

Cold-water coral habitats in the Penmarc'h and Guilvinec Canyons (Bay of Biscay): Deep-water versus shallow-water settings

Lies de Mol, David van Rooij, Hans Pirlet, Jens Greinert, Norbert Frank, Frédéric Quemmerais, Jean-Pierre Henriet

► To cite this version:

Lies de Mol, David van Rooij, Hans Pirlet, Jens Greinert, Norbert Frank, et al.. Cold-water coral habitats in the Penmarc'h and Guilvinec Canyons (Bay of Biscay): Deep-water versus shallow-water settings. Marine Geology, 2011, 282 (1-2), pp.40-52. 10.1016/j.margeo.2010.04.011 . hal-02890268

HAL Id: hal-02890268 https://hal.science/hal-02890268

Submitted on 24 Jun 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Cold-water coral habitats in the Penmarc'h and Guilvinec Canyons (Bay of Biscay): Deep-water versus shallow-water settings

Lies De Mol^{a, *}, David Van Rooij^a, Hans Pirlet^a, Jens Greinert^{a, b}, Norbert Frank^c, Frédéric Quemmerais^{d, e}, Jean-Pierre Henriet^a

^a Renard Centre of Marine Geology (RCMG), Department of Geology and Soil Science, Ghent University, Krijgslaan 281 S8, B-9000 Gent, Belgium

^b Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, NL-1790 AB Den Burg, Texel, The Netherlands

^c Laboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL/CEA-CNRS-UVSQ, Bât.12, Avenue de la Terrasse, F-91190 Gif-sur-Yvette, France

^d Agence des aires marines protégées, 42 bis Quai de la Douane, BP 42932, F-29229 Brest Cedex 2, France ^e IFREMER, DEEP/LEP, BP 70, F-29280 Plouzané, France

*: Corresponding author : Lies De Mol, tel.: +32 9 264 46 37 ; fax: +32 9 264 49 67 ; email address : <u>Lies.DeMol@UGent.be</u>

Abstract :

In 1948, Le Danois reported for the first time the occurrence of living cold-water coral reefs, the socalled "massifs coralliens", along the European Atlantic continental margin. In 2008, a cruise with R/V Belgica was set out to re-investigate these cold-water corals in the Penmarc'h and Guilvinec Canyons along the Gascogne margin of the Bay of Biscay. During this cruise, an area of 560 km2 was studied using multibeam swath bathymetry, CTD casts, ROV observations and USBL-guided boxcoring.

Based on the multibeam data and the ROV video imagery, two different cold-water coral reef settings were distinguished. In water depths ranging from 260 to 350 m, mini mounds up to 5 m high, covered by dead cold-water coral rubble, were observed. In between these mounds, soft sediment with a patchy distribution of gravel was recognised. The second setting (350–950 m) features hard substrates with cracks, spurs, cliffs and overhangs. In water depths of 700 to 950 m, both living and dead cold-water corals occur. Occasionally, they form dense coral patches with a diameter of about 10–60 m, characterised by mostly stacked dead coral rubble and a few living specimens. U/Th datings indicate a shift in cold-water coral growth after the Late Glacial Maximum (about 11.5 ka BP) from shallow to deepwater settings.

The living cold-water corals from the deeper area occur in a water density (sigma-theta) of 27.35–27.55 kg m- 3, suggested to be a prerequisite for the growth and distribution of cold-water coral reefs along the northern Atlantic margin. In contrast, the dead cold-water coral fragments in the shallow area occur in a density range of 27.15–27.20 kg m- 3 which is slightly outside the density range where living cold-water corals normally occur. The presented data suggest that this prerequisite is also valid for coral growth in the deeper canyons (> 350 m) in the Bay of Biscay.

Keywords : Bay of Biscay ; continental margin ; canyons ; cold-water corals ; Lophelia ; Madrepora

56 **1. Introduction**

57

58	Cold-water corals are widespread along the European Atlantic continental margin
59	(Freiwald and Roberts, 2005; Freiwald et al., 2004; Roberts et al., 2006, 2009). Previous
60	studies have already revealed a large amount of information about the distribution,
61	significance and environmental setting of these ecosystems along the Norwegian margin
62	(Fosså et al., 2005; Freiwald et al., 2002; Hovland et al., 1998; Lindberg and Mienert,
63	2005; Mortensen et al., 1995), and the continental margin off Ireland and the UK (De
64	Mol et al., 2002; Dorschel et al., 2007; Huvenne et al., 2007; Kenyon et al., 2003;
65	Masson et al., 2003; Mienis et al., 2007; Roberts et al., 2006; Van Weering et al., 2003;
66	Wheeler et al., 2007). Cold-water corals are able to form habitats which vary in size
67	from small patches (few metres in size) to large reef structures covering several
68	kilometres (Freiwald et al., 1999; Roberts et al., 2005). In the Porcupine Seabight and
69	Rockall Trough giant cold-water mounds up to 300 m high were observed (De Mol et
70	al., 2002; Kenyon et al., 2003; Wheeler et al., 2007; Van Weering et al., 2003). In
71	contrast to these well studied areas, coral occurrences within the Bay of Biscay, and
72	more specifically the Armorican margin, are less investigated (Reveillaud et al., 2008).
73	
74	The occurrence of cold-water corals in the Bay of Biscay was already reported by
75	Joubin (1922) and Le Danois (1948). The latter study mainly observed the presence of
76	living Madrepora oculata and Lophelia pertusa, mostly occurring in a patchy
77	distribution but at some locations able to form a dense coral field with a maximum

height of 2 m. Afterwards these cold-water corals were also reported at different

79 locations in the Bay of Biscay by Altuna (1995), Alvarez-Claudio (1994), Zibrowius

80 (1980, 1985) and Zibrowius et al. (1975). In 1997, two areas along the north Atlantic 81 margin in the Bay of Biscay were revisited by Freiwald and Henrich (1997), namely the 82 Penmarc'h Bank and the Banc de la Chapelle, 160 km northwest of Penmarc'h Bank. 83 On the Banc de la Chapelle, only dead colonies of Lophelia pertusa, Madrepora oculata 84 and Desmophyllum dianthus were found in water depths of 340 to 790 m. Further south, 85 on the Penmarc'h Bank living colonies of *Dendrophyllia cornigera* were observed 86 (Reveillaud et al., 2008). The same authors also observed Caryophyllia smithii 87 specimens which yielded calibrated U/Th ages of the end of the last glacial period (11-88 14 ka BP) (Schröder-Ritzrau et al., 2005). In 2008, Reveillaud et al. presented an 89 overview of the cold-water coral distribution and diversity in the Bay of Biscay based 90 on historical reports and more recent (pre-2008) data. However, it is still not known to 91 which extent the available information represents the actual distribution of cold-water 92 corals in the Bay of Biscay.

93

94 Cold-water corals occur in temperatures ranging between 4° and 12°C. This temperature 95 zone corresponds with water depths between ~50 and 1000 m at high latitudes and up to 96 4000 m at low latitudes (Freiwald et al., 2004). Besides temperature several other 97 environmental factors favour coral settlement and growth: hard substrates (e.g., 98 boulders, moraine ridges, flanks of oceanic banks, seamounts, sedimentary mounds; 99 Dodge and Vaisnys, 1977; Rogers, 1990), strong topographically guided bottom 100 currents (Freiwald et al., 2004), nutrient-rich waters containing labile organic matter 101 (Kiriakoulakis et al., 2004) and zooplankton (Freiwald et al., 2004), and the depth of the 102 aragonite saturation horizon (Davies et al., 2008). Due to the presence of these 103 conditions along the continental slope in the Bay of Biscay, this area is a potential

104	habitat for cold-water coral ecosystems (Hall-Spencer et al., 2007; Reveillaud et al.,
105	2008). The numerous canyons cutting the slope of the Bay of Biscay (Bourillet et al.,
106	2003, 2006b; Le Suavé et al., 2000; Zaragosi et al., 2006) funnel sediment and labile
107	organic matter from the continental shelf (~200 m) to the abyssal plain (~4000 m)
108	(Freiwald et al., 2004). An additional major food source is provided by nutrient-rich
109	waters (Freiwald et al., 2004). Recently, Dullo et al. (2008) discovered that water
110	density also plays an important role in the distribution of cold-water corals. Along a
111	transect stretching from 51 to 70°N (~3000 km), living cold-water corals (Lophelia
112	<i>pertusa</i>) occur within a narrow density (sigma-theta) range of $\sigma_{\Theta} = 27.35$ to 27.65 kg m ⁻
113	³ , independent from the surrounding water masses.
114	
115	The data presented in this paper were collected during the BiSCOSYSTEMS cruise on
116	board of the R/V Belgica from 25 May to 7 June 2008 within the framework of the EC
117	FP6 IP HERMES and the ESF EuroDIVERSITY MiCROSYSTEMS projects. The main
118	aim of the study was (1) to revisit one of the cold-water coral locations described by Le
119	Danois (1948) in order to better understand their significance, distribution and
120	environmental conditions, and (2) to test the hypothesis that cold-water corals only
121	occur within the potential density range described by Dullo et al. (2008), also south of
122	51°N.
123	

2. Regional setting

126 The continental margin in the Bay of Biscay can be subdivided in five main geographic127 areas (Fig.1A): the Celtic margin and Armorican margin in the north, and the Aquitaine

margin, Cantabrian margin and Galician margin in the south. The Armorican margin
has an orientation of 140° with a relatively broad continental shelf, up to 200 km wide,
and a steep slope, with an average gradient between 2.86° and 5.15° (Lallemand and
Sibuet, 1986; Le Suavé et al., 2000). The slope extends from a water depth of 200 m
down to 4000 m. The morphology of the continental slope is characterised by spurs and
canyons, organised in submarine drainage basins (Bourillet and Lericolais, 2003).

