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Abstract
Language models have become a key step to achieve state-of-the art results in many different Natural Language Processing (NLP)
tasks. Leveraging the huge amount of unlabeled texts nowadays available, they provide an efficient way to pre-train continuous word
representations that can be fine-tuned for a downstream task, along with their contextualization at the sentence level. This has been
widely demonstrated for English using contextualized representations (Dai and Le, 2015; Peters et al., 2018; Howard and Ruder, 2018;
Radford et al., 2018; Devlin et al., 2019; Yang et al., 2019b). In this paper, we introduce and share FlauBERT, a model learned on
a very large and heterogeneous French corpus. Models of different sizes are trained using the new CNRS (French National Centre
for Scientific Research) Jean Zay supercomputer. We apply our French language models to diverse NLP tasks (text classification,
paraphrasing, natural language inference, parsing, word sense disambiguation) and show that most of the time they outperform other
pre-training approaches. Different versions of FlauBERT as well as a unified evaluation protocol for the downstream tasks, called FLUE
(French Language Understanding Evaluation), are shared to the research community for further reproducible experiments in French NLP.

Keywords: FlauBERT, FLUE, BERT, Transformer, French, language model, pre-training, NLP benchmark, text classification,
parsing, word sense disambiguation, natural language inference, paraphrase.

1. Introduction

A recent game-changing contribution in Natural Language
Processing (NLP) was the introduction of deep unsuper-
vised language representations pre-trained using only plain
text corpora. Previous word embedding pre-training ap-
proaches, such as word2vec (Mikolov et al., 2013) or GloVe
(Pennington et al., 2014), learn a single vector for each
wordform. By contrast, these new models are trained to
produce contextual embeddings: the output representation
depends on the entire input sequence (e.g. each token in-
stance has a vector representation that depends on its left
and right context). Initially based on recurrent neural net-
works (Dai and Le, 2015; Ramachandran et al., 2017;
Howard and Ruder, 2018; Peters et al., 2018), these mod-
els quickly converged towards the use of the Transformer
(Vaswani et al., 2017), such as GPT (Radford et al., 2018),
BERT (Devlin et al., 2019), XLNet (Yang et al., 2019b),
RoBERTa (Liu et al., 2019). Using these pre-trained mod-
els in a transfer learning fashion has shown to yield strik-
ing improvements across a wide range of NLP tasks. One
can easily build state-of-the-art NLP systems thanks to the
publicly available pre-trained weights, saving time, energy,
and resources. As a consequence, unsupervised language
model pre-training has become a de facto standard in NLP.
This has been, however, mostly demonstrated for English
even though multi-lingual or cross-lingual variants are also
available, taking into account more than a hundred lan-
guages in a single model: mBERT (Devlin et al., 2019),
XLM (Lample and Conneau, 2019), XLM-R (Conneau et
al., 2019).

In this paper, we describe our methodology to build
FlauBERT – French Language Understanding via
Bidirectional Encoder Representations from Transformers,

a French BERT1 model that outperforms multi-
lingual/cross-lingual models in several downstream
NLP tasks, under similar configurations. FlauBERT
relies on freely available datasets and is made publicly
available in different versions.2 For further reproducible
experiments, we also provide the complete processing and
training pipeline as well as a general benchmark for evalu-
ating French NLP systems. This evaluation setup is similar
to the popular GLUE benchmark (Wang et al., 2018),
and is named FLUE (French Language Understanding
Evaluation).

2. Related Work
2.1. Pre-trained Language Models
Self-supervised3 pre-training on unlabeled text data was
first proposed in the task of neural language modeling (Ben-
gio et al., 2003; Collobert and Weston, 2008), where it was
shown that a neural network trained to predict next word
from prior words can learn useful embedding representa-
tions, called word embeddings (each word is represented by
a fixed vector). These representations were shown to play
an important role in NLP, yielding state-of-the-art perfor-
mance on multiple tasks (Collobert et al., 2011), especially

1We learned of a similar project that resulted in a publication
on arXiv (Martin et al., 2019). However, we believe that these two
works on French language models are complementary since the
NLP tasks we addressed are different, as are the training corpora
and preprocessing pipelines. We also point out that our models
were trained using the CNRS (French National Centre for Scien-
tific Research) public research computational infrastructure and
did not receive any assistance from a private stakeholder.

2https://github.com/getalp/Flaubert
3Self-supervised learning is a special case of unsupervised

learning where unlabeled data is used as a supervision signal.

