
HAL Id: hal-02890270
https://hal.science/hal-02890270

Submitted on 15 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

From virtualization security issues to cloud protection
opportunities: An in-depth analysis of system

virtualization models
Maxime Compastié, Rémi Badonnel, Olivier Festor, Ruan He

To cite this version:
Maxime Compastié, Rémi Badonnel, Olivier Festor, Ruan He. From virtualization security issues to
cloud protection opportunities: An in-depth analysis of system virtualization models. Computers &
Security, 2020, 97, pp.101905. �10.1016/j.cose.2020.101905�. �hal-02890270�

https://hal.science/hal-02890270
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

From Virtualization Security Issues to Cloud Protection Opportunities:
An In-Depth Analysis of System Virtualization Models

Maxime Compastiéa,b,1,∗, Rémi Badonnela, Olivier Festora, Ruan Heb

aUniversity of Lorraine, CNRS, Inria, Loria, Campus Scientifique 54600 Villers-lès-Nancy
bOrange Labs, 44 avenue de la République, 92320 Châtillon, France

Abstract

Virtualization methods and techniques play an important role in the development of cloud infrastructures and their
services. They enable the decoupling of virtualized resources from the underlying hardware, and facilitate their sharing
amongst multiple users. They contribute to the building of elaborated cloud services that are based on the instantiation
and composition of these resources. Different models may support such a virtualization, including virtualization based
on type-I and type-II hypervisors, OS-level virtualization, and unikernel virtualization. These virtualization models pose
a large variety of security issues, but also offer new opportunities for the protection of cloud services. In this article, we
describe and compare these virtualization models, in order to establish a reference architecture of cloud infrastructure.
We then analyze the security issues related to these models from the reference architecture, by considering related
vulnerabilities and attacks. Finally, we point out different recommendations with respect to the exploitation of these
models for supporting cloud protection.

Keywords: Security Management, System Virtualization, OS-level Virtualization, Cloud Infrastructures, Unikernel

1. Introduction

System virtualization is an essential key to the develop-
ment of cloud infrastructures and their services. In these
environments, cloud service providers (CSP) expose re-
sources to consumers, while these ones exploit these re-
sources to run services or to compose new elaborated ones
that can be offered to other consumers [1]. The multiplic-
ity of stakeholders questions the security at several lev-
els and, consequently, questions the security of the un-
derlying system virtualization: (i) the cloud service level
agreement (SLA) specifies the availability of virtualized
resources, (ii) the broad network access to cloud resources
and the potential multi-tenancy requires the isolation of
virtualized resources, (iii) the growing regulation with re-
spect to data protection puts additional constraints on the
CSPs to guarantee the confidentiality and integrity of re-
sources [2]. Recently, important efforts have been focused
on performance improvement, leading to the emergence of
new virtualization technologies capable of reducing virtu-
alized environment footprints. In particular, container-
ization methods move the virtualization layer from the
OS-hardware border to the OS-application one, in order
to share the OS kernel. Also, unikernel-based virtualiza-
tion permits to decrease the complexity of virtual environ-

∗Corresponding author.
Email address: compastiem@yahoo.fr (Maxime Compastié)

1The permanent address of the author is at Activeeon, 36 rue
Eugène Freyssinet, 75013 Paris

ments, by elaborating minimal operating systems specifi-
cally built for dedicated applications.

The development and deployment of these virtualiza-
tion models are still in the early stage, while the tech-
nologies and related products are not fully mature. It
therefore remains unclear what kind of specific security
issues it introduces. We envision that the attack surface
of virtualization could be impacted by the hypervisor iso-
lation, cross-layer invocation and containerization. These
factors make virtualization extremely difficult to establish
in-depth defense security, requiring the critical security is-
sues to be addressed in a holistic way. In particular, from
a vertical perspective, applications inside a virtual ma-
chine (VM) are diversely incorporated with several layers
and/or components, ranging from hypervisor to guest OS.
Thus, any misconfiguration of a VM instance or hyper-
visor could eventually allow attackers to penetrate into
the applications. From an horizontal perspective, as each
layer is composed of heterogeneous components from dif-
ferent providers, the trust relationship between these com-
ponents, either hardware or software, is hard to be es-
tablished for the assessment of security properties. It is
therefore challenging to securely and seamlessly incorpo-
rate these components.

Our contribution addresses the security of system virtu-
alization models used for cloud infrastructures. We pro-
vide an in-depth description of the virtualization models
to conduct a security analysis. Contrary to [3], we do not
focus on the security question related to the operation of
cloud environments. The analyzed virtualization models

Preprint submitted to Elsevier February 26, 2020

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0167404820301814
Manuscript_48115901a75561b1250dfb03ed832420

https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0167404820301814

are not limited to full-fledged VM system virtualization,
as considered in [4], but we also include OS-level virtual-
ization and unikernel VM system virtualization. Our ap-
proach is close to [5], but our analysis is not bound to any
cloud operation use-case. It rather permits to infer rec-
ommendations for our software-defined security strategy
for distributed clouds, as elaborated in [6]. To evaluate
the benefits and limits of virtualization models for cloud
security, this article is organized as follows. First, we de-
scribe in Section 2 different virtualization models, includ-
ing virtualization based on type-I and type-II hypervisors,
OS-level virtualization and unikernel virtualization. The
purpose is to give a basic understanding of their design
principles and relationships, and to establish a reference
architecture that synthesizes these models and serves a
support for the security analysis. Second, we analyze in
Section 3 the security of the different virtualization mod-
els, based on this reference architecture. In that context,
we identify and classify the vulnerabilities that may affect
the components of this architecture. We then quantify
their probability of occurrences, and detail the related se-
curity attacks, in view of existing security threats. Third,
we infer in Section 4 different counter-measures and rec-
ommendations with respect to the exploitation of these
models for cloud security. This includes the integration
of security mechanisms during the design of resources, the
minimization of the attack surface based on the genera-
tion of highly specialized resources, and the adaptation of
cloud protection based on security programmability.

2. System Virtualization Models

First of all, we will describe the considered system virtu-
alization models, in order to establish a reference architec-
ture of cloud infrastructure, that will serve as a basis for
the security analysis. In that context, we will also remind
some important principles related to system virtualization.

2.1. Context

According to [7], system virtualization can be defined
as the use of an encapsulating software layer surrounding
an operating system, which conforms to the behavior ex-
pected from a physical hardware. It is first envisioned as
an enabler for multi-tasking: it has enabled hardware re-
source multiplexing, and thus, the concurrent execution of
several OSHowever, more efficient approaches dealing with
this issue have outrun the interest for system virtualization
for decades. In 1990s, the emergence of personal comput-
ing and the limited compatibility of software appliances to
one or a few number of operating systems has renewed the
interest for system virtualization. The desktop virtualiza-
tion enables the usage of an appliance developed on one
operating system with another one. The large-scale de-
ployment of cloud computing during 2010s has induced a
new application field. As the cloud paradigm requires the
decoupling of software resources from hardware resources,

Application

OS Kernel

Hardware

Return Trap

Unprivileged
Mode

Privileged
Mode

Figure 1: Overview of a regular system architecture.

system virtualization has become one of the enablers of
this paradigm.

We usually define a regular system architecture accord-
ing to a two-state mode execution environment (non priv-
ileged mode and privileged mode), as illustrated in Fig. 1.
Programs running in the non privileged mode rely on a
subset of non-critical instructions sets (which will not im-
pact the state of the machine, defined later), while pro-
grams in the privileged mode are allowed to use the whole
instruction set. When a program running in the non priv-
ileged mode wants to invoke a privileged instruction (in-
struction only allowed to run in the privileged mode), it
sends an interruption, called trap. Such a trap will trig-
ger the execution of a predefined routine in the privileged
mode. All user applications which are in the non privi-
leged mode are loaded to the memory address space as user
space. The programs in the privileged mode are loaded to
the memory address space as kernel space. One program
can only run in one specific mode. When a user appli-
cation wants to use a privileged instruction, it is trapped
through a specific interruption. The trapping mechanism
stops the execution of the current application, stores the
execution context, loads the corresponding routine, and
executes the routine in the privileged mode. When the
routine execution terminates, the execution context will
be switched back to the user application which is in the
non privileged mode. The set of system calls is defined as
a subset of routines which can be invoked by applications
in the non privileged mode.

2.2. System Virtualization
The system virtualization architecture derives from the

regular system architecture. It enables concurrent exe-
cution of multiple OS. Within this architecture, two cat-
egories of instructions exist: sensitive and non-sensitive.
Non-sensitive instructions can be executed directly on the
hardware. However, sensitive need to be controlled since
they modify the state of a machine which may impact a
concurrent execution. The software module necessary to
implement this virtualization architecture is called Virtual
Machine Monitor (VMM), whose properties are defined
in [7]. A VMM provisions an abstracted and isolated en-
vironment for each OS, which is called Virtual Machine

2

(VM). It is a program interfacing between programs in
each VM and hardware resources.

2.2.1. Fully and Partially Virtualizable Architectures
A fully virtualizable architecture is defined such that all

its sensitive instructions are controlled. The VMM uses
the trapping mechanism to realize this control. Hence, an
architecture is considered as fully virtualizable, if and only
if all its sensitive instructions are part of the privileged in-
structions.Thus, intercepting the instructions from unpriv-
ileged mode permits to handle the execution of sensitive
instructions, while the privileged ones can be controlled
using traps. The existence of sensitive but unprivileged
instructions prevents the VMM from using trapping. Such
instructions do not trap and thus do not trigger VMM in-
struction simulations, enabling the VM to access the hard-
ware resources directly. For instance, the x86 architec-
ture does not comply with the fully virtualizable architec-
ture [8] since some instructions accessing sensitive registers
are invokable from non-privileged mode. Such an architec-
ture is called partially virtualizable architecture. It is then
required to treat these non-virtualizable instructions with
other mechanisms than instruction trapping. Three meth-
ods are usually considered to address this issue.

The binary translation method relies on a live interpre-
tation of all sensitive instructions by VMM routines. Once
a VM program has its code loaded into memory and its ex-
ecution started, the VMM scrutinizes ongoing instructions
to dynamically substitute sensitive ones by VMM rou-
tine calls before their usage. The para-virtualization ap-
proach consists in the modification of the program source
code employing sensitive instructions before their instan-
tiations, substituting them by equivalent VMM routine
calls (equivalence property) which are referred to hyper-
calls. Considering the case of an OS in a virtual machine,
the para-virtualization related code modifications are only
located in the kernel of the VM, to make it cope with
the VMM through hypercalls.The hardware-assisted vir-
tualization consists in a solution based on CPU capabil-
ities. More precisely, when hardware-assisted virtualiza-
tion is available, the CPU proposes a root operation mode
intended to host the VMM, while the non-root operation
mode supports the VM code execution. These modes are
not related to the privileged and non-privileged ones: the
root mode enables programs to define which instructions,
executed in the non-root mode, will trap back.

2.2.2. VMM Implementation Types
As a common usage, VMMs (also called hypervisors)

are implemented with extra-features enabling VM man-
agement (management console) and virtual hardware pro-
visioning to VMs. In this article, we refer to an hypervisor
as a VMM embedded with a management console, a mem-
ory manager, an input/output subsystem and a network-
ing subsystem. We define a host system as the only set of
OS and applications to have access to hardware resources
not mitigated by the hypervisor. A guest VM stands for

a VM with a restricted access to hardware resources. We
distinguish two types of VMMs. The type-I hypervisor
corresponds to a VMM directly operating the hardware re-
sources. The host system runs alongside guest VMs, and
both of them have to cope with the hypervisor. Their
main difference at runtime is that the host system is al-
lowed by the hypervisor to access the hardware without
restriction and has administrative privileges over the hy-
pervisor, while the guest VMs are handled by the virtual
hardware environment. The Xen hypervisor [9, 10] and
the KVM hypervisor [11] are two examples of type-I hy-
pervisor implementations. The type-II hypervisor runs
as an application of the host system. It cannot directly
access the hardware, but relies on the host OS routines
to access hardware resources. Oracle Virtualbox [12] and
QEMU [13] are two well-known examples of type-II hyper-
visors.

2.3. OS-Level Virtualization
Hypervisors and VMs contribute to a proven virtualiza-

tion architecture, currently being used in numerous use
cases among which cloud computing, software testbed en-
vironments and software analysis framework. However,
from an application isolation perspective, embedding OS
kernel and virtual hardware environments with applica-
tions in a VM may be challenged by two optimizing issues.
First, each VM embeds an OS kernel instance, meaning a
resource cost not related to VM application exploitation.
Second, the trapping mechanism induced by the VMM is
a CPU-cycle greedy mechanism.

OS-level virtualization2 attempts to increase efficiency
by eliminating OS kernel from the isolation scope. It keeps
only the set of applications and dependent libraries within
a container. They run in parallel with other programs of
the host system and both of them access the OS kernel
and hardware resources, through the common OS kernel
interfaces exposed to programs residing in the user space
(system calls) [15]. The host OS kernel is in charge of
required virtual resources (i.e. filesystem access, network-
ing) and container isolation enforcement. The container
execution environment benefits from kernel features and
its configuration is performed by the container engine.
This extra layer runs at the host system application level.
By these means, OS-level virtualization enables almost-
baremetal [16, 17] performances, outrunning the regular
system virtualization ones, at the cost of coupling contain-
ers with a specific operating system. LXC [18], Docker [19]
and gVisor [20] are three thriving examples of container
engines supporting the Linux OS.

