + 1], . . . , T [jk], T [jk + 1])

would be feasible, would have a greater profit, and would not conflict with the other extracted routes.

As such, it would be possible to improve S by replacing πik with π′ik . This contradicts the hypothesis

that S is optimal. Hence, πik is saturated.

- Case 2 : route πik is such that jk + 1 = ik+1 (i.e. route πik+1
starts immediately after route πik ends).

If πik is not saturated, then route π′ik = (T [ik], T [ik+1], . . . , T [jk], T [ik+1]) would be feasible, and route

π′ik+1
= (T [ik+1 + 1], T [ik+1 + 2], . . . , T [jk+1]) would also be feasible, due to the triangle inequalities.

Furthermore, π′ik and π′ik+1
do not share customers with one another, and the sum of their profits is

equal to that of πik and πik+1
. Thus, by replacing πik and πik+1

with π′ik and π′ik+1
, respectively, in S,

we obtain a new optimal S′ with one less unsaturated route. Hence, by reiterating the process on every

13



unsaturated route of S, we can produce an optimal solution where all the routes are saturated.

Dang et al. (2013) presented an evaluation procedure that efficiently uses the limited number of saturated

routes to reduce the complexity of the splitting process. They reduced the splitting problem to a knapsack

problem with conflicts (KPC) (Takeo et al., 2002), and used a dynamic programming algorithm to determine

the optimal splitting in polynomial time. In this paper, we extend this splitting procedure to tackle time

window constraints.

4.5.1. Extraction of saturated routes

When splitting a giant-tour, we extract one saturated route starting from every customer in the tour. Let

ΠT = {π1, π2, ..., πn} denote the set of the n possible saturated routes extracted from the giant tour T . When

extracting these routes, it must be ensured that each customer is visited within its time window and that

the route is completed within the given time limit Lmax, i.e., that C(πi) ≤ Lmax ∀i ∈ {1, ..., n}. Starting

from customer T [i], we initialize the route πi = (0, T [i], 0). We then extend it by consecutively including

the following customers T [j], j ≥ i as long as they are visited within their time windows. If the vehicle

arrives at a customer T [j] before the beginning of its time window, a waiting time is added. If the vehicle

arrives too late at customer T [j], if the inclusion of T [j] violates the time limit constraint, or if the process

reaches the end of the giant tour, the extension of πi is stopped and the route is considered saturated. In the

split algorithm for the basic TOP, all the saturated routes can be extracted in O(n) because the cost of any

sub-sequence (i+ 1, ..., j, j + 1) can be deduced in O(1) from that of (i, ..., j). However, this property is not

satisfied by TOPTW sub-sequences. In our best implementation, route extraction runs in O(n2).

Fig. 4 shows a giant-tour for a TOPTW instance with 8 customers, and all the saturated routes that can

be extracted from it. The maximal length of a route is Lmax = 60. The giant-tour is represented in Fig. 4a.

It is a permutation of the 8 customers. The figure displays the travel time between every two successive

nodes, and gives for each node, its service time σi, its time widow (between brackets), and its travel time to

and from the depot. The saturated routes are presented in Fig. 4b. Route π1, for example, corresponds to

the route (0, 5, 7, 6, 0) and has a length C(π1) = 5 + 5 + 10 + 10 + 15 + 5 + 10 = 60. Customer 1 cannot be

included in this route, since its inclusion makes the total travel time greater than Lmax. In the case of route

π3, customer 3 cannot be included in the route, not because of the time limit, but because the vehicle reaches

it at instant 35, when its time window has already closed. Route π8 consists only of customer 8, because it

is the last customer of T .

4.5.2. Selection of saturated routes

Once all the saturated routes have been extracted from T , the problem of splitting T into a feasible

TOPTW solution becomes that of choosing m routes that do not share customers and that maximize the

total collected profit. This can be formulated as a Knapsack Problem with Conflicts (KPCG).

14



0 3

1

6

7

5

8

4

2

10

15 15

5

10

1010

[0,10]
σ5= 5

[0,40]
σ7= 10

10
5

10

15

10
10

15

5

[0,45]
σ6= 5

[0,50]
σ1= 5

[0,25]
σ3= 5

[0,30]
σ2= 5

[0,50]
σ4= 5

[0,45]
σ8= 10

5 7 6 1 3 2 4 8

Lmax = 60

Giant tour

1 2 3 4 5 6 7 8

π1

C(π1) = 60 

π2

C(π2) = 55 

π3

C(π3) = 45 

π4

C(π4) = 40 

π5

C(π5) = 55 

π6

C(π6) = 60 

π7

C(π7)=40 

π8

C(π8) = 30 

ρ5 ρ7

ρ6 ρ4ρ3ρ1

ρ2 ρ8

ρ5

ρ7

ρ6 

ρ1

ρ3

ρ2 

ρ4

ρ8

ji cij

[ei , li]: time window σi : service time

Positions

(a) Giant-tour for a TOPTW instance with n = 8 and

Lmax = 60.

0 3

1

6

7

5

8

4

2

10

15 15

5

10

1010

[0,10]
σ5= 5

[0,40]
σ7= 10

10
5

10

15

10
10

15

5

[0,45]
σ6= 5

[0,50]
σ1= 5

[0,25]
σ3= 5

[0,30]
σ2= 5

[0,50]
σ4= 5

[0,45]
σ8= 10

5 7 6 1 3 2 4 8

Lmax = 60

Giant tour

1 2 3 4 5 6 7 8

π1

C(π1) = 60 

π2

C(π2) = 55 

π3

C(π3) = 45 

π4

C(π4) = 40 

π5

C(π5) = 55 

π6

C(π6) = 60 

π7

C(π7)=40 

π8

C(π8) = 30 

ρ5 ρ7

ρ6 ρ4ρ3ρ1

ρ2 ρ8

ρ5

ρ7

ρ6 

ρ1

ρ3

ρ2 

ρ4

ρ8

ji cij

[ei , li]: time window σi : service time

Positions

(b) Saturated routes extracted from T .

Figure 4: Extraction of saturated tours.

In a KPCG, we consider a set of items to be put into a knapsack of limited volume. Each item is associated

with a value and a volume, and some items are in conflict with each other. Conflicting items cannot be put

in the knapsack together. The objective of the KPCG is to find a subset of non-conflicting items that fits into

the knapsack and maximizes the total packed value. In our splitting procedure, the volume of the knapsack

is equal to m, the maximal number of available vehicles. Each saturated route πi corresponds to an item i,

and two items i and j are in conflict if their corresponding routes πi and πj share customers.

Usually, conflicts between items in a KPCG are modeled using a graph, called a conflict graph. In our

particular case, the conflict graph for the splitting problem is an interval graph (Tarjan, 1975). In short,

a graph H = (X,U) is an interval graph if there is a mapping I between the vertex set X and sets of

consecutive integers (called intervals) such that two vertices in X are adjacent if and only if their respective

corresponding intervals intersect i.e. ∀i ∈ X,∀j ∈ X, (i, j) ∈ U ⇐⇒ I(i)∩I(j) 6= ∅. To solve the KPCG, we

use the algorithm proposed by Sadykov and Vanderbeck (2013). They devised a pseudo-polynomial algorithm

to solve a KPCG with interval conflict graphs, defined with n items and a knapsack capacity equal to W , in

O(n ·W ). Hence, the following result for the TOPTW emerges.

Proposition 2. Given a TOPTW instance with m available vehicles and n saturated tours extracted from a

giant tour T , the splitting of T can be done optimally in O(m · n) time and space.

Proof. Each saturated route extracted from a giant-tour T can be represented by the set of positions it covers,

i.e., each route πi = (T [i], T [i+ 1], . . . , T [j]), 1 ≤ i ≤ j ≤ n is represented by the set I(πi) = {i, i+ 1, . . . , j}

of consecutive integers. Hence, the set of saturated routes can be mapped to the set of vertices of an interval

graph H. Moreover, a non-empty intersection between two intervals I(πi) and I(πi′) indicates the presence

of shared customers between the two routes πi and πi′ , and corresponds to an edge (i, i′) in the graph H.