https://github.com/getalp/Flaubert


after the introduction of word2vec (Mikolov et al., 2013)
and GloVe (Pennington et al., 2014), efficient and effective
algorithms for learning word embeddings.
A major limitation of word embeddings is that a word can
only have a single representation, even if it can have mul-
tiple meanings (e.g. depending on the context). There-
fore, recent works have introduced a paradigm shift from
context-free word embeddings to contextual embeddings:
the output representation is a function of the entire input
sequence, which allows encoding complex, high-level syn-
tactic and semantic characteristics of words or sentences.
This line of research was started by Dai and Le (2015) who
proposed pre-training representations via either an encoder-
decoder language model or a sequence autoencoder. Ra-
machandran et al. (2017)4 showed that this approach can
be applied to pre-training sequence-to-sequence models
(Sutskever et al., 2014). These models, however, require
a significant amount of in-domain data for the pre-training
tasks. Peters et al. (2018, ELMo) and Howard and Ruder
(2018, ULMFiT) were the first to demonstrate that leverag-
ing huge general-domain text corpora in pre-training can
lead to substantial improvements on downstream tasks.
Both methods employ LSTM (Hochreiter and Schmidhu-
ber, 1997) language models, but ULMFiT utilizes a regu-
lar multi-layer architecture, while ELMo adopts a bidirec-
tional LSTM to build the final embedding for each input
token from the concatenation of the left-to-right and right-
to-left representations. Another fundamental difference lies
in how each model can be tuned to different downstream
tasks: ELMo delivers different word vectors that can be in-
terpolated, whereas ULMFiT enables robust fine-tuning of
the whole network w.r.t. the downstream tasks. The ability
of fine-tuning was shown to significantly boost the perfor-
mance, and thus this approach has been further developed
in the recent works such as MultiFiT (Eisenschlos et al.,
2019) or most prominently Transformer-based (Vaswani et
al., 2017) architectures: GPT (Radford et al., 2018), BERT
(Devlin et al., 2019), XLNet (Yang et al., 2019b), XLM
(Lample and Conneau, 2019), RoBERTa (Liu et al., 2019),
ALBERT (Lan et al., 2019), T5 (Raffel et al., 2019). These
methods have one after the other established new state-of-
the-art results on various NLP benchmarks, such as GLUE
(Wang et al., 2018) or SQuAD (Rajpurkar et al., 2018), sur-
passing previous methods by a large margin.

2.2. Pre-trained Language Models Beyond
English

Given the impact of pre-trained language models on NLP
downstream tasks in English, several works have recently
released pre-trained models for other languages. For in-
stance, ELMo exists for Portuguese, Japanese, German
and Basque,5 while BERT and variants were specifically
trained for simplified and traditional Chinese8 and Ger-
man.6 A Portuguese version of MultiFiT is also avail-

4It should be noted that learning contextual embeddings was
also proposed in (McCann et al., 2017), but in a supervised fashion
as they used annotated machine translation data.

5https://allennlp.org/elmo
6https://deepset.ai/german-bert

able.7 Recently, more monolingual BERT-based models
have been released, such as for Arabic (Antoun et al.,
2020), Dutch (de Vries et al., 2019; Delobelle et al., 2020),
Finnish (Virtanen et al., 2019), Italian (Polignano et al.,
2019), Portuguese (Souza et al., 2019), Russian (Kuratov
and Arkhipov, 2019), Spanish (Cañete et al., 2020), and
Vietnamese (Nguyen and Nguyen, 2020). For French, be-
sides pre-trained language models using ULMFiT and Mul-
tiFiT configurations,7 CamemBERT (Martin et al., 2019) is
a French BERT model concurrent to our work.
Another trend considers one model estimated for sev-
eral languages with a shared vocabulary. The release of
multilingual BERT for 104 languages pioneered this ap-
proach.8 A recent extension of this work leverages par-
allel data to build a cross-lingual pre-trained version of
LASER (Artetxe and Schwenk, 2019) for 93 languages,
XLM (Lample and Conneau, 2019) and XLM-R (Conneau
et al., 2019) for 100 languages.

2.3. Evaluation Protocol for French NLP Tasks
The existence of a multi-task evaluation benchmark such as
GLUE (Wang et al., 2018) for English is highly beneficial
to facilitate research in the language of interest. The GLUE
benchmark has become a prominent framework to evalu-
ate the performance of NLP models in English. The recent
contributions based on pre-trained language models have
led to remarkable performance across a wide range of Nat-
ural Language Understanding (NLU) tasks. The authors of
GLUE have therefore introduced SuperGLUE (Wang et al.,
2019a): a new benchmark built on the principles of GLUE,
including more challenging and diverse set of tasks. A Chi-
nese version of GLUE9 is also developed to evaluate model
performance in Chinese NLP tasks. As of now, we have not
learned of any such benchmark for French.

3. Building FlauBERT
In this section, we describe the training corpus, the text
preprocessing pipeline, the model architecture and training
configurations to build FlauBERTBASE and FlauBERTLARGE.

3.1. Training Data
Data collection Our French text corpus consists of 24
sub-corpora gathered from different sources, covering di-
verse topics and writing styles, ranging from formal and
well-written text (e.g. Wikipedia and books)10 to random
text crawled from the Internet (e.g. Common Crawl).11 The
data were collected from three main sources: (1) monolin-
gual data for French provided in WMT19 shared tasks (Li
et al., 2019, 4 sub-corpora); (2) French text corpora offered
in the OPUS collection (Tiedemann, 2012, 8 sub-corpora);
and (3) datasets available in the Wikimedia projects (Meta,
2019, 8 sub-corpora).
We used the WikiExtractor tool12 to extract the text from
Wikipedia. For the other sub-corpora, we either used our

7https://github.com/piegu/language-models
8https://github.com/google-research/bert
9https://github.com/chineseGLUE/chineseGLUE

