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A Hamiltonian six-field gyrofluid model is constructed, based on closure relations
derived from the so-called ”quasi-static” gyrokinetic linear theory where the fields are
assumed to propagate with a parallel phase velocity much smaller than the parallel
particle thermal velocities. The main properties captured by this model, primarily aimed
at exploring fundamental problems of interest for space plasmas such as the solar wind,
are its ability to provide a reasonable agreement with kinetic theory for linear low-
frequency modes, and at the same time to ensure a Hamiltonian structure in the absence
of explicit dissipation. The model accounts for equilibrium temperature anisotropy, ion
and electron finite Larmor radius corrections, electron inertia, magnetic fluctuations
along the direction of a strong guide field, and parallel Landau damping, introduced
through a Landau-fluid modeling of the parallel heat transfers for both gyrocenter
species. Remarkably, the quasi-static closure leads to exact and simple expressions for
the nonlinear terms involving gyroaveraged electromagnetic fields and potentials. One of
the consequences is that a rather natural identification of the Hamiltonian structure of
the model becomes possible when Landau damping is neglected. A slight variant of the
model consists of a four-field Hamiltonian reduction of the original six-field model, which
is also used for the subsequent linear analysis. In the latter, the dispersion relations of
kinetic Alfvén waves and the firchose instability are shown to be correctly reproduced,
relatively far in the sub-ion range (depending on the plasma parameters), while the
spectral range where the slow-wave dispersion relation and the field-swelling instabilities
are precisely described is less extended. This loss of accuracy originates from the breaking
of the condition of small phase velocity, relative to the parallel thermal velocity of the
electrons (for kinetic Alfvén waves and firehose instability) or of the ions (in the case of
the field-swelling instabilities).

1. Introduction

Modeling the dynamics of collisionless (or weakly collisional) plasmas at scales compa-
rable to or smaller than the ion Larmor radius is an important issue both for laboratory
and astrophysical plasmas. At the level of a kinetic description, a valuable tool is given by
the gyrokinetic theory which provides a reduction of the Vlasov-Maxwell (VM) equations
by focusing on phenomena with a characteristic time scale large compared with the ion
gyro-period. This approach, which eliminates the dependency on the gyration angle,
typically adopts, as dynamical variables, the distribution functions of the gyrocenters
rather than those of the particles. Within the gyrokinetic framework, a subset of models
consists of the so-called § f-gyrokinetic models, which assume the gyrocenter distribution
functions of the various particle species, to be close to those of an equilibrium state. In
spite of this reduction, numerical simulations of three-dimensional gyrokinetic equations
in a turbulent regime (even in the §f framework) require huge computational resources,
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which justifies the development of simpler (although less complete) descriptions based
on gyrofluid equations governing the evolution of a finite number of moments of the
gyrocenter distribution functions. The relation between gyrocenter and particle moments
is well-defined and can usually be computed perturbatively. As in the case of the fluid
hierarchy derived from the VM equations, a gyrofluid hierarchy of equations needs to
be closed, in order to obtain a gyrofluid model with a finite number of dynamical
variables. An important condition to prescribe at the level of closure assumptions is the
preservation, in the absence of dissipation, of the Hamiltonian character of the parent
gyrokinetic equations. This guarantees that in the reduction from a gyrokinetic to a
gyrofluid system, not only no uncontrolled dissipation of the total energy is introduced
but also that further invariants (Casimir invariants) of the system exist, and that
the dynamics takes place on hyper-surfaces in phase space where the values of these
invariants are constant. Another constraint is the consistency with the linear gyrokinetic
theory. In particular, this requires retaining the influence of resonant effects such as
Landau damping. A closure accounting for Landau damping in the J f approach typically
introduces dissipation and thus prevents the model from being Hamiltonian. Such form
of dissipation is, however, voluntarily added and the main requirement is that the model
possesses a Hamiltonian structure when the dissipative terms are removed.

In this spirit, the main goal of the present paper is to construct a gyrofluid model
possessing the above mentioned properties, and primarily addressed to study phenom-
ena relevant for collisionless space plasmas. Motivated by measurements of sub-proton
fluctuations in the solar wind (see Sahraoui et al. (2010) and Alexandrova et al. (2013)
or Bruno & Carbone (2013) for reviews), reduced fluid models have already been derived
and numerically integrated to explore the dynamics of space plasmas. Kinetic Alfvén wave
(KAW) turbulence was for example addressed in Boldyrev & Perez (2012). A more general
Hamiltonian reduced gyrofluid model (Passot et al. 2018) which, in the appropriate
asymptotic limit yields the model of Boldyrev & Perez (2012), was recently developed to
simultaneously capture the three regimes of: dispersive Alfvén waves (at scales larger than
the sonic and /or ion Larmor radius), of KAWs at sub-ion scales, and also of inertial kinetic
Alfvén waves (at scales comparable to the electron inertial length (Chen & Boldyrev 2017;
Passot et al. 2017)). It has been used to derive weak turbulence kinetic equations (Passot
& Sulem 2019) and the properties of imbalanced KAW turbulence in the framework
of a reduction to nonlinear diffusion equations in spectral space (Miloshevich et al.
2020). Nevertheless, to the best of our knowledge, existing reduced gyrofluid models
can capture parallel magnetic field fluctuations, electron inertia and ion finite Larmor
radius effects, but (with the exception of the recent models of Tassi (2019), which will be
discussed in Sec. 3.2.2) do not take into account a possible temperature anisotropy of the
equilibrium state. It however turns out that collisionless space plasmas, such as the solar
wind, often exhibit anisotropic distribution functions (Marsch 2012) that can result from
various heating effects such as Landau damping (Chen et al. 2019) or stochastic heating
(Bourouaine & Chandran 2013; Hoppock et al. 2018) or from mechanical effects such as
the action of a shear flow (De Camillis et al. 2016). Proton temperature anisotropies play
an important role in the solar wind (Hellinger et al. 2006), and possibly even more so at
closer distance from the Sun (Huang et al. 2020). Temperature anisotropies are usually
constrained by the micro-instabilities they trigger (e.g. mirror and firehose instabilities),
both for ions (Bale et al. 2009) and electrons (Stverdk et al. 2008). The range of these
accessible temperature anisotropies increases as the beta parameter (ratio of thermal to
magnetic presure) decreases. In addition, temperature anisotropies are known to affect
the development of the tearing instability (Shi et al. 1987), and thus the stability of
current sheets (Matteini et al. 2013), which plays a major role in the turbulence evolution
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(Franci et al. 2017). Another important feature to account for is the coupling to ion
acoustic waves, which permits the development of the parametric decay of Alfvén waves
at the MHD scales at small beta (Del Zanna et al. 2001), an effect that contributes to
the generation of counter propagating waves required for the development of a turbulent
dynamics at these scales. Interestingly, this parametric instability, proposed by Bowen
et al. (2018) for the generation of the solar wind compressive fluctuations, turns out to
occur in a wider range of beta parameters in the presence of temperature anisotropy
(Tenerani et al. 2017). A useful feature of a new gyrofluid model for space plasma studies
would thus be its capability to account for equilibrium temperature anisotropies and the
coupling to ion acoustic waves.

As starting point for the derivation of the model, we choose the &f gyrokinetic
equations presented in Kunz et al. (2015) where, for the sake of simplicity, we assume an
electron-proton plasma with an equilibrium state described by bi-Maxwellian distribution
functions with no mean drift velocity. Such a system fully satisfies our requirements.
Indeed, it is a § f gyrokinetic model mainly conceived for pressure-anisotropic astrophys-
ical plasmas and, as such, it specifically accounts for equilibrium temperature anisotropy
(unlike most of gyrokinetic models which consider a generic equilibrium distribution
function or specialize to the case of a Maxwellian equilibrium). Also, it accounts for
parallel magnetic perturbations and it has been shown to possess (at least in the limit of
interest for our derivation) a Hamiltonian structure (Tassi 2019). As far as the number
of moments to be retained in the gyrofluid model is concerned, the inclusion of Landau
damping requires to retain at least the first three moments for each particle species.
This is why, under the assumption of a two-species plasma, we opt for the derivation
of a six-field gyrofluid model evolving three moments, including parallel temperature
fluctuations, for each species. Nevertheless, a four-field Hamiltonian reduced version
will also be presented and applied. Another novelty with respect to already existing
Hamiltonian gyrofluid models, is the adoption of a closure relation, referred to as quasi-
static, derived from linear gyrokinetic theory in the limit of slowly-evolving fields. More
precisely, according to such closure, all gyrofluid moments that are not determined by
gyrofluid evolution equations, are fixed according to their expression obtained from the
gyrokinetic linear theory in the limit |w/(k.ven, )| < 1, where w is the frequency of a
mode, k, the component of its wave vector along the direction of the guide field, and
vtp, 1s the thermal speed of the species s, associated with the equilibrium temperature
along the direction of the guide field. As such, this closure is suitable for fields slowly-
evolving (i.e. quasi-static) with respect to particles travelling at the parallel equilibrium
thermal speed vy, . The derivation of this closure relation will be presented in Appendix
A (see in particular Eq. (A 21) to find the expressions for the various gyrofluid moments
according to the quasi-static closure). We anticipate, however, two remarkable properties
that this closure possesses. The first one is that the quasi-static closure relation turns
out to be compatible with a Hamiltonian structure. The second one is that it allows for
exact expressions, in terms of canonical Poisson brackets, for all the nonlinear terms
in the gyrofluid equations, and in particular for those involving only gyroaveraged
electromagnetic fields or potentials. This is not the case, to the best of our knowledge,
for the previously derived reduced gyrofluid models.