As outlined above, once the saturated routes are extracted, the problem of splitting a giant-tour becomes

15



that of choosing m saturated routes that do not share customers and such that the total collected profit is

maximized. This translates into solving a KPCG where the volume of the knapsack is equal to m, all the

items have unitary weights and their values are equal to the profit of the corresponding route. The conflict

graph H associated to this KPCG is an interval graph. Given the capacity m of the knapsack and the

number of saturated routes n, and based on the work of Sadykov and Vanderbeck (2013), we conclude that

the splitting can be done in O(m · n) time and space.

Figure 5 illustrates the splitting process of the giant-tour presented in Fig. 4. We want to split T into a

solution with two routes (m = 2) with Lmax = 60. Fig. 5b shows the saturated routes that were extracted

from T and their collected profit P (πi). Observe that each saturated route corresponds to a sub-interval of

the interval [1, 8]. For example, route π1 corresponds to the interval [1, 3] (as it covers the first three nodes of

T ), route π3 corresponds to the interval [3, 4], and route π8 corresponds to [8, 8]. Furthermore, if two routes

share at least one customer, then the intersection of their intervals is not empty, and vice versa. Fig. 5c

represents the interval graph that corresponds to the conflict graph of the saturated routes. Every vertex

of the graph is mapped to the interval of positions of the corresponding saturated route, and two vertices

are adjacent if and only if their respective intervals intersect with each other. Finally, the optimal solution

obtained after solving the KPCG is shown in Fig. 5d. It is composed of the two routes π3 and π6 and its

total score is 155.

4.6. Local search

The local search (LS) procedure is a key component of our algorithm since it serves as an intensification

mechanism to improve the quality of the solutions constructed at each iteration. As previously mentioned,

our algorithm uses two different solution representations, each with its own characteristics. Hence, we divide

the neighborhood operators that compose the local search procedure into two sets: the first set is applied on

giant tours, while the second set is performed on routes.

4.6.1. Giant tour neighborhoods

The LS includes two neighborhoods for giant tours:

• shift operator : moves a randomly chosen customer from its current position in the giant tour to a

different one;

• swap operator : chooses a random customer from the giant tour and exchanges its position with that of

another randomly chosen customer;

Because the routes that compose a solution are not explicitly defined in the giant tour representation, the

shift and swap operators do not need to check if feasibility is maintained, since every move is considered

feasible in a giant tour representation. All that is needed to evaluate a move is to extract the new routes

by splitting the giant tour. For performance purposes, we use the greedy splitting algorithm described in

greater detail below.

16



0 3

1

6

7

5

8

4

2

10

15 15

5

10

1010

[0,10]
σ5= 5

[0,40]
σ7= 10

10
5

10

15

10
10

15

5

[0,45]
σ6= 5

[0,50]
σ1= 5

[0,25]
σ3= 5

[0,30]
σ2= 5

[0,50]
σ4= 5

[0,45]
σ8= 10

5 7 6 1 3 2 4 8

Lmax = 60

Giant tour

1 2 3 4 5 6 7 8

π1

C(π1) = 60 

π2

C(π2) = 55 

π3

C(π3) = 45 

π4

C(π4) = 40 

π5

C(π5) = 55 

π6

C(π6) = 60 

π7

C(π7)=40 

π8

C(π8) = 30 

ρ5 ρ7

ρ6 ρ4ρ3ρ1

ρ2 ρ8

ρ5

ρ7

ρ6 

ρ1

ρ3

ρ2 

ρ4

ρ8

ji cij

[ei , li]: time window σi : service time

Positions

(a) Giant-tour.

5 7 6 1 3 2 4 8

Lmax = 60

Giant tour

π1

P(π1) = 65 

π2

P(π2) = 50 

π3

P(π3) = 80 

π4

P(π4) = 70 

π5

P(π5) = 70 

π6

P(π6) = 75 

π7

P(π7)=35 

π8

P(π8) = 25 

π1 π2

π3 π6π5π4

π7 π8

π1

π2

π3

π4

π5

π6

π7

π8

Profits 2050 40 10 25302015

0 3

1

6

7

5

8

4

2

15

1010

[0,10]
σ5= 5
p5=15

[0,40]
σ7= 10
p7=20

10 10

10
10

[0,45]
σ6= 5
p6=30

[0,50]
σ1= 5
p1=50

[0,25]
σ3= 5
p3=20

[0,30]
σ2= 5
p2=40[0,50]

σ4= 5
p4=10

[0,45]
σ8= 10
p8=25

π3

π6

1 2 3 4 5 6 7 8Positions

(b) Saturated routes with the corresponding intervals.

5 7 6 1 3 2 4 8

Lmax = 60

Giant tour

π1

P(π1) = 65 

π2

P(π2) = 50 

π3

P(π3) = 80 

π4

P(π4) = 70 

π5

P(π5) = 70 

π6

P(π6) = 75 

π7

P(π7)=35 

π8

P(π8) = 25 

π1 π2

π3 π6π5π4

π7 π8

π1

π2

π3

π4

π5

π6

π7

π8

Profits 2050 40 10 25302015

0 3

1

6

7

5

8

4

2

15

1010

[0,10]
σ5= 5
p5=15

[0,40]
σ7= 10
p7=20

10 10

10
10

[0,45]
σ6= 5
p6=30

[0,50]
σ1= 5
p1=50

[0,25]
σ3= 5
p3=20

[0,30]
σ2= 5
p2=40[0,50]

σ4= 5
p4=10

[0,45]
σ8= 10
p8=25

π3

π6

1 2 3 4 5 6 7 8Positions

(c) Conflict graph for the KPCG.

5 7 6 1 3 2 4 8

Lmax = 60

Giant tour

π1

P(π1) = 65 

π2

P(π2) = 50 

π3

P(π3) = 80 

π4

P(π4) = 70 

π5

P(π5) = 70 

π6

P(π6) = 75 

π7

P(π7)=35 

π8

P(π8) = 25 

π1 π2

π3 π6π5π4

π7 π8

π1

π2

π3

π4

π5

π6

π7

π8

Profits 2050 40 10 25302015

0 3

1

6

7

5

8

4

2

15

1010

[0,10]
σ5= 5
p5=15

[0,40]
σ7= 10
p7=20

10 10

10
10

[0,45]
σ6= 5
p6=30

[0,50]
σ1= 5
p1=50

[0,25]
σ3= 5
p3=20

[0,30]
σ2= 5
p2=40[0,50]

σ4= 5
p4=10

[0,45]
σ8= 10
p8=25

π3

π6

1 2 3 4 5 6 7 8Positions

(d) Saturated optimal solution.

Figure 5: Example of the splitting procedure for a TOPTW instance with m = 2, n = 8, and Lmax = 60.

4.6.2. Route neighborhoods

For route improvement, the LS procedure uses the classical routing neighborhoods Or-Opt and 2-Opt* to

reduce the total travel time of each route, and three other neighborhoods to fill the resulting time saved in

order to increase the total profit. The 2-Opt* operator replaces arcs (i, i+1) from route u and (j, j+1) from

route v with arcs (i, j + 1) and (j, i + 1), thus interchanging the two sub-paths without altering the order

of visits. The Or-Opt operator relocates a sequence of one or two successive customers in the same route,

without altering their order of visit. The remaining operators follow the same remove-and-repair principle

of the initialization heuristic described in Section 4.2 but differ in the way they select the customers to be

removed and in how they repair the solution:

• Random remove-and-repair : removes d randomly chosen customers from the solution and, then, using

the Best Insertion Algorithm (BIA), inserts currently unrouted customers. At each iteration, d is

randomly generated in the interval [1, Dmax].