10http://www.gutenberg.org
11http://data.statmt.org/ngrams/deduped2017
12https://github.com/attardi/wikiextractor

https://allennlp.org/elmo
https://deepset.ai/german-bert
https://github.com/piegu/language-models
https://github.com/google-research/bert
https://github.com/chineseGLUE/chineseGLUE
http://www.gutenberg.org
http://data.statmt.org/ngrams/deduped2017
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BERTBASE RoBERTaBASE CamemBERT FlauBERTBASE/FlauBERTLARGE

Language English English French French
Training data 13 GB 160 GB 138 GB† 71 GB‡

Pre-training objectives NSP and MLM MLM MLM MLM
Total parameters 110 M 125 M 110 M 138 M/ 373 M
Tokenizer WordPiece 30K BPE 50K SentencePiece 32K BPE 50K
Masking strategy Static + Sub-word masking Dynamic + Sub-word masking Dynamic + Whole-word masking Dynamic + Sub-word masking
†, ‡: 282 GB, 270 GB before filtering/cleaning.

Table 1: Comparison between FlauBERT and previous work.

own tool to extract the text or download them directly from
their websites. The total size of the uncompressed text be-
fore preprocessing is 270 GB. More details can be found in
Appendix A.1.

Data preprocessing For all sub-corpora, we filtered
out very short sentences as well as repetitive and non-
meaningful content such as telephone/fax numbers, email
addresses, etc. For Common Crawl, which is our largest
sub-corpus with 215 GB of raw text, we applied aggressive
cleaning to reduce its size to 43.4 GB. All the data were
Unicode-normalized in a consistent way before being to-
kenized using Moses tokenizer (Koehn et al., 2007). The
resulting training corpus is 71 GB in size.
Our code for downloading and preprocessing data is made
publicly available.13

3.2. Models and Training Configurations
Model architecture FlauBERT has the same model ar-
chitecture as BERT (Devlin et al., 2019), which consists
of a multi-layer bidirectional Transformer (Vaswani et al.,
2017). Following Devlin et al. (2019), we propose two
model sizes:

• FlauBERTBASE: L = 12, H = 768, A = 12,

• FlauBERTLARGE: L = 24, H = 1024, A = 16,

whereL,H andA respectively denote the number of Trans-
former blocks, the hidden size, and the number of self-
attention heads. As Transformer has become quite stan-
dard, we refer to Vaswani et al. (2017) for further details.

Training objective and optimization Pre-training of the
original BERT (Devlin et al., 2019) consists of two su-
pervised tasks: (1) a masked language model (MLM) that
learns to predict randomly masked tokens; and (2) a next
sentence prediction (NSP) task in which the model learns
to predict whether B is the actual next sentence that follows
A, given a pair of input sentences A,B.
Devlin et al. (2019) observed that removing NSP signifi-
cantly hurts performance on some downstream tasks. How-
ever, the opposite was shown in later studies, including
Yang et al. (2019b, XLNet), Lample and Conneau (2019,
XLM), and Liu et al. (2019, RoBERTa).14 Therefore, we
only employed the MLM objective in FlauBERT.
To optimize this objective function, we followed Liu et
al. (2019) and used the Adam optimizer (Kingma and Ba,
2014) with the following parameters:

13https://github.com/getalp/Flaubert
14Liu et al. (2019) hypothesized that the original BERT imple-

mentation may only have removed the loss term while still retain-
ing a bad input format, resulting in performance degradation.

• FlauBERTBASE: warmup steps of 24k, peak learning
rate of 6e−4, β1 = 0.9, β2 = 0.98, ε = 1e−6 and
weight decay of 0.01.

• FlauBERTLARGE: warmup steps of 30k, peak learning
rate of 3e−4, β1 = 0.9, β2 = 0.98, ε = 1e−6 and
weight decay of 0.01.

Training FlauBERTLARGE Training very deep Trans-
formers is known to be susceptible to instability (Wang et
al., 2019b; Nguyen and Salazar, 2019; Xu et al., 2019; Fan
et al., 2019). Not surprisingly, we also observed this dif-
ficulty when training FlauBERTLARGE using the same con-
figurations as BERTLARGE and RoBERTaLARGE, where diver-
gence happened at an early stage.
Several methods have been proposed to tackle this issue.
For example, in an updated implementation of the Trans-
former (Vaswani et al., 2018), layer normalization is ap-
plied before each attention layer by default, rather than
after each residual block as in the original implementa-
tion (Vaswani et al., 2017). These configurations are called
pre-norm and post-norm, respectively. It was observed
by Vaswani et al. (2018), and again confirmed by later
works e.g. (Wang et al., 2019b; Xu et al., 2019; Nguyen
and Salazar, 2019), that pre-norm helps stabilize train-
ing. Recently, a regularization technique called stochastic
depths (Huang et al., 2016) has been demonstrated to be
very effective for training deep Transformers, by e.g. Pham
et al. (2019) and Fan et al. (2019) who successfully trained
architectures of more than 40 layers. The idea is to ran-
domly drop a number of (attention) layers at each training
step. Other techniques are also available such as progres-
sive training (Gong et al., 2019), or improving initialization
(Zhang et al., 2019a; Xu et al., 2019) and normalization
(Nguyen and Salazar, 2019).
For training FlauBERTLARGE, we employed pre-norm atten-
tion and stochastic depths for their simplicity. We found
that these two techniques were sufficient for successful
training. We set the rate of layer dropping to 0.2 in all the
experiments.