134

135 The water column stratification in the Bay of Biscay predominantly shows that water 136 masses are of North Atlantic origin (Pollard et al., 1996). The uppermost water mass is 137 the Eastern North Atlantic Central Water (ENACW) which extends down to water 138 depths of 600 m. The ENACW is characterised by a cyclonic gyre with an average 139 velocity of 4 cm.s⁻¹ (Pingree and Le Cann, 1989). Below a minimal density layer, 140 probably due to the influence of the Sub Antarctic Intermediate Water (SAIW), the 141 Mediterranean Outflow Water (MOW) is observed down to 1500 m water depth. Its 142 circulation as a contour current is conditioned by seafloor irregularities and the Coriolis 143 effect. MOW velocities have been measured in the Bay of Biscay at 8°W and 6°W with 144 average values of 2-3 cm.s⁻¹ (Pingree and Le Cann, 1989). Between 1500 and 3000 m 145 water depth, the North Atlantic Deep Water (NADW) is observed. It includes a core of 146 Labrador Sea Water (LSW), recognised by a salinity minimum at 1800 to 2000 m, and 147 the Iceland-Scotland Overflow Water (ISOW) which is identified by a small salinity 148 maximum around 2600 m (González-Pola, 2006; McCartney, 1992; McCave et al., 149 2001; Pingree, 1973). Below the NADW, the Lower Deep Water (LDW) is identified 150 (McCartney, 1992). A cyclonic recirculation cell over the Biscay Abyssal Plain is

151	recognised with a characteristic poleward velocity near the continental margin of 1.2 (\pm
152	1.0) cm.s ⁻¹ (Dickson et al., 1985; Paillet and Mercier, 1997).

Along the slopes of the Bay of Biscay strong, localised internal tides are reported, due to a combination of favourable water mass stratification, steep topography and strong barotrophic tidal currents (Huthnance, 1995; Pingree and Le Cann, 1989, 1990). These may be channelled and result in regions of locally increased flow and local circulations (Pingree and Le Cann, 1990). Internal tides are proposed to explain the enhanced levels of surface phytoplankton abundance (Holligan et al., 1985; Pingree and Griffiths, 1982).

- 161 **3. Materials and methods**
- 162

163 3.1. Multibeam echosounding

164

The multibeam echosounder used during the BiSCOSYSTEMS cruise is a Kongsberg Simrad EM1002 system, installed permanently on the R/V Belgica. The EM1002 has up to 111 receiver beams of 2° (across track) x 3.3° (along track) width. The highresolution depth data was obtained with a nominal frequency of 95 kHz and a ping-rate of 4 to 6 Hz. Survey speed was between 4 and 6 knots depending on water depth and wave conditions. In total, an area of 560 km² along the Armorican margin was mapped in water depths between 160 m and 1000 m (Fig.1B).

173 The bathymetric information of the recorded files was extracted as xyz-data with the

174 open source MB-Systems software (Caress and Chayes, 1995). Next, data editing

175	occurred in the IVS Fledermaus software package resulting in a digital terrain model
176	(DTM) with a 5-m grid resolution.

1/8 3.2. CID measureme

179

180 Two CTD casts (CTD 03: 46°51.990'N/5°31.768'W at 1450 m water depth and CTD

181 04: 46°54.536'N/5°21.262'W at 1250 m water depth) were obtained in the Guilvinec

182 Canyon using a SBE Seacat 19 in order to gain insight into the local water mass

183 stratification and to calibrate the EM1002 echosounder for sound velocity. The raw data

184 were binned at 1 m using the SBE Data Processing software (version 7.18c).

185

186 *3.3. ROV observations*

187

188 The Remotely Operated Vehicle (ROV) 'Genesis' from Ghent University is a Sub-189 Atlantic Cherokee-type ROV with an operational survey depth down to 1600 m. 190 Imagery was obtained from one forward-looking colour camera, recorded with and 191 without a navigational overlay. High-resolution still images were obtained from a 192 Canon Powershot camera. Two parallel laser beams with a distance of 10 cm were used 193 as a scale during seabed observations. The ROV positioning was obtained using the 194 USBL (Ultra Short Base Line) IXSEA GAPS positioning system. This allowed 195 subsurface positioning with an accuracy of about 2-3 m. The processing and 196 interpretation of the dives was performed using OFOP (Ocean Floor Observation 197 Protocol) version 3.2.0c (Huetten and Greinert, 2008). Based on the observations, a

number of facies characteristic for the study area were identified. Each facies was given
a colour-code and integrated into ArcGIS 9.1, resulting in a facies interpretation map.

201 3.4. Sedimentological analyses of boxcore samples

202

Boxcores were taken at different locations within the Guilvinec Canyon. For each
boxcore, subsamples from different depths (mostly one sample from the surface and one
from the bottom) and/or subcores (if possible) were taken for sedimentological analysis.
Each subcore was sampled every 5 cm. The location of boxcores B08-1305-bc and B081306-bc was accurately determined by using the GAPS USBL system.

208

209 Subsamples were analysed for grain-size distribution with a Malvern Mastersizer 2000 210 (Marine Biology Section, Ghent University). First, the sediment was dried in a furnace 211 at 60° for about 48h. After subsampling 1 cm³ of sediment, the carbonate fraction was 212 removed by adding 75 ml of 10% acetic acid (CH₃COOH). This process was performed 213 twice in order to remove all carbonate fragments. Afterwards, the sample was rinsed 214 twice with distilled water, each time followed by a 24 h settling period. Finally, the 215 sediment was transferred in a 15 ml centrifuge tube together with 0.2% calgon (sodium hexametaphosphate, (NaPO₃)₆). Prior to analysis, the samples were rotated (20 rpm) for 216 217 24h. Afterwards, the results were processed with GRADISTAT (Blott and Pye, 2001) 218 and the mean grain-sizes were calculated using the Folk and Ward (1957) method. 219

220 Six cold-water coral specimens (Lophelia pertusa) from the surface of different

boxcores (B08-1301-bc, B08-1305-bc and B08-1306-bc) were sampled for U/Th dating.

222	The U-series measurements and age determination were carried out in the Laboratoire
223	des Sciences du Climat et de l'Environnement (LSCE) in Gif-sur-Yvette using
224	inductively coupled plasma source mass spectrometry (Thermo-Fisher X-Series).
225	Preparation of corals, analytical procedures and physical measurement routines
226	followed the detailed description by Frank et al. (2004, 2005) and Douville et al. (in
227	press).
228	
229	4. Kesults
230	
231	4.1. Environmental setting of the canyons and spurs
232	
233	4.1.1. Geomorphology
234	
235	The morphology of the canyon head and SE flank of the Penmarc'h Canyon, the
236	Guilvinec Canyon and the NW flank and canyon head of the Odet Canyon was studied
237	in detail using multibeam mapping (Fig.1B). These canyons are orientated in a NE-SW
238	direction and are separated by two spurs: the Penmarc'h Bank and the Odet Spur.
239	
240	The Penmarc'h Canyon is a slightly asymmetric V-shaped canyon with a maximum
241	width of 10 km. The SE flank has an average slope of 10° and is incised by WNW-ESE
242	orientated gullies with average slopes varying between 9-14° (Fig. 1B).
243	

- 244 The Guilvinec Canyon is an asymmetric V-shaped canyon with a maximum width of 16
- km. The NW slope has an average slope of 8° whereas the SE slope is characterised by

an average slope of 6°. The total length of the canyon from the canyon head until the
abyssal plain is about 33 km and the maximum incision depth is 2 km. The slopes
flanking the canyons show ENE-WSW orientated gullies on the SE flanks with an
average slope of 8-11° and NW-SE orientated gullies on the NW flanks with an average
slope of 10°. The width of the gullies varies between 600 and 1000 m.