17



• Sequential remove-and-repair : this operator focuses on improving one single route at a time. This

operator removes from each route r a sequence of q consecutive customers starting from position

start mod size(r) and uses BIA to insert new customers into the destroyed route. At each itera-

tion, start is moved by q customers, and q is increased by one. When all the customers in a route

have been removed at least once, it skips to the next route in the solution. This operator stops if an

improvement is found, or once all the routes of the solution have been tested. Fig. 6 shows an iteration

of this operator.

10 14

0 7 13 4 8 0

0 2 6 3 15 0

0 11 1 12 0

0 16 9 5 0

r1:

r2:

r3:

r4:

start q

Solution (Routes) Unrouted Customers

(a) Solution before removing customers.

0 7 13 4 8 0

0 2 15 0

0 11 1 12 0

0 16 9 5 0

r1:

r2:

r3:

r4:

10 14 6 3

Solution (Routes) Unrouted Customers

(b) Solution after sequential remove.

6 3

0 7 13 4 8 0

0 10 2 15 14 0

0 11 1 12 0

0 16 9 5 0

r1:

r2:

r3:

r4:

Solution (Routes) Unrouted Customers

(c) Solution after repair.

Figure 6: Sequential remove-and-repair.

• Parallel remove-and-repair : Similar to the previous operator, this operator removes from each route

r a sequence of q consecutive customers starting from position start mod size(r). However, instead

of focusing on one route, it is applied in parallel on all the routes of the solution, and then inserts

unrouted customers using the BIA. An example of this move is shown in Fig. 7. The search in this

neighborhood stops when an improvement is found, or when each customer in the solution has been

removed at least once. Removing parallel sequences from different routes creates free time slots across

the whole solution and gives the opportunity to BIA to move customers between routes, and introduce

more profitable ones in the solution.

4.6.3. Local search algorithm

The local search procedure works as follows. At each iteration, the LS randomly selects one of the previous

neighborhoods and explores it. All the neighborhoods have the same probability of being chosen whether they

consider routes or giant tours. The search in a given neighborhood stops as soon as an improvement is found

18



10 14

0 7 13 4 8 0

0 2 6 3 15 0

0 11 1 12 0

0 16 9 5 0

Solution (Routes) Unrouted Customers

r1:

r2:

r3:

r4:

start q

(a) TOPTW solution.

10 14 2 6 7

0 4 8 0

0 3 15 0

0 12 0

0 5 0

r1:

r2:

r3:

r4:

13 16 9 11 1

Solution (Routes) Unrouted Customers

(b) Solution after parallel remove.

0 11 6 4 8 0

0 2 3 9 15 0

0 12 7 13 0

0 16 10 5 0

r1:

r2:

r3:

r4:

14 1

Solution (Routes) Unrouted Customers

(c) Solution after repair.

Figure 7: Parallel remove-and-repair.

or when no improving move can be found. When a neighborhood operator fails to find an improvement, it is

discarded until the solution is improved by another operator. This process is repeated until all neighborhoods

fail to find an improvement to the current solution.

4.6.4. Greedy split and concatenation

Because the LS procedure uses two different sets of neighborhoods, and because it can randomly switch

from an operator of one set to that of the other, the number of times a solution shifts from one representation

to the other can grow large very quickly. This negatively impacts computation times, mainly due to the

optimal splitting procedure. To address this aspect of the LS, we devise a fast heuristic splitting method and

a giant tour construction process to go with it.

Inside the LS algorithm, the construction of a giant tour T is achieved by concatenation of the routes

that compose the solution one after the other, and then by appending the remaining unrouted customers at

the end of the tour.

On the same principle as the above fast concatenation method, we describe a greedy splitting heuristic to

evaluate a giant tour T = (T [1], T [2], ..., T [n]). Consider θk = (T [i], T [i+ 1], ..., T [n]) a sub-sequence of T . It

is possible to divide θk into two parts by extracting the saturated route πik = (T [ik], T [ik + 1], ..., T [jk]) and

considering the second part θk+1 = (T [jk + 1], T [jk + 2], ..., T [n]) as a new sequence of unrouted customers.

Our greedy splitting heuristic consists in performing the previous bisection m times on consecutive sequences

θk, starting with θ1 = T . Fig. 8 shows an example of splitting using the heuristic procedure. The heuristic

splitting is used as a quick way to evaluate moves in the swap and shift neighborhoods. The optimal splitting

algorithm is applied at the end of the LS procedure to extract the best routes from the giant tour.

19



1 2 3 4 5 6 7 8 9 10

9 1 10 2 7 5 4 8 6 3T = 

1 2 3

9 1 10

4 5 6 7 8 9 10

2 7 5 4 8 6 3π1 = 

Saturated Route

= 

4 5

2 7

6 7 8 9 10

5 4 8 6 3π4 = 

= 

Saturated Route Unrouted Customers

Figure 8: Heuristic splitting procedure when m = 2.

5. Computational experiments

Our algorithm was coded in C++ using the Standard Template Library (STL) for data structures, and

compiled using the GNU GCC compiler in a Linux environment. In the following, we present the computa-

tional experiments that were carried out in order to tune the algorithm, to evaluate its performance relative

to state-of-the-art algorithms, and to assess the contribution of each of its components. All the experiments

were conducted on a single thread on an Intel Xeon X7542 CPU at 2.67GHz processor.

5.1. Benchmark instances

Our algorithm was tested on the various TOPTW benchmark instances. All the literature benchmarks

are available online at https://www.mech.kuleuven.be/en/cib/op.

TOPTW benchmark instances are derived from Solomon et al.’s (Solomon, 1987) instances for the Vehicle

Routing Problem with Time Windows (VRPTW), and Cordeau’s (Cordeau et al., 1997) instances for the

Multi Depot Periodic VRPTW (MDPVRPTW). The instances were adapted by considering the customer

demands in the original data sets as node profits in the TOPTW instances. Travel time between two vertices

is assumed to be equal to the euclidean distance. It is rounded down to the first decimal for Solomon’s

instances and to the second decimal for Cordeau’s instances. Solomon’s instances are organized into six sets:

C100, C200, R100, R200, RC100 and RC200, divided according to the distribution of vertices on the plane

(clustered, random, random-clustered) and the width of the time windows (narrow, wide). Each instance

contains either 50 or 100 customers. Since Cordeau’s instances were originally meant for a periodic variant

of the VRP, when using them for the TOPTW, we consider that all customers are available on the same day.

Instances in this data set contain a number of customers ranging from 48 to 288.

Righini and Salani (2009) constructed the first OPTW instances using 29 of Solomon’s instances from sets

C100, R100 and RC100, and ten instances from Cordeau’s (pr1 to pr10). The first benchmark instances for the

TOPTW were introduced by Montemanni and Gambardella (2009). They used the earlier OPTW instances

for the case where m = 1 and extended them by increasing m to two, three, and four available vehicles. They

also proposed another 27 instances from sets C200, R200, and RC200 from Solomon’s instances, and ten

20



others from Cordeau’s instances (pr11 to pr20). Furthermore, Vansteenwegen et al. (2009) used the original

instances of Solomon and Cordeau to introduce new benchmark instances where the number of vehicles

considered for each instance makes it possible to visit all the customers. Since it is possible to visit all

customers, the optimal solution for these instances is known: it is equal to the sum of all customer profits.

Like Hu and Lim (2014), we refer to these instances as the “OPT” data set. As Vansteenwegen et al. (2009)

point out, algorithms to solve the TOPTW are generally not designed expecting the possibility of including

all the customers, which makes solving some of the “OPT” instances to the optimum rather difficult.