Other training details A vocabulary of 50K sub-word
units is built using the Byte Pair Encoding (BPE) algorithm
(Sennrich et al., 2016). The only difference between our
work and RoBERTa is that the training data are prepro-
cessed and tokenized using a basic tokenizer for French
(Koehn et al., 2007, Moses), as in XLM (Lample and
Conneau, 2019), before the application of BPE. We use
fastBPE,15 a very efficient implementation to extract the
BPE units and encode the corpora.

15https://github.com/glample/fastBPE

https://github.com/getalp/Flaubert
https://github.com/glample/fastBPE


FlauBERTBASE is trained on 32 GPUs Nvidia V100 in 410
hours and FlauBERTLARGE is trained on 128 GPUs in 390
hours, both with the effective batch size of 8192 sequences.
Finally, we summarize the differences between FlauBERT
and BERT, RoBERTa, CamemBERT in Table 1.

4. FLUE
In this section, we compile a set of existing French lan-
guage tasks to form an evaluation benchmark for French
NLP that we called FLUE (French Language Understand-
ing Evaluation). We select the datasets from different do-
mains, level of difficulty, degree of formality, and amount
of training samples. Three out of six tasks (Text Classifi-
cation, Paraphrase, Natural Language Inference) are from
cross-lingual datasets since we also aim to provide results
from a monolingual pre-trained model to facilitate future
studies of cross-lingual models, which have been drawing
much of research interest recently.
Table 2 gives an overview of the datasets, including their
domains and training/development/test splits. The details
are presented in the next subsections.

Dataset Domain Train Dev Test

CLS-FR
Books

Product reviews
2 000 - 2 000

DVD 1 999 - 2 000
Music 1 998 - 2 000

PAWS-X-FR General domain 49 401 1 992 1 985

XNLI-FR Diverse genres 392 702 2 490 5 010

French Treebank Daily newspaper 14 759 1 235 2 541

FrenchSemEval Diverse genres 55 206 - 3 199

Noun Sense Disambiguation Diverse genres 818 262 - 1 445

Table 2: Descriptions of the datasets included in our FLUE
benchmark.

4.1. Text Classification
CLS The Cross Lingual Sentiment CLS (Prettenhofer
and Stein, 2010) dataset consists of Amazon reviews for
three product categories: books, DVD, and music in four
languages: English, French, German, and Japanese. Each
sample contains a review text and the associated rating from
1 to 5 stars. Following Blitzer et al. (2006) and Prettenhofer
and Stein (2010), ratings with 3 stars are removed. Positive
reviews have ratings higher than 3 and negative reviews are
those rated lower than 3. There is one train and test set for
each product category. The train and test sets are balanced,
including around 1 000 positive and 1 000 negative reviews
for a total of 2 000 reviews in each dataset. We take the
French portion to create the binary text classification task
in FLUE and report the accuracy on the test set.

4.2. Paraphrasing
PAWS-X The Cross-lingual Adversarial Dataset for Para-
phrase Identification PAWS-X (Yang et al., 2019a) is the
extension of the Paraphrase Adversaries from Word Scram-
bling PAWS (Zhang et al., 2019b) for English to six other
languages: French, Spanish, German, Chinese, Japanese
and Korean. PAWS composes English paraphrase identifi-
cation pairs from Wikipedia and Quora in which two sen-
tences in a pair have high lexical overlap ratio, generated by

LM-based word scrambling and back translation followed
by human judgement. The paraphrasing task is to iden-
tify whether the sentences in these pairs are semantically
equivalent or not. Similar to previous approaches to cre-
ate multilingual corpora, Yang et al. (2019a) used machine
translation to create the training set for each target language
in PAWS-X from the English training set in PAWS. The de-
velopment and test sets for each language are translated by
human translators. We take the related datasets for French
to perform the paraphrasing task and report the accuracy on
the test set.

4.3. Natural Language Inference
XNLI The Cross-lingual NLI (XNLI) corpus (Conneau
et al., 2018) extends the development and test sets of the
Multi-Genre Natural Language Inference corpus (Williams
et al., 2018, MultiNLI) to 15 languages. The development
and test sets for each language consist of 7 500 human-
annotated examples, making up a total of 112 500 sentence
pairs annotated with the labels entailment, contradiction, or
neutral. Each sentence pair includes a premise (p) and a hy-
pothesis (h). The Natural Language Inference (NLI) task,
also known as recognizing textual entailment (RTE), is to
determine whether p entails, contradicts or neither entails
nor contradicts h. We take the French part of the XNLI
corpus to form the development and test sets for the NLI
task in FLUE. The train set is obtained from the machine
translated version to French provided in XNLI. Following
Conneau et al. (2018), we report the test accuracy.

4.4. Parsing and Part-of-Speech Tagging
Syntactic parsing consists in assigning a tree structure to a
sentence in natural language. We perform parsing on the
French Treebank (Abeillé et al., 2003), a collection of sen-
tences extracted from French daily newspaper Le Monde,
and manually annotated with both constituency and depen-
dency syntactic trees and part-of-speech tags. Specifically,
we use the version of the corpus instantiated for the SPMRL
2013 shared task and described by Seddah et al. (2013).
This version is provided with a standard split representing
14 759 sentences for the training corpus, and respectively
1 235 and 2 541 sentences for the development and evalua-
tion sets.