The Odet Canyon is also an asymmetric V-shaped canyon with a maximum width of 9 km. The NW flank of the Odet Canyon has a constant average slope of about 11°, compared to the SE flank where an abrupt change in slope occurs around 1000 m water depth. The NW slope of the Odet Canyon shows NW-SE orientated gullies with an average slope of 8-12°.

257

The Penmarc'h Bank is a narrow spur with a minimum width of 4 km which goes up to 10 km close to the canyon heads. In contrast the Odet Spur has a maximum width of 14 km. Along both spurs, NE-SW orientated gullies occur with an average slope of 8-13°. In the shallow area on the western part of the Odet Spur between 200 and 300 m water depth, small mounds were observed with a diameter of approximately 100 m and a height of 5 to 10 m.

264

265 *4.1.2. Hydrography*

266

267 The stratification of the water masses does not change significantly over the study area268 (Fig. 2). The CTD casts show the presence of a seasonal thermocline down to 50 m

water depth. A salinity minimum (35.58 psu) is observed at 550 m, separating the

overlying ENACW from the MOW, which has its salinity maximum (35.76 psu) at
about 1000 m. Below, the T/S (temperature versus salinity) profile gradually follows the
272 27.75 kg.m⁻³ potential density gradient towards the LSW and NADW, as shown in
González-Pola (2006) and Van Rooij et al. (submitted-b).

275 4.2. Shallow-water coral rubble fields on Odet Spur

276

277 Mini mounds were observed on the multibeam echosounder data on Odet Spur in water depths of 260 to 350 m. The gentle slope features an average gradient of 3-4° (Fig. 1B). 278 279 ROV observations allowed to distinguish four different facies: (1) rippled soft sediment 280 with a patchy distribution of dead cold-water corals (Fig. 3A), (2) rippled seabed with 281 biogenic debris and a patchy distribution of dead cold-water corals, (3) rippled soft 282 sediment covered with gravel or small pebbles (Fig. 3B), and (4) a dense cold-water 283 coral rubble coverage, dominated by Lophelia pertusa and/or Madrepora oculata (Fig. 284 3C and Fig. 3D).

285

286 Figure 4A shows that the small mounds are covered by dead cold-water coral rubble. At 287 the base of the mounds and in between them, an alternation of rippled soft sediment 288 with a patchy distribution of dead cold-water corals and/or biogenic debris, and rippled 289 soft sediment with gravel-sized particles was observed (Fig. 3A and Fig. 3B). The coral 290 rubble consists of crushed coral fragments (Fig. 3C and Fig. 3D) and nearly no visible 291 living fauna. The size of the coral rubble fields varies between 20 to 80 m. The 292 undulatory N-S to NNW-SSE orientated sand ripples appear with wavelengths between 293 5 and 10 cm and have heights of about 3-5 cm.

295 Boxcore samples were taken along the track of ROV dive B08-03 resulting in two 296 different lithofacies (Fig. 4B). Lithofacies 1 is characterised by olive brown to olive 297 grey poorly-sorted, fine to medium sand with mean grain-sizes varying between 215 µm 298 and 305 µm. Within this facies in boxcore B08-1302-bc fine laminations are observed 299 between olive brown and olive grey sand. In contrast, a clear colour change is observed 300 in boxcore B08-1305-bc at a depth of 5 cm. In boxcore B08-1303-bc, on top of a mini 301 mound (Fig. 4A), only a very thin layer of lithofacies 1 is observed. The surface of all 302 boxcores is covered with coarse biogenic debris and several Lophelia pertusa fragments 303 (1-4 cm), up to 5 cm depth. At the surface of boxcore B08-1303 also large gravel 304 fragments (up to 7 cm) were observed. Lithofacies 2 is characterised by olive grey very 305 poorly to poorly-sorted, medium silt with grain-sizes varying between 8.9 µm and 12.6 306 um. Within this unit black sediment spots, supposedly caused by reducing geochemical 307 conditions, were observed. In boxcore B08-1303-bc a few sand lenses occur between 5 308 and 10 cm depth.

309

Boxcore B08-1304-bc had a penetration of only 5 cm (no subcoring). It consists of olive
grey, well sorted sand (lithofacies 1) with coarse biogenic debris and robust coral
fragments of *Lophelia pertusa* (several cm).

313

314 In addition, several coral fragments were dated using U-series: two coral fragments

315 (Lophelia pertusa) were collected during ROV dive B08-03, one coral fragment

316 (Lophelia pertusa) in boxcore B08-1301-bc and two coral fragments in B08-1305-bc.

317 The resulting ages after correction are shown in Table 3.

319 4.3. Deep-water corals in the Penmarc'h and Guilvinec Canyons

320

321 The second setting features cold-water corals observed in the Penmarc'h and Guilvinec 322 Canyons in water depths of 700 to 900 m. Both living and dead coral specimens occur, 323 predominantly *Madrepora oculata*. In total, eleven different facies were defined during 324 four ROV dives (Table 1). Facies 1 and 2 correspond to respectively even (Fig. 5A) and 325 rippled soft sediment with at some locations intense bioturbation. Facies 3 and 4 326 correspond to respectively even and rippled soft sediment covered with a patchy 327 distribution of cold-water corals (mostly Madrepora oculata) (Fig. 5B). Living as well 328 as dead species occur. Soft sediment with a cover of biogenic debris was defined as 329 facies 5 (Fig. 5C). No ripple marks were observed. Facies 6 and 7 are characterised by 330 respectively even and rippled soft sediment covered with biogenic debris and a patchy 331 distribution of cold-water corals (dead and living Madrepora oculata). Next, facies 8 332 consists of soft sediment with gravel (Fig. 5D). The gravel fragments reach sizes up to 333 10 cm. Facies 9 corresponds with outcropping hard substratum (Fig. 5E and Fig. 5F), 334 colonised by living cold-water corals (Madrepora oculata) and sponges. At some 335 locations, cracks filled with soft sediment were observed (Fig. 5G and Fig. 5H). Finally, 336 facies 10 and 11 relate to the cold-water coral coverage. Facies 10 is characterised by a 337 dense coverage of coral rubble (Fig. 6A) whereas facies 11 also features living species 338 of Madrepora oculata and Lophelia pertusa on top of the coral rubble, creating dense 339 coral fields (Fig. 6B, Fig. 6C and Fig. 6D). Facies 11 often coincides with a very rough 340 seafloor and big boulders (20 cm up to 1 m). Boxcore B08-1306-bc was taken within

this facies which delivered three coral pieces for U-series dating (Table 3). Grain-size
analysis reveals very poorly sorted fine sand with a mean grain-size of 81 µm.

344 Four ROV dives were undertaken. Dive B08-01 is located on the SE flank of the 345 Penmarc'h Canyon in water depths of 385 to 750 m. During this dive, an E-W 346 downslope transect was made with an average slope gradient of 8-10°. A large part of 347 the track consists of soft sediment with gravel (facies 8). At a water depth of 530 m the 348 gravel disappears and strongly bioturbated soft sediment (facies 1) remains until a water 349 depth of 720 m (Fig. 5A). Below 720 m, the first cold-water corals (facies 3) (Lophelia 350 pertusa and Madrepora oculata), with a size of 10-20 cm width and about 15 cm high, 351 appear on boulders with a diameter of 25 cm. Except for one living Madrepora oculata, 352 all corals are dead.