5.2. Parameter tuning

As described in Section 4, our proposed MS-ILS has five sets of parameters:

• α, the control parameter of the BIA;

• Dmax, the maximum number of customers removed by the random removal operator;

• SizeM, the size of the adaptive memory;

• iterinit, the number of iterations of the initialization heuristic;

• itermax and iterILS , the number of iterations of the main algorithm.

In order to calibrate these parameters, we carried out preliminary experiments on a subset of randomly

selected instances from the TOPTW instances described in Section 5.1. We started from base parameter

values that we identified during the development of our MS-ILS and then tuned each parameter, one after

the other, by varying the base value. For each parameter, we kept the best setting found before proceeding

to tune the next parameter. Given that parameters itermax, iterILS , and SizeM have a similar effect on

the performance of the algorithm, we chose to tune them in a joint fashion. More details, on the tuning

experiments can be found in Section A of the supplementary material associated with this paper.

The final calibration results are displayed in Table 1. The final parameter values were chosen to provide

a good trade-off between solution quality and runtime from the authors’ perspective.

Parameter Description Value

α the control parameter of the BIA [1.8, 2.8]

Dmax max. nb. of customers removed by the Random

remove-and-repair operator

0.25 ∗ nrouted

SizeM size of the adaptive memory 80 ∗m

iterinit nb. of iterations of the initialization heuristic 1000

itermax nb. of iterations of the main algorithm 2 ∗ n/m

iterILS nb. of iterations of the ILS 4

Table 1: Final parameter values.

21



5.3. Computational comparisons

In order to evaluate the performance of our proposed MS-ILS for TOPTW, we compared its results with

those of the following state-of-the-art algorithms:

• Variable Neighborhood Search (VNS) proposed by Tricoire et al. (2010),

• Greedy Randomized Adaptive Search procedure with Evolutionary Local Search algorithm (GRASP-

ELS) of Labadie et al. (2011),

• LP-Based Granular Variable Neighborhood Search (GVNS) of Labadie et al. (2012),

• Iterative Three-Component Heuristic (I3CH) of Hu and Lim (2014).

• Large Neighborhood Search (ELNS) of Schmid and Ehmke (2017).

The results of GVNS, GRASP-ELS, I3CH, ELNS, and our MS-ILS were all obtained with five runs of

the algorithm on each instance, while VNS was run ten times on each instance. Note that some results of

VNS that were not originally reported by Tricoire et al. (2010) were made available on the authors’ website

http : //prolog.univie.ac.at/research/op/. Since they are better results than those originally published, we

used them instead for our comparisons.

For the sake of fair comparison between the algorithms in terms of computational effort, the reported

running times of each algorithm were adjusted to account for the speed difference between the different

computation setups. Similar to Hu and Lim (2014), we used the Super Pi benchmark for this purpose. Super

Pi is a single-threaded program that computes the digits of π up to a specified number and is commonly used

as an estimate of CPU speed. Table 2 indicates the CPU used by each algorithm, its Super Pi score, which

corresponds to the number of seconds needed to compute the first one million digits of π, and the associated

time scaling factor. To obtain this factor, we estimated the performance of each processor by considering

the performance of our machine to be 1. For GRASP-ELS, GVNS and I3CH, we opted to use the Super

Pi scores reported by Hu and Lim (2014). Unfortunately, the scores of VNS and ELNS are not available.

Furthermore, we only had limited information on the experimental setup used by each of them to be able to

estimate their Super Pi scores. For the VNS, given that the paper was published in 2010, we decided to use

the same scaling factor as the one used for the GVNS (0.32), because of the proximity of their publication

dates. As for ELNS Schmid and Ehmke (2017), the authors did not report comparisons based on CPU times,

and we were not able to estimate their Super Pi score by only relying on the family of their CPU and its

clock rate. Therefore, we assumed similar performance to our setup. In the remainder of this section, the

time values reported in previous works are adjusted by the associated factors, in order to account for CPU

differences. For example, the adjusted computational time of a solution obtained by I3CH can be obtained

by multiplying its CPU time by 0.95.

Tables 3 to 5 summarize the results achieved by each algorithm. Comparison of solution quality is usually

drawn in terms of relative percentage error (rpe) with respect to the best-known solution (BKS) for the

22



Algorithm CPU Super Pi Estimate Factor

VNS 2.4 GHz CPU (reference unknown) Unknown ≤ 0.32

GRASP-ELS Intel Pentium 4 processor, 3.00 GHz 44.3 0.32

GVNS Intel Pentium (R) IV, 3 GHz CPU 44.3 0.32

I3CH Intel Xeon E5430 CPU clocked at 2.66 GHz 14.7 0.95

ELNS Intel Xeon 3.1 GHz (reference unknown) Unknown ≈ 1

MS-ILS Intel Xeon X7542 CPU at 2.67GHz 14.1 1

Table 2: Estimation of single-thread performance.

standard benchmark, and in terms of average relative percentage error (arpe) for the “OPT” benchmark, but

we chose to include comparisons on the basis of rpe and arpe for both benchmarks. These two metrics are

computed as: rpe = (BKS−Zmax)
BKS ∗ 100% and arpe =

(BKS−Zavg)
BKS ∗ 100%, where Zmax denotes the best score

obtained over different runs and Zavg the average score. Column cpuavg of each table reports the average

computational time of the above mentioned algorithms in seconds. The detailed results obtained by our

MS-ILS are presented in the supplementary material associated with this paper, where they are compared

to the best-known solutions in the literature. These results are presented in tables, of which, each consists

of two identically structured parts. Each part contains the name of the instance, the best-known solution

(BKS) to the instance, including the ones found by our method and the optimal solutions of Duque et al.

(2015) and Tae and Kim (2015), the maximum score (Zmax) obtained by our algorithm, the relative error

(rpe), the average score (Zavg), the average error (arpe), and the average computational time in seconds

(cpuavg).

Table 3 reports the results obtained by all the state-of-the-art algorithms and the MS-ILS using the

previous configuration on the standard benchmark. As can be seen in the table, our MS-ILS achieves an

average relative gap lower than those achieved by the other algorithms for every set of instances. As for the

relative gap, it achieves better results than the literature on most instances, apart from instances rc200 with

m = 3, and rc100 with m = 4 where ELNS does slightly better, but at the cost of higher computational effort.

On Cordeau’s instances, our method requires a little more computation time to find high-quality solutions

compared to the likes of the GRASP-ELS and the GVNS, but is still much faster than I3CH and the VNS,

and the quality of the solutions it obtains is much better than that of the other algorithms. Furthermore,

note that Solomon’s instances with wider time windows become easier to solve as m becomes larger.

The performance of our algorithm on the “OPT” data set is shown in Tables 4 and 5. The column #OPT

indicates the number of optimal solutions found by the MS-ILS. Note that, in the case of column #OPT ,

the value reported at the bottom of the two tables corresponds to the sum of the values of the column. Note

also that the authors of GRASP-ELS (Labadie et al., 2011) and GVNS (Labadie et al., 2012) only report the

average value of solutions obtained over several runs. Most of the published metaheuristics reported their

results using the average relative gap arpe, except for Hu and Lim (2014) who used only the best relative

gap rpe. For this reason, we split the comparisons into two: Table 4 displays comparisons based on the arpe,