The model assumes the presence of a strong magnetic guide field and evolves, for both
electrons and ions, gyrocenter density fluctuations as well as velocity and temperature
fluctuations referred to the direction parallel to the guide field. A dissipative variant of
the model accounting for parallel Landau damping is then formulated through a Landau-
fluid modeling of the parallel heat fluxes (Hammett & Perkins 1990; Hammett et al.
1992). A four-field reduction assuming isothermality is presented as well. The resulting
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gyrofluid model retains ion and electron finite Larmor radius (FLR) corrections, electron
inertia and parallel magnetic fluctuations, enables anisotropic equilibrium temperatures
and does not prescribe special restrictions on the ion or electron g ; parameters, where
Be,; indicates, for each species (e for electrons and ¢ for ions), the ratio between the
equilibrium kinetic pressure and the magnetic pressure exerted by the guide field. In
this respect, this gyrofluid model differs from most of the presently available gyrofluid
models, which require 3. ; « 1.

In addition to the derivation of the model, we also carry out a detailed analysis of
its linearized version. Predictions of the six-field model extended with Landau damping
and of its four-field Hamiltonian reduction are compared at the linear level with those
of the parent gyrokinetic model, by considering the dispersion relations of KAWs and
slow waves (SWs), and also by analyzing the firehose or the field-swelling (Basu & Coppi
1982, 1984) instabilities. This latter instability, which requires the electron temperature
transverse to the magnetic field larger than the longitudinal one, leads to a local increase
in the transverse pressure, which tends to make the magnetic field ”swell” further locally,
an effect which can be important in producing magnetic reconnection. Its properties are
rather subtle, especially when considering its effect on fast modes when the disturbance
propagation is nearly perpendicular to the ambient magnetic field. We thus include an
appendix summarizing the results on this instability that are relevant for the discussion
of the present model. As will be remarked in Sec. 4, for the non-dissipative case, the
choice of the four-field model instead of the six-field model, for the comparison with the
linear gyrokinetic theory, is due to the fact that a closure at an even order as in the
four-field model, provides a better agreement with the Padé approximant chosen for the
electron response function in the quasi-static limit.

The investigation of the linear dispersion relations including temperature anisotropies
is a first application of the model, mainly devoted to test its capability of reproducing
results of the linear gyrokinetic theory in the appropriate regimes. We mention that the
derivation of the model was motivated also by further physical applications of relevance to
space plasmas and which will be part of subsequent works. These include the investigation
of tearing instability in the presence of temperature anisotropy in a strong guide field
regime, the influence of electron FLR effects and temperature anisotropy on inertial
reconnection, or the effect of the coupling of Alfvén and compressible modes on the
turbulence development.

The paper is organized as follows. In Sec. 2 the gyrokinetic parent model is reviewed.
In Sec. 3 the six-field gyrofluid model is introduced and its Hamiltonian structure is
presented. The two variants, corresponding to the Landau gyrofluid extension and to the
Hamiltonian four-field reduction are also described. Sec. 4 is devoted to the comparison
of the linearized versions of the two variants of the model with other linear theories. We
conclude in Sec. 5 where we also mention the interest of the present gyrofluid model
for space plasma applications. At the end of the paper three Appendices are provided,
presenting the derivation of the quasi-static closure relations from gyrokinetic theory,
the derivation of the six-field gyrofluid model equations and a discussion of field-swelling
instabilities, respectively.

2. The gyrokinetic parent model

In order to derive a gyrofluid model only based on a quasi-static closure assumption,
we consider as starting point the following set of gyrokinetics equations, which corre-
sponds to the system provided by Egs. (C58), (C60), (C66)-(C68) of Kunz et al. (2015)
when collisions and equilibrium velocities are neglected and bi-Maxwellian distribution
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functions are chosen as equilibrium distribution functions for all the particle species. For
simplicity, we specialize to the case of a plasma consisting of two species: electrons and
one species of single ionized particles. The equations of the resulting gyrokinetic model
are given by:
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The index s € {e,i} adopted above indicates the particle species, so that quantities
labelled with s refer to the electron species when s = e and to the ion species when s = 1.
In the system (2.1)-(2.4), the function g, is defined by
~ 7 q:
gs(z,y, 2, V|| Kss t) = fs(z,y, 2, U||y s t) + ﬁ*“]:eqS (UH ,us)jOSAH (z,y,2,1), (2.5)
Ils
where st is the perturbation of the gyrocenter distribution function for particles of species
S, s is the charge of these particles (so that g = —e and ¢; = e, with e indicating the
proton charge) and mg their mass. Furthermore, ¢ denotes the speed of light. The bi-
Maxwellian equilibrium distribution function is given by

ms\¥2  mng - To o
feqs(vn,ﬂs)=(ﬁ) pTE oy ToLs (2.6)

0)s +0Ls

where ng is the uniform and constant equilibrium density, Tp,, and Tp, , are respectively
the equilibrium temperatures of the s-th particle species parallel and in a plane per-
pendicular to an equilibrium magnetic guide field of amplitude By, directed along the z
direction of a Cartesian coordinate frame {z,y, z}. We suppose that the spatial domain
of the system corresponds to a box D = {(z,y,2) : =Ly <2 < Lp,—L, <y < L,,—L, <
z < L.}, with L, L, and L, positive constants. All quantities of the system which depend
on the spatial variables x, y and z are supposed to satisfy periodic boundary conditions on
the domain D, so that they can be expanded in Fourier series. We indicated with v € R
the velocity coordinate parallel to the guide field and with ps = msv? /(2By) € [0, +0)
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the magnetic moment of the particle of species s in the unperturbed guide field, where
v corresponds to the velocity coordinate perpendicular to the guide field. We assume
that all functions depending on v| decay to zero as vj — =o0. Functions depending
on ps are assumed to tend to zero as us; — +00 and to be bounded at ps = 0. The
coordinate t € [0, +o0) refers to time. The expressions Jps and Jis are related to the
standard gyroaverage operators for the species s in Fourier space. Their definition can be
introduced explicitly in the following way: adopting the notation « to indicate a point of
coordinates (z,y, z) € D and, similarly, k to indicate a point (ks, ky, k.) € 2, where 2 is
the lattice defined by 2 = {(2nl/(2L,),2mrm/(2L,),27n/(2L.)) : (I,m,n) € Z3}, we can
consider a function f : D x [0, +00) — R, periodic over D, so that it admits the Fourier
representation f(x,t) = > ..o fr(t) exp(ik - ). The action of the operators Jys and J1,
on the function f is defined by

-.705 Z JO Qs fk )exp(ik-w), (27)
ke

Tisf(@ )= ch(b“s) Fu(t) exp(ik - ), (2.8)
ke s

where Jy and J; indicate the zeroth and first order J Bessel functions, respectively, as =
ki1pi, is the perpendicular Larmor radius associated with the species s, with k] and pj ,
corresponding to the perpendicular wave number and the Larmor radius of the particle of

species s. The former is defined as k| = 4 /kZ + k2 with k, = 27l/(2L,), k, = 2mm/(2L,)

for I,m € Z, while the latter is given by p,, = v} /w.s, where w.s = eBy/(msc) is the
cyclotron frequency referred to the guide field and related to the particle of species s.

The leading order expression (up to second order terms in the perturbations) for the
magnetic field is given by

B(z,y,2,t) = VA|(2,y,2,t) x 2+ (Bj(z,y, 2,t) + Bo), (2.9)

where 2 is the unit vector along the z direction, AH (referred to as magnetic flux

function) corresponds to the z component of the magnetic vector potential and EH
is the perturbation of the magnetic guide field, also referred to as parallel magnetic
perturbation or parallel magnetic fluctuations. We remark that the guide field is assumed
to be spatially homogeneous. This assumption is valid for a local description of space
plasmas such as the solar wind, where the background magnetic field varies on scales
so large that, in the local description, it can be assumed to be homogeneous. The
situation would be different, for instance, in the case of tokamak plasmas. Indeed,
gyrofluid models more oriented towards tokamak applications (as, for instance those of
Snyder & Hammett (2001); Madsen (2013); Brizard (1992); Scott (2010); Waelbroeck
& Tassi (2012); Keramidas Charidakos et al. (2015)) take into account background
magnetic inhomogeneities. The set of electromagnetic quantities involved in the system
is completed by the electrostatic potential ¢ = ¢(x, vy, 2, t). In Egs. (2.2)-(2.4) we adopted
the symbol dW, = (21 Bo/m)dpsdv| to indicate the volume element in space velocity.
The parameters O, and 5, are defined by

noTo, ,
2
BO

65 =

Bi, =8m (2.10)

Ty, ’
and measure, for each species s, the equilibrium temperature anisotropy and the ratio
between equilibrium kinetic and magnetic pressure, respectively.

Equation (2.1) is the gyrokinetic equation related to the species s, whereas Egs. (2.2)-
(2.4) relate the gyrocenter distribution functions to electromagnetic quantities in the
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non-relativistic limit. In particular, Eq. (2.2) corresponds to the quasi-neutrality relation,
whereas Eqgs. (2.3) and (2.4) descend form Ampere’s law projected along directions
parallel and perpendicular to the guide field, respectively.

The gyrokinetic model (2.1)-(2.4) is valid for small perturbation of the equilibrium
distribution function ( §f approximation) and weak variations of the fields along the
direction of the guide field, the equilibrium temperature anisotropy @, and the parameter
81, of all the species, being kept finite in this asymptotics. Further details about the
derivation the regime of validity of the model and its derivation can be found in Kunz
et al. (2015). Its Hamiltonian structure, on the other hand, is presented in Tassi (2019).