4.5. Word Sense Disambiguation Tasks
Word Sense Disambiguation (WSD) is a classification task
which aims to predict the sense of words in a given con-
text according to a specific sense inventory. We used two
French WSD tasks: the FrenchSemEval task (Segonne et
al., 2019), which targets verbs only, and a modified ver-
sion of the French part of the Multilingual WSD task of
SemEval 2013 (Navigli et al., 2013), which targets nouns.

Verb Sense Disambiguation We made experiments of
sense disambiguation focused on French verbs using
FrenchSemEval (Segonne et al., 2019, FSE), an evaluation
dataset in which verb occurrences were manually sense an-
notated with the sense inventory of Wiktionary, a collabora-
tively edited open-source dictionary. FSE includes both the
evaluation data and the sense inventory. The evaluation data
consists of 3 199 manual annotations among a selection of



66 verbs which makes roughly 50 sense annotated occur-
rences per verb. The sense inventory provided in FSE is
a Wiktionary dump (04-20-2018) openly available via Db-
nary (Sérasset, 2012). For a given sense of a target key, the
sense inventory offers a definition along with one or more
examples. For this task, we considered the examples of the
sense inventory as training examples and tested our model
on the evaluation dataset.

Noun Sense Disambiguation We propose a new chal-
lenging task for the WSD of French, based on the French
part of the Multilingual WSD task of SemEval 2013 (Nav-
igli et al., 2013), which targets nouns only. We adapted the
task to use the WordNet 3.0 sense inventory (Miller, 1995)
instead of BabelNet (Navigli and Ponzetto, 2010), by con-
verting the sense keys to WordNet 3.0 if a mapping exists
in BabelNet, and removing them otherwise.
The result of the conversion process is an evaluation corpus
composed of 306 sentences and 1 445 French nouns anno-
tated with WordNet sense keys, and manually verified.
For the training data, we followed the method proposed by
Hadj Salah (2018), and translated the SemCor (Miller et al.,
1993) and the WordNet Gloss Corpus16 into French, using
the best English-French Machine Translation system of the
fairseq toolkit17 (Ott et al., 2019). Finally, we aligned the
WordNet sense annotation from the source English words
to the the translated French words, using the alignment pro-
vided by the MT system.
We rely on WordNet sense keys instead of the original Ba-
belNet annotations for the following two reasons. First,
WordNet is a resource that is entirely manually verified,
and widely used in WSD research (Navigli, 2009). Sec-
ond, there is already a large quantity of sense annotated
data based on the sense inventory of WordNet (Vial et al.,
2018) that we can use for the training of our system.
We publicly release18 both our training data and the evalu-
ation data in the UFSAC format (Vial et al., 2018).

5. Experiments and Results
In this section, we present FlauBERT fine-tuning results on
the FLUE benchmark. We compare the performance of
FlauBERT with Multilingual BERT (Devlin et al., 2019,
mBERT) and CamemBERT (Martin et al., 2019) on all
tasks. In addition, for each task we also include the best
non-BERT model for comparison. We made use of the
open source libraries (Lample and Conneau, 2019, XLM)
and (Wolf et al., 2019, Transformers) in some of the exper-
iments.

5.1. Text Classification
Model description We followed the standard fine-tuning
process of BERT (Devlin et al., 2019). The input is a de-
generate text-∅ pair. The classification head is composed
of the following layers, in order: dropout, linear, tanh ac-
tivation, dropout, and linear. The output dimensions of the
linear layers are respectively equal to the hidden size of the

16The set of WordNet glosses semi-automatically sense anno-
tated which is released as part of WordNet since version 3.0.

17https://github.com/pytorch/fairseq
18https://zenodo.org/record/3549806

Transformer and the number of classes (which is 2 in this
case as the task is binary classification). The dropout rate
was set to 0.1.
We trained for 30 epochs using a batch size of 16 while per-
forming a grid search over 4 different learning rates: 1e−5,
5e−5, 1e−6, and 5e−6. A random split of 20% of the train-
ing data was used as validation set, and the best performing
model on this set was then chosen for evaluation on the test
set.

Model Books DVD Music

MultiFiT† 91.25 89.55 93.40
mBERT† 86.15 86.90 86.65
CamemBERT 92.30 93.00 94.85
FlauBERTBASE 93.10 92.45 94.10
FlauBERTLARGE 95.00 94.10 95.85
† Results reported in (Eisenschlos et al., 2019).

Table 3: Accuracy on the CLS dataset for French.

Results Table 3 presents the final accuracy on the test set
for each model. The results highlight the importance of
a monolingual French model for text classification: both
CamemBERT and FlauBERT outperform mBERT by a
large margin. FlauBERTBASE performs moderately better
than CamemBERT in the books dataset, while its results on
the two remaining datasets of DVD and music are lower
than those of CamemBERT. FlauBERTLARGE achieves the
best results in all categories.

5.2. Paraphrasing
Model description The setup for this task is almost iden-
tical to the previous one, except that: (1) the input sequence
is now a pair of sentences A,B; and (2) the hyper-parameter
search is performed on the development data set (i.e. no val-
idation split is needed).