23



Instances
VNS GRASP-ELS GVNS I3H ELNS MS-ILS

rpe% arpe% cpu rpe% arpe% cpu rpe% arpe% cpu rpe% arpe% cpu rpe% arpe% cpu rpe% arpe% cpu

m=1

c100 0.00 0.11 31.5 0.00 0.00 7.2 0.56 1.22 53.3 0.00 - 24.0 0.00 0.00 19.0 0.00 0.00 2.0

r100 0.00 0.05 28.5 0.11 0.22 1.1 1.72 2.68 9.4 0.56 - 27.2 0.00 0.06 15.2 0.00 0.02 2.1

rc100 0.00 0.04 20.9 0.33 0.40 0.6 1.88 3.51 3.1 1.66 - 24.3 0.00 0.31 10.5 0.00 0.02 1.1

c200 0.00 0.21 179.3 0.40 0.61 10.3 0.55 1.11 61.6 0.40 - 80.2 0.00 0.08 47.0 0.00 0.08 9.9

r200 0.95 1.60 341.1 1.14 2.15 3.6 2.98 3.90 10.8 1.58 - 167.4 0.05 0.29 65.6 0.03 0.10 22.9

rc200 0.25 1.52 278.2 1.55 2.37 2.6 2.70 4.13 5.1 2.85 - 113.4 0.23 0.48 47.2 0.00 0.12 13.4

pr01-pr10 0.02 1.10 263.1 0.75 1.46 1.6 0.56 1.62 4.0 1.07 - 103.6 0.10 0.18 40.1 0.02 0.18 13.0

pr11-pr20 1.44 3.41 334.7 2.20 3.42 2.5 3.21 4.30 7.8 4.31 - 123.7 1.44 2.08 67.5 0.85 1.15 21.5

m=2

c100 0.00 0.27 28.2 0.00 0.07 22.7 0.47 0.72 44.7 0.00 - 24.0 0.17 0.20 30.6 0.00 0.03 3.6

r100 0.18 1.43 20.3 1.04 1.78 2.5 1.22 1.83 19.3 0.61 - 27.2 0.14 0.29 25.5 0.00 0.04 2.7

rc100 0.23 1.46 17.7 1.46 2.32 1.5 0.78 2.80 6.5 0.90 - 24.3 0.00 0.05 20.7 0.00 0.05 2.9

c200 0.59 0.95 174.6 0.17 0.34 9.4 0.34 0.66 10.8 0.76 - 80.2 0.00 0.20 63.5 0.00 0.14 16.9

r200 0.85 1.35 324.8 0.93 1.25 5.6 1.27 1.90 4.7 0.81 - 167.4 0.27 0.50 42.2 0.08 0.26 30.9

rc200 1.06 2.04 257.5 1.22 1.73 5.5 2.24 3.12 4.1 1.18 - 113.4 0.32 0.70 52.5 0.15 0.39 25.9

pr01-pr10 1.10 4.11 167.9 1.34 2.42 6.2 1.05 2.02 12.5 1.34 - 103.6 0.72 1.20 85.0 0.10 0.43 18.1

pr11-pr20 1.95 4.31 198.0 3.12 4.25 9.2 1.91 2.88 26.4 3.39 - 123.7 2.06 2.98 135.0 0.84 1.29 32.1

m=3

c100 0.11 0.73 27.4 0.24 0.56 27.8 0.45 0.95 52.8 0.11 - 82.6 0.11 0.49 40.5 0.00 0.09 5.1

r100 0.23 1.48 19.8 0.91 1.58 4.4 1.23 2.28 23.7 0.22 - 59.9 0.08 0.24 35.3 0.00 0.06 3.5

rc100 0.38 1.42 19.4 1.85 2.83 2.8 0.93 2.34 10.8 0.29 - 56.0 0.01 0.37 30.2 0.00 0.25 2.9

c200 0.30 1.01 63.0 0.58 0.92 8.6 0.77 1.29 17.7 0.16 - 381.2 0.22 0.42 27.7 0.09 0.18 5.2

r200 0.09 0.16 102.9 0.06 0.07 0.8 0.17 0.26 2.2 0.07 - 500.5 0.06 0.08 4.9 0.03 0.06 3.2

rc200 0.11 0.32 129.3 0.13 0.26 2.7 0.32 0.44 2.4 0.04 - 417.7 0.06 0.11 14.8 0.07 0.11 8.0

pr01-pr10 1.92 4.03 151.4 1.73 2.39 13.0 0.77 1.54 27.5 0.77 - 234.7 1.29 1.97 124.2 0.34 0.74 25.7

pr11-pr20 2.51 4.06 165.6 3.02 3.97 13.7 1.74 2.52 48.2 1.84 - 289.4 2.64 3.40 191.7 0.48 0.94 43.3

m=4

c100 0.38 1.34 26.2 0.79 1.12 27.1 1.14 1.72 42.6 0.20 - 180.7 0.77 1.26 48.5 0.10 0.31 7.6

r100 0.37 1.61 19.6 1.01 1.72 7.7 1.28 2.35 27.1 0.23 - 112.4 0.14 0.38 42.7 0.10 0.18 4.4

rc100 0.58 2.45 18.7 1.67 2.41 4.3 1.08 1.92 11.8 0.36 - 95.9 0.10 0.35 37.7 0.11 0.33 3.5

c200 0.00 0.00 33.5 0.00 0.00 0.0 0.00 0.00 0.2 0.00 - 158.2 0.00 0.00 0.0 0.00 0.00 0.1

r200 0.00 0.00 48.2 0.00 0.00 0.0 0.00 0.00 0.1 0.00 - 86.3 0.00 0.00 0.0 0.00 0.00 0.1

rc200 0.00 0.00 52.7 0.00 0.00 0.0 0.00 0.01 0.3 0.00 - 155.9 0.00 0.00 0.0 0.00 0.00 0.1

pr01-pr10 2.63 4.31 129.0 2.65 3.27 14.6 1.84 2.39 40.7 1.13 - 402.8 2.48 3.32 156.1 0.42 0.85 34.4

pr11-pr20 3.12 4.29 130.6 3.40 4.22 20.9 2.86 3.62 74.4 1.29 - 472.1 3.33 4.11 234.9 0.48 1.08 59.1

Average 0.67 1.60 118.9 1.06 1.57 7.5 1.19 1.94 20.8 0.88 - 156.7 0.52 0.82 54.9 0.13 0.30 13.3

Table 3: Comparison of the MS-ILS to the state-of-the-art methods on the standard benchmark.

24



Instances Nb.
VNS GRASP-ELS GVNS ELNS MS-ILS

#OPT arpe% cpu #OPT arpe% cpu #OPT arpe% cpu #OPT arpe% cpu #OPT arpe% cpu

c100 9 9 0.02 6.4 - 0.00 0.4 - 0.47 2.5 9 0.00 1.5 9 9 0.5

r100 12 1 0.50 6.9 - 0.73 33.7 - 1.55 12.6 4 0.73 45.4 5 0.47 14.7

rc100 8 4 0.85 6.7 - 0.90 25.2 - 1.29 12.6 3 0.39 39.1 4 0.37 8.0

c200 8 - - - - 0.00 0.0 - 0.00 0.2 8 0.00 0.0 8 0.00 0.1

r200 11 - - - - 0.04 2.1 - 0.17 1.8 11 0.01 9.7 11 0.00 2.9

rc200 8 - - - - 0.03 0.9 - 0.16 0.9 8 0.00 2.6 8 0.00 1.4

pr01-pr10 10 5 1.30 22.9 - 0.92 22.9 - 1.25 16.4 3 1.22 154.9 5 0.95 25.8

Avg./Total 66 19 0.67 10.7 - 0.37 12.2 - 0.70 6.7 46 0.34 36.2 50 0.26 7.6

Table 4: Performance comparison based on arpe average for “OPT” data set.