3. The gyrofluid model
We define the following gyrofluid moments:

~ ~ ~ 1 ~

N, = fdws .fsa Us = ;O des UHfSa (31)

~ T vl ~ ~ -

Bo= 2 faw. (G —1) B Tu= 2 faw (520 -1) 7.

o vthHS 1o TOLS

U3 ’U” ~

QHS To” Uths JdW U” —3m Js- (3.2)
I” s

For each particle species, the fields N, and U, represent the fluctuations of the gyrocenter
densities and parallel fluid velocities, respectively. On the other hand, T}, and T’
correspond to the fluctuations of the gyrofluid temperatures defined with respect to
the parallel and perpendicular gyrocenter velocities, respectively, whereas Q) indicates
the gyrocenter parallel heat flux fluctuations. In defining the parallel temperature and

heat flux fluctuations, we introduced the constant vy, = /1o, /myg, corresponding to

the parallel thermal velocity associated with the species s.

We intend to derive a gyrofluid model by taking moments of the gyrokinetic equation
(2.1) and by imposing a closure relation derived from the quasi-static linear theory.
In particular, the gyrofluid model, accounting for equilibrium temperature anisotropy,
should be able, in the limit of vanishing finite Larmor radius effects, to reproduce the
field-swelling instability criterion of Basu & Coppi (1984). We restrict to the evolution
of the first three moments referring to the parallel direction. Therefore, the resulting

gyrofluid model should evolve the following six fields: N67 N,, Ue, Ul,THe and THZ Also,
we show that the model conserves the total energy and, moreover, that it possesses a
noncanonical Hamiltonian structure, as is the case for the parent gyrokinetic model (Tassi
2019). We refer to such model as to the 6-field gyrofluid (GF6) model.

For the sake of the comparison, carried out in Sec. 4, of the linear gyrofluid theory
with the linear gyrokinetic theory we also consider an extension of GF6 accounting for
a Landau-fluid closure, analogously to that discussed in Hammett & Perkins (1990);
Hammett et al. (1992); Snyder et al. (1997); Passot & Sulem (2007, 2015); Tassi et al.
(2018). This variant of the model, which we denote as GF6L, differs from GF6 for the
expression of the parallel heat flux fluctuations é\l 5. Therefore, in order to avoid some
redundancy in the exposition, in the following we present the model equations leaving
Qs unspecified and we will subsequently indicate the corresponding expressions for Q|
leading to GF6 and GF6L, respectively. The closure leading to GF6L, in particular, will
be given in Sec. 3.2.

A further variant of the model, denoted as GF4, will also be considered in Sec. 4.
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This model evolves only the four fields Ne,ﬁi,ﬁe and (71 and represents a minimal
Hamiltonian model, derived from the quasi-static closure, capable to reproduce the field-
swelling instability criterion. This variant of the model will be introduced in Sec. 3.2.

The six-field system, both in the Hamiltonian (GF6) and dissipative (GF6L) versions,
can be written, in a dimensionless form, as

ON, oU,
o + [G10s9 + sgn(qs)71,2G20sB), Ns| — [G1os4), Us] + Era 0, (3.3)
0 (mg
o (rmUs + Sgn(qs)G103A|>
+ [G105¢ + sgn(gs) 7L, 2G2osB||, U + Sgn(qs)GlosA|] (3.4)

T1,
- o [GIOSAH7NS + T‘Hs]

S

0
3 (Sgn(Qs)Glos¢ + 71,2G20s By + (N, + T”s)> =0,

O

T

5 T [Grosé + sen(4s)71, 2G205 B, Tijs]

— [G1osA),2Us + Q)] + a%(QUS +Qys) =0, (3.5)
ZS: (Sgn(CIs)Gmst + (1 —0,)Is Ti (0:GRos — )i

;Sgﬂ(qs)(l — O,)(Tos — I'is) B + s80(qs)052G105sG205B)) = 0, (3.6)
Vi) = B Z <m: (1 - (;S) (1= Tos) Ay —sgn(gs)GrosU ) (3.7)

1
BH = _5 ZBJ_S (2G203Ns + (1 - 95)(F03 - Fls)sgn(qs)%

s

+@32G103G2058gn(q3)% + 2(1 — 88)(FOS — Fls)B” + @54G§053”) . (38)

In Egs. (3.3)-(3.8), we adopted the following normalized quantities

N, U,
Ny = —, Us = ; (3.9)
7 Cs,
T S o) S
Tys = —le Qs = 9 (3.10)
TOHs nOTOH CSL
ed A B
¢ = T y | = B ; | = Biv (311)
0 op
T = 17 Yy = ﬂ, 2 = i7 t:wm{’ (3.12)
Ps Ps Ps

where the quantities with overbars in Eq. (3.12) are the dimensional spatial and time



coordinates. In Egs. (3.9)-(3.12) the quantitiest

| Tt s
o, = ’:;e, ps = Zl (313)

were introduced, which indicate the sound speed and the sonic Larmor radius, respec-
tively, based on the perpendicular equilibrium temperature.
The parameter

(3.14)

for s = e,i, on the other hand, measures the ratio of the equilibrium perpendicular
temperatures.

In Egs. (3.3)-(3.8) we introduced the operator by = —V? p, , with V7 denoting the
Laplacian relatively to the transverse variables and

1 To,.

wCS mS

Pthis = (3.15)
indicating the perpendicular thermal Larmor radius associated with the species s.

The canonical bracket [, |, on the other hand, is defined as [f, g] = 0, f0yg — 0y f 029,
for two functions f and g.

The gyroaverage operators Gios, G2os, L0s, [1s in Egs. (3.3)-(3.8) can in turn be
expressed in terms of the operators

e—bs/2
Glo(bs) = e_b"/z, Ggo(bs) = 5 (316)
To(bs) = Io(bs)e b, Iy(bs) = L1 (bs)e ", (3.17)

which have to be intended as Fourier multipliers whose symbols are obtained by replacing
bs by kf_pfh s~ We make this statement more precise, as an example, in the case of the
operator G1g;, referred to the ion species. The expression G1o; f is defined by G1¢; f(x,t) =
Dkey Gro(bi) fre(t) exp(ik - x) = D pco exp(—kipthi/Q)fk(t) exp(ik - x), for a function f
periodic in space. Analogous expressions are valid for the other gyroaverage operators.
In Eq. (3.17), in particular, the symbols Iy and I; indicate the modified Bessel functions
I of order zero and one, respectively.

The expressions for the operators Gigs and Gaos given in Eq. (3.16) correspond to
those present in Brizard (1992) and follow from assuming that the perturbation of the
distribution function can be written as

~

o 1 V) 11 Bo
fs(xayazav\\vﬂsvt) :]:eqs(vﬂvus) 2 WHm Ly fmns(xayazat)a

Vthy s

m,n=0

(3.18)

where H,, and L, indicate the Hermite and Laguerre polynomials, respectively, of order

m and n, with m and n non-negative integers. The functions f,,,, are coeflicients of the

expansion and are related to the moments of fNS7 with respect to Hermite polynomials

in v /UthHs and Laguerre polynomials in psBo/Tp,,. Indeed, from the orthogonality
properties of Hermite and Laguerre polynomials, the following relation holds:

1 V| <H5BO ) ~
mns — — — dWs Hm Ln S 3.19
f NovVv m' J (’UthS > TOLS f ( )

i Note that, according to a customary notation, in the symbols ¢, and ps, the subscript s
is to indicate sonic quantities and not the particle or gyrocenter species.
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It can be useful, in particular, to write explicitly the following relations between the
lowest order normalized moments and the quantities fp,,_:

9 My, (3.20)

foo, = Ns, fio, =
T1, m;

1
f203 = ﬁﬂ\sv

1 O, [mg
f30, = %UZ«/EQHS, (3.22)

where, in Eq. (3.21), we introduced the normalized gyrocenter perpendicular temperature

Jor, = T, (3.21)

fluctuations T s = T s/, .-

As above anticipated, in the system (3.3)-(3.8) we temporarily left unspecified the
expression for the parallel heat flux fluctuations @|5. In order to obtain the model GF6,
the infinite hierarchy of gyrofluid equations following from the parent gyrokinetic model
(2.1)-(2.4) is closed by imposing relations obtained by computing the gyrocenter moments
other than Ny, Us and T|, from a linearization of the parent gyrokinetic system about a
homogeneous equilibrium, in the quasi-static limit. In the case of @, this leads (consider
Eqgs. (3.22) and (A 21)) to

QHS = 0, s = e,i. (3.23)
The model GF6 is thus obtained by inserting the relation (3.23) into the system (3.3)-
(3.8). Details on the derivation of the closure relations originated from the quasi-static
assumption can be found in Appendix A. A remarkable property of this closure is that
it leads to the annihilation of all the contribution of the higher order moments in the
gyrofluid equations.

We find it useful to provide also a reformulation of the evolution equations (3.3)-(3.5),
which should help putting in evidence the physical nature of the terms contributing to
the evolution of the various fields. Egs. (3.3)-(3.5) can indeed be rewritten as

0N,

ms aUS Mg
. ot + Euls - VU, —sgn(qs)Eys + Vs Ps = 0, (3.25)
T
gt UL Vs + 2VisUs = =Vis@s, (3.26)
where the parallel gradient operator V|, is defined, for each species s, by
of

Visf = —[Gios Ay, f] + (3.27)

&7
for a function f. From the formulation (3.24)-(3.26) it emerges that the gyrocenter
density, parallel momentum and parallel temperature fluctuations are all advected, in
the perpendicular plane, by the incompressible velocity field

u,=2xV (G105¢ + sgn(qs)TJ_SQGgosBH) . (3.28)

Such velocity field includes a first contribution, associated with G1¢s¢, which corresponds
to the usual E x B drift (based on the gyroaveraged electrostatic potential), ubiquitous in
low-8 gyrofluid models such as those discussed in Waelbroeck & Tassi (2012), Snyder &
Hammett (2001), Keramidas Charidakos et al. (2015) and Waelbroeck et al. (2009). When
higher [ values are allowed, however, the perpendicular advection acquires a further
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contribution due to the parallel magnetic perturbations, as it transpires from Eq. (3.28).
We remark that, similarly to the E x B contribution, also the latter contribution does not
vanish in the limit b5 — 0 of negligible FLR corrections. This is a consequence of the fact
that, in the presence of parallel magnetic perturbations, gyrocenter density fluctuations
differ from particle density fluctuations, even in the absence of FLR corrections (Brizard
1992).