353

354 Dive B08-02 on the NW flank of the Guilvinec Canyon has a U-shaped track starting 355 with a first transect southwards from the NE flank of a gully at 712 m water depth and 356 ending with a second transect on the SW flank of that gully. The slope of this part 357 features an average gradient of 11°. During this dive many different facies were 358 observed (Fig. 7). In the uppermost part of the slope, between 700 and 900 m, soft 359 sediment alternates with coral fields which vary in diameter between 10 and 60 m (Fig. 360 6B). The soft sediment is sometimes covered with biogenic debris (Fig. 5C), gravel 361 (Fig. 5D) and/or a patchy distribution of cold-water corals, mostly Madrepora oculata. 362 Also big boulders with a diameter up to 1 m were observed, colonised with living cold-363 water corals (Madrepora oculata) and Hexadella sp. sponges (Fig. 6E and Fig. 6F). 364 Between 800 and 900 m, asymmetric N-S orientated sand ripples appear with

365	wavelengths between 10 and 20 cm and with heights of about 5 cm. Below 900 m water
366	depth, mostly hard substratum (Fig. 5E and Fig. 5F) occurs with a patchy distribution of
367	living cold-water corals (Madrepora oculata). NW-SE orientated cracks of 5 cm up to
368	40 cm occur in this area, and are filled with (rippled) soft sediment (Fig. 5G and Fig.
369	5H). At several locations, the rather smoothly sloping seabed is interrupted by the
370	presence of small banks (Fig. 6G) or cliffs (Fig. 6H). Between 700 and 750 m water
371	depth, these escarpments have an E-W orientation, while the deeper ones reveal a S-N
372	or SSW-NNE orientation. The banks are generally few decimetres in height and thus
373	much smaller than the cliffs, which vary in height between 2 and 4 m. At three
374	locations, the escarpments are colonised by Madrepora oculata corals and
375	Neopycnodonte zibrowii oysters, which are discussed in more detail in Van Rooij et al.
376	(submitted-a).
377	

Dive B08-04 is located on a small spur with dimensions of 200 by 400 m on the SE
flank of the Guilvinec Canyon in water depths of 675 to 700 m. Only one facies was
recognised: a dense cold-water coral coverage with dead and living species,
predominantly *Madrepora oculata* (Fig. 6C and Fig. 6D). The living species grow on
the dead coral rubble, which is built up by chunky coral fragments up to 40 cm.

383

Finally, dive B08-05 investigated the southern shoulder of a gully south of the spur that separates the Penmarc'h Canyon from the Guilvinec Canyon. The track follows a southern to western course between 300 and 750 m water depth with an overall slope gradient of 8-10°. This track does not show many different facies. Between 300 and 450 m a rippled seafloor with regionally some biogenic debris and/or gravel was observed.

397	5. Discussion
396	
395	submitted-a).
394	oculata cold-water corals and Neopycnodonte zibrowii oysters (Van Rooij et al.,
393	seafloor is interrupted by a 4 m high WSW-ENE escarpment, colonised by Madrepora
392	depth of 480 m, some small escarpments are present. At 735 m, the gently dipping
391	sediment with bioturbations and a zone of low-relief rippled seabed. Close to a water
390	between 10 and 15 cm. The area between 450 and 730 m is characterised by soft
389	The straight to gently undulatory SSE-NNW orientated sand ripples have a wavelength

399 5.1. Canyons as cold-water coral habitats

400

401 For the first time a cold-water coral habitat is mapped in detail within a canyon setting 402 in the Bay of Biscay. Although deep-sea canyons may provide suitable environmental 403 conditions for cold-water corals to grow, resulting deep-water habitats have not yet been 404 described in detail. Canyons are transport ways of organic matter from the continental 405 shelf down to the abyssal plain (Canals et al., 2006; Freiwald et al., 2004). During most 406 of the ROV dives described here, an intense marine snow was observed, composed of 407 suspended particulate material, ideal nutrients for scleractinians. In addition, the cold-408 water corals occur just above, in case of the shallow water setting, and just beneath, in 409 case of the deep-water setting, the physical boundary between the Eastern North 410 Atlantic Central Water (ENACW) and the Mediterranean Outflow Water (MOW) (Fig. 411 2). As De Stigter et al. (2007) already demonstrated, the mixing of both water masses 412 results in enhanced suspended material thus favouring the feeding of scleractinians.

413 Moreover, the observations of ripple marks on the seabed, within the upper zone of the 414 MOW, indicate the presence of an E-W bottom current with a speed around 10 to 40 415 cm.s⁻¹ (Stow et al., 2009). This elevated bottom current is beneficial for coral growth as 416 it delivers nutrients to the polyps. Additionally, the asymmetry of the sand ripples 417 shows a sediment transport direction away from the shelf edge into the canyon axis. 418 Similar observations were made by Cunningham et al. (2005) in the canyons on the 419 Celtic Margin between Goban Spur and Brenot Spur. Apart from the flow velocity of 420 the MOW, the bottom currents may be enhanced by strong internal tides (White, 2007). 421 Next to a favourable oceanographic environment, the sedimentological environment of 422 deep-sea canyons provides hard substrates for living cold-water corals to settle on. 423 Indeed, during the ROV dives, corals were observed on cliffs, outcropping hard 424 substratum and on the numerous boulders which are scattered on the seabed. The dives 425 also revealed a preferential erosion of the western flank of the canyons while the eastern 426 flank is draped with soft sediment. This is attributed to the strong E-W bottom currents. 427 The western slope will act as an obstacle for these enhanced currents intensifying the 428 easterly bottom currents through isopycnal doming, which results in erosion 429 (Hernandez-Molina et al., 2003; Jorga and Lozier, 1999; Van Rooij et al., submitted-a). 430 Hence, the constant reworking by downslope (turbiditic) and alongslope (contouritic) 431 current processes (Arzola et al., 2008; Bourillet et al., 2006b; Cunningham et al., 2005; 432 Pingree and Le Cann, 1989; Toucanne et al., 2009) which occur along this slope will 433 play an important role in the shaping of habitats suitable for coral settlement. This study 434 indicates that canyons are perfectly suited for coral growth due to the food availability, 435 strong bottom currents and the presence of hard substratum. More coral habitats might 436 be discovered in a similar setting in the future.

438 5.2. Mini mounds on Odet Spur

439

440 The shallow area, located in water depths between 278 and 289 m, revealed a dense 441 coverage of dead cold-water coral fragments on top of mini mounds and small ridges 442 (Fig. 4A). Within the boxcores, cold-water coral fragments were only found in the 443 uppermost 5 cm which suggests that these mini mounds were present before the settling 444 of the cold-water corals. The fact that the boxcores only show a thin sand cover (1.5 cm) 445 on top of the mini mound while at the base of the mound the sand cover increases to 11 446 cm, these mini mounds and ridges are probably the result of selective erosion of the 447 clayey substrate due to strong bottom currents during interglacials and interstadials, as 448 observed by Øvrebø et al. (2006) offshore Ireland. This observation highlights the 449 importance of an elevated topography which acts as a template for coral settlement 450 (Freiwald et al., 2004; Roberts et al., 2006). The lack of coral fragments deeper in the 451 sediment of the mini mounds is a fundamental difference with the giant coral mounds 452 observed along the Irish margin which are completely constructed by corals (Kano et 453 al., 2007). In that aspect, the mini mounds on Odet Spur reveal strong similarities with 454 the Darwin mounds in the northern Rockall Trough. The size of the coral topped 455 Darwin mounds is similar (height: 5 m / diameter: 75 m) but they are located in a deeper 456 water depth (1000 m). Coring revealed that corals are not a major contributor to mound 457 building (Masson et al., 2003). The Moira mounds in the Porcupine Seabight which are 458 characterised by diameters of 30-50 m and heights up to 5 m (Foubert et al., 2005; 459 Wheeler et al., 2005) might also serve as an analogue for the mounds observed on Odet 460 Spur.

462 5.3. *Time and distribution of coral growth*

463

464 The dating of the cold-water corals using U-series reveals that coral growth in the study 465 area started at the beginning of the Holocene. The older age of the corals in the shallow 466 (7.4-9.1 ka) compared to the deeper setting (1.2-2.3 ka) indicates a migration of the 467 coral habitats towards greater water depths. Moreover, the fact that the corals observed 468 in the shallow water setting are heavily bio-eroded and disintegrated, demonstrates that 469 they are already exposed on the seabed for a significant amount of time. In contrast, the 470 corals in the deeper setting are much better preserved suggesting a younger age for these 471 species. The cause of the downslope migration of the corals is still uncertain. However, 472 the changing sea level, influencing labile organic matter fluxes (Hall and McCave, 473 1998), and the rising temperatures, might have forced corals to deeper water depths, 474 where they found better live conditions. A more dramatic hypothesis is that the shallow 475 coral reefs were destroyed by bottom trawling since the shallower area is subject to 476 intense fishing activity (Bourillet et al., 2006a). According to Hily et al. (2008), a great 477 change has been observed in the benthic communities in the northern part of the Bay of 478 Biscay since the 1960s due to bottom trawling. Bottom trawling could also explain the 479 age difference between sample B08-03 C, with an age of 1.41 ± 0.17 ka, and the other 480 samples with ages over 7 ka (Table 3). Due to the reworking effect of trawling, most of 481 the coral reefs are turned upside down. However, no trawl marks were observed within 482 the shallow water area during the ROV dive.