2.4. Unikernel Virtualization
Containerization has brought an application-centric per-

spective in the virtualization debate, as the applications

2OS-level virtualization is also referred as containerization. How-
ever, some hypervisor-based solutions such as [14] have started as
well to claim this terminology. For the sake of clarity, we dismiss its
usage in this article.

3

and their dependencies are the only embedded system
parts in the portable environment. OS-level virtualiza-
tion induces the dependency of in-container applications
upon the host system OS kernel. It incidentally restricts
the set of applications eligible to virtualization to the ones
supporting this OS kernel. Additionally, in the perfor-
mance area, containerized applications have to cope with
host system OS kernel routines. Since containers cannot
embed routines running in privileged mode, they cannot
implement optimized privileged routines for dedicated pur-
poses. Unikernel virtualization tackles these two issues,
by transposing Library OS concept to the system virtu-
alization era. Through the bypassing of legacy support
constraints, it enables the refining of the system layer, re-
ducing footprints of virtualized applications.

2.4.1. Library OS
A library OS exports the hardware resource manage-

ment outside the OS kernel. In practice, this management
relies on a set of libraries, implementable by any appli-
cation whose access to the related resources is required.
Each application is able to implement the most adapted
resource managers to its mission, while the dispatching
of resource management amongst applications relieves the
need of intermediate layers when accessing the hardware.
In return, this architecture comes at the cost of a restricted
portability and compatibility toward managed resources.
The managers are expected to be resource-specific to con-
tribute to their efficiency. However, the applications are
not likely to implement all of them to support all differ-
ent types of hardware resources. The Drawbridge [21], the
V++ cache kernel [22] and the Exokernel [23] projects are
three architectures for library OS implementation export-
ing resource management in user space. The first converts
Microsoft Windows 7 into a library-OS compliant archi-
tecture at the top of a VMM for process isolation purpose
(pico-process) at the trade-off of keeping hardware man-
agement in the kernel space of the host OS to ensure com-
patibility. The second one only exploits memory address
space segregation in order to keep critical OS kernel fea-
tures in the kernel space such as memory management, in-
terprocess communications and thread management. The
last one supports application multi-tasking and a secured
hardware resource management, which is endorsed by li-
braries and is secured by a dedicated layer. Examples of
Exokernel implementations include Aegis [23], ExOS [23]
and XOmB [24].

2.4.2. Unikernels
A unikernel corresponds to an OS architecture featur-

ing a specialized, sealed, single purpose library OS. They
can be run in virtual machines on the top of a hypervi-
sor [25]. Each unikernel system addresses an application,
its configuration, and the minimal dependencies required
to run, and is configured and packed into an image, before
their instantiation. Running inside a VM relieves these
library OSes from supporting a vast amount of hardware

configurations, and focus only on the virtual hardware en-
vironment exposed by an hypervisor. Additionally, the
unikernel architecture does not provide backward compat-
ibility. This approach contributes to lightweight unikernel
VMs compared to regular VMs. MirageOS [25] and In-
cludeOS [26] are two examples of common unikernel solu-
tions.

A single unikernel image addresses the integration of
one application, with its minimal set of dependencies.
These dependencies address the application runtime, and
libraries for both the software and the hardware resource
management, in line with the library OS concept. Soft-
ware components addressed by unikernel images may be
tightly related to a development platform or may remain
independent. The first option requires the usage of a
dedicated tooling and programming language to design a
unikernel appliance. All the software components undergo
the same processing (i.e. static analysis, code optimiza-
tion, code compilation, linking and packing), contributing
to the performance and lightweight properties of the re-
sulting image. From the system architecture perspective,
this option permits to include more system layer compo-
nents in the assessment scope of programming language
properties. The second option can be assimilated to the
first one if a specific runtime environment is packed in the
image. The in-situ software management capability is not
provided in the unikernel image. Instead, it is performed
externally, directly on the image before its instantiation,
by the building of a toolstack, relying on a package man-
ager, or be only uprooted on code inclusion mechanisms.
This ex-situ approach contributes to lighten the unikernel
footprint when instantiated.

An instantiated unikernel uses a single address space
for its application and runtime, including the hardware
management. This permits to cope with the overheads
of context switches issued by process scheduling and sys-
tem calls. Unikernel instances do not implement processes,
but still rely on multi-threading to support running par-
allel tasks. Built unikernel images can be conceived to
be instantiable by a hypervisor, and cope with the related
virtual hardware environment. This capability enablement
relies on the inclusion of hypervisor-specific hardware re-
source management routines into unikernel images, in or-
der to address a specific virtual hardware environment.
In the case of the exploitation of unikernel VMs, type-I
hypervisors are usually privileged to minimize the layers
mitigating the unikernel VM access to hardware resources.
The routines of the unikernel VMs are executed in the
privileged mode to avoid the trapping overhead, when ac-
cessing the virtual hardware environment.

2.5. Synthesis
We have presented different virtualization models, in-

cluding virtualization based on hypervisors of type-I, vir-
tualization based on hypervisors of type-II, OS-level vir-
tualization and unikernel-based virtualization. We infer a
virtualization reference architecture, depicted on Fig. 2,

4

App App App App
App App

Runtime Runtime

Runtime
Base Utilities Base Utilities

Base Utilities

Base Utilities

OS Kernel OS Kernel

OS Kernel

Application

Runtime

Hardware

CPU RAM I/O Interfaces Network
Adapter

Privileged VM /

In-Hypervisor OS

Memory
Management Networking I/O

Mgmt
ConsoleExec. Handler

Type-I Hypervisor Unikernel VirtualizationType-II Hypervisor OS-level Virtualization
V
ir
tu
al

m
ac
hi
ne

H
yp

er
vi
so
r

H
os
t
O
S

H
ar
dw

ar
e

Management

Privileged VM /

In-Hypervisor OS

Figure 2: Virtualization reference architecture.

that synthesizes these virtualization models. This archi-
tecture will serve as a basis to our security analysis and is
composed of four levels:

• The hardware level, represented at the bottom row
of the figure, encompasses physical resources compos-
ing the host machine, such as the CPU, the volatile
memory (RAM), the I/O interfaces (for persistent
storage and extension cards) and the network adapter
for networking purposes.

• The host OS level, detailed at the homonym row in
the figure, is exploited only for type-II hypervisor and
containers engines, and accounts for host OS kernel,
base utilities and core libraries used by these VM soft-
wares. Type-I hypervisor and unikernel-related hy-
pervisor may completely manage themselves hardware
resources, or delegate this management to privileged
VM (e.g. storage or network device handling).

• The hypervisor level, mentioned in the figure in the
next row, refers to hypervisors and container engine
softwares. We assume it handles VMM capabilities
(VM instruction trapping and sensitive instructions
handling), VM memory management, VM network-
ing (virtual network adapter and inter-VM networks)
and VM I/O interfaces. The hypervisor is configured

through a management console, enabling a system ad-
ministrator or a service to manage the hypervisor and
VM configurations.

• The virtual machine level refers to VMs, containers
and unikernels, and corresponds to the top row of the
figure. This level includes applications, their config-
urations, their runtime environment and the libraries
they depend on. Utilities are not systematically em-
bedded in unikernels, since their features are embed-
ded as application libraries, when they are required.
In the same manner, OS kernel is neither integrated
in containers (containers rely on host OS kernels) nor
in unikernels (the OS kernel is reshaped in a set of
libraries, provided with the application).

Virtualization provides important properties with respect
to security [4], in particular:

• Isolation: VM access to physical resources is regu-
lated by the hypervisor. This control affects inter-VM
access as well, and confers resource isolation capabili-
ties to virtualization. Moreover, by allocating quotas
to the physical resources to VMs, virtualization also
promotes resource consumption isolation.

• Oversight/introspection: the hypervisor is able to
inspect a VM resource usage and thus observe its in-
ternal state, leading to the oversight capability. As

5

the hypervisor is also in charge of VM resource allo-
cation, internal state modifications may be performed,
defining the introspection capability.

• Snapshotting: the hypervisor enforces access con-
trol amongst a VM and physical resources. This posi-
tioning enables the hypervisor to control the VM exe-
cution, by interrupting and resuming it. The content
of allocated resources can be saved and reallocated
as well, paving the way for VM internal state expor-
tation and restoration. From a security perspective,
this feature permits reversing back a VM from a given
insecured state to a previous secure one.

In the meantime, virtualization makes the system architec-
ture more complex, by introducing new components (e.g.
hypervisor) and redefining interactions amongst system ar-
chitectural components (e.g. privileged instruction trap-
ping). This may also introduce new security issues that
are analyzed in the following section.

3. Security Analysis based on the Reference Ar-
chitecture

We conduct a security analysis based on the reference ar-
chitecture. First, we investigate the vulnerabilities of this
architecture, draw a corresponding taxonomy, and evalu-
ate qualitatively the criticality of vulnerabilities (in terms
of occurrences) with respect to virtualization models. We
then determine the threats affecting the architecture, and
analyze related attacks in view of identified vulnerabilities.

3.1. Identification of Vulnerabilities

We first identify and classify vulnerabilities related to
the reference architecture, as depicted on Fig. 3. The crit-
icality of these vulnerabilities with respect to virtualization
models is synthetically exposed in Table 1, and is justified
with the presentation of vulnerabilities. We investigate
vulnerabilities carried by the VM as a part of a top-down
study based on the reference architecture. We assume a
VM hosting an application, its library dependencies and
an OS kernel. We then consider the vulnerabilities affect-
ing the hypervisor (or the container engine) running on the
host machine. Nested virtualization is seen as a particular
case of VM applications. In that context, we detail vulner-
abilities related to the following four main categories: the
VM application, the VM guest OS, the hypervisor, and
the execution environment of the hypervisor.

3.1.1. VM Applications
The vulnerabilities of VM applications are typically re-

lated to memory management (with respect to runtime
variable type checking, memory deallocation, kernel in-
ference in user space, and developpement software flaws),
and to software interfaces (with respect to access control,
possible code injection, and concurrency).

Memory Management. An application instantiated in a
VM relies on memory management routines provided by
language interpreters, OS standard libraries and kernel in-
ternal routines. The lack of type checking on variables
at runtime introduces trivial memory management based
exploitation such as buffer overrun [27, 28] or integer over-
flows. This vulnerability is emphasized by the size of the
code base of the applications deployed on virtual environ-
ments. Consequently, type-I and type-II hypervisors are
the most subjected to this vulnerability, while OS-level vir-
tualization benefits from OS kernel removal. As unikernels
have their code base highly constrained, their virtualiza-
tion model is the least affected. Memory deallocation
also induces security issues. Except for interpretor-based
execution environments equipped with a memory garbage
collector, no memory space is ensured to be automatically
deallocated when stopped being used. This may lead to
process memory leaks [27, 28, 29], and data persistence
issues [30]. This vulnerability is related to traditional
system architecture with multiple processes, and impacts
type-I and type-II hypervisors as well as OS-based virtual-
ization. The single application support of unikernels leaves
physical memory cleaning to the hypervisor at the applica-
tion termination. Kernel inferences in userspace may
also be possible. The OS kernel is in charge of system
management, by providing routines that are used by ap-
plication processes. Nevertheless, the kernel is also able
to manage this address space for various purposes, such
as process swapping, free space reclamation [31], and ex-
ception handling. All virtualization models are exposed to
this vulnerability. While it is obvious in a regular system
architecture, unikernels rely on a built-in runtime for the
whole support of an application. Finally, we should re-
mind that any program comes with software flaws and
bugs issued from their development cycles, inducing new
exploitable vulnerabilities [32]. This echoes to the uniker-
nel pleading to limited code base, while OS-level containers
benefit from not embedding an OS kernel.

Software Interfaces. In VMs, the software programs rely
on interfaces to communicate with the users and other
programs. These ones are able to send and to receive
data through several channels including memory buffers,
I/O interfaces and network sockets. In the area of ac-
cess control, the improper implementation and config-
uration of authorization and authentication mechanisms
can generate several vulnerabilities such as bad privilege
assignment (configuration) or weak authentication [33, 34].
While virtualization models exploiting regular system ar-
chitectures have to carry multiple applications and base
utilities with their own interfaces, unikernel models only
expose the interfaces of the application it supports the ex-
ecution of. Consequently, the access control vulnerability
may be considered as less critical than in other virtualiza-
tion models. Software interfaces may be used to corrupt
the execution of a program, when it does not proceed to the
necessary checks on the input data. This can lead to the

6

V
ul
ne

ra
bi
lit
ie
s

VM Applications Memory Management Runtime variable type checking
Memory deallocation
Kernel inference in userspace
Development software flaw

Software Interfaces Access control
Code injection
Concurrency

VM Guest OS Software Management Dependency solving error
Service degradation during mgmt
Configuration issue

OS Kernel Oversight Kernel criticality
Inapplicable security mechanism
Access to userspace
Hardware exposure

Hypervisor Inter-VM Crosstalks Co-residence
Shared networking infrastructure
Other resource sharing

VM-Hypervisor Crosstalks Resource sharing with the host
Implementation of the virtualization method
Hypervisor oversight

Management Console Management console oversight
Non-linear/non-monotonic VM execution

Hypervisor Execution Environment Host OS (refer to guest operating system)
Hardware Oversight

Physical property
Upgradibility
Physical access

Figure 3: Classification of considered vulnerabilities.

exploitation of inconsistencies in data structures [35, 36],
non-controlled string format exploitation [37] and, more
directly, code injection [38, 39]. When an interface can
be accessed by several programs at a time, synchroniza-
tion mechanisms are mandatory. If not, this interface may
be concerned by concurrency vulnerabilities [38, 40]. As
all virtualization models support multi-threading in their
virtualized environment, they are all equally affected by
these vulnerabilities.