From the continuity equation (3.24), we see that the evolution of gyrocenter density
fluctuations has also a source in the last term on the left-hand side, which is due to the
compressibility of the gyrocenter mean velocity along the direction of the magnetic field.

From Eq. (3.25) we see that parallel momentum, in addition to be advected by uj _,
evolves due to the term —sgn(qs)E),, where Ej, is defined by

0G4

aG103¢
ot ’

Eys = 3,

= [G10s9, GrosA)] — (3.29)

Such term represents the force exerted by the gyroaveraged electric field, along the
direction of the magnetic field. A further source for the parallel momentum is due to
the term V| ,Ps, where

1
Ps =11, <2GQOSB| + a(Ns + T|S)) . (3.30)

This terms is associated with the parallel component of the divergence of an anisotropic
pressure tensor.

The parallel temperature equation (3.26) has, on its left-hand side, the same structure
of the continuity equation (3.24). We just remark the presence of the coefficient 2
multiplying V| ;Us. This coefficient, of course, follows directly from taking the sec-
ond order moment, in Hermite polynomials for the normalized parallel velocity, of the
gyrokinetic equation (2.1), as discussed in Appendix B. However, as pointed out by
Keramidas Charidakos et al. (2015), in the presence of background magnetic curvature
such coefficient, in general, has to be adjusted in order to obtain a Hamiltonian structure.
Finally, we consider the term on the right-hand side of Eq. (3.26), associated with the
parallel heat flux. If the expression for Q5 is chosen according to the quasi-static closure,
i.e. imposing the relation (3.23), this term vanishes and the system, as will be shown in
Sec. 3.1, is Hamiltonian. On the other hand, if the Landau fluid closure (3.35) is chosen,
this term acts as a sink and the system is not energy-conserving.

3.1. Hamiltonian structure of GF6

The quasi-static closure (3.23) leading to GF6, allows the resulting model to be
cast in Hamiltonian form. In particular, it can be verified by direct computation that,
when the electromagnetic fluctuations ¢, A and B) can be expressed in terms of the
dynamical variables N, N;, M, and M; (where we introduced the short-hand notation
M = (ms/m;)Us+sgn(qs)G1os A|| to indicate the parallel canonical momenta), by making
use of the relations (3.6)-(3.8), the evolution equations (3.3)-(3.5) complemented by Eq.
(3.23), can be written in the Hamiltonian form

N, _ oM, s -
= = W HY, o = =M, H, 50 =T ), s=ei (331)
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In Eq. (3.31) H is the Hamiltonian functional
H(NevNivaMivﬂ\g»ﬂ\i) =

1 T, m;
2Zs:fd3x (5;]\752 + EME + (sgn(qs)Glosq’) + 2TJ_SG2()SB”)NS

, T?
m; Tl ~lIs
— s)— Gos A My , .
sgn(gs),~Gros Ay Ms + 5= — ) (3.32)
and {, } is a noncanonical Poisson bracket given by
d3 N, L M
{r,G} = *Z z |sgn(gs) s [FNsaGNs] + Q. m; [FMstMs] +2[FTHS’GTHS]

+M([Fu,, Gn,] + [Fn,, Gu,] + 2([Fup,, Gy ) + [Py, G ]))

Mg
JrTHS (TLS‘[FMMGMS] + [FNS’GT\\S] + [FTHS’GNS] + [FTHS’ GT|5]>>

O, m;
(’)GMS &GNS aG]\/[g (’GTus
"‘.FNq 62 +FM¢? +2FT”87 +2FM§7 s (333)

for two functionals F' and G. For details about the noncanonical Hamiltonian formulation
of fluid models one can refer, for instance, to Morrison (1998). In Eq. (3.33) the subscripts
on the functionals indicate functional derivatives. In order to verify the formulation (3.31)
it is convenient to remark that, from Eq. (3.32), one obtains

T 71, Is
Hy, = @LS N + sgn(gs)Gros® + 71, 2G205 By, Hy, = Us, Hrp, = @LS %
(3.34)

In order to derive the relations (3.34) we made use of the formal symmetry of the opera-
tors G1os and Gaos, i-e. § @3z fGrosg9 = § Pz gGrosf and ( &3z fGaos9 = § d3x gGops f for
two functions f and g, as well as of the formal symmetry of the linear operators in terms
of which one can express ¢, B and A in terms of N, and M, through Egs. (3.6)-(3.8).
We did not provide the explicit expression for such operators which can, however, be
obtained considering the representation in Fourier series of the fields involved, following
the procedure discussed in Tassi (2019).

The Hamiltonian functional (3.32) is a conserved quantity for the dynamics and
corresponds to the total energy.

In Eq. (3.33), the sum of all the terms with s = e is a Poisson bracket in its own
right. Similarly, all the terms with s = ¢ form a Poisson bracket. The sum of these two
contributions is a direct sum of Poisson brackets which is in turn a Poisson bracket
verifying in particular the Jacobi identity. The Poisson brackets referring to the electron
and ion quantities correspond to those already discussed in other Hamiltonian reduced
fluid models. The reader can in particular refer to Tassi (2015) and Keramidas Charidakos
et al. (2015) for the verification of the Jacobi identity for brackets of such form and
for a discussion of the corresponding Casimir invariants. The model GF6, in the two-
dimensional limit when the dependence on the z coordinate is suppressed, can also be
cast in the form of a system of advection of equations for Lagrangian invariants, as is the
case for several other reduced fluid and gyrofluid models (see, e.g. Keramidas Charidakos
et al. (2015); Waelbroeck et al. (2009); Waelbroeck & Tassi (2012); Grasso & Tassi (2015);
Tassi (2015, 2019); Schep et al. (1994)).

Remark: The gyroaverage operators Gig with a form different from (3.16) have been
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proposed in the literature (see, e.g. Dorland & Hammett (1993); Snyder & Hammett
(2001); Scott (2010)), when the expansion (3.18) is not assumed, and are frequently
adopted. In particular, G1o(bs) = I 01 /2 (bs) was shown to provide better agreement with
the linear theory at large by (Dorland & Hammett 1993). We point out, however, that
many important features of the model (3.3)-(3.8), such as the total energy conservation
and the Hamiltonian structure, are guaranteed whatever the form of the operators Gig
and Gy of Eq. (3.16) is, provided these operators are linear and formally symmetric, in
the sense defined above. This is in particular the case with Gig(bs) = F01/2 (bs). These
issues are also discussed by Mandell et al. (2018).

3.2. Variants of the model
3.2.1. Siz-field model with Landau closure (GF6L)

The variant GF6L of the six-field gyrofluid model, accounting for Landau damping,
corresponds to the system (3.3)-(3.8) with @, given by

Qs = —2a LT, s=e,i. (3.35)

In Eq. (3.35) we introduced the constant o, = (2/7)Y2(m;/ms)"/?. The operator £ holds
for the Landau damping operator. Its modeling in the nonlinear regime is discussed in
Tassi et al. (2018). In the linear approximation, it reduces to the negative of the Hilbert
transform in the direction of the ambient magnetic field (here taken in the z direction).
The presence of this Landau operator in reduced fluid models breaks the Hamiltonian
structure by violating energy and Casimir conservation (Tassi et al. (2018); Grasso et al.
(2020)). Its purpose, on the other hand, is to introduce terms that allow the linear
dispersion relation of the gyrofluid model to reproduce that of the parent gyrokinetic
model.

3.2.2. Four-field model with quasi-static closure (GF4)

The second variant GF4 is obtained by retaining the evolution equations for Ny and
M, and imposing the quasi-static closure on the parallel temperature fluctuations 7j.
Considering Egs. (3.21) and (A 21), this amounts to setting

Tjo=0, s=e,i. (3.36)
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The resulting model reads
ON; oUs

N + [G10s9 + sgn(qs) 7L, 2G20s B, Ns] — [Gros Ay, Us] + Era 0, (3.37)
0
5 ( 2U, + sgn(qs)Gros 4| >

[G105¢ +sgn(gs)7L, 2G20s3\|7 —U, + bgn(qa)G103A|] (3.38)

0
9 [GIOSAH7 s] + e (Sgn(qs)Glos¢ + 71,2G20s B + = o, N) =0,

3 (senla)Gaou e + (1= 010, + (.68, - 1
+Sgn(qs)(1 — @ )(FOS — FlS)B” + sgn(qs)Q 2G105G2OsB|\) 0 (3.39)
V2 AH ﬂl Z <,rn: (1 — @ls> (1 FOQ)A” - sgn qs G10 ) (340)

1
By =—5 81, (2Ga20sNs + (1 - 65)(Ios — Fls)Sgn(QS)
2 4 =

-i-@S2G103G2058gn(qs)7_i +2(1 —O4) (s — Fls)BH + 954G%OSB|> (3.41)

s

and corresponds to taking Eqgs. (3.3), (3.4), (3.6), (3.7) and (3.8) of GF6 with 7}, = 0.
Its Hamiltonian structure is given by the Hamiltonian