Instances Nb.
VNS I3H ELNS MS-ILS

#OPT rpe% cpu #OPT rpe% cpu #OPT rpe% cpu #OPT rpe% cpu

c100 9 9 0.00 6.4 9 0.00 45.2 9 0.00 1.5 9 0.00 0.5

r100 12 1 0.20 6.9 8 0.07 833.8 4 0.58 45.4 5 0.34 14.7

rc100 8 4 0.37 6.7 8 0.00 54.5 3 0.29 39.1 4 0.19 9.4

c200 8 - - - 8 0.00 0.6 8 0.00 0.0 8 0.00 0.1

r200 11 - - - 9 0.07 164.7 11 0.00 9.7 11 0.00 2.9

rc200 8 - - - 7 0.04 180.7 8 0.00 2.6 8 0.00 1.4

pr01-pr10 10 5 1.06 22.9 6 0.78 310.3 3 1.06 154.9 5 0.86 26.4

Avg./Total 66 19 0.41 10.7 55 0.14 227.1 46 0.27 36.2 50 0.20 7.9

Table 5: Performance comparison based on rpe average for “OPT” data set.

while Table 5 shows the comparisons based on the rpe. Even though the “OPT” data set is known to be

difficult to solve, MS-ILS achieves both the smallest average relative gap and the second smallest relative

gap, and is able to obtain 59 out of 66 optimal solutions in a reasonable amount of time. The I3CH is the

only other algorithm that finds slightly better solutions than the MS-ILS, but it requires significantly higher

computational times to do so. In some cases, it is up to twenty times slower than the MS-ILS.

For a more thorough comparison, we conducted additional experiments using other combinations of values

for parameters itermax, iterils and SizeM in order to achieve smaller and larger computation times than

those presented above. We then compared the performance of every combination with those of the state-

of-the-art algorithms, namely VNS, GRASP-ELS, GVNS, I3CH and ELNS in terms of computation time

(CPU) and in terms of either relative error(rpe) or average relative error (arpe). The combinations of values

used for these experiments were chosen based on the results of the Pareto test described in Section 5.2.

Figures 10 and 9 show the performance of the MS-ILS using different combinations of parameters compared

to state-of-the-art algorithms; the first in terms of computation time and relative error (rpe), the second in

terms of cpu and average relative error (arpe). As can be seen in both figures, the MS-ILS achieves better

results compared to the remaining algorithms: not only does it achieve smaller deviations when computation

times are equivalent, but each combination of parameter values we tested resulted in smaller deviations

25



compared to the remaining algorithms.

GRASP−ELS

ELNS

GVNS

VNS

I3CH

MS−ILS
(30*n/m,10,100*m)

(2*n/m,4,80*m)
(1*n/m,4,60*m)

0

20

40

60

80

100

120

140

160

180

200

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
RPE

C
P

U

Figure 9: Comparison of different MS-ILS settings with the literature based on cpu and rpe.

GRASP−ELS

ELNS

VNS

GVNS

GRASP−ELS

ELNS

VNS

GVNS

MS−ILS
(30*n/m,10,100*m)

(2*n/m,4,80*m)
(1*n/m,4,60*m)

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
ARPE

C
P

U

Figure 10: Comparison of different MS-ILS settings with the literature based on cpu and arpe.

Tables 6 and 7 display the results of two runs of the MS-ILS using two different settings of itermax, iterils

and SizeM. The first setting is the same as the one used in the above comparisons with the literature.

The second one is a slower version of the algorithm obtained by setting itermax = 30n/m, iterils = 10 and

SizeM = 100m. The main observation here is that, if allowed to run longer, the MS-ILS is able to further

improve solution quality. It is able to find the best known solutions for all of Solomon’s instances at least one

time out of five. On the “OPT” benchmark, it can obtain the optimal solutions for 59 out of 66 instances.

Overall, it is able to find the best known solutions for 93% of the instances available in the literature.

During our experiments, including the tuning experiments, the MS-ILS found 57 new best-known solution

26



Instances
MS-ILS (2,4,80) MS-ILS (30,10,100)

rpe% arpe% cpu rpe% arpe% cpu

m=1

c100 0.00 0.00 2.0 0.00 0.00 32.5

r100 0.00 0.02 2.1 0.00 0.00 25.9

rc100 0.00 0.02 1.1 0.00 0.00 20.0

c200 0.00 0.08 9.9 0.00 0.00 80.4

r200 0.03 0.10 22.9 0.00 0.03 167.1

rc200 0.00 0.12 13.4 0.00 0.05 131.8

pr01-pr10 0.02 0.18 13.0 0.00 0.01 131.2

pr11-pr20 0.85 1.15 21.5 0.85 0.97 205.0

m=2

c100 0.00 0.03 3.6 0.00 0.00 30.2

r100 0.00 0.04 2.7 0.00 0.01 23.8

rc100 0.00 0.05 2.9 0.00 0.01 20.8

c200 0.00 0.14 16.9 0.00 0.07 85.0

r200 0.08 0.26 30.9 0.01 0.19 187.9

rc200 0.15 0.39 25.9 0.02 0.22 171.9

pr01-pr10 0.10 0.43 18.1 0.03 0.20 124.4

pr11-pr20 0.84 1.29 32.1 0.69 0.94 254.1

m=3

c100 0.00 0.09 5.1 0.00 0.04 39.8

r100 0.00 0.06 3.5 0.00 0.00 27.5

rc100 0.00 0.25 2.9 0.00 0.09 26.1

c200 0.09 0.18 5.2 0.03 0.11 32.1

r200 0.03 0.06 3.2 0.00 0.05 18.7

rc200 0.07 0.11 8.0 0.00 0.09 36.5

pr01-pr10 0.34 0.74 25.7 0.12 0.41 168.7

pr11-pr20 0.48 0.94 43.3 0.12 0.64 349.4

m=4

c100 0.10 0.31 7.6 0.10 0.22 44.7

r100 0.10 0.18 4.4 0.01 0.09 34.9

rc100 0.11 0.33 3.5 0.01 0.08 31.8

c200 0.00 0.00 0.1 0.00 0.00 0.1

r200 0.00 0.00 0.1 0.00 0.00 0.1

rc200 0.00 0.00 0.1 0.00 0.00 0.1

pr01-pr10 0.42 0.85 34.4 0.07 0.58 241.2

pr11-pr20 0.48 1.08 59.1 0.17 0.73 415.7

Average 0.13 0.30 13.3 0.07 0.18 98.7

Table 6: Comparison of two different settings of MS-ILS on the standard benchmark.

27



Instances Nb.
MS-ILS (2,4,80) MS-ILS (30,10,100)

#OPT rpe% arpe% cpu #OPT rpe% arpe% cpu

c100 9 9 0.00 0.00 0.5 9 0.00 0.00 0.6

r100 12 5 0.34 0.47 14.7 10 0.02 0.09 92.7

rc100 8 4 0.19 0.37 9.4 7 0.08 0.19 58.5

c200 8 8 0.00 0.00 0.1 8 0.00 0.00 0.1

r200 11 11 0.00 0.00 2.9 11 0.00 0.00 1.4

rc200 8 8 0.00 0.00 1.4 8 0.00 0.00 1.8

pr01-pr10 10 5 0.86 0.95 26.4 6 0.64 0.71 144.8

Avg./Total 66 50 0.20 0.26 7.9 59 0.10 0.14 42.8

Table 7: Comparison of two different settings of MS-ILS on the “OPT”.

values for the standard benchmark instances: 20 for Solomon’s instances and 37 for Cordeau’s. Table 8 reports

the new best-known solution values found by MS-ILS. For each instance, it indicates the number of vehicles

and the new solution value.