3.1.2. VM Guest OS
The vulnerabilities of the VM guest OS concern the

software management (including dependency solving, ser-
vice degradation and configuration issues) and the OS ker-
nel oversight (including kernel criticality, specific security
mechanisms, access to user space, and hardware exposure).

Software Management. When provisioning a virtual ma-
chine to prepare a service, the application is installed over
its execution environment, and may be upgraded to a
new version to apply security fixes, and eventually ben-
efits from newly available features. In practice, such soft-
ware management is performed by a package manager (e.g.
APT [41]) or by a dedicated installer (E.g. 0install [42])
especially shaped for dedicated appliances. Nevertheless,

solving dependency may generate vulnerabilities [43].
This particularly affects virtualization models supporting
legacy system architectures. Software management can be
performed at several points (e.g. base utilities, runtime,
application itself) and imply multiple providers, increasing
the vulnerable surface. On the opposite side, the software
management in unikernels uses a pool of software compo-
nents provided by the unikernel itself, and is performed
only at build time [25]. Besides, software management
processes may lead to the degradation of services, as
the upgrade usually requires to restart and reload con-
figurations [44]. This can be exploited to make the ser-
vice unavailable during a certain time period. In all the
considered virtualization models, this vulnerability can be
mitigated by performing upgrades on virtual environments
that are not in production. This mitigation is usual for
unikernels, as software management is performed ex-situ.
Finally, software management may also induce configura-
tion vulnerabilities. This may be due to packages whose
initial configuration is too permissive, as shown by [45]. It
may also relate to the update of configuration files during
upgrades, with inconsistencies related to the new version
of an application. Type-I and type-II virtualization mod-
els are the most affected due to the complexity of the ar-
chitecture, while OS-level virtualization benefits from the

7

Table 1: Exposure to considered vulnerabilities with respect to vir-
tualization models

T
yp

e-
I
H
yp

er
vi
so
r

T
yp

e-
II

H
yp

er
vi
so
r

O
S-
le
ve
lV

ir
tu
al
iz
at
io
n

U
ni
ke
rn
el

V
ir
tu
al
iz
at
io
n

Runtime variable type checking G #
Memory deallocation G
Kernel inference in userspace G G G G
Development software flaw G #
Access control #
Code injection #
Concurrency G G G G
Dependency solving error #
Service degr. during mgmt G G G #
Configuration issue # #
Kernel criticality G G #
Inapplicable sec. mech. # #
Access to userspace #
Hardware exposure # G
Co-residence G G #
Shared networking G G G G
Other resource sharing G G G G
Resource sharing with the host # # #
Implem. of virtualization method G G G
Hypervisor oversight G G G
Management console oversight G G G G
Non-linear/non-monotonic VM exec. G G G G
H-OS - Dependency solving error G G
H-OS - Service degr. during mgmt G G
H-OS - Configuration issue G G
H-OS kernel - Kernel criticality G G
H-OS kernel - Inapplicable sec. mech. G G
H-OS kernel - Access to userspace G G
H-OS kernel - Hardware exposition G G
Hardware oversight G G G G
Hardware physical property G G G G
Hardware upgradibility G G G G
Hardware physical access G G G G

(Notation: #, G, stand respectively for low, medium
and high.)

absence of an OS kernel in containers, and unikernels are
protected by their inherent constrained nature.

OS Kernel Oversight. The OS kernel is a software run-
ning in privileged mode in charge of basic system resource
management. The criticality of the kernel for a system
contributes to vulnerabilities with respect to tasks that it
supports. These vulnerabilities are emphasized on mono-
lithic kernel architectures (such as Linux), while they are
further limited in micro-kernel architectures [46]. These
vulnerabilities are bounded to the resilience of OS kernels
and their isolation with the applications. OS-level con-
tainers are out of the scope, as they do not embed any OS
kernels. Type-I and type-II virtualization models are the
least affected, as the OS kernel exploits the system archi-
tecture features (i.e. privilege levels) to isolate itself from
applications. On the opposite, unikernels do not propose
strong barriers to isolate hardware management routines
from the application ones. The OS kernel carries its own
design principles, which may lead to the inapplicability
of security mechanisms from the OS kernel to protect
applications. For instance in Linux, process address space
isolation is a non-sense in kernel space, as the notion of
process is not defined there [29]. Unikernel is one known
exception, as its design is based on a common framework
for both the development of hardware resource manage-
ment and applications [47]. Therefore, this vulnerability
affects most significantly the type-I and type-II hypervisor
virtualization models, while neither the OS-level nor the
unikernel virtualization models are concerned. The ac-
cess to user space is another source of vulnerabilities.
For instance, the Linux kernel contains routines to read
or write memory allocated to applications without restric-
tion, (copy_from_user() and copy_to_user()), enabling
it to intervene with no control [29]. The kernel has thus ac-
cess to the application internal structures supporting both
the application data and code. Finally, the OS kernel has
an unrestricted access to hardware resources, since it runs
in privileged mode. These resources can be either physical
or virtual. The hardware exposure constitutes another
vulnerability. All the virtualization models (except the
OS-level one) are concerned. Unikernels are packed only
with the hardware management routines that are neces-
sary to the proper application operation, reducing poten-
tial risks.

3.1.3. Hypervisor
The hypervisor is subject to several vulnerabilities re-

lated to inter-VM crosstalks (such as co-residence, com-
mon networking infrastructure, and other resource sharing
issues), VM-hypervisor crosstalks (such as resource shar-
ing with the host, implementation of virtualization, and
hypervisor oversight issues) and the management console
(such as hypervisor oversight and non-linear VM execution
issues).

Inter-VM Crosstalks. By controlling VM access to physi-
cal hardware, the hypervisor enforces inter-VM isolation.

8

Each VM is thus not able to access the resource, or com-
municate with another one, except if it is tolerated by
the hypervisor. This isolation is especially challenged,
when several VMs are sharing the same hypervisor on
the same hardware. This situation is referred as VM co-
residence [48]. Indeed, VMs rely on the same resources
(CPU, memory, I/O, networking interfaces), and the same
hypervisor. Compromising one of these shared resources
paves the way for creating a hidden channel mitigating
the hypervisor isolation, as stated by [49]. This vulner-
ability affects the virtualization models in different man-
ner. VMs with type-I hypervisor, type-II hypervisor and
unikernels rely on a virtual hardware environment to in-
teract with each other. These interfaces are specifically
provisioned to each VM to let the hypervisor enforce the
isolation. Unikernels restrict the interfaces, by support-
ing the least necessary virtual hardware resources for the
unikernel execution. On the contrary, co-located contain-
ers in OS-level virtualization are part of a common host
OS, that provides a wider pool of shared resources. This
leaves them more vulnerable to these isolation issues. In
the area of networking infrastructures, the hypervisor
may provide a networking feature to support communi-
cations amongst hosted virtual environments and exter-
nal resources. It can either rely on a virtualized network
sustained only by the hypervisor or by an external pro-
gram (e.g OpenVSwitch [50]). The networking configura-
tion has to enforce the isolation amongst resources to only
authorized communications. A misconfiguration leads to
potential vulnerabilities enabling to bypass the isolation.
Hypervisors may also feature other resource sharing,
whose misconfiguration enables communications amongst
VMs. The most obvious one is persistent storage sharing
amongst several VMs (volume). Several VMs may be an
instance of a common image issued from a registry [51].
The tampering of this image can compromise the related
allocated VMs. This vulnerability affects equally all the
considered virtualization models.

VM-Hypervisor Crosstalks. The hypervisor controls the
execution of VMs, while interfacing between them and the
host OS. It enforces the isolation between the host system
supporting the hypervisor and the VMs. Hypervisors and
VMs communicate through interfaces. The virtual hard-
ware environment is composed of virtualized hardware re-
sources exposed to the VM and serving as a communica-
tion medium with the hypervisor. These resources may
be subject to vulnerabilities [52, 53, 54]. Hypervisors may
also provide private communication channels (with their
VMs), that may not enforce proper security checks [55].
Vulnerabilities may also be due to the implementation
of virtualization methods. From a software engineering
perspective, hypervisor routines can be flawed, and carry
software vulnerabilities [56]. It may also affect their imple-
mentations [57]. System virtualization may exploit hard-
ware mechanisms that can mitigate the effects of software
flaws. This contributes to make them a bit more secured.

Finally, the hypervisor controls the execution of VMs, and
has a holistic view over the usage of virtualized resources.
The oversight of hypervisors can be seen as a potential
vulnerability, as they can access and modify the exposed
virtual hardware resources [58]. Models related to system
virtualization are less prone to these vulnerabilities. OS-
level virtualization exposes the whole system call interface
of the host OS kernel to containers, jeopardizing its isola-
tion.

Management Console. For configuration and monitoring
purposes, each hypervisor proposes an interface for han-
dling it and the hosted VMs. The management console
can be used by administrators or other entities, such as
cloud orchestrators.The first vulnerability relates to the
oversight based on the management console. The
users of the management console have a complete control
over VM life-cycle, and can modify the configuration of
the virtual hardware environment. This control can be
performed independently from what the software in VMs
can support, affecting its execution. Users are also able to
build new and unsecured communication channels [59]. All
virtualization models are equally affected by this vulnera-
bility, as each one proposes a management console. This
control also permits to affect the monotonicity of VM
executions, as shown in [4, 60]. For instance, performing
a suspend-and-resume operation against a VM enables po-
tential time and replay attacks. All virtualization models
are equally affected by this vulnerability. These features
are quite common in hypervisors, but may also be per-
formed over container-based solutions.

3.1.4. Execution Environment of the Hypervisor
The execution environment (host OS or hardware) of

hypervisors is also concerned by different vulnerabilities
related to the host OS and the hardware.

Host OS. Hypervisors supporting the execution of VMs
have to rely on an OS to access physical hardware re-
sources. This OS can be an internal part of the hypervisor
(e.g VMware ESXI), be a VM itself controlled by the hy-
pervisor (e.g. Dom0 in Xen), or be out of the control of
the hypervisor (e.g. Oracle Virtualbox). The hypervisor
is dependent of the behavior of this OS. The OS-level vir-
tualization is also affected by these vulnerabilities, as it is
an application supported by a host OS. We consider that
host OS vulnerabilities are the same than the ones detailed
in Section 3.1. These vulnerabilities are predominant in
type-II hypervisor and OS-level virtualization models, as
host OSes are necessarily present. Type-I hypervisor and
unikernel virtualization models are less affected, as the
OSes can be managed and combined in the hypervisor.

Hardware. As nested virtualization is considered as out-
of-scope of this analysis, we consider cases where the hy-
pervisor (and eventually the host OS) are running on a
bare-metal hardware. The hardware layer is affected by

9

vulnerabilities, independently from the considered virtu-
alization model. The hypervisor is a software component
requiring a hardware infrastructure to operate. This hard-
ware has an oversight above the running hypervisor, the
running VMs and the current communications of the vir-
tual interfaces exploiting the physical one. The persis-
tent storage of the hardware infrastructures also affects
the stopped VMs, and their own storage. This makes
hardware an attractive target to compromise VMs. The
physical properties of hardware can be exploited as
side channel sources [61]. Hardware manufacturers em-
bed firmwares with their devices, such as CPU microcodes
and extension card firmwares. Some of them do not ac-
cept firmware upgrades, because of the design constraints
or by the lack of support from manufacturers, leaving se-
curity flaws unpatched. Other ones support it, but may
require the system to run in a limited mode [62]. Finally,
the physical access to hardware resources constitutes an
important vulnerability, as components may be added or
modified in the hardware layer, altering the behavior of
underlying hypervisors and VMs.

3.2. Considered Threats and Attacks

We exploit the STRIDE threat assessment methodol-
ogy [63] to analyze the different threats and attacks re-
lated to our reference architecture. In accordance with it,
we consider a set of six main threats, namely spoofing,
tampering, repudiation, information disclosure, denial of
service and elevation of privileges. In that context, we as-
sume several hypotheses regarding this architecture and
the attacker:

• The instantiated virtual machine applications expose
interfaces that are accessible remotely.

• The attacker is located remotely, and can use the le-
gitimately exposed interfaces.

• The hardware layer is not accessible to the attacker.
We consider physical intrusion attacks out of the
scope of system virtualization.

• The assets targeted by the attacker are applications
and data located in virtual machines.

• The objective of the attacker is to negatively impact
the availability (denial of service), the integrity (alter-
ation) or the confidentiality (retrieving) of an asset.

• A component is considered secured if not compro-
mised, but which may contain inherent software flaws
known by the attacker. The attacker can exploit them
to compromise a component, and gain influence or
control over it.

We classify attacks with regard to threats, according to
the notion of compromises: we consider a component as
compromised, when the attacker is capable of executing

an arbitrary code. We introduce a three-level classifica-
tion based on the extension of [3]: compromise-free attacks
(that are not related to compromises), compromising at-
tacks (that enable compromises), and compromise-based
attacks (that are based on compromises). Fig. 4 provides
an overview of this classification, while Table 2 details the
relationships with the threats with regard to the reference
architecture.