H(NeaNhMeaMi) =

1 T1, my
iZJd3x (@Lé N52 + meE + (Sgn(qs)G105¢ + 2TJ_SG205BH)NS
s S S

mg
—Sgn(qs)mGlosA|Ms> (3.42)

and by the Poisson bracket

(7.6} = = [ [ssnta) (V. ([P Gl + 2 221, G

95 (3

0G 0G
+Ms([FMS,GNS] + [FNS’GMS])) + Fin, ¢ ajzws + Fiyr, agg] . (3.43)
If one neglects electron FLR effects (i.e. b — 0), parallel magnetic perturbations
(i.e. By = 0), equilibrium temperature anisotropies (i.e. 6, = ©; = 1) and sets
Gio(b;) = 1"01/2(1)1-) (i.e. takes the alternative form of the ion gyroaverage operator

mentioned in the above remark in Sec. 3.1), GF4 reduces to the Hamiltonian gyrofluid
model of Waelbroeck & Tassi (2012), the latter taken in the limit of vanishing magnetic
curvature and equilibrium density gradients. We note, however, that, once that the quasi-
static closure relations are determined, as in Eq. (A 21), all the terms in GF4 (and likewise
for GF6), are determined exactly. In particular no approximations of the gyroaverage
operators (unlike, for instance, in Waelbroeck & Tassi (2012) and Scott (2010)) are
carried out. Terms involving gyroaverage operators are determined exactly also in Brizard
(1992), but without making use of the quasi-static closure. As a result, in Brizard (1992),
nonlinear terms involving more than one gyroaverage operator do not result in having
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the single canonical bracket structure (as is the case in GF4, for instance, with the term
sgn(qs)[G10s9, G1osA)] appearing in the second line of Eq. (3.38)) and which is crucial for
determining the Lie-Poisson Hamiltonian structure. This property, which follows from the
quasi-static closure, differentiates the models presented in our paper also from its closest
predecessors, i.e. the gyrofluid models constructed with the technique recently presented
in Tassi (2019). The latter gyrofluid models, in fact, are also Hamiltonian and account for
equilibrium temperature anisotropy, but adopt a different closure. Namely, all gyrofluid
moments involving finite powers of the magnetic moment us (e.g. the perpendicular
temperature fluctuations) are set equal to zero. This allows for a Hamiltonian structure
but the terms involving gyroaverage operators are not all determined exactly from taking
the moments of the gyrokinetic equations. For this reason, we think that, for situations
where the quasi-static assumption |w/(k,vin,,)| « 1 is satisfied, the models presented in
this paper might be preferable to the models described in Tassi (2019).

4. Comparison with the linearized gyrokinetic parent model
4.1. KAWs dispersion relation

We first discuss the KAW dispersion relation as predicted by the gyrofluid models,
with and without Landau damping (GF6L and GF4 respectively), in comparison with
the predictions of the linearized parent model (Kunz et al. 2018) which identifies with the
low-frequency kinetic theory described in Kuznetsov et al. (2012). This latter dispersion
relation involves the plasma response function R((;) of the particles of species s, which
is related to the corresponding plasma dispersion function Z(¢s) by R(¢s) = 1+ (:Z(¢s)
with (s = w/(?l/Q\k:zthS). Different Padé approximants R;;({.) (for which we follow the
notations of Hunana et al. (2019)) are used to estimate the electron response function.

In order to test the validity of the quasi-static assumption that affects the form of
the FLR terms, independently from the effects resulting from Landau damping, we are
led to compare the prediction of the 4-field gyrofluid model GF4 with the gyrokinetic
dispersion relation obtained by choosing for the electron plasma response function, the
function Rg;({.) = 1/(1—2¢?) (model denoted GKNL). This choice directly results from
the assumption T}, = 0 (see Eq. (B7) of Passot & Sulem (2007)) and ignores electron
Landau dampingt. Predictions of the GF6L model will, on the other hand, be compared
with the full gyrokinetic dispersion relation, referred to as GK. In the latter description,
we use for the electron Padé approximant the function Rgg((.), which shows an excellent
agreement with the exact response function. For the ions, we use in all the cases the
Padé approximant Rgo(¢;) = 1/(1 — 2¢? — im/2¢;) (or Ra1(¢;) in the absence of Landau
damping). Higher order Padé approximants give almost identical results.

Because we are making use of several acronyms to refer to the different adopted
models, we summarized them in Table 1. In all the examples presented in this Section,
©; = 1. Introducing the ion to electron parallel temperature ratio at equilibrium
T = TOHi/TOHE = 71,0./6; and denoting by « the angle between the wave vector and
the ambient magnetic field (propagation angle), we compare, in Fig. 1 (left), the (real)
normalized KAW frequency w/(k.ca) for 81 =1, 7 =1, O, = 1, a = 89° as a function
of kd; (where k = y/k? + k2 and d; is the ion inertial length defined by d; = ca/wei,
with ¢4 = 4/Bo/(4mm;ng) the Alfvén velocity), calculated using GF4 (black diamond

1 Note that, choosing a closure that sets equal to zero a higher even order moment in the
hierarchy of parallel moments would only improve the matching with kinetic theory at very large
(e but not in the zero-(. limit. Differently, closures at an odd order are not consistent with the
quasi-static assumption, as they rather correspond to an adiabatic regime.
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TABLE 1. Acronyms and corresponding models.

Acronym Model

GF6 Hamiltonian six-field gyrofluid model with quasi-static closure
(Egs. (3.3)-(3.8) with Qs given by Eq. (3.23))

GF6L Six-field gyrofluid model with Landau closure
(Egs. (3.3)-(3.8) with Qs given by Eq. (3.35))

GF4  Hamiltonian four-field gyrofluid model with quasi-static closure
(Egs. (3.37)-(3.41))

GK Full gyrokinetic dispersion relation (from Kunz et al. (2018))

GKNL Gyrokinetic dispersion relation with no Landau damping

BC84 Asymptotic model by Basu & Coppi (1984) (Eq. (C 10))
DK Full drift-kinetic dispersion relation (Eq. (C 7))

DKNL Drift-kinetic dispersion relation with no Landau damping

symbols), with the GKNL prediction (green solid line). An excellent agreement is found,
the slight deviation appearing as kd; > 40 probably resulting from the failure of the
quasi-static approximation used in the calculation of all the moments starting from
the temperature. For the same plasma parameters, the case with Landau damping is
displayed as a red solid line for GK and blue diamond symbols for GF6L, with a good
agreement up to scales kd; 5 20. The damping rate is displayed with the same symbols
in Fig. 1 (middle). Interestingly, the prediction of GF6 (not shown) departs from GKNL
significantly at all the scales. Indeed, in GF6, the parallel temperature fluctuations that
obey a dynamical equations with zero heat flux do not approach a quasi-static dynamics.
Such a non-dissipative odd-order closure rather fits an adiabatic regime (see footnote
in this Section). Landau damping is requested to ensure convergence to a quasi-static
regime. In that sense, GF4 is preferable to GF6 for addressing a non-dissipative problem,
the interest of the latter model being mainly to provide a framework where Landau
damping can be supplemented to an otherwise Hamiltonian description.

4.2. Firehose instability

Figure 1 (right) displays for 1. = 0.5, 7 = 1073, a = 89°, O, = 0.16, the growth
rate of the firchose instability as a function of kd; predicted by GF4 and GF6L (black
and blue diamond symbols respectively), together with the GKNL and GK dispersion
relations (green and red solid lines). In all the cases, the agreement is excellent, the
quenching of the instability being in particular well reproduced.

The agreement found between the KAWSs dispersion relations predicted by the gyrofluid
models and the gyrokinetic theory, even when limited to scales such that kd; < 20, and

despite a large value of (; = 4/260./(BL.7) w/(|k.|ca), can be attributed to the fact

that, at least within the linear theory, ion acoustic and kinetic Alfvén waves remain
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FIGURE 1. Left: Normalized real part of the KAW frequency w/(k.ca) for Bi. = 1, 1) = 1,
O =1, a = 89°, as a function of kd;, calculated using GF4 (black diamond symbols) and GF6L
(blue diamond symbols) models (respectively without and with Landau damping) and with
the gyrokinetic dispersion relations GKNL (green solid line) and GK (red solid line). Middle:
Damping rate from the GK theory (red solid line) and from the GF6L model (blue diamond
symbols). Right: Normalized growth rate of the firehose instability as a function of kd;, for
Bre = 0.5, 7 = 1073, O, = 0.16, a = 89°, as predicted by GF4 and GF6L models, together
with GKNL and GK dispersion relations, using the same graphic conventions.

essentially decoupled. The influence of the ion closure relation on the KAW properties
thus remains limited. Deviations from the gyrokinetic theory at small scales are mostly
due to the fact that when reaching these scales (. = A/m¢/min/20./B1. w/(|k:|ca)
becomes non-negligible.

4.3. SW dispersion relation and field swelling instability

Figure 2 concerns a similar comparison in the case of the field swelling instability
discussed in Appendix C, for 81, =1, 7 = 1, a = 89°, O, = 2.2 (left). For both the cases
with and without Landau damping, the relatively good agreement found at large scale
between the gyrofluid theories and the gyrokinetic ones deteriorates at smaller scales.
The stabilization scale is however correctly captured. This discrepancy is associated with
a value of ¢;, which is not small enough (in this case, . remains reasonably small). We
show in Fig. 2 (right) with 6, = 2.41, again with 8, = 1 and « = 89°, that a much
better agreement can be found when ions are hotter (7 = 50), which prescribes a small
Gi- The case with cold ions (7 = 107%), for which the ion dynamics is decoupled, is
displayed in Fig. 3, showing an even better agreement. The left panel displays the real
part of the slow wave for ©. = 1, obtained with the GKNL model (solid green line)
or the GF4 model (diamond symbols). The right panel shows the growth rate of the
field-swelling instability for ©, = 2.01 (keeping unchanged the other parameters).