484 On a more regional scale, the U-series datings of the corals confirm a climate-driven 485 influence. Since the Late Glacial Maximum (about 11.5 ka BP), extended living cold-486 water coral reefs appear along the European margin between 50° and 70° N (Frank et 487 al., 2009). In contrast, during glacial times, the cold-water corals were only able to 488 survive in the relatively more temperate Atlantic below 50° N (Frank et al., submitted). 489 At present, only scarce coral occurrences are observed south of 50°N (Reveillaud et al., 490 2008; Wienberg et al., 2009), which is also confirmed by the results presented in this 491 paper. The northern part of the Bay of Biscay, and more specifically the Armorican 492 margin, can be seen as a transition zone between the eastern temperate Atlantic and the 493 eastern North Atlantic between 50° and 70° N. This might explain why no successive 494 mound growth occurred in the Bay of Biscay, resulting in the build up of giant coral 495 mounds as discovered in the Porcupine Seabight (De Mol et al., 2002; Dorschel et al., 496 2007; Henriet et al., 1998; Huvenne et al., 2007, 2009; Wheeler et al., 2005) and the 497 Rockall Trough (De Haas et al., 2009; Kenyon et al., 2003; Mienis et al., 2006; Van 498 Weering et al., 2003).

499

500 5.4. Relation between potential density and cold-water coral occurrence

501

The results of the present study may add to the theory of Dullo et al. (2008) who concluded that the potential density (σ_{Θ} = sigma-theta), where cold-water corals are able to live and migrate along the Norwegian margin and in the Porcupine Seabight, needs to be between 27.35 and 27.65 kg.m⁻³. The deeper canyon setting, where living cold-water corals have been observed, is located in this density range (27.35 and 27.55 kg.m⁻³) (Fig.2) and thus supports the results of Dullo et al. (2008). In contrast, the dead

508	shallow water corals fall within a density range of 27.15-27.20 kg.m ³ which is slightly
509	outside the density range where living cold-water corals normally occur. This finding
510	demonstrates that the density range of 27.35 and 27.65 kg.m ⁻³ is also valid for the living
511	cold-water corals in the Bay of Biscay. In addition, our results confirm that this density
512	range is not only applicable for dense living Lophelia pertusa reefs but also accounts in
513	this setting for living Madrepora oculata species.
514	
515 516	6. Conclusions
517	Cold-water coral habitats along the Gascogne margin in the Bay of Biscay, earlier
518	reported by Le Danois in 1948, were investigated. The R/V Belgica BiSCOSYSTEMS
519	cruise was set out to better understand the significance and distribution of these cold-
520	water coral ecosystems and the environmental controls on their living habitat.
521	
522	The main conclusions are:
523	• Deep-sea canyons such as the Penmarc'h and Guilvinec Canyons are suitable
524	habitats for the settlement of cold-water corals (Madrepora oculata and
525	Lophelia pertusa).
526	• Two cold-water coral settings were distinguished within the canyons: a shallow
527	setting in water depths of 280-290 m with only dead coral rubble (mostly
528	Lophelia pertusa) and a deep-water setting (700-920 m) with mostly living
529	Madrepora oculata species on top of coral rubble. The occurrence of the mini
530	mounds at ~280 m water depth is an unusually shallow water depth compared to
531	most other cold-water coral (reef) occurrences along the NE Atlantic margin. 27

532	• The Bay of Biscay can be considered as a transition zone between the temperate
533	Atlantic (below 50°N) and the cold north-eastern Atlantic between 50° and
534	70°N. After the Late Glacial Maximum, cold-water corals started to grow along
535	the Armorican margin but migrated likely during the mid Holocene to deeper
536	water depths.
537	• The density range of 27.35 to 27.65 kg.m ⁻³ (Dullo et al., 2008) is also valid for
538	the living cold-water corals (mostly Madrepora oculata) in the Bay of Biscay,
539	which makes it a good prerequisite for the distribution and growth of living
540	cold-water corals along the northeast Atlantic margin. It can be used as a
541	predictive tool in order to discover more cold-water coral habitats along the
542	European continental margin.
543	
544	Acknowledgements
545	
546	The shipboard scientific party wants to thank the captain and crew of R/V Belgica for
547	their tremendous efforts and the fine cooperation during this campaign. This work was
548	financially supported by the the ESF EuroDIVERSITY project MiCROSYSTEMS
549	"Microbial diversity and functionality in cold-water coral reef ecosystems" and the EC
550	FP6 project HERMES (GOCE-CT-2005-511234-1) "Hotspot Ecosystem Research on
551	the Margins of European Seas", which will be continued during the FP7 HERMIONE

552 project (contract number 226354) "Hotspot Ecosystem Research and Man's Impact On

553 European Seas". We are grateful to Prof. Dr. M. Vincx (Marine Biology Department,

554 Ghent University) for allowing us to use the Malvern Mastersizer 2000. E. Sallé and C.

555 Noury from LSCE are kindly acknowledged for their help with respect to U series

556	sample preparation and dating. L. De Mol acknowledges the support of the "Institute for
557	the Promotion of Innovation through Science and Technology in Flanders (IWT-
558	Vlaanderen)". H. Pirlet and D. Van Rooij are funded through respectively an FWO-
559	Flanders PhD and post-doctoral fellowship.
560	
561	References
562	KIEIEIKES
502	
563	Altuna, A., 1995. El orden Scleractinia (Cnidaria, Anthozoa) en la costa vasca (Golfo de
564	Vizcaya): especies batiales de la fosa de CapBreton. Munibe 47, 85–96.
565	Alvarez-Claudio, C., 1994. Deep-water Scleractinia (Cnidaria: Anthozoa) from southern
566	Bay of Biscay. Les Cahiers de Biologie Marine 35, 461–469.
567	Arzola, R.G., Wynn, R.B., Lastras, G., Masson, D.G., Weaver, P.P.E., 2008.
568	Sedimentary features and processes in the Nazaré and Sétubal submarine
569	canyons, west Iberian margin. Marine Geology 250, 64-88.
570	Blott, S.J., Pye, K., 2001. Gradistat: a grain size distribution and statistics package for
571	the analysis of unconsolidated sediments. Earth Surface Processes and
572	Landforms 26, 1237-1248.
573	Bourillet, JF., Lericolais, G., 2003. Morphology and seismic stratigraphy of the
574	Manche Paleoriver System, Western Approaches, in: Mienert, J., Weaver, P.
575	(Eds.), European Margin Sediment Dynamics, Springer, Verlag Berlin
576	Heidelberg, pp. 229-233.
577	Bourillet, JF., Reynaud, JY., Baltzer, A., Zaragosi, S., 2003. The 'Fleuve Manche':
578	the submarine sedimentary features from the outer shelf to the deep-sea fans.
579	Journal of Quaternary Science 18 (3-4), 261-282.

580	Bourillet, J.F., Jouanneau, JM., Macher, C., Le Hir, P., Naughton, F., 2006a. "La
581	Grande Vasière" mid-shelf mud belt: Holocene sedimentary structure, natural
582	and anthropogenic impacts. 10th International Symposium on Oceanography of
583	the Bay of Biscay, Vigo, Spain.
584	Bourillet, JF., Zaragosi, S., Mulder, T., 2006b. The French Atlantic margin and deep-
585	sea submarine systems. Geo-Marine Letters 26, 311-315.
586	Canals, M., Puig, P., Durrieu de Madron, X., Heussner, S., Palanques, A., Fabres, J.,
587	2006. Flushing submarine canyons. Nature 444, 354-357.
588	Caress, D.W., Chayes, D.N., 1995. New software for processing sidescan data from
589	sidescan-capable multibeam sonars, in: Wernli, R. (Ed.), Oceans 95 MTS/IEEE:
590	Challenges of our Changing Global Environment, Conference Proceedings, vol.
591	2, Marine Technology Society Journal, Washington DC, pp. 997-1000.
592	Cunningham, M.J., Hodgson, S., Masson, D.G., Parson, L.M., 2005. An evaluation of
593	along- and down-slope sediment transport processes between Goban Spur and
594	Brenot Spur on the Celtic Margin of the Bay of Biscay. Sedimentary Geology
595	179, 99-116.
596	Davies, A.J., Wisshak, M., Orr, J.C., Roberts, J.M., 2008. Predicting suitable habitat for
597	the cold-water coral Lophelia pertusa (Scleractinia). Deep-Sea Research I 55,
598	1048-1062.
599	De Haas, H., Mienis, F., Frank, N., Richter, T.O., Steinacher, R., de Stigter, H., van der
600	Land, C., van Weering, T.C.E., 2009. Morphology and sedimentology of
601	(clustered) cold-water coral mounds at the south Rockall Trough margins, NE
602	Atlantic Ocean. Facies 55, 1-26.