Results The final accuracy for each model is reported in
Table 4. One can observe that the monolingual French mod-
els perform only slightly better than the multilingual model
mBERT, which could be attributed to the characteristics of
the PAWS-X dataset. Containing samples with high lexical
overlap ratio, this dataset has been proved to be an effective
measure of model sensitivity to word order and syntactic
structure (Yang et al., 2019a). A multilingual model such
as mBERT, therefore, could capture these features as well
as a monolingual model.

Model Accuracy

ESIM† (Chen et al., 2017) 66.20
mBERT† 89.30
CamemBERT 90.14
FlauBERTBASE 89.49
FlauBERTLARGE 89.34
† Results reported in (Yang et al., 2019a).

Table 4: Results on the French PAWS-X dataset.

https://github.com/pytorch/fairseq
https://zenodo.org/record/3549806


5.3. Natural Language Inference
Model description As this task was also considered in
(Martin et al., 2019, CamemBERT), for a fair comparison,
here we replicate the same experimental setup. Similar to
paraphrasing, the model input of this task is also a pair
of sentences. The classification head, however, consists of
only one dropout layer followed by one linear layer.

Results We report the final accuracy for each model in
Table 5. The results confirm the superiority of the French
models compared to the multilingual model mBERT on
this task. FlauBERTLARGE performs moderately bet-
ter than CamemBERT. Both of them clearly outperform
XLM-RBASE, while cannot surpass XLM-RLARGE.

Model Accuracy

XLM-RLARGE
† 85.2

XLM-RBASE
† 80.1

mBERT‡ 76.9
CamemBERT ‡ 81.2
FlauBERTBASE 80.6
FlauBERTLARGE 83.4
† Results reported in (Conneau et al., 2019).
‡ Results reported in (Martin et al., 2019).

Table 5: Results on the French XNLI dataset.

5.4. Constituency Parsing and POS Tagging
Model description We use the parser described by Ki-
taev and Klein (2018) and Kitaev et al. (2019). It is an
openly available19 chart parser based on a self-attentive en-
coder. We compare (i) a model without any pre-trained pa-
rameters, (ii) a model that additionally uses and fine-tunes
fastText20 pre-trained embeddings, (iii) models based on
pre-trained language models: mBERT, CamemBERT, and
FlauBERT. We use the default hyperparameters from Ki-
taev and Klein (2018) for the first two settings and the hy-
perparameters from Kitaev et al. (2019) when using pre-
trained language models, except for FlauBERTLARGE. For
this last model, we use a different learning rate (0.00001),
batch size (8) and ignore training sentences longer than 100
tokens, due to memory limitation. We jointly perform part-
of-speech (POS) tagging based on the same input as the
parser, in a multitask setting. For each setting we perform
training 3 times with different random seeds and select best
model according to development F-score.
For final evaluation, we use the evaluation tool provided
by the SPMRL shared task organizers21 and report labelled
F-score, the standard metric for constituency parsing eval-
uation, as well as POS tagging accuracy.

Results We report constituency parsing results in Ta-
ble 6. Without pre-training, we replicate the result from
Kitaev and Klein (2018). FastText pre-trained embeddings
do not bring improvement over this already strong model.

19https://github.com/nikitakit/self-attentive-parser
20https://fasttext.cc/
21http://pauillac.inria.fr/∼seddah/evalb spmrl2013.

tar.gz

Model Dev Test

F1 POS F1 POS

Best published (Kitaev et al., 2019) 87.42

No pre-training 84.31 97.6 83.85 97.5
fastText pre-trained embeddings 84.09 97.6 83.64 97.7
mBERT 87.25 98.1 87.52 98.1
CamemBERT (Martin et al., 2019) 88.53 98.1 88.39 98.2
FlauBERTBASE 88.95 98.2 89.05 98.1
FlauBERTLARGE 89.08 98.2 88.63 98.2

Ensemble: FlauBERTBASE + CamemBERT 89.32 89.28

Table 6: Constituency parsing and POS tagging results.

When using pre-trained language models, we observe that
CamemBERT, with its language-specific training improves
over mBERT by 0.9 absolute F1. FlauBERTBASE outper-
forms CamemBERT by 0.7 absolute F1 on the test set and
obtains the best published results on the task for a single
model. Regarding POS tagging, all large-scale pre-trained
language models obtain similar results (98.1-98.2), and out-
perform models without pre-training or with fastText em-
beddings (97.5-97.7). FlauBERTLARGE provides a marginal
improvement on the development set, and fails to reach
FlauBERTBASE results on the test set.
In order to assess whether FlauBERT and CamemBERT are
complementary for this task, we evaluate an ensemble of
both models (last line in Table 6). The ensemble model
improves by 0.4 absolute F1 over FlauBERT on the devel-
opment set and 0.2 on the test set, obtaining the highest re-
sult for the task. This result suggests that both pre-trained
language models are complementary and have their own
strengths and weaknesses.