5. Conclusion

We derived a 6-field Hamiltonian gyrofluid model, referred to as GF6, retaining the
gyrocenter density, the parallel velocity and temperature fluctuations for each species,
under the sole assumption that all the other gyrocenter moments are calculated from
the quasi-static linear kinetic theory. Such an assumption on the closure turns out to
yield exact expressions for all the terms of the model, without, in particular, requiring
approximated expressions for the terms involving gyroaverage operators. Nonlinear terms
involving more than one gyroaverage operator, in particular, appear in the form of a
single canonical bracket, which naturally lets the model fit in the class of Hamiltonian
models with a Lie-Poisson structure. The model accounts for equilibrium temperature
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FIGURE 2. Normalized growth rate of the field swelling instability versus kd; for a = 89°
and (1. = 1, Left: Predictions of GF4 and GF6L, compared with those of GKNL and GK
respectively, for 7p = 1 and ©. = 2.2. Right: Prediction of GF4 compared with that of GKNL,
for 7p = 50 and ©. = 2.41 . Same graphic conventions as in Fig. 1 are used.
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FIGURE 3. Left: Normalized slow-wave frequency versus kd; in regimes where the ions are cold
(m = 107%), with 1. = 1 and a = 89°, as predicted by the GF4 model and the GKNL

dispersion relation. Right: normalized growth rate of the swelling instability for 7 = 1075 and
©. = 2.01. Same conventions as in Fig. 1 are used.

anisotropy and also retains both ion and electron FLR corrections, electron inertia and
parallel magnetic fluctuations. In a variant of the model (GF6L) parallel Landau damping
is retained through a Landau-fluid modelization of the gyrocenter parallel heat fluxes.
A second variant of the model (GF4) is obtained by prescribing parallel isothermality,
which still falls in the frame of the quasi-static closure and allows for a Hamiltonian
formulation. The comparison of the dispersion relations of KAWs and SWs predicted
from GF6L or GF4, with those derived from the parent gyrokinetic theory where the
plasma response function is replaced by a Padé approximant, provides an estimate of the
maximal transverse wavenumber beyond which the phase velocity of the corresponding
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wave is too large compared with the electron (in the former case) or ion (in the latter case)
parallel thermal velocity for consistency with a closure condition based on a quasi-static
assumption. It turns out that the agreement extends to transverse scales significantly
smaller than the ion Larmor radius in the case of KAWs, mostly because, at least at
the linear level, SWs and KAWSs are essentially decoupled, making the influence of the
ion closure relation on the KAW properties relatively limited. This situation contrasts
with the case of the SWs for which the dispersion relation is accurately reproduced
only at scales larger than a significant fraction of the ion Larmor radius. Under these
conditions, the model reproduces the instabilities induced by temperature anisotropy,
such as firehose or field-swelling instabilities. It should nevertheless be noted that, as it
assumes small perturbations of an equilibrium state, the model does not permit evolution
of the mean temperatures, an effect usually considered as contributing efficiently to the
saturation of these instabilities. The subcritical nonlinear regime is however expected
to be accurately described. The model will in particular be most useful for studying the
coupling of KAWs with SWs which can generate large-scale parametric decay instabilities
at small (., a regime especially relevant in the regions of the solar wind relatively close
to the Sun explored by space missions such as Parker Solar Probe or Solar Orbiter.

In general, to the best of our knowledge, our gyrofluid model is the only one, at the
present moment, possessing the following features, which could make it a valuable tool for
local investigations of basic plasma phenomena of interest for space plasmas: it accounts
for equilibrium temperature anisotropies as well as parallel magnetic perturbations; it
reproduces, in a rather wide range of values of parameters, compatible with the quasi-
static closure, quantitative features of known kinetic linear dispersion relations; the model
equations, and in particular the terms involving FLR corrections, are calculated exactly,
unlike other gyrofluid models which adopt truncations or approximations of such terms;
it possesses a Hamiltonian structure.
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Appendix A. Derivation of closure relations from the gyrokinetic
linear theory

We consider the linearization of the gyrokinetic system (2 1)-(2.4) about the equilib-

rium state g; = 0 (or, equivalently, fS = 0), with ¢ AH BH = (. The resulting linear
system can be written in the form

[z, 4 Y ¥, s ~ o 1sBo Bu N
ot (fs TOH Cfeqs\.70s |>+'Ua (fs TOHS eqs <t708¢+2 s Jls *07

(A1)

ZQSJ\dWS jOsfe ZT() desfeqs (lfj()ze)g
S Ls
_ s Bo %

Zslqs des 2 TOLS ]:equOsjls 307 (A 2)
Na. | aw.ou.d.

C oo q2 1 ’Uﬁ 2 A”

= _EVLAH +zS:TnSJdsteq5 1_@781)?}7(“ (1_‘705)77 (A3)

B f s Bo s Bi, gs f s Bo ~

— dW52 js s — — - sz ]:@ ‘75‘7-5
; no To,, 1] Z ng To, Ty, = % 027100

Bl f psBo - \*\ Bi
<2 + g no dWs qus 2 TOLS \718 BO’ (A 4)

where we adopted the same notation with the tilde symbol, that we used in Egs.
(2.1)-(2.4), to indicate the dynamical variables f, of the linearized system and the field
perturbations (b, AH and B”

We introduce the following Fourier series representation:

fs(a:,v”,us,t) = Z ]?Sk (U\\»Ms>ei(k"w_‘”t)’ (E(:mt) _ Z qZkei(k:m—wt)’ (A5)
ke ke
AH T, t Z Aer (fo-— wt) B” (.’I),t) = Z Beri(k'wiwt), (A 6)
ke ke2

with w € C indicating the complex frequency.
For any given k € 9, from Eq. (A1) we obtain the relation

s 5@ Ul gs ~
Jsw = ~ Fe SJO(as)AHk'
‘ (v\l/vthus) —Gs € TOHS !
1 Y| s ~  2u,By Ji(as) Bk
- < Fe Jo(as)pp + —————— |, A7
() /vtn,,) — Cs Vthys o <T0s ole) To,, as DBo (A7

where , = w/(kzvin,)-

We consider now the quasi-static limit |C;| « 1. In this limit, the relation (A 7) reduces
to

T, (A8)

Ils

- ) ~  2u,Bo Ji(as) B
fsk:_]_'eqs (qJO(CLs)(bk—i- psBo Ji( )|k>

TOHS as BO
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In the following, we make use of the relation (A 8), derived from the linear theory, in
order to determine the closure relations to insert in the hierarchy of nonlinear gyrofluid
equations. For this purpose, we adopt the Hermite-Laguerre expansion of Eq. (3.18) for
the perturbation of the distribution function in the linearized system and we write

Fol@, v, s, t) = Feg, (v, 1) Z ( )Ln(’,f,fOBO)fmnxw,t) (A9)

m,n= 0 vthlls

with
Frmo (T, 1) = > frn e’ F=meD (A 10)
ke
in Fourier representation. From Eqs. (A 9), (A 10), using the orthogonality relations for
Hermite and Laguerre polynomials, one obtains

1 ¥ Yl (usBo>
fonn nogvm! J fa ('Uthus> To,. ( )

Inserting the relation (A8) into Eq. (A11) and using the orthogonality relations for
Hermite polynomials, one has

&
fmnw ( 1 TOHS¢I¢+ 2 Bo) (A12)
where the operators G, and Gs,, are defined by
2B B
Gln = 0 Jd,us eqs ,ub)Ln (IL;—? 0> JO(as)v (A 13)
O1s
271'Bo s Bo\ s Bo Ji(as)
Gop = dits feq. (tts)Ln , Al4
? myg f Ha feq. (1) (Tols ) To,, as (A14)
with
fuga (1) = 2o 0L (A15)
eqs \Ms) = 2T, .

Explicit expressions for the operators G, and G2, can be found by computing the
integrals in Eqs. (A 13) and (A 14), which yields

Gin(bs) = 2 (b)) > Al
1n(bs) = — 5 n =0, (A 16)
o—bs/2 e—bs/2 be n—l 1 b, \" 1
— S = — 2] = > 1.
G20(bs) 5 Gan(bs) B <( 2 ) (n—1)! ( 2 ) n! )’ "
(A17)

In order to obtain the expressions (A 16)-(A17) use was made of the orthogonality of
Laguerre polynomials as well as of the relations (Szegd 1975)

Jo(ag) = et /22 (MBO) (b) (A18)

2
) (MbBo

i) () "

(n+1)! 2

2J1(a3 o bs/2 Z

as
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where LY is a generalized Laguerre polynomial. Making use of the Fourier representa-

tions (A 10) , (A5) and (A 6) for for fy,,, ¢ and B, respectively, one can deduce from
Eq. (A 12) the relation

4s ~ EH
S 2 = A2
fmns (wa t) 6m0 (Glns TO”s (b + 95G2ns B()) ) ( 0)
or, equivalently,
fmns (537 t) = _6m095 (Sgn(QS)Glns 7_¢ + 2G2nsB|> 5 (A 21)
Ls

where we also made use of the normalization (3.11) for ¢ and Bj. The operators
Gins and Gap,s are defined, consistently with the definition of Gigs and Gags
given in Sec. 3, by Ginsf(®,t) = Dpcy Gin(bs)fi(t) exp(ik - &) and Gonsf(x,t) =
Dkes Gon(bs) fre(t) exp(ik - x), for a function f and n > 0 (in the specific case of the
linear dispersion relation, the dependence on t is provided by the factor e~**, but when
the relations (A 21) are used as closures for the nonlinear models, the dependence on ¢
is of course left arbitrary).

The relations (A 21) descending from the quasi-static assumption, are adopted as
closure relations in GF6 and GF6L for all the moments involved in the model, except for
N, My, Tjjs, which are derived by solving the evolution equations (3.3)-(3.5). The parallel
heat flux fluctuations @5, on the other hand, are determined, as already mentioned,
again by a quasi-static closure for GF6 (Eq. (3.23) which follows from Eq. (A 21) for
m = 3,n = 0) or by the Landau closure (3.35) for GF6L. The closure (3.36) adopted for
GF4, is again a quasi-static closure following from Eq. (A 21) when m = 2 and n = 0.