Instance m Old BKS New BKS Instance m Old BKS New BKS Instance m Old BKS New BKS

r207 1 1077 1078 pr04 2 926 928 pr02 4 1079 1083

r208 1 1117 1118 pr05 2 1101 1103 pr03 4 1232 1248

r209 1 961 962 pr10 2 1134 1145 pr04 4 1585 1595

r210 1 1000 1002 pr13 2 843 845 pr05 4 1838 1859

rc204 1 1140 1143 pr15 2 1220 1238 pr06 4 1860 1898

rc208 1 1057 1058 pr18 2 953 955 pr08 4 1382 1392

pr19 2 1034 1041 pr09 4 1619 1626

r201 2 1256 1260 pr20 2 1237 1251 pr10 4 1943 1965

r202 2 1350 1353 pr12 4 1132 1135

r203 2 1420 1431 pr02 3 943 947 pr13 4 1386 1392

r205 2 1395 1402 pr03 3 1010 1014 pr14 4 1670 1688

r206 2 1447 1452 pr04 3 1294 1298 pr15 4 2065 2085

r209 2 1419 1423 pr05 3 1482 1500 pr17 4 934 936

r210 2 1430 1438 pr06 3 1514 1519 pr18 4 1539 1558

rc201 2 1385 1386 pr08 3 1139 1142 pr19 4 1750 1780

rc202 2 1520 1523 pr10 3 1573 1582 pr20 4 2062 2115

rc203 2 1637 1640 pr13 3 1145 1159

rc204 2 1716 1718 pr14 3 1372 1375

rc207 2 1601 1609 pr15 3 1654 1694

rc208 2 1691 1705 pr18 3 1281 1289

pr19 3 1417 1428

r201 3 1441 1450 pr20 3 1684 1722

Table 8: New best-known solutions values found by MS-ILS.

Altogether, our MS-ILS is very competitive. It is able to find the current best-known solutions for 78% of

the literature instances and was able to improve the best-known solutions for many of them. It achieves an

average relative error (arpe) of only 0.30% on the standard benchmark and 0.26% on the “OPT” benchmark,

and a relative percentage error (rpe) of 0.13% and 0.20%, on the two benchmarks, respectively, while still

being faster than most state-of-the-art algorithms. In comparison, the previous best performing approach in

28



the literature finds 65% of the current best-known solutions, and achieves an arpe of 0.80% on the standard

benchmark and 0.34% on the “OPT” benchmark, and a rpe of 0.51% and 0.27%, on the two benchmarks,

respectively. Finally, our experiments show that the MS-ILS can be tuned to either favor speed or solution

quality and remain relatively better than other approaches.

5.4. Performance analysis

In the following, we discuss the results of the experiments conducted to evaluate the impact of each of the

key components of our algorithm, namely the combination of two different search spaces and the adaptive

memory. To do this, we derive alternative versions of the MS-ILS by disabling search spaces one at a time,

or by disabling the adaptive memory. The considered configurations are as follows:

a. Standard: the standard algorithm described in Section 4.

b. No Routes: an alternate version of MS-ILS where the route search space operators are disabled.

c. No Tours: an alternate version of MS-ILS where the giant tour search space operators and the splitting

procedures are disabled. To construct solutions from the memory, we simply select m routes that do not

share customers.

d. No Memory: version of the standard algorithm where the adaptive memory and giant tour construction

are disabled. Each iteration of the main loop starts from a randomly generated solution.

All of the above configurations were run ten times on each instance of both the standard and the “OPT”

benchmark using the parameter values given in Section 5.2. Table 9 shows the average gap relative to the

best know solutions, and the average CPU time achieved by each of the configurations from (a) to (d).

Comparisons between the configurations (a) to (c) highlight the impact of alternating between route and

giant tour search spaces instead of only using one of them. Disabling either one of the search spaces translates

into a decrease of solution quality compared to configuration (a), but removing the route operators has a

bigger impact on solution quality than removing giant tour operators. We still decided to keep both spaces

in the design of the algorithm because both of them help improve solution quality; besides, the giant tour

search spaces is still needed to find good solutions for some instances.

Comparisons between configurations (a) and (d) show the contribution of including the adaptive memory

into the multi-start framework. As we can see, adding the adaptive memory significantly improves the average

gap on the two benchmarks, with a reasonable impact on CPU time. In terms of solution quality, the use

of the adaptive memory has a more significant impact when solving instances of the standard benchmark

with m ≥ 2 than when solving instances with m = 1. This is because when m = 1, the algorithm chooses a

previous local optimum and tries to improve it, whereas when m ≥ 2, the algorithm constructs new solutions

using several from previous local optima.

Most of the time, disabling one component results in a decrease in computation times. However, depending

on the instance, the opposite can happen, and disabling one component may result in larger computation

29



(a) Standard (b) No Routes (c) No Tours (d) No Memory

Instances arpe cpu arpe cpu arpe cpu arpe cpu

m=1 Solomon 100 0.02 % 2.3 0.92 % 1.0 0.06 % 2.9 0.07 % 3.1

Solomon 200 0.09 % 21.1 1.55 % 8.1 0.15 % 18.0 0.45 % 8.6

Cordeau 0.57 % 21.8 4.50 % 6.8 0.69 % 19.5 1.03 % 21.6

avg 0.23 % 15.1 2.32 % 5.3 0.30 % 13.5 0.52 % 11.1

m=2 Solomon 100 0.03 % 3.7 1.17 % 1.6 0.04 % 3.4 0.37 % 2.4

Solomon 200 0.31 % 26.8 1.65 % 46.0 0.42 % 12.6 0.98 % 6.5

Cordeau 0.83 % 31.5 4.98 % 8.8 1.05 % 21.0 2.66 % 14.9

avg 0.39 % 20.7 2.60 % 18.8 0.50 % 12.3 1.33 % 8.0

m=3 Solomon 100 0.12 % 4.5 1.30 % 6.5 0.12 % 3.7 0.85 % 2.3

Solomon 200 0.28 % 6.6 1.57 % 4.4 0.32 % 4.7 1.39 % 1.9

Cordeau 0.83 % 42.3 5.03 % 13.7 1.00 % 24.8 3.37 % 13.2

avg 0.41 % 17.8 2.63 % 8.2 0.48 % 11.1 1.87 % 5.8

m=4 Solomon 100 0.28 % 6.7 1.72 % 4.3 0.33 % 4.7 1.49 % 2.0

Solomon 200 0.00 % 0.1 0.00 % 0.1 0.00 % 0.1 0.00 % 0.1

Cordeau 0.84 % 54.2 5.44 % 22.2 1.07 % 24.8 3.97 % 12.8

avg 0.37 % 20.3 2.39 % 8.9 0.47 % 9.9 1.82 % 5.0

OPT Solomon 100 0.31 % 11.2 0.97 % 10.3 0.55 % 2.5 0.70 % 2.3

Solomon 200 0.00 % 1.7 0.10 % 16.7 0.00 % 0.9 0.02 % 1.1

Cordeau 0.99 % 28.2 1.76 % 70.3 1.10 % 6.7 1.42 % 10.3

avg 0.44 % 13.7 0.94 % 32.5 0.55 % 3.3 0.72 % 4.6

Table 9: Performance analysis of MS-ILS components.

times. For example, in the standard benchmark on Solomon’s instances with m = 1; disabling the route

space local search operators hinders the progress of the algorithm towards good solutions, which explains the

increase in CPU time.

6. Conclusion

In this paper, we introduced a very effective Multi-Start Iterated Local Search (MS-ILS) for the Team

Orienteering Problem with Time Windows. Our algorithm is based on a local search that alternates between

two different search spaces: the route search space that corresponds to actual solutions to the TOPTW, and

the giant tour search space that makes it possible to explore the solution space without being limited by

time windows and length constraints. In order to improve solution quality, several local search operators

are included to be used in each search space. Additionally, the algorithm integrates an adaptive memory

mechanism to further improve performance by making use of previous local optima to build better solutions.

Computational results have shown that our approach performs very well compared to state-of-the-art

30



algorithms and is able to outperform them in terms of overall solution quality and computation times. In

particular, the MS-ILS is able to find the current best-known solutions, or better ones, for 78% of the

benchmark instances within reasonable runtimes, and achieves an overall average relative gap of 0.30% and

0.26% on the two benchmarks of the literature, respectively. If given more time, the MS-ILS finds the current

best-known solutions for 89% of the literature instances. Furthermore, our approach was also able to find

new best solutions for 57 instances for which no optimal solution has yet been found.

