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c Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS,
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Abstract

Inspired by an approach proposed previously for the incompressible Navier-
Stokes (NS) equations, we present a general framework for the a posteriori
analysis of the equations of incompressible magnetohydrodynamics (MHD)
on a torus of arbitrary dimension d; this setting involves a Sobolev space of
infinite order, made of C∞ vector fields (with vanishing divergence and mean)
on the torus. Given any approximate solution of the MHD Cauchy problem,
its a posteriori analysis with the method of the present work allows one to
infer a lower bound on the time of existence of the exact solution, and to
bound from above the Sobolev distance of any order between the exact and
the approximate solution. In certain cases the above mentioned lower bound
on the time of existence is found to be infinite, so one infers the global exis-
tence of the exact MHD solution. We present some applications of this general
scheme; the most sophisticated one lives in dimension d = 3, with the ABC
flow (perturbed magnetically) as an initial datum, and uses for the Cauchy
problem a Galerkin approximate solution in 124 Fourier modes. We illus-
trate the conclusions arising in this case from the a posteriori analysis of the
Galerkin approximant; these include the derivation of global existence of the
exact MHD solution with the ABC datum, when the dimensionless viscosity
and resistivity are equal and stay above a critical value.
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1 Introduction

Magnetohydrodynamics (MHD) and the Navier-Stokes (NS) equations.
The incompressible MHD equations are usually written as follows (in dimensionless
form):

u̇ = ν∆u− u · ∂u+ b · ∂b− ∂(p+
1

2
|b|2) , (1.1)

ḃ = η∆b− u · ∂b+ b · ∂u , (1.2)

divu = 0 , divb = 0 . (1.3)

Here: u = u(x, t) and b = b(x, t) are, respectively, the velocity and magnetic field,
depending on the space variables x = (x1, ..., xd) and on time t, whereas p = p(x, t) is
the pressure; the constants ν, η > 0 are the viscosity and resistivity. Throughout the
paper we consider periodic boundary conditions, or, more precisely, we assume x to
range in the d-dimensional torus Td := (R/2πZ)d. Thus u, b : Td× [0, T ) → Rd (and
p : Td× [0, T ) → R). In Eqs. (1.1) (1.2) and in the rest of the paper, ∂ stands for the
gradient and, for all (sufficiently regular) vector fields v, w, we indicate with v · ∂w
the vector field with components (v · ∂w)r :=

∑d
s=1 vs∂swr; of course ∆ :=

∑d
r=1 ∂rr

is the Laplacian. The space dimension d is arbitrary, but we are typically interested
in the case d = 3. For d = 3, one can write the above equations in a more familiar
form using the identities −u ·∂b+b ·∂u = rot(u∧b) and b ·∂b−∂(|b|2/2) = (rot b)∧b
(the first one holding for all divergence free vector fields u, b and the second one
valid for any vector field b).
One can reexpress Eqs. (1.1) (1.2) applying to both sides the Leray projection L,
which transforms any vector field (on the torus) into its divergence free part; this
operator annihilates gradients, so that Eqs. (1.1) (1.2) become

u̇ = ν∆u− L(u · ∂u) + L(b · ∂b) , (1.4)

ḃ = η∆b− L(u · ∂b) + L(b · ∂u) , (1.5)

(and no longer contain the pressure p). It should be noted that the vector field
−u · ∂b + b · ∂u is divergence free like u and b, so that −L(u · ∂b) + L(b · ∂u) =
−u · ∂b + b · ∂u. In spite of this, for our purposes it is convenient to indicate
explicitly L in these terms of Eq. (1.5); one advantage is that, in this formulation,
all bilinear terms in Eqs. (1.4) (1.5) involve a single bilinear map

P : (v, w) 7→ P(v, w) := −L(v · ∂w) (1.6)

(where v, w : Td → Rd are any two sufficiently smooth vector fields). This “fun-
damental” bilinear map is the same governing the NS equations of incompressible
fluids, which read

u̇ = ν∆u+ P(u, u) (1.7)
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(with u representing again the velocity field, and ν > 0 the viscosity; for ν = 0,
these become the Euler equations).