Appendix B. Derivation of the model equations

The gyrofluid system (3.3)-(3.8) descends from the parent gyrokinetic system (2.1)-
(2.4) upon applying to the perturbations of the distribution functions the expansion
(3.18). In order to obtain a closed system with a finite number of equations, such
expansion is constrained in the following way. The moments foo., f10, and fao, (or,
equivalently, by virtue of Eqgs. (3.20)-(3.21), the gyrofluid densities, parallel velocities
and temperatures N,, U, and T),), for each species s, get determined by evolution
equations obtained by making the product of all the terms of the gyrokinetic equation
(2.1) with the zero, first and second order Hermite polynomial in the variable vj/vep,
and integrating over the velocity volume element dWs. For GF6L, the parallel heat flux
Qs gets determined by the relation (3.35). All the other moments, on the other hand,
are assumed to be given by the relations (A 20), or, in normalized form, by Eq. (A 21),
obtained from the linear theory in the quasi-static limit. With this prescription, the
expansion (3.18) becomes

N N, v U,
fs(@, v, ps, t) = Feq, (V) its) (no(w,t) + i

Vth)s Vth),

2 ~ 3 ~
LY Tjs LY Y| Qs
+= 1| = (=, t) + = -3 x,t
2 (v?hs ) TUus( ) 6\ W, veny, nOTUMsUths( :

IS tsBo ds ~ B
-> L, = Gins ——o(x,t) + 20,Gops—-(x, ) B1
3 (T)< 0l 0) + 26,Gan >>) (B1)

(1)
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where we made use of the fact that Ho(vj/vin,,) = 1, Hi(v)/vm,) = v/,
Hs (v /vin,,) = vﬁ/vfhus — Land H3(v)/vin,,) = v“'ls/vfhns — 30 /vin, -

Inserting the expansion (B1) into Egs. (2.5) and (2.1), and integrating over dW, one
obtains

By
Glns¢7 Glns¢) + 2@ GQns 1
By

0 n=1 TOHs
+o0 B ~ 5~
Ty qs Ty By Ny
O PRUEVER Ginsd + 260,Gons 200 | 9Gggs 2, 22 B2
,;1 qs mBo To,. s+ 2 Bo] * qs % By no (B2)
U U,
— GlnsA”,?s ) + a; =0,

where we made use of the definitions (A 13) and (A 14) and of the orthogonality of
Hermite polynomials. We remark, at this point, that the sum of the last term in the first
line of Eq. (B2) with the first term on the second line of Eq. (B2) yields zero, because
of the antisymmetry of the canonical bracket [, ]. We thus conclude that the quasi-static
closure (A 20) has the remarkable property of annihilating, in the continuity equation,
all the contributions associated with the moments fo,,, for n > 1. By virtue of this
cancellation, from Eq. (B2) we obtain

NS U,

0 T, By N,| 1 -
Yy s = s | T o sAy, Us — =U B
ET Bo Gho (15 + 7 —==2G9g Bo no] Bo [Glo I U. ] + o 0 ( 3)

Applying to Eq. (B 3) the normalization (3.9)-(3.12), one obtains Eq. (3.3).

In order to derive Eq. (3.4) we point out first that, with the help of the identities

o - 55 (’%2?5) (4)" -

2
) s Bo n
Jl (as) obs/2 (Ths ) bs
Z (n+1)! 2 )7 (B5)
+0
f dx e*an (JZ)Lm (JU) = 5mn7 (B 6)
0

d m+1 m+1
Lgrll) (.’I}) = _%Lm+1($> = — - Lm+1<$) +
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we obtain the relation (see also Brizard (1992))

’U2

AW, F. gt JA B8
Boj a. ljo ¢ TOHS vey Jo |1 (B8)

~ ng UthHS ‘[ (MSBO> e_/l‘SBO/Tols
By k. k'e Ols
| 2 g (R PrsBo 5 K [2Bo) a5 3
Ty, o\ o me O wes ms To,, :

- Ut’W Z JrZO:OJ (:“SBO) e HsBo/To,

0 k,k'e2 m,n=0

ei(k-‘rk’)m (B 9)

Lm<usBo> m , Ln(ltsBo) AL
o | s b2 To,, <b2s) gg,e*bs/Q To, (b;) g” ci(k+k )@

TOHs m)! n!
= 1o Uth o <« Gl AH (B10)
Bo 3 TOHa

and, by an analogous procedure, the relation

AW, Foy.

2 GB B s UQ ¥
K Ojle I 4 H jOsA|]

BO BO TOH UthH

+
Ythys
e, §
By

n=0

2G2na ” GlnbAH

(B11)

Upon multiplying Eq. (2.1) by (1/no)vj/vin,, and integrating over dW; one obtains,
adopting the expansion (B1) as well as the relations (A 13), (A 14), (B10) and (B11),
the following equation

~ ~

a [75 qs vth” e BH US
— + ~G1osA Gros® + To,. —2G20s— -,
ot (Uth To), ¢ o tos$ 4. =By Uthy s
4 ~ ~
Vth) qs H Uths v N THS
ns 2 ns nsA - SA y ™
> ;olesGl b+ 260,Gs o Ginsd) B, | CrosAl o +Tous
+0
Vth) e BH
ns A ns® + 2 ns B12
+ Bo ;1 Gins4| T, = G1nsd + 20,Go Bo (B12)
+ o i NS ~ THS =0
th”b’ (92 no 1-‘0”S BO TOHS -

Also in this case, the quasi-static closure leads to a remarkable cancellation. Indeed,
among the nonlinear terms involving only electromagnetic quantities (i.e. ¢, A and B)
all those containing gyroaverage operators Gi,s and Ga,s, with n > 1, vanish. As a
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result, Eq. (B 12) reduces to
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II's

Uth
By
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s 5z TOHS 10 20 Bo TOHS

Equation (3.4) is then obtained from Eq. (B13) after applying the normalization (3.9)-
(3.12).

Equation (3.5) is obtained upon multiplying Eq. (2.1) by (1/n0)(vﬁ/ufh“5 — 1) and
integrating over dW,. Making use of the expansion (B1) and of the orthogonality of
Hermite polynomials one obtains

0T | e T |, T By s
7t 5 | |G1os9, + —== 2G5+,
8t TOHS BO 10 ¢ TOHs qs 20 BO T0||s
e [ 7 @ s
-2 GlOsAHa? GmSAH,nOT! p
Is
0 U, Qs

2 + = 0. B14

+ Uth)s A2 0z ( Ven, nOTO”s'UthHS ( )

Adopting the normalization (3.9)-(3.12), Eq. (3.5) follows from Eq. (B 14).

Equations (3.6), (3.7) and (3.8) follow from Eq. (2.2), (2.3) and (2.4), respectively, upon
inserting the expansion (B 1), evaluating the integrals and applying the normalization
(3.9)-(3.12). With regard to the evaluation of the integrals and the derivation of the
equations in the form (3.6), (3.7) and (3.8), we remark that, in addition to Eqs. (A 13)-
(A 14), the following relations are of use:

1 +o0 )

oo | OV Fog i (a) = To(bs) = > G bs), (B15)

1 2/1'SBO Jl(as)

o AW Feq. Ty Jo(as) T To(bs) — Iy (by) = )+ 2 Z G1n(bs)Gon(bs),
(B 16)

1 2415 Bo Ji(as) > pas

AWs Feq, 215 Bo Jilas) \© _ 2(Io(bs) — T(bs)) = Gio(bs) +4 > G3,(b
ng To,, as =

(B17)

Appendix C. Field-swelling instabilities
C.1. Dispersion relation at the MHD scales

In this Appendix, we first provide a simple derivation of the dispersion relation for
fast and slow modes at MHD scales in the presence of temperature anisotropy, starting
from the kinetic-MHD equations (see Eqs. (37), (38b), (44 a,b,c) (46)-(48) from Kulsrud
(1983), or equivalently Eqgs. (1)-(8) from Snyder et al. (1997)).
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The transverse velocity can be decomposed into compressible and solenoidal parts by
writing
ur =—=Vixe+ Vi x (xs2). (C1)
One immediately gets (see e.g. Egs. (48),(52) and (56) of Passot & Sulem (2006) where
FLR corrections are neglected)

B - B
tdeaxe + 0ua (B D) + (B4 Tl 0 (o)

4 By Po *By

> B,
Ot? — OzaXe =0, (C 3)
0
where p; and p; denote the total (ion plus electron) perpendicular and parallel pressure
fluctuations, with the subscript 0 referring to the equilibrium values. Furthermore, pg
denotes the equilibrium plasma density.
In Eq. (C2), the perpendicular pressure fluctuations are given by the drift-kinetic

theory, as found e.g. in Eq. (27) of Snyder et al. (1997), in the form

pir _ To., _ B qrw)
o (2<1 6:R(¢) g, R“T)THT : (C4)

together with

Ny B a1
= (1O RGB!~ RG)T
where ¢, = e for ions and —e for electrons, respectively. The potential v is defined in
terms of the parallel electric field by E, = —d,1. These expressions for the perpendicular
pressure and density perturbations identify with the large-scale limit of formulas given
in Appendix B of Passot & Sulem (2007). Quasineutrality requires the equality of the
electron (n.) and ion (n;) number-density fluctuations, which prescribes

e O.R(¢) — OiRR(G) By

(C5)

=T . C6
TOH& ” THR(CE) + R(¢;) Bo ( )
Plugging the expressions for the pressures in Egs. (C2)-(C 3) thus leads to
w? k2 Be
B2 g (1m0t n(-6))
k‘i ﬁj_e
+ 55020 - OR(C) + 71 (2 - O.R(C) — O.R(G))
O R(() — OiR(G:)
+7(1+7,)R(C . Cc7
(1 +71,) (C)( T R(C) T R(G) )] (C7)
2 w2 . TOHe .
We note that ¢ = 5 with wg = kchH where Cs) = is the sound speed based
27wy m;

on the parallel electron temperature.