Finally, the method proposed herein is flexible in the sense that it can be easily adapted to accommodate

new constraints or to address other variants of the problem. One potential direction for future research would

be to extend our algorithm to more realistic versions of orienteering problems with time windows.

Acknowledgments. The authors would like to thank the reviewers for their valuable comments and suggestions

which improved the quality of the paper. This work is supported by the French Environment and Energy

Management Agency (ADEME), the Hauts-de-France region and the European Regional Development Fund

(ERDF). It was carried out within the framework of the Labex MS2T, funded by the French Government

(Reference ANR-11-IDEX-0004-02). It is also partially supported by the TCDU project (Collaborative

Transportation in Urban Distribution, ANR-14-CE22-0017).

References

Bouly, H., Dang, D.C., Moukrim, A., 2010. A memetic algorithm for the team orienteering problem. 4OR 8,

49–70.

Cabrera, N., Medaglia, A.L., Lozano, L., Duque, D., 2020. An exact bidirectional pulse algorithm for the

constrained shortest path. Networks. In press.

Cordeau, J.F., Gendreau, M., Laporte, G., 1997. A tabu search heuristic for periodic and multi-depot vehicle

routing problems. Networks 30, 105–119.

Cura, T., 2014. An artificial bee colony algorithm approach for the team orienteering problem with time

windows. Computers & Industrial Engineering 74, 270 – 290.

Dang, D.C., Guibadj, R.N., Moukrim, A., 2013. An effective pso-inspired algorithm for the team orienteering

problem. European Journal of Operational Research 229, 332–344.

Duque, D., Lozano, L., Medaglia, A.L., 2015. Solving the orienteering problem with time windows via the

pulse framework. Computers & Operations Research 54, 168 – 176.

Gedik, R., Kirac, E., Milburn, A.B., Rainwater, C., 2017. A constraint programming approach for the team

orienteering problem with time windows. Computers & Industrial Engineering 107, 178 – 195.

Gendreau, M., Laporte, G., Semet, F., 1998. A tabu search heuristic for the undirected selective travelling

salesman problem. European Journal of Operational Research 106, 539 – 545.

31



Golden, B.L., Levy, L., Vohra, R., 1987. The orienteering problem. Naval Research Logistics (NRL) 34,

307–318.

Guibadj, R.N., Moukrim, A., 2014. Memetic algorithm with an efficient split procedure for the team orien-

teering problem with time windows, in: International Conference on Artificial Evolution. EA 2013. Lecture

Notes in Computer Science, vol 8752, Springer International Publishing, Cham. pp. 183–194.

Gunawan, A., Lau, H.C., Lu, K., 2015a. An iterated local search algorithm for solving the orienteering

problem with time windows, in: Evolutionary Computation in Combinatorial Optimization, Springer In-

ternational Publishing, Cham. pp. 61–73.

Gunawan, A., Lau, H.C., Lu, K., 2015b. Sails: hybrid algorithm for the team orienteering problem with time

windows, in: Proceedings of the 10th international conference of the practice and theory of automated

timetabling (patat 2014), MISTA, York, United Kingdom. pp. 202–217.

Gunawan, A., Lau, H.C., Lu, K., 2015c. Well-tuned ils for extended team orienteering problem with time

windows, in: LARC Technical Report Series. Singapore Management University.

Gunawan, A., Lau, H.C., Vansteenwegen, P., 2016. Orienteering problem: A survey of recent variants,

solution approaches and applications. European Journal of Operational Research 255, 315 – 332.

Hu, Q., Lim, A., 2014. An iterative three-component heuristic for the team orienteering problem with time

windows. European Journal of Operational Research 232, 276–286.

Labadie, N., Mansini, R., Melechovský, J., Wolfler-Calvo, R., 2012. The team orienteering problem with time

windows: An lp-based granular variable neighborhood search. European Journal of Operational Research

220, 15–27.

Labadie, N., Melechovský, J., Wolfler-Calvo, R., 2011. Hybridized evolutionary local search algorithm for

the team orienteering problem with time windows. Journal of Heuristics 17, 729–753.

Lin, S.W., Yu, V.F., 2012. A simulated annealing heuristic for the team orienteering problem with time

windows. European Journal of Operational Research 217, 94–107.

Lozano, L., Medaglia, A.L., 2013. On an exact method for the constrained shortest path problem. Computers

& Operations Research 40, 378 – 384.

Mendoza, J.E., Villegas, J.G., 2013. A multi-space sampling heuristic for the vehicle routing problem with

stochastic demands. Optimization Letters 7, 1503–1516.

Montemanni, R., Gambardella, L.M., 2009. Ant colony system for team orienteering problems with time

windows. Foundations of Computing and Decision Sciences 34, 287–306.

32



Montemanni, R., Weyland, D., Gambardella, L.M., 2011. An enhanced ant colony system for the team

orienteering problem with time windows, in: 2011 International Symposium on Computer Science and

Society, pp. 381–384.

Montoya, A., Guéret, C., Mendoza, J.E., Villegas, J.G., 2016. A multi-space sampling heuristic for the green

vehicle routing problem. Transportation Research Part C: Emerging Technologies 70, 113 – 128.

Prins, C., 2004. A simple and effective evolutionary algorithm for the vehicle routing problem. Computers

& Operations Research 31, 1985–2002.

Prins, C., Labadie, N., Reghioui, M., 2009. Tour splitting algorithms for vehicle routing problems. Interna-

tional Journal of Production Research 47, 507–535.

Righini, G., Salani, M., 2008. New dynamic programming algorithms for the resource constrained elementary

shortest path problem. Networks 51, 155–170.

Righini, G., Salani, M., 2009. Decremental state space relaxation strategies and initialization heuristics for

solving the orienteering problem with time windows with dynamic programming. Computers & Operations

Research 36, 1191–1203.

Rochat, Y., Taillard, É.D., 1995. Probabilistic diversification and intensification in local search for vehicle

routing. Journal of Heuristics 1, 147–167.

Sadykov, R., Vanderbeck, F., 2013. Bin packing with conflicts: A generic branch-and-price algorithm.

INFORMS Journal on Computing 25, 244–255.

Schmid, V., Ehmke, J.F., 2017. An effective large neighborhood search for the team orienteering problem

with time windows, in: Computational Logistics, Springer International Publishing, Cham. pp. 3–18.

Solomon, M.M., 1987. Algorithms for the vehicle routing and scheduling problems with time window con-

straints. Operations Research 35, 254–265.

Souffriau, W., Vansteenwegen, P., Vanden Berghe, G., Van Oudheusden, D., 2013. The multiconstraint team

orienteering problem with multiple time windows. Transportation Science 47, 53–63.

Tae, H., Kim, B.I., 2015. A branch-and-price approach for the team orienteering problem with time windows.

International Journal of Industrial Engineering 22, 243 – 251.

Takeo, Y., Seiji, K., Kohtaro, W., 2002. Heuristic and exact algorithms for the disjunctively constrained

knapsack problem. Information Processing Society of Japan Journal 43, 2864–2870.

Tang, H., Miller-Hooks, E., 2005. A tabu search heuristic for the team orienteering problem. Computers &

Operations Research 32, 1379–1407.

33



Tarjan, R.E., 1975. Graph theory and Gaussian elimination. Technical Report. Stanford University.

Tricoire, F., Romauch, M., Doerner, K.F., Hartl, R.F., 2010. Heuristics for the multi-period orienteering

problem with multiple time windows. Computers & Operations Research 37, 351–367.

Vansteenwegen, P., Souffriau, W., Berghe, G.V., Oudheusden, D.V., 2009. Iterated local search for the team

orienteering problem with time windows. Computers & Operations Research 36, 3281–3290.

Vansteenwegen, P., Souffriau, W., Oudheusden, D.V., 2011. The orienteering problem: A survey. European

Journal of Operational Research 209, 1–10.

34