3.3. Compromise-Free Attacks

We first detail compromise-free attacks, attacks that do
not aim at or do not require the compromise of a compo-
nent of the architecture. As targets of these attacks, we
mainly focus on virtual machines and hypervisors. How-
ever, the execution environment of hypervisors might also
be considered to some extent, as an objective for an at-
tacker.

3.3.1. Virtual Machine As a Target
We consider in this category VM denial of service

attacks, which consist in blocking or disrupting the op-
eration of a virtual machine. These attacks do not aim
at gaining control over the resource nor exfiltrating data,
but only affect its availability. Such an attack can be per-
formed from the hypervisor (exploiting the management
console oversight vulnerability), by using the management
console (or a service controlling it) to shutdown the tar-
geted virtual machine, as detailed in [59]. A more discrete
manner to proceed such a denial of service is to recon-
figure the virtual hardware environment to cause the VM
dysfunctioning (e.g. reducing allocated RAM) to reduce
the footprint of the attack. The network may also be used
to perform such attacks. Based on the hardware exposure
vulnerability of guest and host OS kernels, a massive work-
load from the network may make the VM applications and
the VM OS kernels unavailable. This can typically consist
in a distributed denial of service attack. Software flaws are
also sources of software failures (e.g. [64] related to a given
appliance) and can be exploited to perform denial of ser-
vice attacks. VM appliances may be attacked using their
intrinsic flaws, or the ones of their dependencies. These
attacks exploit mostly the memory management and con-
currency vulnerabilities, but might also rely on software
interface vulnerabilities. The OS kernel of the VM may
also be used for that respect (kernel criticality vulnerabili-
ties). According to [65], linux kernel faults are mainly due
to unsecure software development.

We then focus on attacks exploiting software flawed
design. Software applications may carry flaws in their
design, but not specifically related to their code. These
attacks can be performed without requiring the execution
of arbitrary code, and thus, without requiring a compro-
mise. They relates to the tampering threat of in-VM ap-
plications, their runtime, the base utilities and the in-VM
OS kernel. For instance, misconfigurations are typically
exploited to perform such attacks, as detailed in [66, 67].

10

Table 2: Relationships among attacks, leveraged threats and affected components
Spoofing Tampering Repudiation Info. disclosure Denial of ser-

vice
Privilege eleva-
tion

A
pp

lic
at
io
n

• Hyperjacking

• VM Mobility

• Software
Flawed
Design

• Application
Software
Exploitation

• VM Hopping

• VM Escape
to VM

• VM Monitor-
ing from VM

• VM Moni-
toring from
Host

• Application
Software
Exploitation

• VM Monitor-
ing from VM

• VM Moni-
toring from
Host

• Inter-VM
Com. Intro-
spection

• VM Denial of
Service

• Application
Software
Exploitation

• VM Hopping

• VM Escape
to VM

R
un

ti
m
e

• Hyperjacking

• VM Mobility

• Software
Flawed
Design

• Application
Software
Exploitation

• VM Hopping

• VM Escape
to VM

• VM Monitor-
ing from VM

• VM Moni-
toring from
Host

• Application
Software
Exploitation

• VM Monitor-
ing from VM

• VM moni-
toring from
Host

• Inter-VM
Com. Intro-
spection

• VM Denial of
Service

• Application
Software
Exploitation

• VM Hopping

• VM Escape
to VM

O
S
K
er
ne
l

• Hyperjacking

• VM Mobility

• Software
Flawed
Design

• OS Kernel
Exploitation

• VM Hopping

• VM Escape
to VM

• VM Monitor-
ing from VM

• VM Moni-
toring from
Host

• OS Kernel
Exploitation

• VM Moni-
toring from
Host

• Inter-VM
Com. Intro-
spection

• VM Denial of
Service

• OS Kernel
Exploitation

• VM Hopping

• VM Escape
to VM

H
yp

er
vi
so
r

• Control Ch.
Exploitation

• Hypervisor
Exploitation

• VM Escape
to Host

• Control Ch.
Exploitation

• Hypervisor
Exploitation

• Hypervisor
Exploitation

• Computation
Res. Monop-
olisation

• Hypervisor
Denial of
Service

• VM Escape
to Host

H
os
t
O
S
K
er
ne
l

• VM Escape
to Host

• Hypervisor
Denial of
Service

• VM Escape
to Host

H
ar
dw

ar
e

• Firmware
Exploitation

• Firmware
Exploitation

• Hypervisor
Denial of
Service

• Firmware
Exploitation

11

A
tt
ac
ks

Compromise-Free Attacks VM As a Target VM Denial of Service
Software Flawed Design

Hypervisor as a Target Hypervisor Denial of Service

Compromising Attacks VM Application Software Exploitation
OS Kernel Exploitation
Hyperjacking/ Hypervisor Injection

Hypervisor Hypervisor Direct Exploitation
Command Control Channel Exploitation

Hypervisor Execution Env. Firmware Exploitation

Compromise-Based Attacks Malicious VM Hyp. Computation Res. Monopolization
VM Hopping
VM Monitoring from the VM
VM Escape to the VM
VM Escape to the Host

Malicious Hypervisor VM Monitoring from the Host
Inter-VM Communication Introspection
VM Mobility

Figure 4: Classification of attacks.

They may be the consequence of initial inadequate set-
tings, or changes due to software upgrades or manual ad-
ministration. The impact of such attacks can be high,
when they relate to authorization and authentication rules
(access control vulnerabilities). Software management
may also be exploited for that purpose. Outdated depen-
dencies, required by some VM appliances, can also intro-
duce vulnerabilities. The upgrade process can also lead to
man-in-the-middle (MITM) attacks during the collection
of packages, as pointed out in [68, 69]. In particular, it
is possible to prevent the execution of software updates,
including security patches. These attacks relate to the
dependency solving error vulnerabilities and the memory
management vulnerabilities. Finally, attacks may also be
based on the non-linear/non-monotonic execution vulner-
abilities. As exposed in [4], an attack might restore a VM
to a vulnerable state, by using the hypervisor facilities.

3.3.2. Hypervisor as a Target
The compromise-free attacks also concern denials of ser-

vice related to hypervisors, similar to the previous ones:

• The management console represents an attack vector,
since it can shut down the hypervisor (management
console oversight vulnerability).

• Network protocols can be used to flood the hypervi-
sor and/or its execution environment based on DDoS
attacks.

• Hypervisors are also composed of software compo-
nents, having their own vulnerabilities that are ex-
ploitable by attackers.

We can also notice that VMs can indirectly contribute to
hypervisor denials of service. For instance, authors of [4]
pointed out VM sprawling flaws, enabling the rapid spread

of misbehaving VMs. This leads to the exhaustion of the
hypervisor resources.

3.4. Compromising Attacks

The second main category of our classification is com-
promising attacks. This compromise often serves as a ba-
sis for more elaborated attacks. We analyze here attacks
leading to the compromise of components of the reference
virtualization architecture. We distinguish attacks affect-
ing the virtual machines, the hypervisor and its execution
environment.

3.4.1. Virtual Machines
The attacks compromising virtual machines first include

software exploitation attacks, that consist in forcing an
application in a VM to execute an arbitrary code. As
the application runs in an unprivileged mode, the injected
payload cannot rely on privileged instruction sets. This af-
fects in-VM applications, their runtime and base utilities.
Considered actions include the tampering of resources, the
privilege elevation of an attacker, and the disclosure of in-
formation. This attack may exploit several vulnerabilities.
In addition to memory management vulnerabilities [70],
the code injection in software interfaces may also be used
for the insertion of payloads. The dependency solving er-
ror [71] in software management may also prevent soft-
ware upgrades, in order to maintain security flaws. Com-
promised OS kernels can also contribute to such attacks
(access to userspace vulnerabilities). Authors of [72] show
that applications can be subverted by an OS kernel based
on forged returns from system calls. Other flaws, such as
misconfigurations and additive dependencies, may be used
from unprotected interfaces. The works in [68, 69] also
investigate a MITM attack against the software manage-
ment system, with the objective of inserting or maintain-

12

ing unprotected interfaces on applications, accessible by
the attacker.

We can also consider OS kernel exploitation attacks
aiming at the execution of an arbitrary code by the ker-
nel. These attacks benefit from the privileged execution
mode, which extends the attack surface. A concrete exam-
ple of such an attack is the use of rootkits [73], enabling
an attacker to gain the whole control over a system. The
related threats include tampering, privilege elevation, and
disclosure of information. A compromised application in
the user space may be sufficient, but not necessary for
performing these attacks. Moreover, modular OS kernels
increase the risks, as the process loading modules consti-
tutes an additional payload vector.

Finally, we can point out hyperjacking / hypervi-
sor injection attacks. A typically example is the VM-
based rootkit (VMBR) attack, which permits to integrate
a malicious hypervisor at the bottom side of the operat-
ing system [74]. Its introspection capability enables it to
overpass any security mechanisms [4]. King et al. pro-
pose in [75] a persistent VMBRs targeting both Windows
OS and Linux, and hosting malicious services undetectable
from these OSes. The blue pill attack, described in [74],
is a VMBR attack capable of infecting a host without
any reboot. The VMBR attack takes advantage from the
hypervisor oversight vulnerability to get introspection ca-
pabilities, and to be undetectable by OS-level detection
mechanisms.

3.4.2. Hypervisor
The compromising attacks may also target the hyper-

visor of the virtualization architecture. Amongst these
attacks, we can highlight hypervisor direct exploita-
tion attacks [76]. Even if they are not expected to be
exposed as much as their VM appliances, hypervisors re-
main sensitive to these direct attacks. The threats related
to these attacks affect the hypervisor itself, by tampering
it, repudiating the traceability of its behavior, disclosing
information of its configuration and the VM configuration,
and elevating the privilege of a VM user to those of the
hypervisor administrator. For instance, the work in [77]
illustrates the Xen hypervisor (and the privileged domain)
compromise by a rootkit using a weakness in the DMA im-
plementation and the Xen debug register. [78] also iden-
tifies several common attacks against hypervisors, by con-
sidering the case of local attackers. Hypervisor extension
mechanisms (extension packs, module framework) are also
critical components for the hypervisor, as they are capa-
ble of loading code, such as a malicious payload, in its
instance. Such attack is described in [78], where the Xen
loadable module framework permits to load arbitrary code
in the Xen address space. These attacks take advantage
of the resource sharing with host and virtualization imple-
mentation vulnerabilities.

Another important compromising attacks correspond to
command/control channel exploitation attacks. The
command/control channel is a privileged communication

medium between the hypervisor and a VM, as depicted
in [79]. This attacks targets the hypervisor by using
this channel as a medium to compromise it. The work
in [80] investigates how to use the command channel test-
ing feature, in order to recognize a virtual machine envi-
ronment.These attacks may typically be related to the re-
source sharing with host vulnerability.

3.4.3. Execution Environment of the Hypervisor
Compromising attacks may also include firmware ex-

ploitation attacks against the execution environment of
the hypervisor. Hypervisors are running at the top of a
hardware layer, except in the case of nested virtualization.
They are therefore constrained by the hardware layer,
which is composed of devices with their own firmwares.
These firmwares may carry their own flaws, providing the
necessary material to an attacker to compromise them.
The corresponding threats are the hardware tampering,
the information disclosure based on side channels, and the
elevation of privileges to get control on the software com-
ponents running over the hardware. For instance, such an
attack is showcased in [81], in order to compromise the
firmware of network interface cards. These attacks are
emphasized by the hard constraints regarding the upgrade
procedure of these firmwares. Such upgrades are typically
limited by the degradation of services during the upgrade
process, or by the lack of support from manufacturers.
These attacks are mainly based on the hardware oversight
and hardware upgradability vulnerabilities.

3.5. Compromise-Based Attacks
The last category of attacks are compromise-based at-

tacks. The two first categories (compromise-free and com-
promising attacks) are often the first steps towards es-
tablishing a more sophisticated attacks targeting a vir-
tualization architecture. Consequently, we consider that
compromise-based attacks require the prior compromise of
a component to be performed. These attacks typically in-
clude the case of malicious virtual machines attacking the
remainder of the virtualization architecture, and the case
of a malicious hypervisor trying to snoop on the virtual
machines it is in charge of.

3.5.1. Malicious Virtual Machines
The first category of attacks relies on malicious virtual

machines. An hypervisor hosts several VMs, which share
the same physical resources. They can be competing to
access these resources. The hypervisor resource mo-
nopolization attacks consist in a malicious VM taking
control on an hypervisor to gain an exclusive access to
these resources. This leads to the violation of the hyper-
visor resource isolation. These attacks on physical CPU
are described in [82]. Xen scheduler vulnerability is used
by a malicious virtual machine to steal compute cycles
to other co-located machines. They typically exploit the
co-residence and the virtualization method implementation
vulnerabilities.