C.2. Link with the fluid theory

In order to make a link with fluid theory as performed in Basu & Coppi (1984), we
note that keeping all the terms in the ion density and parallel velocity equations (in
particular the time derivatives), is equivalent to expanding R((;) for (; large, i.e. in the
adiabatic limit where R((;) ~ —1/(2¢?). It thus follows that the ions cannot be hot, at
least outside an angular boundary layer near the transverse direction.
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In addition to adiabatic ions, let us also assume a quasi-static limit for the electrons,
which leads to assume (. — 0 and thus R((.) ~ 1. Equation (C7) then rewrites

w? k2 Bje
kzci =1- ﬁ 5 (1 -6, +TH(1 — @1))
k3 Ble O
+ﬁ D) [2(1—@6)4-7]_1. 2—96‘1‘@
1 — .
(5 g )] €8
For cold ions (1 = 71, = 0), we get
w? w? k2 k2
(wi - 1) [1 - W - ﬁ(ﬂ\\e — Ble) + ﬁee(ﬁ\\e - ﬁj_e):|
k2 w?
+ ﬁ@eﬂLeE =0, (C9)
which also rewrites in the form of Eq. (44) of Basu & Coppi (1984)
w? w? k% k2
(wg - 1) |:1 - k2”0124 + ﬁ@e(QﬂHe - ﬁj_e) - @(6“8 - Ble)]
Ll
+ 5 OeBLe = 0. (€10)

The slow mode is obtained when w ~ ws, while the fast mode corresponds to w » ws.

C.3. The field swelling instabilities
C.3.1. Slow mode
As discussed in Basu & Coppi (1984), it follows from Eq. (C10) that the slow mode
becomes unstable when

BJ_e
1. < 2. (C11)
As O, is increased from 1, the phase velocity decreases and becomes zero at 1 + 1/5] .
As 6. is further increased, a pair of purely imaginary complex conjugate roots appears,
leading to the so-called slow-mode swelling instability.

1 <6,

C.3.2. Fast mode

According to the theory of Basu & Coppi (1984) that assumes (. very small, the fast
mode becomes unstable when
2(1 + Bie)
/BLe
The validity conditions require in particular that (k./k1)? > (me/m;)(1/B).) in order to
ensure that (. is small enough.

O, > . (C12)

C.4. Instability growth rate

Le us now consider the full dispersion relation, given by Eq. (C7), with a general
electron response function. The instabilities are illustrated in Fig. 4 which displays,
as a function of the perpendicular to parallel electron temperature anisotropy ©., the
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FIGURE 4. Imaginary part of r = w/kca for the unstable mode, solution of Eq. (C7), for
propagation angles o = 89° (left) and 80° (middle) as a function of the perpendicular to parallel
electron temperature anisotropy ©. in the case S1. = 1 and cold ion temperatures (leading
to take R((;) = —1/(2¢?)) for various approximations of R((.): BC84 (black solid line) uses
R(¢.) = 1, DK (red solid line) uses R20((c) and DKNL (green solid line) uses R20(Ce) (no
electron Landau damping). Superimposed diamond symbols refer to predictions of GF4 model
taken in the large-scale limit. Right panel corresponds to DKNL and GF4 models with o = 89°
in the case 71; = 1.

imaginary part of r = w/kcy for the unstable mode, solution of Eq. (C7) with 8. =1
and cold ion temperatures, for propagation angle @ = 89° (left) and o = 80° (middle),
when using four different approximations for the plasma response functions. The first
one, referred to as BC84 (black solid line) uses R((;) = —1/(2¢?) and R((.) = 1
and corresponds to the asymptotic solution of Basu & Coppi (1984), the second one,
denoted DK (red solid line) uses for the electrons the Padé approximant Rao((.) =
1/(1—2¢2 —im'/2¢,) (the use of Ry leads to almost identical results) and for the ions the
same large-(; limit as in the BC84 model, since the ions are cold. The third model, called
DKNL (green solid line) differs from the previous one by the fact that electron Landau
damping is suppressed (using R1(C.) = 1/(1 — 2¢?)). Superimposed diamond symbols
refer to the prediction of GF4, taken in the large-scale limit. It is legitimate to consider
this model, derived in the limit {; — 0, in the regime of cold ions, because in this case
the dynamics is insensitive to the closure assumption. The right panel corresponds to the
case with 7, = 1 for a = 89°. It shows that the GF4 model is still approximately valid
even in a situation where (; is not small.

Figure 5 displays, as a function of ©., the positive real part of the three roots of Eq.
(C7) (referred to as min, int and maz in increasing order of magnitude, displayed in
turquoise, magenta and brown colors respectively), in the case of DKNL model (solid
lines) or for the DK model (dash-dotted lines), with the predictions of the GF4 model
superimposed as diamond symbols, again for 89° (left) and 80° (right) propagation angles
and cold ions. For the 89° angle (which falls outside the range of admissible angles for
the BC84 model), the destabilization of the slow mode for ©, > 2 is almost similar for
the four models. Within the BC84 model, the fast mode becomes unstable for @, > 4:
the real part of the associated root vanishes (not shown) and the instability growth rate
(black solid line of the left panel of Fig. 4) increases rapidly. The slow mode reappears
when ©, > 4. The DKNL model displays a very different behavior, whereby the fast
mode (brown solid line in the left panel of Fig. 5) remains almost unchanged for the
whole range of values of ©.. The slow mode (turquoise solid line in the same panel)
disappears for ©, > 2 and reappears on the intermediate branch (magenta solid line of
the left panel of Fig. 5) for ©, > 4. The intermediate root for ©, < 4 is one of the
many plasma modes that coexist with the usual slow and fast modes of fluid theory; it
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FIGURE 5. Positive real part of the three roots (denoted min (turquoise), int (magenta) and
max(brown) in increasing order of magnitude for DKNL (solid lines) and DK (dash-dotted
lines), together with predictions of GF4 (diamond symbols), versus O, for o = 89° (left) and
a = 80° (right), in the case of cold ions.

is here the only extra mode for the present choice of the Padé approximant (Ra1(Ce),
leading to what we called DKNL)). The instability that continues to exist for ©, > 4 (its
growth rate corresponds to the green solid line in the left panel of Fig. 4) is associated
to the destabilization of this extra plasma mode (while both the fast and slow modes
continue to exist and remain stable). The only small difference observed in the presence
of Landau damping is that the intermediate mode becomes purely imaginary in a range
of values of O, between 2 and 4 (see Fig. 5 left, dash-dotted line). We also note that the
use of the Ry Padé does not change the roots associated with the slow and fast modes,
but only those associated to the extra damped plasma modes (not shown). We conclude
that in an angular boundary layer close to 90°, the fast mode is always stable, and the
instability that continues to exist for ©. > 4 is of the same nature as the slow mode
swelling instability, i.e. its growth rate tends to zero as « approaches 90°.

For o = 80°, the value of (. is sufficiently small for the approximation R({.) = 1
to be valid. In this case, the behavior of the slow mode swelling instability is similar
to the previous case, the main difference affecting the fast mode. Its phase velocity for
6. < 4 now corresponds to the intermediate branch, the one with the largest real part
corresponding to the extra plasma mode which, in the presence of Landau damping, is
heavily damped (damping rate not shown). For ©. > 4, the real frequency of the fast
mode vanishes and this mode becomes unstable, as predicted in Basu & Coppi (1984).
The slow mode reappears on this intermediate branch with a very good match between
the GF4 and DK as well as DKNL predictions.

Complementary information is presented in Fig. 6 which displays the growth rate of
the unstable mode as a function of the angle « for the three models described above
for ©, = 3 (left) and ©, = 4.5 (right). For the case corresponding to the slow mode
swelling instability of Basu & Coppi (1984) (O, = 3), the three models are very similar
(the case without Landau damping is actually almost identical to the BC84 model so
that both curves are superimposed). The GF4 model gives very similar growth rates for
angles between 80° and 90° but its predictions deviate for smaller angles. For ©, = 4.5
the fast mode instability as predicted by BC84 displays a growth rate proportional to k
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FIGURE 6. Growth rate of the unstable mode as a function of the propagation angle « for the
BC84 (black), DK (red), DKNL (green) and GF4 (diamond symbols) models in the case ©. = 3
(left) and ©. = 4.5 (right). For ©. = 3, BC84 and DKNL curves are superimposed.

up to angles a = 90°. This fast-mode instability is only recovered with DKNL (and DK)
at oblique angles, the deviation with BC84 starting to be significant for o > 75°. For
this value of O, the slow mode is always stable in the GF4 model.

Remarks:

e Influence of warm ions: If one considers the fast mode at an angle close (but not
equal) to 90 degrees, one can assume warm ions and at the same time R((;) = 0. Taking
also R(¢.) = 1, and using Eq. (C7), one gets the dispersion relation (Eq. 20) obtained
by Pokhotelov & Onishchenko (2014) who show that ions are stabilizing.

e The case with ion temperature anisotropy: With finite (but isotropic) ion tem-
peratures, other modes are present, but the one which becomes first unstable when
electron temperature anisotropy is increased is still the slow mode. The case where the
instability is driven by ion temperature anisotropy (so-called classical mirror instability
with isotropic electrons) is in contrast different since the instability originates from the
extra mode associated with the finite ion temperature fluctuations and not from the slow
mode which continues to exist and to be stable above the mirror threshold. An interesting
point is that the mirror mode, usually thought of being non-propagating, originates from
one of the damped propagating ”ion temperature modes”. These modes only become
non-propagating for a large enough ion temperature anisotropy.
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