603	De Mol, B., Van Rensbergen, P., Pillen, S., Van Herreweghe, K., Van Rooij, D.,
604	McDonnell, A., Huvenne, V., Ivanov, M., Swennen, R., Henriet, JP., 2002.
605	Large deep-water coral banks in the Porcupine Basin, southwest of Ireland.
606	Marine Geology 188, 193-231.
607	De Stigter, H., Boer, W., Mendes, P.A.D.J., Jesus, C.C., Thomsen, L., van den Bergh,
608	G.D., van Weering, T.C.E., 2007. Recent sediment transport and deposition in
609	the Nazaré Canyon, Portuguese continental margin. Marine Geology 246, 144-
610	164.
611	Dickson, R.R., Gould, W.J., Muller, T.J., Maillard, C., 1985. Estimates of the mean
612	circulation in the deep (>2000 m) layer of the eastern North Atlantic. Progress
613	in Oceanography 14, 103-127.
614	Dodge, R.E., Vaisnys, J.R., 1977. Coral populations and growth patterns: responses to
615	sedimentation and turbidity associated with dredging. Journal of Marine
616	Research 35, 715-730.
617	Dorschel, B., Hebbeln, D., Foubert, A., White, M., Wheeler, A.J., 2007.
618	Hydrodynamics and cold-water coral facies distribution related to recent
619	sedimentary processes at Galway Mound west of Ireland. Marine Geology 244,
620	184-195.
621	Douville, E., Sallé, E., Frank, N., Eisele, M., Pons-Branchu, E., Ayrault, S., in press.
622	Rapid and accurate U-Th dating of ancient carbonates using inductively coupled
623	plasma-quadrupole mass spectrometry. Chemical Geology, doi:
624	10.1016/j.chemgeo.2010.01.007.

625	Dullo, WC., Flögel, S., Rüggeberg, A., 2008. Cold-water coral growth in relation to
626	the hydrography of the Celtic and Nordic European continental margin. Marine
627	Ecology Progress Series 371, 165-176.

- Folk, R.L., Ward, W., 1957. Brazos River bar: a study in the significance of grain size
 parameters. Journal of Sedimentary Petrology 27, 3-26.
- 630 Fosså, J.H., Lindberg, B., Christensen, O., Lundälv, T., Svellingen, I., Mortensen, P.B.,
- Alvsvåg, J., 2005. Mapping of *Lophelia* reefs in Norway: experiences and
 survey methods, in: Freiwald, A., Roberts, J.M. (Eds.), Cold-water corals and
- 633 ecosystems, Springer, Heidelberg, pp. 359-390.
- 634 Foubert, A., Beck, T., Wheeler, A.J., Opderbecke, J., Grehan, A., Klages, M., Thiede,
- 635 J., Henriet, J.-P., the Polarstern ARK-XIX/3a Shipboard Party, 2005. New view
- of the Belgica Mounds, Porcupine Seabight, NE Atlantic: preliminary results
- 637 from the Polarstern ARK-XIX/3a ROV cruise, in: Freiwald, A., Roberts, J.M.
- 638 (Eds.), Cold-Water Corals and Ecosystems, Springer, Heidelberg, pp. 403-415.
- 639 Frank, N., Freiwald, A., López-Correa, M., Eisele, M., Hebbeln, D., Wienberg, C., Van
- 640 Rooij, D., Henriet, J.-P., Colin, C., van Weering, T., de Haas, H., Mortensen,
- 641 P.B., Robberts, M., De Mol, B., Douville, E., Blamart, D., Hatte, C., submitted.
- 642 Climate warming drives eastern Atlantic cold-water coral gardens northwards.643 Nature Geoscience.
- Frank, N., Lutringer, A., Paterne, M., Blamart, D., Henriet, J.-P., Van Rooij, D., van
 Weering, T.C.E., 2005. Deep-water corals of the northeastern Atlantic margin:
 carbonate mound evolution and upper intermediate water ventilation during the
 Holocene, in: Freiwald, A., Roberts, J.M. (Eds.), Cold-Water Corals and
- 648 Ecosystems, Springer, Heidelberg, pp. 113-133.

649	Frank, N., Paterne, M., Ayliffe, L., van Weering, T.C.E., Henriet, JP., Blamart, D.,
650	2004. Eastern North Atlantic deep-sea corals: Tracing upper intermediate water
651	δ^{14} C during the Holocene. Earth and Planetary Science Letters 219, 297-309.
652	Frank, N., Ricard, E., Lutringer-Paquet, A., van der Land, C., Colin, C., Blamart, D.,
653	Foubert, A., Van Rooij, D., Henriet, JP., de Haas, H., van Weering, T., 2009.
654	The Holocene occurrence of cold water corals in the NE Atlantic: Implications
655	for coral carbonate mound evolution. Marine Geology 266, 129-142.
656	Freiwald, A., Fosså, J.H., Grehan, A., Koslow, T., Roberts, J.M., 2004. Cold-water
657	coral reefs: out of sight, no longer out of mind. UNEP-WCMC, Cambridge, UK.
658	Biodiversity Series 22, 1-84.
659	Freiwald, A., Henrich, R., 1997. Victor Hensen Cruise VH-97 Leg 1 and Leg 5.
660	Unpublished report and station list. Institut für Paläontologie, Universität
661	Erlangen, Erlangen, Germany.
662	Freiwald, A., Hühnerbach, V., Lindberg, B., Wilson, J.B., Campbell, J., 2002. The Sula
663	Reef complex, Norwegian Shelf. Facies 47, 179-200.
664	Freiwald, A., Roberts, J.M., 2005. Cold-water corals and ecosystems. Springer,
665	Heidelberg.
666	Freiwald, A., Wilson, J.B., Henrich, R., 1999. Grounding Pleistocene icebergs shape
667	recent deep-water coral reefs. Sedimentary Geology 125, 1-8.
668	González-Pola, C., Lavin, A., Somavilla, R., Vargas-Yanez, M., 2006. Central water
669	masses variability in the southern Bay of Biscay from early 90s. The effect of
670	the severe winter 2005, in: ICES Annual Science Conference, Maastricht,
671	September 2006, C26, pp. 1–12.

672	Hall, I.R., McCave, I.N., 1998. Glacial-interglacial variation in organic carbon burial on
673	the slope of the N.W. European Continental Margin (48°-50°N). Progress in
674	Oceanography 42, 37-60.
675	Hall-Spencer, J., Rogers, A., Davies, J., Foggo, A., 2007. Deep-sea coral distribution on
676	seamounts, oceanic islands, and continental slopes in the Northeast Atlantic, in:
677	George, R.Y., Cairns, S.D. (Eds.), Conservation and Adaptive Management of
678	Seamount and Deep-Sea Coral Ecosystems, pp. 135-146.
679	Henriet, J.P., De Mol, B., Pillen, S., Vanneste, M., 1998. Gas hydrate crystals may help
680	build reefs. Nature 391, 648-649.
681	Hernández-Molina, F.J., Llave, E., Somoza, L., Fernandez-Puga, M.C., Maestro, A.,
682	Leon, R., Medialdea, T., Barnolas, A., Garcia, M., de Rio, V.D., Fernandez-
683	Salas, L.M., Vazquez, J.T., Lobo, F., Dias, J.M.A., Rodero, J., Gardner, J., 2003.
684	Looking for clues to paleoceanographic imprints: A diagnosis of the Gulf of
685	Cadiz contourite depositional systems. Geology 31 (1), 19-22.
686	Hily, C., Le Loc'h, F., Grall, J., Glémarec, M., 2008. Soft bottom macrobenthic
687	communities of North Biscay revisited: Long-term evolution under fisheries-
688	climate forcing. Estuarine, Coastal and Shelf Science 78, 413-425.
689	Holligan, P.M., Pingree, R.D., Mardell, G.T., 1985. Oceanic Solitions, Nutrient Pulses
690	and Phytoplankton Growth. Nature 314, 348-350.
691	Hovland, M., Mortensen, P.B., Brattegard, T., Strass, P., Rokoengen, K., 1998.
692	Ahermatypic coral banks off Mid-Norway: evidence for a link with seepage of
693	light hydrocarbons. Palaios 13, 189-200.
694	Huetten, E., Greinert, J., 2008. Software controlled guidance, recording and post-
695	processing of seafloor observations by ROV and other towed devices: The