13

Table 3: Relationships among attacks and vulnerabilities

V
M

D
en
ia
lo

f
Se
rv
ic
e

So
ft
w
ar
e
B
ad

D
es
ig
n

H
yp

.
D
en
ia
lo

f
Se
rv
ic
e

A
pp

lic
at
io
n
So

ft
w
ar
e
E
xp

lo
it
at
io
n

O
S
K
er
ne
lE

xp
lo
it
at
io
n

H
yp

er
ja
ck
in
g

H
yp

.
D
ir
ec
t
E
xp

lo
it
at
io
n

C
om

m
an

d
C
on

tr
ol

C
ha

nn
el

E
xp

lo
it
at
io
n

F
ir
m
w
ar
e
E
xp

lo
it
at
io
n

H
yp

.
C
om

pu
ta
ti
on

R
es
.
M
on

op
ol
iz
at
io
n

V
M

H
op

pi
ng

V
M

M
on

it
or
in
g
fr
om

V
M

V
M

E
sc
ap

e
to

th
e
V
M

V
M

E
sc
ap

e
to

th
e
H
os
t

V
M

M
on

it
or
in
g
fr
om

th
e
H
os
t

In
te
r-
V
M

C
om

m
un

ic
at
io
n
In
tr
os
pe

ct
io
n

V
M

M
ob

ili
ty

Runtime variable type checking
Memory deallocation
Kernel inference in userspace
Development software flaw
Access control
Possible code injection
Concurrency vulnerability
Dependency solving error
Service degradation during mgmt
Configuration issue
Kernel criticality
Inapplicable security mechanisms
Access to userspace
Hardware exposition
Co-residence
Common networking infrastructure
Other resource sharing
Resource sharing with the host
Virtualization method implementation
Hypervisor oversight
Management console oversight
Non-linear/monotonicity VM execution
Host OS - Dependency solving error
Host OS - Service degradation during mgmt
Host OS - Configuration issue
Host OS kernel - Kernel criticality
Host OS kernel - Inapplicable security mechanism
Host OS kernel - Access to userspace
Host OS kernel - Hardware exposition
Hardware oversight
Hardware physical property
Hardware upgradibility
Hardware physical access

14

The VM hopping [83] attacks consist in a malicious
VM that directly targets another VM from the virtualiza-
tion environment. The related threat concerns the VM
applications, their runtime and utilities, and their OS ker-
nel. They permit the tampering and the elevation of priv-
ilege in the virtualization architecture. These attacks can
typically use common networking infrastructure and other
resource sharing vulnerabilities to access the targeted VM.
They can exploit software interfaces, configuration and
hardware exposure vulnerabilities to perform a compro-
mise.

The attacks regarding the VM monitoring from a
VM consist in collecting information about a VM, without
compromising it. They can typically rely on a passive mon-
itoring of another virtual machine. The related threats are
about VM applications, their runtime and their OS ker-
nel, through the disclosure of information and the breach-
ing of the non-repudiation principle. These attacks are
mainly conditioned by the exploitation of side channels,
and the co-residence of VMs. The work in [84] illustrates
the by-passing of an OS protection based on hypervisor
side channels. The work in [85] makes use of co-residence
and physical properties to affect memory pages owned by
other VMs, to proceed to in-memory information leakage
or even to build a hidden channel between both VMs. The
co-residence issue is especially challenging in a public cloud
infrastructure. The work in [48] details the steps to reach
a VM co-residence with the targeted VM. Finally, authors
of [86] explore how co-residence can contribute to cryptog-
raphy key leaks based on CPU L1-cache. These attacks are
based on the hardware physical property, the virtualization
method implementation and the inter-VM crosstalks vul-
nerabilities.

The VM escape to a VM attack [4] aims at com-
promising the hypervisor, in order to access another VM.
It is very similar to a VM hopping, and corresponds to
the same threats, but relies on the hypervisor compromise
to break the isolation. VM-hypervisor crosstalks vulnera-
bilities are typically involved in these attacks. The VM
escape to an host relies on the hypervisor compromise
from the malicious VM, in order to gain further control.
In most of the cases, these attacks target legitimate in-
terfaces between the hypervisor and the malicious VM to
compromise the hypervisor, such as the VENOM [87] and
the Cloudburst attack [54]. These attacks take advantage
of the VM-hypervisor crosstalks vulnerabilities.

3.5.2. Malicious Hypervisor
The second category of attacks relies on a malicious hy-

pervisor. The VM introspection / monitoring attack
from the host exploits a malicious hypervisor to analyse
the behavior of a VM and to infer its internal state. Dif-
ferent introspection techniques are presented in [58] to
track the activities of a virtual machine. For instance, [59]
demonstrates an approach for extracting a secret key from
a memory dump. Authors of [88] propose a strategy to
extract secrets from a AMD SEV-protected VM: a mali-

cious hypervisor manipulating the mapping between guest
physical memory and the host physical memory enables
a malicious distant client to obtain secret data. A shown
in [59], the management console can also serve as a support
to perform such a malicious monitoring. These attacks are
typically based on resource sharing with the host and hy-
pervisor oversight vulnerabilities.

The inter-VM communication introspection at-
tacks may also provide interesting informations regading
VM communications with other hosted VMs or hosts,
through I/O or networking subsystems that are handled
by the hypervisor. This raises privacy issues related to
communication interception and introspection. The threat
affects the OS kernel, the runtime environment and the ap-
plications in VMs, causing potential disclosure of informa-
tions. The hypervisor oversight and resource sharing with
the host vulnerabilities contribute to these attacks. The
VM mobility attacks consists in an attacker using the
export feature of the hypervisor to obtain the VM storage
device, the virtual hardware environment configuration,
and the current state of the memory and vCPU related to
a VM. They can typically be based on the management
console vulnerabilities.

Table 3 describes the relationships among the vulnera-
bilities of the reference architecture and the attacks that
they leverage.

4. Counter-Measures and Recommendations

After having classified security attacks, we propose dif-
ferent counter-measures and recommendations with regard
to the reference architecture. Therefor, we consider two
major requirements for counter-measures. To limit their
cost on resource addressing protection, these ones should
have a minimal impact on the operability of protected re-
sources. Moreover, to ensure that counter-measures con-
tributes to the protection effort, they should not impact
on the security benefits brought by the virtualization it-
self.We provide a threefold classification for these counter-
measures. Fig. 5 describes this classification, while Ta-
ble 4 exposes the benefits and limits of identified counter-
measures in terms of coverage, requirements and costs. Ta-
ble 5 specifies the relationships among threats and counter-
measures/recommendations. This classification includes
counter-measures consisting in integrating security mech-
anisms at the design of resources, counter-measures aiming
at reducing the attack surface of resources, and counter-
measures enabling a higher adaptation through security
programmability.

4.1. Integration of security mechanisms at design time

A first category of counter-measures consists of address-
ing the protection of resources (or components) at design
time through the integration of security mechanisms. This
may concern both the virtual machines and the hypervisor.

15

C
ou

nt
er
-m

ea
su
re
s

Integration of Security Mechanisms at Design Time VM Protection Kernel-based Counter-measures
Application-based Counter-measure
Secure Software Management

Hypervisor Protection Execution Environment Counter-measure
Granularity of the Hypervisor Arch.
Networking and Storage ProtectionMinimization of the Attack Surface Formal Verification of Code

Unnecessary Capability Dropping
Outsourcing of In-VM Software Mgmt

Adaptation based on Security Programmability Monitoring of Built Resources
Orchestration of Security Mechanisms
Security Programmability

Figure 5: Classification of Countermeasures (or Recommendations).

4.1.1. Protection of virtual machines

The protection of virtual machine resources can be per-
formed at various levels. Counter-measures can be con-
sidered at the OS kernel. For instance, the address
space layout randomization (ASLR) method permits to
prevent the exploitation of memory management vulnera-
bilities [89]. From an architectural viewpoint, monolithic
OS kernels may facilitate security attacks due to the lack of
isolation amongst kernel subsystems. PerspicuOS [90] ad-
dresses this issue, by fragmenting the OS kernel code with
an isolation of privileges. The nested kernel is the OS ker-
nel subpart whose memory access is privileged, while the
outer kernel corresponds to subsystems relying on inner
kernel API for memory access. These APIs virtualize the
MMU (Memory Management Unit) to enforce protection
on the outer kernel memory access. However, the ability to
enforce kernel-based counter-measure is subjected either to
the existence of relevant implementations in the OS kernel,
or the ability of the latter to be extended. This statement
jeopardize the security of operating system restricting the
access to their programming interfaces. The isolation of
the OS kernel components argues in favor of unikernels,
since the minimalism of their architecture leads to the dis-
patching of hardware management routines accross several
unikernel VMs.

The counter-measures also concern the applications of
virtual machines, as they represent a major entry point.
The variety of applications and runtime environments to
be considered in that context overpasses the scope of our
analysis. Without constrains on the runtime environ-
ment, this often supposes specialized security mechanisms
adapted to each applications. This comes with the burden
to secure a more important code base. In the meantime,
the protection of applications from untrusted execution
environments can be addressed generically. OS-based so-
lutions such as the XOMOS OS [91] are part of the solution
to this issue. Shielding the application execution is also an
interesting approach to protect applications from a mali-
cious OS. For instance, Haven [92] exploits the Intel SGX
technology to provide a protective layer against OS-based
and physical attacks. However, both of them comes with
heavy requirements on the the hardware operating the ap-
plication. Therefore, constraining the application runtime

is a reasonable trade off to enable a extensive protection on
application with a limited requirements on the platform.
The usage of unikernels constitutes a solution to have a
minimal code base and to reduce the attack surface. In
addition, as the runtime environments are constrained by
the unikernel framework, this restricts the complexity of
their support from a security perspective.

From a software management viewpoint, package
managers may be secured and may contribute to prevent
attacks on virtual machines. Approaches such as [69] in-
troduce package signature mechanisms to deal with man-
in-the-middle attacks, as well as package alterations. Com-
plementarily, [71] exploits solving techniques for the satis-
fiability problem (SAT) to cope with dependency solving
issues. In the case of unikernels, the software manage-
ment is performed outside the virtual machines, reduc-
ing the consequences of its flaws to the supported appli-
ance. But, these counter-measures are firmly bound to the
usage of a package manager implementing these counter-
measures.Any software management operation made out-
side this framework put at stake the security of the system.

4.1.2. Protection of the hypervisor
The hypervisor provides an execution environment

to the VMs, enabling them to run in accordance with the
VMM properties [7]. In that context, [93] proposes the use
of hardware to protect VMs from the host, by enforcing
isolation through hardware resource access management
and privacy based on a trusted platform module (TPM).
However, this counter-measure supposes important pre-
requisites on the hardware architecture, which may not
be considered in practice. Additionally, [59] introduces a
method to protect the hypervisor from host VMs by filter-
ing management hypercalls and checking their integrity at
the invocation. Virtual CPU context integrity checks as
well as virtual memory encryption are enforced during the
execution of the hypervisor. The overhead affecting the
management operation can be more remarkable on VMs
with a short lifespan. In the area of OS-level virtualiza-
tion, the Intel safeguard extension is used by SCONE [94]
to protect containers against untrusted execution environ-
ments. This framework provides the necessary building
blocks to design enclaved linux containers, that are re-

16

Table 4: Pros and Cons Comparison Table with Respect to Counter-Measures
Counter-measures Coverage Requirements Cost
Kernel-based Counter- OS-Kernel, Existence of mechanism implementations Medium
measure Host-OS Kernel for the operated kernels
Application-based Application, Existence of mechanism implementations for Medium
Counter-measure Runtime all the operated applications and their runtime
Secure Software OS-Kernel, Software management only made in secure Medium
Management Application, Runtime package managers
Execution Environment Hypervisor, Existence of mechanism implementations in Low
Counter-measure Host-OS Kernel the operated hypervisors
Granularity of the Hypervisor Modular architecture of the hypervisor Low
Hypervisor Arch.
Networking and Storage Hypervisor Exposition of storage and networking Low
Protection interfaces by the hypervisor
Formal Verification of OS Kernel, Hypervisor, Limited code base, design and maintainability High
Code Host-OS Kernel of the formal proof
Unecessary Capability All Software Components Modular design and/or support for disabling Medium
Dropping features at runtime
Outsourcing of In-VM Application, Runtime, Short-living VM instance, secured image Low
Software Mgmt OS Kernel build environment
Monitoring of Built Application, Runtime, Existence of interfaces to monitor and Medium
Resources OS Kernel semantic knowledge of monitored data
Orchestration of Security Application, Runtime, Specification of security requirements and Low
Mechanisms OS Kernel mechanism features
Security Programmability Application, Runtime, Exposure of reconfiguration interfaces, or Medium

OS Kernel possibility to restart components
The cost category evaluates qualitatively the counter-measure configuration process: once during virtualization

environment set-up (low), once per VM image building (medium), or at each software update (high).

silient against tampering attacks from the OS, with a lim-
ited trusted computing base (TCB). The system calls are
performed asynchronously with the assistance of a module
outside the enclave, and therefor requires a modification
of the host OS. Complementary, the exploitation of com-
mand channels can be avoided by obfuscation methods, as
detailed in [80], but this mitigation degrades the function-
ality of the hypervisor. [82] also describes a solution to
CPU monopolization attacks, by switching virtual CPU
scheduling to alternative methods (e.g. exact scheduler,
Bernouilli scheduler and uniform scheduler) to limit flaw
exploitations. This counter-measure can heavily impact
VM usage, and the scheduling method should be assessed
to meet operationnal constrains (e.g. service level agree-
ment).