5.5. Dependency parsing
Model We use our own reimplementation of the parsing
model of Dozat and Manning (2016) with maximum span-
ning tree decoding adapted to handle several input sources
such as BERT representations. The model does not perform
part of speech tagging but uses the predicted tags provided
by the SPMRL shared task organizers.
Our word representations are a concatenation of word em-
beddings and tag embeddings learned together with the
model parameters on the French Treebank data itself, and
at most one of (fastText, CamemBERT, FlauBERTBASE,
FlauBERTBASE, mBERT) word vector. As Dozat and Man-
ning (2016), we use word and tag dropout (d = 0.5) on
word and tag embeddings but without dropout on BERT
representations. We performed a fairly comprehensive grid
search on hyperparameters for each model tested.

Results The results are reported in Table 7. The best pub-
lished results in this shared task (Constant et al., 2013) were
involving an ensemble of parsers with additional resources
for modelling multi word expressions (MWE), typical of
the French treebank annotations. The monolingual French
BERT models (CamemBERT, FlauBERT) perform better
and set the new state of the art on this dataset with a single
parser and without specific modelling for MWEs. One can
observe that both FlauBERT models perform marginally
better than CamemBERT, while all of them outperform
mBERT by a large margin.

https://github.com/nikitakit/self-attentive-parser
https://fasttext.cc/
http://pauillac.inria.fr/~seddah/evalb_spmrl2013.tar.gz
http://pauillac.inria.fr/~seddah/evalb_spmrl2013.tar.gz


Model UAS LAS

Best published (Constant et al., 2013) 89.19 85.86

No pre-training 88.92 85.11
fastText pre-training 86.32 82.04
mBERT 89.50 85.86
CamemBERT 91.37 88.13
FlauBERTBASE 91.56 88.35
FlauBERTLARGE 91.61 88.47

Table 7: Dependency parsing results.

5.6. Word Sense Disambiguation
Verb Sense Disambiguation Disambiguation was per-
formed with the same WSD supervised method used by
Segonne et al. (2019). First we compute sense vector rep-
resentations from examples found in the Wiktionary sense
inventory: given a sense s and its corresponding examples,
we compute the vector representation of s by averaging
the vector representations of its examples. Then, we tag
each test instance with the sense whose representation is
the closest based on cosine similarity. We used the contex-
tual embeddings output by FlauBERT as vector represen-
tations for any given instance (from the sense inventory or
the test data) of a target word. We proceeded the same way
with mBERT and CamemBERT for comparison. We also
compared our model with a simpler context vector repre-
sentation called averaged word embeddings (AWE) which
consists in representing context of target word by averaging
its surrounding words in a given window size. We experi-
mented AWE using fastText word embeddings with a win-
dow of size 5. We report results in Table 8. BERT-based
models set the new state of the art on this task, with the best
results achieved by CamemBERT and FlauBERTLARGE.

Model F1

fastText 34.90
mBERT 49.83
CamemBERT 50.02
FlauBERTBASE 43.92
FlauBERTLARGE 50.48

Table 8: F1 scores (%) on the Verb Disambiguation Task.

Noun Sense Disambiguation We implemented a neural
classifier similar to the classifier presented by Vial et al.
(2019). This classifier forwards the output of a pre-trained
language model to a stack of 6 trained Transformer en-
coder layers and predicts the synset of every input words
through softmax. The only difference between our model
and Vial et al. (2019) is that we chose the same hyper-
parameter as FlauBERTBASE for the dff and the number of
attention heads of the Transformer layers (more precisely,
dff = 3072 and A = 12).
At prediction time, we take the synset ID which has the
maximum value along the softmax layer (no filter on the
lemma of the target is performed). We trained 8 models for

Model Single Ensemble
Mean Std

No pre-training 45.73 ±1.91 50.03
fastText 44.90 ±1.24 49.41
mBERT 53.03 ±1.22 56.47
CamemBERT 52.06 ±1.25 56.06
FlauBERTBASE 51.24 ±1.33 54.74
FlauBERTLARGE 53.53 ±1.36 57.85

Table 9: F1 scores (%) on the Noun Disambiguation Task.

every experiment, and we report the mean results, and the
standard deviation of the individual models, and also the
result of an ensemble of models, which averages the out-
put of the softmax layer. Finally, we compared FlauBERT
with CamemBERT, mBERT, fastText and with no input
embeddings. We report the results in Table 9. On this
task and with these settings, we first observe an advantage
for mBERT over both CamemBERT and FlauBERTBASE.
We think that it might be due to the fact that the train-
ing corpora we used are machine translated from English
to French, so the multilingual nature of mBERT makes it
probably more fitted for the task. Comparing CamemBERT
to FlauBERTBASE, we see a small improvement in the for-
mer model, and we think that this might be due to the dif-
ference in the sizes of pre-training corpora. Finally, with
our FlauBERTLARGE model, we obtain the best scores on
the task, achieving more than 1 point above mBERT.

6. Conclusion
We present and release FlauBERT, a pre-trained lan-
guage model for French. FlauBERT was trained on a
multiple-source corpus and achieved state-of-the-art re-
sults on a number of French NLP tasks, surpassing multi-
lingual/cross-lingual models. FlauBERT is competitive
with CamemBERT (Martin et al., 2019) – another pre-
trained language model for French – despite being trained
on almost twice as fewer text data. In order to make the
pipeline entirely reproducible, we not only release prepro-
cessing and training scripts, together with FlauBERT, but
also provide a general benchmark for evaluating French
NLP systems (FLUE). FlauBERT is also now supported by
Hugging Face’s transformers library.22
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A Appendix
A.1 Details on our French text corpus
Table 10 presents the statistics of all sub-corpora in our
training corpus. We give the description of each sub-corpus
below.