- 696 software package OFOP. Geophysical Research Abstracts 10, EGU2008-A-697 03088.
- Huthnance, J.M., 1995. Circulation, exchange and water masses at the ocean margin:
 the role of physical processes at the shelf edge. Progress in Oceanography 35,
 353-431.
- Huvenne, V.A.I., Bailey, W.R., Shannon, P.M., Naeth, J., de Primio, R., Henriet, J.P.,
 Horsfield, B., de Haas, H., Wheeler, A., Olu-Le Roy, K., 2007. The Magellan
 mound province in the Porcupine Basin. International Journal of Earth Sciences
 96, 85-101.
- Huvenne, V.A.I., Van Rooij, D., De Mol, B., Thierens, M., O'Donnell, R., Foubert, A.,
 2009. Sediment dynamics and palaeo-environmental context at key stages in the
 Challenger cold-water coral mound formation: Clues from sediment deposits at
 the mound base. Deep-Sea Research I 56 (12), 2263-2280.
- Iorga, M.C., Lozier, M.S., 1999. Signatures of the Mediterranean outflow from a North
 Atlantic climatology 1. Salinity and density fields. Journal of Geophysical
 Research Oceans 104 (C11), 25985-26009.
- Joubin, M.L., 1922. Les coraux de mer profonde nuisibles aux chalutiers. Note et

713 Mémoires N° 18, Office Scientifique et Technique des Pêches Maritimes, Paris.

714 Kano, A., Ferdelman, T.G., Williams, T., Henriet, J.P., Ishikawa, T., Kawagoe, N.,

- 715 Talkashima, C., Kakizaki, Y., Abe, K., Sabai, S., Browning, E.L., Li, X.H.,
- 716 Integrated Ocean Drilling Program, 2007. Age constraints on the origin and
- growth history of a deep-water coral mound in the northeast Atlantic drilled
- 718 during Integrated Ocean Drilling Program Expedition 307. Geology 35 (11),

719 1051-1054.

720	Kenyon, N.H., Akhmetzhanov, A.M., Wheeler, A.J., van Weering, T.C.E., de Haas, H.,
721	Ivanov, M.K., 2003. Giant carbonate mud mounds in the southern Rockall
722	Trough. Marine Geology 195, 5-30.
723	Kiriakoulakis, K., Bett, B.J., White, M., Wolff, G.A., 2004. Organic biogeochemistry of
724	the Darwin Mounds, a deep-water coral ecosystem, of the NE Atlantic. Deep-
725	Sea Research I 51, 1937-1954.
726	Lallemand, S., Sibuet, J.C., 1986. Tectonic Implications of Canyon Directions over the
727	Northeast Atlantic Continental-Margin. Tectonics 5 (7), 1125-1143.
728	Le Danois, E., 1948. Les profondeurs de la mer. Trente ans de recherche sur la faune
729	sous-marine au large des côtes de France. Payot, Paris.
730	Le Suavé, R., Bourillet, J.F., Coutelle, A., 2000. La marge nord du golfe de Gascogne.
731	Connaissances générales du rapport des nouvelles synthèses de données
732	multifaisceaux. IFREMER, Paris.
733	Lindberg, B., Mienert, J., 2005. Post-glacial carbonate production by cold-water corals
734	on the Norwegian Shelf and their role in the global carbonate budget. Geology
735	33, 537-540.
736	Masson, D.G., Bett, B.J., Billett, D.S.M., Jacobs, C.L., Wheeler, A.J., Wynn, R.B.,
737	2003. The origin of deep-water, coral-topped mounds in the northern Rockall
738	Trough, Northeast Atlantic. Marine Geology 194 (3-4), 159-180.
739	McCartney, M.S., 1992. Recirculating components to the deep boundary current of the
740	northern North Atlantic. Progress in Oceanography 29, 283-383.
741	McCave, I.N., Hall, I.R., Antia, A.N., Chou, L., Dehairs, F., Lampitt, R.S., Thomsen,
742	L., van Weering, T.C.E., Wollast, R., 2001. Distribution, composition and flux

- of particulate material over the European margin at 47°-50°N. Deep-Sea
 Research II 48, 3107-3139.
- 745 Mienis, F., de Stigter, H.C., White, M., Duineveld, G., de Haas, H., van Weering,
- T.C.E., 2007. Hydrodynamic controls on cold-water coral growth and carbonatemound development at the SW and SE Rockall Trough Margin, NE Atlantic
- 748 Ocean. Deep-Sea Research I 54, 1655-1674.
- Mienis, F., van Weering, T.C.E., de Haas, H., de Stigter, H., Huvenne, V.A.I., Wheeler,
 A., 2006. Carbonate mound development at the SW Rockall Trough margin
- based on high resolution TOBI and seismic recording. Marine Geology 233, 1-9.
- 752 Mortensen, P.B., Hovland, M., Brattegard, T., Farestveit, R., 1995. Deep water
- bioherms of the scleractinian coral *Lophelia pertusa* (L.) at 64°N on the
 Norwegian shelf: structure and associated mega-fauna. Sarsia 80, 145-158.
- Normand, A., Mazé, J.-P., 2000. Cartes bathymétriques au 1/250 000ème: Marge
- 756 celtique Est, Marge armoricaine Nord, Sud Trevelyan, Dôme Gascogne, Marge
- 757 armoricaine sud, Marge Aquitaine, in: Le Suavé, R. (Ed.), Synthèse
- bathymétrique et imagerie acoustique, Zone Economique Exclusive Atlantique
- 759 Nord-Est, Editions IFREMER.
- Øvrebø, L.K., Haughton, P.D.W., Shannon, P.M., 2006. A record of fluctuating bottom
 currents on the slopes west of the Porcupine Bank, offshore Ireland –
- 762 implications for Late Quaternary climate forcing. Marine Geology 225 (1-4),
 763 279-309.
- Paillet, J., Mercier, H., 1997. An inverse model of the eastern North Atlantic general
 circulation and thermocline ventilation. Deep-Sea Research I 44 (8), 1293-1328.

- Pingree, R.D., 1973. Component of Labrador Sea-Water in Bay-of-Biscay. Limnology
 and Oceanography 18 (5), 711-718.
- Pingree, R.D., Griffiths, D.K., 1982. Tidal Friction and the Diurnal Tides on the
 Northwest European Shelf. Journal of the Marine Biological Association of the
 United Kingdom 62 (3), 577-593.
- Pingree, R.D., Le Cann, B., 1989. Celtic and Armorican slope and shelf residual
 currents. Progress in Oceanography 23, 303-338.
- Pingree, R.D., Le Cann, B., 1990. Structure, strength and seasonality of the slope
 currents in the Bay of Biscay region. Journal of the Marine Biological
- Association of the United Kingdom 70, 857-885.
- Pollard, S., Griffiths, C.R., Cunningham, S.A., Read, J.F., Perez, F.F., Ríos, A.F., 1996.
- 777 Vivaldi 1991 A study of the formation, circulation and ventilation of the
- Eastern North Atlantic Central Water. Progress in Oceanography 37, 167-192.
- Reveillaud, J., Freiwald, A., Van Rooij, D., Le Guilloux, E., Altuna, A., Foubert, A.,
- 780 Vanreusel, A., Olu-Le Roy, K., Henriet, J.-P., 2008. The distribution of
- scleractinian corals in the Bay of Biscay, NE Atlantic. Facies 54 (3), 317-331.
- 782 Roberts, J.M., Brown, C.J., Long, D., Bates, C.R., 2005. Acoustic mapping using a
- multibeam echosounder reveals cold-water coral reefs and surrounding habitats.
 Coral Reefs 24, 654-669.
- Roberts, J.M., Wheeler, A.J., Freiwald, A., 2006. Reefs of the deep: the biology and
 geology of cold-water coral ecosystems. Science 312, 543-546.
- Roberts, J.M., Wheeler, A., Freiwald, A., Cairns, S., 2009. Cold-water corals The
 biology and geology of deep-sea coral habitats. Cambridge University Press.