The granularity of the hypervisor architecture also im-
pacts on security. In order to avoid a monolithic architec-
ture, [95] uses hypervisor virtualization features to decom-
pose management OS capabilities across dedicated service
VMs. These VMs are framed by coercitive security con-
straints, such as hypercall restrictions, security audits and
frequent reboots. However, this approach only focuses
on the management console segmentation, and does not
address the internal subsystems of the hypervisor. The
NOVA [96] hypervisor goes further, by proposing a micro-
hypervisor architecture. A minimum trusted computing

base (TCB) resides on the host kernel (micro-hypervisor),
while each virtual machine dedicated VMMs are executed
in the user space, meaning host device drivers and remain-
ing services. The lack of maturity of this approach intro-
duces limitations regarding guest OS compatibities.

It is also important to cope with networking and stor-
age security. In that context, the enforcement of access
control security policies on VM resources is explored by the
sHype hypervisor [97]. This solution, based on Xen, en-
ables the enforcement of policies related to the mandatory
access control (MAC) on VM resource access, including
network communications, standard I/O communications
and shared memory. More precisely, the reference moni-
tor enforces the policy on event channel operations, shared
memory requesting and domain management operations.
The presented solution is however limited to access control
enforcement with the MAC model on a single hypervisor
instance. TVDSEC [98] addresses the access control pol-
icy enforcement over several hypervisor instances. In re-
turn, only the enforcement over control flows is considered.
Networking may also serve for performing resource quar-
antines. For instance, the NICE framework [99] exploits a
network controller to put in a quarantine state VMs that
are potentially compromised. This framework is however
only compatible with Openflow-configured networks.

The integration of security mechanisms at design time

17

is an important topic that induces several research chal-
lenges in terms of heterogeneity and distribution. The
identified counter-measures clearly highlighted this het-
erogeneity of resources requiring security mechanisms and
the interfaces to be used for their configuration. While
the light-weight architecture of unikernels may facilitate
the integration of security mechanisms, we believe that
other virtualization models could benefits of on-going re-
search efforts in the system management area. In particu-
lar, the research efforts currently done in building and de-
veloping Infrastructure-as-Code solutions [100] could con-
tribute to the design of security-constrained applications
with complex runtimes in other virtualization models. In
addition, we think that orchestration languages, such as
the Topology and Orchestration Specification for Cloud
Applications (TOSCA) or the OpenStack Heat Orchestra-
tion Template (HOT), constitute interesting supports to
be extended in order to facilitate this integration at de-
sign time. They permit to specify and orchestrate cloud
services whose resources may be deployed over several in-
frastructures, considering potential inter-tenant and inter-
cloud collaborations. The services are described in the
form of topologies with a set of resources and their rela-
tionships. It is possible to specify orchestration processes
related to a service, these ones impacting on the state of
resources and relationships. Research efforts should be
considered to enable the specification of security require-
ments with different security levels that could be associ-
ated to orchestration and instanciation processes, and the
extension of these languages for defining and automating
the integration of security mechanisms, when elaborating
the services.

4.2. Minimization of the attack surface
A second category of counter-measures concern the min-

imization of the attack surface, by verifying the properties
and restricting the capabilities of resources. In particu-
lar we focus on verification and capability dropping tech-
niques.
Formal verification can be applied to both the OS

kernel and the applications of virtual machines. It permits
to assess the security properties of the components of the
architecture, but also to verify the design of security mech-
anisms (e.g. cryptographic libraries). For instance, Klein
et al. [101] introduce the design and the implementation
of a micro-kernel, SEL4, featuring formal specifications. It
relies on the Haskell purely functional programming lan-
guage. The source code can be automatically translated
into a formal specification that is then checked. The Hy-
perkernel [102] project proposes an OS kernel that can be
assessed using the Z3 satisfiability modulo theories (SMT)
prover. This OS makes use of the hardware-based virtual-
ization feature to enforce an isolation between the kernel
residing in root-mode and the process running in non-root
mode. These approaches may imply an important cost for
modifying/extending the code framed for formal specifica-
tions, and often suppose to define a modular architecture

to prove the properties of components independently. Al-
ternative approaches have also emerged to protect appli-
cations and guarantee security properties, without imply-
ing formal checking. Typically, the virtual ghost frame-
work [103] permits to protect user applications from an
untrusted operating system. It enables the applications
to control their own operating system-proof sandbox, and
a layer interleaving the OS and the hardware is respon-
sible for enforcing the sandbox isolation. The protection
against control flow injections is established at the appli-
cation compilation time by LLVM intermediate code in-
spections. Formal verification methods are also applied to
check the hypervisors. For instance, work in [104] has for-
mally specified parts of an hypervisor based on Xen. But
the authors acknowledge that this approach is too expen-
sive to be applied to an entire product.

It is also possible to apply capability dropping tech-
niques. Hardening methods are part of them and per-
mit to reduce the attack surface of a system, by impos-
ing a system to restrict parameter values and use specific
(security) software components. Most applications come
with their very specific recommendations for hardening.
This requires a specific knowledge of the applications to be
protected while making configuration with multiple appli-
cations and runtimes complex to be extensively handled.
The images of resources can also be hardened in such a
way that their applications are dedicated to a specific pur-
pose, while considering their lifetime is restricted in ac-
cordance. A directory of unikernels is proposed in [105],
facilitating the usage of constrained and ephemeral vir-
tualized resources. This approach is suited only for vir-
tualized resources with featuring a very short boot time,
excluding other virtualized resources than unikernel. In
that context, we can also restrict the virtual hardware en-
vironment. Embedding unused hardware increases the ex-
posure to attacks. An example of such protection is given
in [106], where the authors export the virtual hardware en-
vironment stack to the VM itself. The solution is based on
a modified version of the KVM hypervisor delegating its
monitor to the VMs. It increases the isolation between the
hypervisor and the VM, and permits a finely tailored vir-
tual hardware environment for VMs. However, this implies
important modifications in the code base of the hypervi-
sor, requiring a per-hypervisor engineering, which has not
been performed on other hypervisors than KVM.

The outsourcing of in-VM software management
contributes also to the code base limitation efforts in vir-
tualized environments. Most operating system images are
provided with their software management tools. There-
fore, the presence of these tools in the VM images can be
questioned, as most of the software management opera-
tions are performed before the operation of applications.
Delegating the software management to the image manu-
facturing process contributes to protect VM applications
against related attacks and compromises. An example of
such outsourcing is given in [69], in accordance with se-
curity criteria. However, this approach supposes that (i)

18

Table 5: Relationships among Threats and Countermeasures (or Recommendations)
Application Runtime OS Kernel Hypervisor H-OS Kernel

Kernel-based Counter-measure T,I,D,E T,I,D,E
Application-based Counter-measure S,T,R,I,D,E S,T,R,I,D,E
Secure Software Management S,T,D S,T,D S,T,D S,T,D
Execution Environment Counter-measure D D D T,R,I,E
Granularity of the Hypervisor Arch. D,E
Networking and Storage Protection T,I,E T,I,E T,I,E T,I,E
Formal Verification of Code T,R,I,D,E T,R,I,D,E T,R,I,D,E T,R,I,D,E T,R,I,D,E
Unecessary Capability Dropping T,I,E T,I,E T,I,E T,I,E
Outsourcing of In-VM Software Mgmt T,I,E T,I,E T,I,E
Monitoring of Built Resources S,T,R,I,D,E S,T,R,I,D,E S,T,R,I,D,E S,T,R,I,D,E S,T,R,I,D,E
Orchestration of Security Mechanisms S,T,R,I,D,E S,T,R,I,D,E S,T,R,I,D,E S,T,R,I,D,E S,T,R,I,D,E
Security Programmability S,T,R,I,D,E S,T,R,I,D,E S,T,R,I,D,E S,T,R,I,D,E S,T,R,I,D,E
Notation: Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service and Elevation of Privilege.

the manufacturing chain of VM image is trusted and (ii)
the VM instances cannot receive security updates, leaving
long-leaving VM instances vulnerable to new attacks, and
arguing in favor of short-living VM instances.

The minimization of the attack surface also poses im-
portant research challenges in terms of adaptation to new
hardware facilities and in terms of automation for resource
(re-)generations. These efforts are of course constrained by
the hosting environment providing the applications and
by the services to be provided. These constraints define
a baseline that is specific to both the infrastructures and
the applications to be operated. For instance, the new op-
portunities offered by hardware acceleration, in particular
the exploitation of Graphical Processing Units (GPU) for
virtualization, is challenging this minimization. The appli-
cation has to handle the specificities of GPU processing,
leading to more heavy virtual machines. Moreover, new
solutions have to be investigated to make sure the hyper-
visor properly control the access to the GPU, considering
the multiple competing and vendors-specific solutions [107]
to implement GPU virtualization. Another major issue is
to automate the generation of virtualized resources with
a minimal attack surface. Unikernels constitute a thriv-
ing system architectural model that provides the necessary
material for a comprehensive design of virtual machines.
The limited tooling they carry at runtime imposes to prop-
erly build them, before their allocation. New management
frameworks and algorithms are required to generate these
virtualized resources, including unikernels but not limited
to them, in an on-the-fly manner. This automation will
provide a better and dynamic adaptation to contextual
changes, and may also contribute to moving target defense
strategies.

4.3. Adaptation based on security programmability
Counter-measures are efficient at reducing the attack

surface, but they have to constantly be adapted over time
to cope with new threats and attacks. The programmabil-
ity of resources and their security mechanisms contribute

to this required adaptation. It can be driven by an orches-
tration activity relying on monitoring results.

The monitoring of resources can be performed
based on introspection techniques. For instance,
VMwatcher [108] permits to determine the internal state
(memory and filesystem) of virtual machines. This en-
ables to outsource some security mechanisms such as in-
VM malware detection, but require minor extension of the
hypervisor to work. Authors of [109] propose similar tech-
niques, but applied from the guest OS during the execu-
tion phase. The proposed solution relies on a whitelist
to identify authorized applications, making it complex to
set up in virtual environments operating multiple applica-
tions. Active monitoring approaches, such as the LARES
architecture [110], are also applied to observe virtual ma-
chines based on dedicated agents or probes. This approach
requires to modify accordingly the monitored resources.
The monitoring from hypervisor also enables the detec-
tion of compromised OS-kernel. Approaches such as the
NICKLE framework [111], permit to detect rootkits in the
OS kernel by operating a dedicated hypervisor. Finally,
the hypervisor introspection is also applicable to VM vir-
tual hardware environments, as developed by Slick [112]
and TVDSEC [98]. The first one relies on a modification of
the hypervisor (experimented in KVM) to track the activ-
ity of VMs on virtual storage, while the second one focuses
on tracking VM networking flows. This approach permits
to detect compromised VMs only when malicious inter-
actions with external resources are initiated. The moni-
toring may also consist in the identification of vulnerable
configurations related to components of the virtualization
architecture. For instance, the approach in [67] proposes a
solving method exploiting the satisfiability problem (SAT)
for supporting resource management. It permits to detect
the presence of configuration vulnerabilities in a preven-
tive manner, considering the maintenance operations that
are available. The database of the the vulnerabilities has
to be provided and be adapted to the configurations of
inspected VMs.

19

Application

OS

Hypervisor

HW Resources

Application

OS

Hypervisor

HW Resources

OS

Hypervisor

HW Resources

Design Building / Deployment Operation

+

+

+

Integration of Security
Mechanisms at Design Time

Minimization of the
Attack Surface

Security
Orchestration

Adaptation Based on Security
Programmability

Application

Figure 6: Illustrated Synthesis of Recommendations with Respect to Cloud Protection.

The analysis of monitoring results can then drive the
orchestration of security mechanisms in virtualization
and cloud environments. An efficient and consistent or-
chestration is an important aspect to deploy and coordi-
nate security mechanisms. Some efforts, such as [113],
exploit orchestration languages to support access control
policies, specifically in the area of virtualized network func-
tions (VNF). Policy mining methods may also contribute
to assess the consistency of orchestration activities, by
extracting high-level policies from entities enforcing low-
level ones. Work in [114] applies this approach to extract
network-wide access control policies from the configuration
of multiple distributed firewalls.

Orchestration activities depend on the programmabil-
ity of resources and of their security mechanisms. To
enforce security decisions taken by an orchestrator, the
resources of the virtualization architecture can be dy-
namically reconfigured through programmability facilities.
These reconfigurations enable to reduce the attack sur-
face (e.g. setting up authentication) or to mitigate the
attacks (e.g. isolating a compromised host through fire-
walling). Considered resources include the different com-
ponents of the virtualization architecture, but also secu-
rity mechanisms. We can distinguish different cases: (1)
components supporting reconfigurations at runtime can
be managed through their configuration interfaces, (2)
statically-configured components that are restartable, can
be modified by changing the static configuration alter-
ation and restarting the instance, (3) components that
are non restartable (nor reconfigurable at runtime) can be
addressed through dedicated methodologies, such as dy-
namic software updates developed in [115] using IncludeOS
unikernels. Therefore, the orchestration has to acknowl-
edge the resource of the resources to be reconfigured to
know which reconfiguration strategy is to be employed.
We can also notice some recovery techniques, such as the
TASER intrusion recovery system [116], capable of track-
ing the activity of a virtual machine, and recovering its

configuration to a clean state after an attack. Nonethe-
less, this strategy requires to adapt the virtual machines
by inserting a surveillance agent.