22https://huggingface.co/transformers/

https://huggingface.co/transformers/


Dataset Post-processed text size Number of Tokens (Moses) Number of Sentences

CommonCrawl (Buck et al., 2014) 43.4 GB 7.85 B 293.37 M

NewsCrawl (Li et al., 2019) 9.2 GB 1.69 B 63.05 M

Wikipedia (Meta, 2019) 4.2 GB 750.76 M 31.00 M

Wikisource (Meta, 2019) 2.4 GB 458.85 M 27.05 M

EU Bookshop (Skadins et al., 2014) 2.3 GB 389.40 M 13.18 M

MultiUN (Eisele and Chen, 2010) 2.3 GB 384.42 M 10.66 M

GIGA (Tiedemann, 2012) 2.0 GB 353.33 M 10.65 M

PCT 1.2 GB 197.48 M 7.13 M

Project Gutenberg 1.1 GB 219.73 M 8.23 M

OpenSubtitles (Lison and Tiedemann, 2016) 1.1 GB 218.85 M 13.98 M

Le Monde 664 MB 122.97 M 4.79 M

DGT (Tiedemann, 2012) 311 MB 53.31 M 1.73 M

EuroParl (Koehn, 2005) 292 MB 50.44 M 1.64 M

EnronSent (Styler, 2011) 73 MB 13.72 M 662.31 K

NewsCommentary (Li et al., 2019) 61 MB 13.40 M 341.29 K

Wiktionary (Meta, 2019) 52 MB 9.68 M 474.08 K

Global Voices (Tiedemann, 2012) 44 MB 7.88 M 297.38 K

Wikinews (Meta, 2019) 21 MB 3.93 M 174.88 K

TED Talks (Tiedemann, 2012) 15 MB 2.92 M 129.31 K

Wikiversity (Meta, 2019) 10 MB 1.70 M 64.60 K

Wikibooks (Meta, 2019) 9 MB 1.67 M 65.19 K

Wikiquote (Meta, 2019) 5 MB 866.22 K 42.27 K

Wikivoyage (Meta, 2019) 3 MB 500.64 K 23.36 K

EUconst (Tiedemann, 2012) 889 KB 148.47 K 4.70 K

Total 71 GB 12.79 B 488.78 M

Table 10: Statistics of sub-corpora after cleaning and pre-processing an initial corpus of 270 GB, ranked in the decreasing
order of post-processed text size.

Datasets from WMT19 shared tasks We used four cor-
pora provided in the WMT19 shared task (Li et al., 2019).23

• Common Crawl includes text crawled from billions of
pages in the internet.

• News Crawl contains crawled news collected from
2007 to 2018.

• EuroParl composes text extracted from the proceed-
ings of the European Parliament.

• News Commentary consists of text from news-
commentary crawl.

Datasets from OPUS OPUS24 is a growing resource of
freely accessible monolingual and parallel corpora (Tiede-
mann, 2012). We collected the following French monolin-
gual datasets from OPUS.

• OpenSubtitles comprises translated movies and TV
subtitles.

23http://www.statmt.org/wmt19/translation-task.

html
24http://opus.nlpl.eu

• EU Bookshop includes publications from the Euro-
pean institutions.

• MultiUN composes documents from the United Na-
tions.

• GIGA consists of newswire text and is made available
in WMT10 shared task.25

• DGT contains translation memories provided by the
Joint Research Center.

• Global Voices encompasses news stories from the
website Global Voices.

• TED Talks includes subtitles from TED talks videos.26

• Euconst consists of text from the European constitu-
tion.

25https://www.statmt.org/wmt10/
26https://www.ted.com

http://www.statmt.org/wmt19/translation-task.html
http://www.statmt.org/wmt19/translation-task.html
http://opus.nlpl.eu
https://www.statmt.org/wmt10/
https://www.ted.com


Wikimedia database This includes Wikipedia, Wik-
tionary, Wikiversity, etc. The content is built collaboratively
by volunteers around the world.27

• Wikipedia is a free online encyclopedia including
high-quality text covering a wide range of topics.

• Wikisource includes source texts in the public domain.

• Wikinews contains free-content news.

• Wiktionary is an open-source dictionary of words,
phrases etc.

• Wikiversity composes learning resources and learning
projects or research.

• Wikibooks includes open-content books.

• Wikiquote consists of sourced quotations from notable
people and creative works.

• Wikivoyage includes information about travelling.

Project Gutenberg This popular dataset contains free
ebooks of different genres which are mostly the world’s
older classic works of literature for which copyright has ex-
pired.

EnronSent This dataset is provided by (Styler, 2011) and
is a part of the Enron Email Dataset,28 a massive dataset
containing 500K messages from senior management exec-
utives at the Enron Corporation.

PCT This sub-corpus contains patent documents col-
lected and maintained internally by the GETALP29 team.

Le Monde This is also collected and maintained inter-
nally by the GETALP team, consisting of articles from Le
Monde30 collected from 1987 to 2003.
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