A posteriori analysis of NS approximate solutions: a review of known
results. The structural analogies between the MHD equations (1.4)(1.5) and the
NS equations (1.7) suggest the possibility to extend to the MHD case an approach
developed in the last years for the NS equations, allowing to infer rigorous results on
their exact solutions from the a posteriori analysis of approximate solutions. This a
posteriori approach to the NS equations was started in [7] [9] [28] and continued in
a series of papers co-authored by one of us [19] [20] [22] [25]; there are close relations
between this scheme and a strategy proposed for other nonlinear PDEs (especially,
the equations of surface growth), which has even been extended to stochastic PDEs
[2] [3] [4] [26].
Let us give some more information about [19] [20] [22] [25]; here one works in a
rigorous functional setting, where the exact or approximate solutions of the NS
Cauchy problem take values in suitable Sobolev spaces of (divergence free, mean
zero) vector fields on the torus Td. These Sobolev spaces are based on L2, and their
order is either finite [22] or infinite [25]; the case of infinite order amounts to work
in a space of C∞ vector fields. In this framework one considers an approximate
solution of the NS Cauchy problem, i.e., a function fulfilling the NS equations with
a given initial datum up to errors affecting both the evolution equations and the
initial condition. Setting up an a posteriori analysis centered about the Sobolev
norms of the above errors, one obtains a lower bound on the time of existence of
the exact solution of the NS Cauchy problem, and also derives upper bounds on the
Sobolev distances between the exact and the approximate solution at any instant.
The previously mentioned lower bound on the time of existence of the NS solution
can be +∞; in this case, one concludes that the solution of the NS Cauchy problem
is defined on the whole interval [0,+∞), i.e., it is global.
The key ingredient in the above constructions are certain differential inequalities
supplemented with suitable “initial value inequalities”, built up from the norms of
the errors mentioned previously; these are referred to as the control inequalities.
The unknowns in these inequalities are real valued functions of time; there is a
pair of control inequalities (a differential and an initial value inequality) for any
Sobolev order, and a solution is an upper bound on the Sobolev distance of that
order between the exact and the approximate NS solution. The time of existence of
a solution of the control inequalities of some basic Sobolev order also gives a lower
bound on the time of existence for the exact solution of the NS Cauchy problem.
The simplest way to solve a pair of control inequalities is to fulfill them as equalities:
in this case we have a differential equation and an initial condition for an unknown
real function of time, forming what we call a control Cauchy problem and possessing
a unique solution.
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In the applications already proposed for the above scheme, the approximate NS
solutions are obtained using the Galerkin method [22] or a truncated expansion
with respect to a suitable quantity, which can be the reciprocal of the viscosity [20]
or the time variable [19]. The fully quantitative implementation of the a posteriori
analysis requires accurate estimates on the constants in certain inequalities about
the fundamental bilinear map (1.6), involving the Sobolev norms; rather accurate
upper bounds on these constants have been given in [21] [23] [24].

Contents of the present work. The aim of this paper is to transfer some results
on the NS equations to the MHD case; these results concern mainly the a posteriori
analysis of approximate solutions via control inequalities, along the scheme devel-
oped in [22] [25] for NS equations and briefly reviewed in the previous subsection.
The key point in our constructions is a formulation of the MHD equations, empha-
sizing strong analogies with the setting of [25] for NS equations. In few a words, the
pair of functions u := (u, b) appearing in the MHD equations (1.4) (1.5) is viewed as
taking values in the product of two copies of an infinite order Sobolev space (made
of divergence free and mean zero vector fields on Td), and the cited equations are
written as

u̇ = Au+P(u,u) ; (1.8)

here A is the operator (u, b) 7→ (ν∆u, η∆b) and P is a “two component” bilinear
map whose definition is suggested by the structure of the bilinear terms in Eqs. (1.4)
(1.5) (see Eq. (3.8) for the necessary details). One can notice that the NS equations
(1.7) are formally converted into the MHD equations (1.8) with the substitutions

u u, ν∆ A, P P . (1.9)