Security programmability offers new opportunities to
protect resources, but also introduces new research chal-
lenges, in particular in the context of the permanently-
growing Internet-of-Things and the development of ser-
vices at the edge. In that context, research efforts are re-
quired to elaborate new strategies and algorithms taking
into account the complementary of endogeneous and exo-
geneous security mechanisms. Endogeneous mechanisms
consist in reducing the exposure to attacks by modify-
ing internally the resources. They consist in hardening
the configuration of virtualized resources at different lev-
els (as previously presented), and may be driven by mul-
tiple security information data sources, such CVE3 and
OVAL4 definitions, in order to prevent the exploitation of
vulnerabilities. These mechanisms may not be fully im-
plementable in the case of scarce-resource devices, such
as the ones of the Internet-of-Things. Exogeneous mecha-
nisms consist in complementing the resources based on ex-
ternal security functions. The programmability of network
resources brings flexibility to the deployment and adapta-
tion of such mechanisms. In particular, it enables to dy-
namically building and orchestrating chains that are com-
posed of different security functions. These security func-
tions may typically include firewalls, intrusion detection
systems, and data leakage prevention mechanisms. They
may be provided as middleboxes potentially deployed at
the edge, or be directly implemented on the software-
defined networking layer. Important efforts are required
to support an adequate usage of both endogeneous and
exogeneous security mechanisms in the case of Internet-
of-Things devices, this including off-loading management
methods as well as verification techniques for checking the
consistency of these mechanisms.

3Common Vulnerability Enumeration
4Open Vulnerability and Assessment Language

20

5. Conclusions

System virtualization is both a source of vulnerabili-
ties and an enabler for supporting the protection of cloud
infrastructures and services. In this article, we have de-
scribed different virtualization models, namely virtualiza-
tion based on type-I hypervisors, virtualization based on
type-II hypervisors, OS-level virtualization and unikernel
virtualization. We have detailed their design principles as
well as their relationships in order to infer a reference archi-
tecture, that serves as a support to our security analysis.
We have then analyzed the different vulnerabilities that
may affect the components of this architecture, and iden-
tified related attacks, in view of existing security threats.
We have finally highlighted several counter-measures and
recommendations with respect to their exploitation for
cloud protection. Those counter-measures have been se-
lected with the treats impacting virtualization architect in
a cloud infrastructure. These recommendations are syn-
thesized in Fig. 6, in line with different phases related
to the life-cycle of cloud resources. Our work has high-
lighted the insufficiency of architectural counter-measures
in hypervisor and virtual machines design. It pleads for
a more integrative virtualized resource preparation before
their allocation taking into account security requirements.
We also argue in favor of the simplification of the sys-
tem architecture to dwarf their attack surface and allevi-
ate their management burden. Finally, deployed security
mechanisms should be actively managed according to the
security context of the protected resources and its evolu-
tion all along the exploitation. Those recommendations
apply to the protection of the multiple assets involved in
operation of a cloud service, and can comply with very
specific security requirements.

Amongst the analyzed virtualization models, unikernels
offer interesting opportunities to reduce the attack surface
based on their simplified architecture, and to integrate se-
curity mechanisms at an early stage during the building of
unikernel images. In addition, the programmability of re-
sources, in phase with the security orchestration, can drive
the generation of such unikernel resources in the context
of cloud environments. The implementation of this orches-
tration depends also on the proper specification of security
requirements regarding the security features and rules to
be considered. Research efforts in the area of policy-based
management should take benefits from the orchestration
languages and exploit them as a support to integrate se-
curity mechanisms at design time. The maturity of tech-
nologies and tools related to these virtualization models
constitute an important lever to the instantiation of these
recommendations. The current efforts on Infrastructure-
as-Code solutions may facilitate the efficient protection of
resources more complex than unikernels. It is important
to investigate new strategies for automating the generation
of these resources with a proper control of the attack sur-
face, and contributing to a better adaptation to contextual
changes. Finally, the development of services at the edge

and the integration of Internet of Things (IoT) resources to
the Cloud introduces new important challenges in terms of
heterogeneity and distribution. In that context, new man-
agement and programmability strategies should take into
account the complementarity of endogeneous and exoge-
neous security mechanims to cope with scarce resources.

References

[1] Mell P, Grance T. The NIST Definition of Cloud Computing;.
[2] EU GDPR Information Portal;. Available from: http://

eugdpr.org/eugdpr.org-1.html.
[3] Sahoo J, Mohapatra S, Lath R. Virtualization: A Survey on

Concepts, Taxonomy and Associated Security Issues. In: Proc.
of the 2010 Second International Conference on Computer and
Network Technology (ICCNT);. p. 222–226.

[4] Pearce M, Zeadally S, Hunt R. Virtualization: Issues, Se-
curity Threats, and Solutions. ACM Computing Surveys
(CSUR);45(2):17:1–17:39.

[5] Pattaranantakul M, He R, Song Q, Zhang Z, Meddahi A.
NFV Security Survey: From Use Case Driven Threat Analysis
to State-of-the-Art Countermeasures. IEEE Communications
Surveys & Tutorials;p. 1–1.

[6] Compastié M. Software-defined Security for Distributed
Clouds. University of Lorraine; 2018. PhD Thesis.

[7] Popek GJ, Goldberg RP. Formal Requirements for Virtualiz-
able Third Generation Architectures. Communications of the
ACM (CACM);17(7):412–421.

[8] Robin JS, Irvine CE. Analysis of the Intel Pentium’s Ability to
Support a Secure Virtual Machine Monitor. In: Proceedings
of the 9th USENIX Security Symposium. DTIC Document;. p.
129–144.

[9] The Xen Project, the Powerful Open Source Industry Standard
for Virtualization;. Available from: https://xenproject.org/.

[10] Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, et al.
Xen and the Art of Virtualization. Proc of the 19th ACM sym-
posium on Operating systems principles (ASOSP);37(5):164–
177.

[11] Kivity A, Kamay Y, Laor D, Lublin U, Liguori A. KVM: the
Linux Virtual Machine Monitor. In: Proc. of the 2007 Linux
symposium. vol. 1;. p. 225–230.

[12] Oracle VM VirtualBox;. Available from: https://www.
virtualbox.org/.

[13] QEMU;. Available from: http://www.qemu-project.org/.
[14] Kata Containers - The Speed of Containers, the Security of

VMs;. Available from: https://katacontainers.io/.
[15] Kolyshkin K. Virtualization in Linux. White paper, OpenVZ;3.
[16] Felter W, Ferreira A, Rajamony R, Rubio J. An Updated

Performance Comparison of Virtual Machines and Linux Con-
tainers. In: Proc. of the 2015 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS);.
p. 171–172.

[17] Soltesz S, Pötzl H, Fiuczynski ME, Bavier A, Peterson L.
Container-based Operating System Virtualization: A Scalable,
High-performance Alternative to Hypervisors. Proc of the 2Nd
ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007 (EuroSys);41(3):275–287.

[18] Linux Containers - LXC - Introduction;. Available from:
https://linuxcontainers.org/fr/lxc/introduction/.

[19] Docker - Build, Ship, and Run Any App, Anywhere;. Available
from: https://www.docker.com/.

[20] gVisor: Container Runtime Sandbox; 2018. Available from:
https://github.com/google/gvisor.

[21] Porter DE, Boyd-Wickizer S, Howell J, Olinsky R, Hunt
GC. Rethinking the Library OS from the Top Down. Proc
of the 16th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems
(SIGPLAN);39(1):291–304.

21

[22] Cheriton DR, Duda KJ. A Caching Model of Operating System
Kernel Functionality. In: Proc. of the 1st USENIX Conference
on Operating Systems Design and Implementation (OSDI).
OSDI ’94. USENIX Association;. .

[23] Engler DR, Kaashoek MF, O’Toole J Jr. Exokernel: An Oper-
ating System Architecture for Application-level Resource Man-
agement. Proc of the 15th ACM symposium on Operating
systems principles (SOSP);29(5):251–266.

[24] Larkby-Lahet J, Madden B, Wilkinson D, Mosse D. Xomb: an
Exokernel for Modern 64-bit, Multicore Hardware. In: Proc.
of 7th workshop of operating system (WSO);. p. 1991–1998.

[25] Madhavapeddy A, Mortier R, Rotsos C, Scott D, Singh B,
Gazagnaire T, et al. Unikernels: Library Operating Systems
for the Cloud. Proc of the 18th international conference on Ar-
chitectural support for programming languages and operating
systems (ASPLOS);48(4):461–472.

[26] Bratterud A, Walla A, Haugerud H, Engelstad PE, Begnum K.
IncludeOS: A Minimal, Resource Efficient Unikernel for Cloud
Services. In: Proc. of the IEEE 7th International Conference
on Cloud Computing Technology and Science (CloudCom);. p.
250–257.

[27] Hastings R, Joyce B. Purify: Fast Detection of Memory Leaks
and Access Errors. In: Proc. of the Winter 1992 USENIX
Conference;. p. 125–138.

[28] Qin F, Lu S, Zhou Y. SafeMem: Exploiting ECC-memory
for Detecting Memory Leaks and Memory Corruption During
Production Runs. In: Proc. of the 11th International Sympo-
sium on High-Performance Computer Architecture (HPCA);.
p. 291–302.

[29] Bovet DP, Cesati M. Understanding the Linux Kernel: from
I/O ports to Process Management. 3rd ed. O’Reilly Media,
Inc.;.

[30] Solomon J, Huebner E, Bem D, Szeżynska M. User Data Per-
sistence in Physical Memory. Digital Investigation;4(2):68 –
72.

[31] Kook J, Hong S, Lee W, Jae E, Kim J. Optimization of out of
Memory Killer for Embedded Linux Environments. In: Proc.
of the 2011 ACM Symposium on Applied Computing (SAC).
ACM;. p. 633–634.

[32] CWE - 2011 CWE/SANS Top 25 Most Dangerous Software
Errors;. Available from: http://cwe.mitre.org/top25/.

[33] MITRE. CVE-2017-3791;. Available from: https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3791.

[34] Jaeger T, Sailer R, Zhang X. Analyzing Integrity Protection
in the SELinux Example Policy. In: Proc. of the 12th Con-
ference on USENIX Security Symposium (SSYM). USENIX
Association;. p. 5–5.

[35] MITRE. CVE-2016-9919;. Available from: https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9919.

[36] MITRE. CVE-2013-0273;. Available from: https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0273.

[37] Scut TT. Exploiting Format String Vulnerabilities;.
[38] MITRE. CVE-2016-3172;. Available from: https://cve.

mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9962.
[39] Johns Martin. Code-injection Vulnerabilities in Web Applica-

tions — Exemplified at Cross-site Scripting. it - Information
Technology Methoden und innovative Anwendungen der Infor-
matik und Informationstechnik;53(5):256–160.

[40] Netzer RHB, Miller BP. What Are Race Conditions?: Some
Issues and Formalizations. ACM Letters on Programming Lan-
guages and Systems (LOPLAS);1(1):74–88.

[41] Apt - Debian Wiki;. Available from: https://wiki.debian.
org/Apt.

[42] 0install: Overview;. Available from: http://0install.net/.
[43] Di Cosmo R, Zacchiroli S, Trezentos P. Package Upgrades

in FOSS Distributions: Details and Challenges. In: Proc. of
the 1st International Workshop on Hot Topics in Software Up-
grades (HotSWUp). HotSWUp ’08. ACM;. p. 7:1–7:5.

[44] Crameri O, Knezevic N, Kostic D, Bianchini R, Zwaenepoel W.
Staged Deployment in Mirage, an Integrated Software Upgrade
Testing and Distribution System. In: Proc. of the Twenty-first

ACM Symposium on Operating Systems Principles (SIGOPS).
SOSP ’07. ACM;. p. 221–236. Event-place: Stevenson, Wash-
ington, USA.

[45] Heyens J, Greshake K, Petryka E. MongoDB Databases at
Risk. Center for IT-Security, Privacy, and Accountability;.

[46] Liedtke J. On Micro-kernel Construction. In: Proc. of the
Fifteenth ACM Symposium on Operating Systems Principles
(SOSP). SOSP ’95. ACM;. p. 237–250.

[47] Madhavapeddy A, Scott DJ. Unikernels: Rise of the Virtual
Library Operating System. Queue;11(11):30:30–30:44.

[48] Ristenpart T, Tromer E, Shacham H, Savage S. Hey, You,
Get off of My Cloud: Exploring Information Leakage in Third-
party Compute Clouds. In: Proc. of the 16th ACM Conference
on Computer and Communications Security (CCS). CCS ’09.
ACM;. p. 199–212.

[49] Bazm M, Lacoste M, Südholt M, Menaud J. Side-channels
Beyond the Cloud Edge: New Isolation Threats and Solutions.
In: Proc. of the 1st Cyber Security in Networking Conference
(CSNet);. p. 1–8.

[50] Open vSwitch;. Available from: http://www.openvswitch.
org/.

[51] Tak B, Isci C, Duri S, Bila N, Nadgowda S, Doran J.
Understanding Security Implications of Using Containers in
the Cloud. In: 2017 USENIX Annual Technical Confer-
ence (USENIX ATC 17). USENIX Association;. p. 313–319.
Available from: https://www.usenix.org/conference/atc17/
technical-sessions/presentation/tak.

[52] MITRE. CVE-2015-3456;. Available from: http://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2015-3456.

[53] Matousek P. VENOM, Don’t Get Bitten;. Available from:
https://access.redhat.com/blogs/product-security/
posts/1976633.

[54] Kortchinsky K. Cloudburst. Black Hat USA;Available
from: http://www.blackhat.com/presentations/bh-usa-09/
KORTCHINSKY/BHUSA09-Kortchinsky-Cloudburst-PAPER.pdf.