789	Rogers, C.S., 1990. Responses of coral reefs and reef organisms to sedimentation.
790	Marine Ecology Progress Series 62, 184-202.
791	Schröder-Ritzrau, A., Freiwald, A., Mangini, A., 2005. U/Th dating of deep-water
792	corals from the eastern North Atlantic and the western Mediterranean Sea, in:
793	Freiwald, A., Roberts, J.M. (Eds.), Cold-water corals and ecosystems, Springer,
794	Heidelberg, pp. 157-172.
795	Stow, D.A.V., Hernandez-Molina, F.J., Llave, E., Sayago-Gil, M., del Rio, V.D.,
796	Branson, A., 2009. Bedform-velocity matrix: The estimation of bottom current
797	velocity from bedform observations. Geology 37 (4), 327-330.
798	Toucanne, S., Zaragosi, S., Bourillet, J.F., Cremer, M., Eynaud, F., Van Vliet-Lanoë,
799	B., Penaud, A., Fontanier, C., Turon, J.L., Cortijo, E., Gibbard, P.L., 2009.
800	Timing of massive 'Fleuve Manche' discharges over the last 350 kyr: insights
801	into the European ice-sheet oscillations and the European drainage network from
802	MIS 10 to 2. Quaternary Science Reviews 28 (13-14), 1238-1256.
803	Van Rooij, D., De Mol, L., Le Guilloux, E., Wisshak, M., Huvenne, V.A.I.,
804	Moeremans, R., Henriet, JP., submitted-a. Environmental setting of deep-water
805	oysters in the Bay of Biscay. Deep-Sea Research I.
806	Van Rooij, D., Iglesias, J., Hernandez-Molina, F.J., Ercilla, G., Gomez-Ballesteros, M.,
807	Casas, D., Llave, E., De Hauwere, A., Garcia-Gil, S., Acosta, J., Henrich, R.,
808	submitted-b. The Le Danois Contourite Depositional System: interactions
809	between the Mediterranean Outflow Water and the upper Cantabrian slope
810	(North Iberian Margin). Marine Geology.

811	Van Weering, T.C.E., de Haas, H., de Stigter, H.C., Lykke-Andersen, H., Kouvaev, I.,
812	2003. Structure and development of giant carbonate mounds at the SW and SE
813	Rockall Trough margins, NE Atlantic Ocean. Marine Geology 198 (1-2), 67-81.
814	Wheeler, A.J., Beyer, A., Freiwald, A., de Haas, H., Huvenne, V.A.I., Kozachenko, M.,
815	Olu-Le Roy, K., Opderbecke, J., 2007. Morphology and environment of cold-
816	water coral carbonate mounds on the NW European margin. International
817	Journal of Earth Sciences 96, 37-56.
818	Wheeler, A.J., Kozachenko, M., Beyer, A., Foubert, A., Huvenne, V.A.I., Klages, M.,
819	Masson, D.G., Olu-Le Roy, K., Thiede, J., 2005. Sedimentary processes and
820	carbonate mounds in the Belgica mound province, Porcupine Seabight, NE
821	Atlantic, in: Freiwald, A., Roberts, J.M. (Eds.), Cold-Water Corals and
822	Ecosystems, Springer, Heidelberg, pp. 571-603.
823	White, M., 2007. Benthic dynamics at the carbonate mound regions of the Porcupine
824	Sea Bight continental margin. International Journal of Earth Sciences 96, 1-9.
825	Wienberg, C., Hebbeln, D., Fink, H.G., Mienis, F., Dorschel, B., Vertino, A., López
826	Correa, M., Freiwald, A., 2009. Scleractinian cold-water corals in the Gulf of
827	Cádiz – First clues about their spatial and temporal distribution. Deep-Sea
828	Research I 156, 1873-1893.
829	Zaragosi, S., Bourillet, JF., Eynaud, F., Toucanne, S., Denhard, B., Van Toer, A.,
830	Lanfumey, V., 2006. The impact of the last European deglaciation on the deep-
831	sea turbidite systems of the Celtic-Armorican margin (Bay of Biscay). Geo-
832	Marine Letters 26, 317-329.
833	Zibrowius, H., 1980. Les Scléractiniaires de la Méditerranée et de l'Atlantique nord-
834	oriental. Mémoires de l'Institut Océanographique Monaco 11, 1-284.

835	Zibrowius, H., 1985. Scléractiniaires bathyaux et abyssaux de l'Atlantique nord-
836	oriental: campagnes BIOGAS (POLGAS) et INCAL, in: Laubier, L., Monniot,
837	C. (Eds.), Peuplements profonds du Golfe de Gascogne, IFREMER, Brest,
838	France, pp. 311–324.
839	Zibrowius, H., Southward, E.C., Day, J.H., 1975. New observations on a little-known
840	species of Lumbrineris (Polychaeta) living on various cnidarians, with notes on
841	its recent and fossil scleractinian hosts. Journal of the Marine Biological
842	Association of the United Kingdom 55, 83–108.

843 Figures

844

845 Figure 1.

bathymetry, contour lines every 500 m), (B) Detail of the study area with EM1002
bathymetry (contour lines every 50 m) and the location of the CTD casts (red), ROV
dives (blue) and boxcores (green), collected during the R/V Belgica BiSCOSYSTEMS
cruise (2008). As background a bathymetric map of IFREMER (Normand and Mazé,
2000) is used (contour lines every 100 m).

854 Figure 2.

Hydrographic data of the Guilvinec Canyon. (A) Temperature/salinity plot for both
CTD casts, with indication of the boundary (dashed grey line) between the Eastern
North Atlantic Central Water (ENACW) and the Mediterranean Outflow Water
(MOW). The estimated occurrence envelope of the shallow-water (green) and deepwater (blue) cold-water corals in the Penmarc'h and Guilvinec Canyons is based on the
ROV observations, plotted on the CTD data of respectively (B) cast B0813-CTD-3 and
(C) cast B0813-CTD-4.

864 Figure 3.

865

866 ROV images from the shallow-water setting (ROV dive B08-03): (A) rippled seabed

- 867 with a patchy distribution of cold-water corals, (B) coarse sand with a high amount of
- gravel, (C) the dense cold-water coral rubble coverage on top of the small mounds, and
- 869 (D) zoom in this coral rubble facies with predominantly *Lophelia pertusa*.
- 870

871 Figure 4.

(A) Facies interpretation map of the shallow-water dive B08-03 on the southeastern

flank of the Guilvinec Canyon in water depths between 278 and 289 m. (B) Photographs

875 of the obtained boxcores in the shallow water area with the locations and mean grain-

- size values.
- 877

878 Figure 5.

888 Figure 6.

890 ROV stills imagery highlighting the different types of cold-water coral occurrences in 891 the deep-water coral setting: (A) rippled seabed with coral rubble and biogenic debris; 892 (B) example of a coral field with living and dead coral species; (C) a dense cold-water 893 coral coverage with both living and dead species; (D) detailed zoom on the facies 894 mentioned in A; (E) outcropping hard substratum with a few living coral species 895 (Madrepora oculata) and Gorgonians; (F) outcropping hard substratum with the 896 sponges Geodia sp. and Topsentia sp., and again living and dead Madrepora oculata 897 specimens; (G) a small bank with a height of 50 cm colonised by oysters and a few 898 living coral species; (H) a vertical cliff colonised with oysters and living Madrepora 899 oculata.

900 Figure 7.

902 Facies interpretation map of ROV dive B08-02 on the northwestern flank of the

- 903 Guilvinec Canyon in water depths of 712 to 900 m.
- 904

905 Tables

906

- 907 Table 1. Names, locations and operational data of the ROV Genesis dives. Time in
- 908 UTC.

Name	Area	Start track		End track	
Inallic	Alta	Time	Depth	Time	Depth
B08-01	South flank of Penmarc'h canyon	13:16:02	385 m	16:47:44	699 m
B08-02	North flank of Guilvinec canyon	11:24:46	712 m	15:46:00	900 m
B08-03	South flank of Guilvinec canyon:	12:29:41	278 m	14:05:25	289 m
	small mounds/ridges on the top				
B08-04	Spur, south flank of Guilvinec canyon	15:51:10	676 m	16:38:51	691 m
B08-05	North flank of Guilvinec canyon	11:17:00	305 m	14:27:53	529 m

909

910

911 Table 2. Location, water depth and recovery length of the studied boxcores.

Core number	Latitude	Longitude	Water Depth	Recovery
B08-1301-bc	46°54.514' N	5°15.489' W	285 m	31 cm
B08-1302-bc	46°54.499' N	5°15.602' W	290 m	17 cm
B08-1303-bc	46°54.511' N	5°15.504' W	285 m	20 cm
B08-1304-bc	46°54.498' N	5°15.587' W	288 m	5 cm
B08-1305-bc	46°54.501' N	5°15.577' W	288 m	14 cm
B08-1306-bc	46°55.723' N	5°22.828' W	866 m	10-15 cm

Table 3. Overview of the U-series datings in the shallow water setting (left) and thedeep-water setting (right).

Shallow water setting			Deep-water setting			
Sample name	Age (ka)	Error (ka)	Sample name	Age (ka)	Error (ka)	
B08-1301-bc	7.35	0.45	B08-1306-bc A	1.32	0.52	
B08-1305-bc A	7.78	0.71	B08-1306-bc B	1.21	0.13	
B08-1305-bc A	9.07	0.25	B08-1306-bc C	2.27	0.30	
B08-03 B	8.89	0.31				
B08-03 C	1.41	0.17				