[55] MITRE. CVE-2007-1744;. Available from: http://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2007-1744.

[56] MITRE. CVE-2012-0217;. Available from: http://www.cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0217.

[57] Quist D, Smith V, Computing O. Detecting the Presence of
Virtual Machines Using the Local Data Table. Offensive Com-
puting;.

[58] Nance K, Bishop M, Hay B. Virtual Machine Introspec-
tion: Observation or Interference? IEEE Security &
Privacy;6(5):32–37.

[59] Li C, Raghunathan A, Jha NK. Secure Virtual Machine Ex-
ecution under an Untrusted Management OS. In: Proc. of
the 3rd IEEE International Conference on Cloud Computing
(CLOUD);. p. 172–179.

[60] Garfinkel T, Rosenblum M, others. A Virtual Machine Intro-
spection Based Architecture for Intrusion Detection. In: Proc.
of the 2003 Network & Distributed System Security Sympo-
sium (NDSS). vol. 3;. p. 191–206.

[61] Kocher P, Jaffe J, Jun B. Differential Power Analysis. In:
Wiener M, editor. Proc. of the 19th Annual International Cryp-
tology Conference (CRYPTO). Springer Berlin Heidelberg;. p.
388–397.

[62] Wojtczuk R, Rutkowska J. Attacking Intel Trusted Execution
Technology. Black Hat DC;2009.

[63] Torr P. Demystifying the Threat Modeling Process. IEEE
Security & Privacy;3(5):66–70.

[64] MITRE. CVE-2014-0230;. Available from: https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0230.

[65] Gu W, Kalbarczyk Z, Iyer RK, Yang Z. Characterization of
Linux Kernel Behavior under Errors. In: Proc. of the In-
ternational Conference on Dependable Systems and Networks
(DSN). vol. 00;. p. 459–468.

[66] Lin CH, Chen CH, Laih CS. A Study and Implementation
of Vulnerability Assessment and Misconfiguration Detection.
In: Proc. of the 2008 IEEE Asia-Pacific Services Computing
Conference (APSCC);. p. 1252–1257.

22

[67] Barrère M, Badonnel R, Festor O. A SAT-based Autonomous
Strategy for Security Vulnerability Management. In: Proc. of
the 2014 IEEE Network Operations and Management Sympo-
sium (NOMS);. p. 1–9.

[68] Luettmann BM, Bender AC. Man-in-the-middle at-
tacks on auto-updating software. Bell Labs Technical
Journal;12(3):131–138.

[69] Cappos J, Samuel J, Baker S, Hartman JH. A Look in the
Mirror: Attacks on Package Managers. In: Proc. of the 15th
ACM Conference on Computer and Communications Security
(CCS). CCS ’08. ACM;. p. 565–574.

[70] Pincus J, Baker B. Beyond Stack Smashing: Recent Ad-
vances in Exploiting Buffer Overruns. IEEE Security &
Privacy;2(4):20–27.

[71] Abate P, Cosmo RD, Treinen R, Zacchiroli S. A Modular Pack-
age Manager Architecture. Information and Software Technol-
ogy;55(2):459 – 474.

[72] Checkoway S, Shacham H. Iago Attacks: Why the System Call
API is a Bad Untrusted RPC Interface. In: Proc. of the Eigh-
teenth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).
ACM;. p. 253–264.

[73] Op F. The FU Rootkit;.
[74] Carbone M, Zamboni D, Lee W. Taming Virtualization. IEEE

Security & Privacy;6(1):65–67.
[75] King ST, Chen PM. SubVirt: implementing malware with

virtual machines. In: Proc. of the 2006 IEEE Symposium on
Security and Privacy (S&P);. p. 14 pp.–327.

[76] Horn J. Pandavirtualization: Exploiting the Xen hypervi-
sor;. Available from: https://googleprojectzero.blogspot.
fr/2017/04/pandavirtualization-exploiting-xen.html.

[77] Wojtczuk R. Subverting the Xen hypervisor. In:
Black Hat USA. vol. 2008;. Available from: https:
//www.blackhat.com/presentations/bh-usa-08/Wojtczuk/
BH_US_08_Wojtczuk_Subverting_the_Xen_Hypervisor.pdf.

[78] Ormandy T. An Empirical Study into the Security Exposure
to Hosts of Hostile Virtualized Environments;.

[79] Waldspurger CA. Memory Resource Management in VMware
ESX Server. Proc of the 5th Symposium on Operating Systems
Design and Implementation (OSDI);36:181–194.

[80] Carpenter M, Liston T, Skoudis E. Hiding Virtualization from
Attackers and Malware. IEEE Security Privacy;5(3):62–65.

[81] Wojtczuk R, Rutkowska J. Following the White Rabbit:
Software attacks against Intel VT-d technology;. Avail-
able from: https://invisiblethingslab.com/resources/
2011/SoftwareAttacksonIntelVT-d.pdf.

[82] Zhou F, Goel M, Desnoyers P, Sundaram R. Scheduler Vulner-
abilities and Coordinated Attacks in Cloud Computing. Jour-
nal of Computer Security;21(4):533–559.

[83] Jasti A, Shah P, Nagaraj R, Pendse R. Security in multi-
tenancy cloud. In: 44th Annual 2010 IEEE International Car-
nahan Conference on Security Technology;. p. 35–41.

[84] Barresi A, Razavi K, Payer M, Gross TR. CAIN: Silently
Breaking ASLR in the Cloud. In: Proc. of the 2015 Workshop
on Offensive Technologies (WOOT);. .

[85] Xiao Y, Zhang X, Zhang Y, Teodorescu M. One Bit Flips, One
Cloud Flops: Cross-vm Row Hammer Attacks and Privilege
Escalation. In: Proc. of the 25th USENIX Security Symposium
(Security);. p. 19–35.

[86] Zhang Y, Juels A, Reiter MK, Ristenpart T. Cross-VM Side
Channels and Their Use to Extract Private Keys. In: Proc. of
the 2012 ACM Conference on Computer and Communications
Security (CCS). CCS ’12. ACM;. p. 305–316.

[87] Geffner J. VENOM Vulnerability;. Available from: http://
venom.crowdstrike.com/.

[88] Morbitzer M, Huber M, Horsch J, Wessel S. SEVered: Subvert-
ing AMD’s Virtual Machine Encryption. In: Proc. of the 11th
European Workshop on Systems Security (EuroSec). ACM;. p.
1:1–1:6.

[89] Shacham H, Page M, Pfaff B, Goh EJ, Modadugu N, Boneh
D. On the Effectiveness of Address-space Randomization. In:

Proc. of the 11th ACM Conference on Computer and Commu-
nications Security (CCS). CCS ’04. ACM;. p. 298–307.

[90] Dautenhahn N, Kasampalis T, Dietz W, Criswell J, Adve V.
Nested Kernel: An Operating System Architecture for Intra-
Kernel Privilege Separation. Proc of the 20th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS);43(1):191–206.

[91] Lie D, Thekkath CA, Horowitz M. Implementing an Untrusted
Operating System on Trusted Hardware. In: Proc. of the 19th
ACM Symposium on Operating Systems Principles (SOSP).
SOSP ’03. ACM;. p. 178–192.

[92] Baumann A, Peinado M, Hunt G. Shielding Applications from
an Untrusted Cloud with Haven. ACM Transactions on Com-
puter Systems (TOCS);33(3):8:1–8:26.

[93] Szefer J, Lee RB. A Case for Hardware Protection of Guest
VMs from Compromised Hypervisors in Cloud Computing. In:
Proc. of the 31st International Conference on Distributed Com-
puting Systems Workshops (ICDCSW);. p. 248–252.

[94] Arnautov S, Trach B, Gregor F, Knauth T, Martin A, Priebe
C, et al. SCONE: Secure Linux Containers with Intel SGX. In:
Proc. of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI). vol. 16;. p. 689–703.

[95] Colp P, Nanavati M, Zhu J, Aiello W, Coker G, Deegan T,
et al. Breaking Up is Hard to Do: Security and Functionality
in a Commodity Hypervisor. In: Proc. of the Twenty-Third
ACM Symposium on Operating Systems Principles (SOSP).
SOSP ’11. ACM;. p. 189–202.

[96] Steinberg U, Kauer B. NOVA: AMicrohypervisor-based Secure
Virtualization Architecture. In: Proc. of the 5th European
Conference on Computer Systems (EuroSys). ACM;. p. 209–
222.

[97] Sailer R, Jaeger T, Valdez E, Caceres R, Perez R, Berger S,
et al. Building a MAC-based security architecture for the Xen
open-source hypervisor. In: Proc. of the 21st Annual Com-
puter Security Applications Conference (ACSAC);. p. 10 pp.–
285.

[98] Tupakula U, Varadharajan V. TVDSEC: Trusted Virtual Do-
main Security. In: Proc. of the Fourth IEEE International
Conference on Utility and Cloud Computing (UCC);. p. 57–
64.

[99] Chung CJ, Khatkar P, Xing T, Lee J, Huang D. NICE: Net-
work Intrusion Detection and Countermeasure Selection in Vir-
tual Network Systems. IEEE Transactions on Dependable and
Secure Computing;10(4):198–211.

[100] Artac M, Borovssak T, Nitto ED, Guerriero M, Tamburri
DA. DevOps: Introducing Infrastructure-as-Code. In: 2017
IEEE/ACM 39th International Conference on Software Engi-
neering Companion (ICSE-C); 2017. p. 497–498.

[101] Klein G, Elphinstone K, Heiser G, Andronick J, Cock D, Derrin
P, et al. seL4: Formal Verification of an OS Kernel. In: Proc.
of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles (SOSP). ACM;. p. 207–220.

[102] Nelson L, Sigurbjarnarson H, Zhang K, Johnson D, Bornholt
J, Torlak E, et al. Hyperkernel: Push-Button Verification of
an OS Kernel. In: Proc. of the 26th Symposium on Operating
Systems Principles (SOSP). SOSP ’17. ACM;. p. 252–269.

[103] Criswell J, Dautenhahn N, Adve V. Virtual Ghost: Protecting
Applications from Hostile Operating Systems. In: Proc. of
the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).
ACM;. p. 81–96.

[104] Freitas L, McDermott J. Formal methods for security in the
Xenon hypervisor. International Journal on Software Tools for
Technology Transfer. 2011 May;13(5):463.

[105] Madhavapeddy A, Leonard T, Skjegstad M, Gazagnaire T,
Sheets D, Scott DJ, et al. Jitsu: Just-In-Time Summoning
of Unikernels. In: Proc. of the 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI).;. p.
559–573.

[106] Williams D, Koller R. Unikernel Monitors: Extending Min-
imalism Outside of the Box. In: Proc. of the 8th USENIX

23

Workshop on Hot Topics in Cloud Computing (HotCloud).
USENIX Association;. .

[107] Hong CH, Spence I, Nikolopoulos DS. GPU Virtualization
and Scheduling Methods: A Comprehensive Survey. ACM
Computing Surveys. 2017 Jun;50(3):1–37. Available from:
http://dl.acm.org/citation.cfm?doid=3101309.3068281.

[108] Jiang X, Wang X, Xu D. Stealthy Malware Detection Through
Vmm-based "Out-of-the-box" Semantic View Reconstruction.
In: Proc. of the 14th ACM Conference on Computer and Com-
munications Security (CCS). CCS ’07. ACM;. p. 128–138.

[109] Christodorescu M, Sailer R, Schales DL, Sgandurra D, Zam-
boni D. Cloud Security Is Not (Just) Virtualization Security:
a Short Paper. In: Proc. of the 2009 ACM workshop on Cloud
computing security (CCSW). ACM Press;. p. 97–102.

[110] Payne BD, Carbone M, Sharif M, Lee W. Lares: An Archi-
tecture for Secure Active Monitoring Using Virtualization. In:
Proc. of the 2008 IEEE Symposium on Security and Privacy
(S&P);. p. 233–247.

[111] Riley R, Jiang X, Xu D. Guest-Transparent Prevention of
Kernel Rootkits with VMM-Based Memory Shadowing. In:
Lippmann R, Kirda E, Trachtenberg A, editors. Proc. of the
11th International Symposium of Recent Advances in Intrusion
Detection (RAID). Springer Berlin Heidelberg;. p. 1–20.

[112] Bacs A, Giuffrida C, Grill B, Bos H. Slick: An Intrusion Detec-
tion System for Virtualized Storage Devices. In: Proc. of the
31st Annual ACM Symposium on Applied Computing (SAC).
ACM;. p. 2033–2040.

[113] Pattaranantakul M, Tseng Y, He R, Zhang Z, Meddahi A. A
First Step Towards Security Extension for NFV Orchestrator.
In: Proc. of the ACM International Workshop on Security in
Software Defined Networks & Network Function Virtualization
(SDN-NFVSec). SDN-NFVSec ’17. ACM;. p. 25–30.

[114] Hachana S, Cuppens-Boulahia N, Cuppens F. Mining a high
level access control policy in a network with multiple firewalls.
Journal of Information Security and Applications;20:61–73.

[115] Walla AA. Live Updating in Unikernels [Master’s Thesis];.
Available from: https://www.duo.uio.no/bitstream/handle/
10852/59240/live-updating-unikernels.pdf?sequence=45.

[116] Goel A, Po K, Farhadi K, Li Z, de Lara E. The Taser Intru-
sion Recovery System. Proc of the 20th ACM symposium on
Operating systems principles (SOSP);39(5):163–176.

24