These structural similarities are very deep. In fact, as shown in the present paper,
some important Sobolev norm inequalities fulfilled by the NS bilinear map P have
essentially identical counterparts for P; this is a not-so-trivial fact, whose proof
requires a minimum of effort. In addition, some Sobolev norm inequalities for ν∆
have counterparts for A, based on the parameter µ := min(ν, η).
After pointing out the above structural analogies, in the present work we consider
any approximate solution of the MHD Cauchy problem and we analyze it a poste-
riori, using ideas developed in [25] for the NS equations and adapting them to the
MHD case. In this way we derive lower bounds on the time of existence of the exact
MHD solution and upper bounds on the Sobolev distances (of any order) between
the exact and the approximate solution; suitable control inequalities or equalities
(conceptually similar to those mentioned in the previous paragraph) are developed
for this purpose. In particular, the control equalities form a Cauchy problem for
an unknown function from a time interval (to be determined) to the reals. In some
cases, this construction ensures the global existence in time (i.e., a domain [0,+∞))
for the exact solution of the MHD Cauchy problem.
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Some basic estimates on the exact solution of the MHD Cauchy problem can be ob-
tained applying the previous scheme to a very simple approximate solution, namely,
the zero function. The a posteriori analysis of the zero function shows, in particu-
lar, that the solution of the MHD Cauchy problem with any smooth initial datum
is global if µ := min(ν, η) is above an analytically given critical value, depending on
the datum. As examples we present these basic estimates in space dimension d = 3,
choosing as initial data the Orszag-Tang vortex and an Arnold-Beltrami-Childress
(ABC) flow with a perturbing magnetic field [6] [17].
A second, more sophisticated application is developed subsequently; this uses an
approximate solution provided by the Galerkin method (i.e., by the truncation of
the MHD equations to a finite set of Fourier modes). For this construction we take
inspiration from the Galerkin method for NS equations, in the approach described
by [22].
The construction of the Galerkin approximants for the MHD Cauchy problem is
exemplified in space dimension d = 3, assuming a common value µ for the viscosity
and the resistivity (ν = η ≡ µ) and choosing the (magnetically perturbed) ABC
initial datum; the Galerkin approximant is supported by a set of 124 Fourier modes,
and is computed numerically. The a posteriori analysis of this approximate solution
is performed solving numerically the control equalities (i.e., we repeat it, a Cauchy
problem for an unknown function from an interval to the reals). Calculations per-
formed for a finite set of values of µ suggest, for example, that the MHD equations
(1.4) (1.5) with the ABC initial datum have a global solution if µ is above a critical
value, determined by the Galerkin approximant and sensibly better than the one
previously mentioned for the ABC flow, based on the zero approximate solution.
For µ below this critical value, our treatment of the Galerkin approximant indicates
existence of the exact MHD solution up to a finite, numerically computed time.
Admittedly, in this application of the Galerkin method and of the control equalities
we do not take into account the numerical errors (or, more precisely, we regard them
as negligible); this makes a difference with respect to the rest of the paper, which is
based on an analytic framework with rigorous proofs. We return to this issue in the
part of the paper about the Galerkin approximation, especially in Remark 6.6 (iii),
where we mention how the problem could be overcome in the future using packages
for certified numerical computations.

Organization of the paper. Section 2 describes some general facts on Sobolev
spaces on Td; it also reviews some results on the bilinear map P of Eq. (1.6),
including the inequalities mentioned before.
Section 3 discusses the MHD Cauchy problem, in a setting based on the infinite
order Sobolev space mentioned before (made of C∞ vector fields on Td); local in
time existence of the exact solution is reviewed, making reference to the available
literature (see Proposition 3.1 and the discussion that accompanies it). In the same
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section, we emphasize the analogies between the NS equations (1.7) and the MHD
equations in the formulation (1.8), with the definition (3.8) for P. We already
mentioned that certain Sobolev norm inequalities for the NS bilinear map P (see
Eq. (1.6)) have counterparts for P: this fact is presented in Section 3 and proved in
Appendix A, where we also estimate certain related constants (making reference to
results of [21] [23] [24] about P). Again in Section 3, we write down some natural
inequalities for the operator A of Eq. (1.8).
Section 4 presents our general setting for approximate solutions of the MHD Cauchy
problem and their a posteriori analysis. In particular, Lemma 4.2 of this section
presents differential (and initial value) inequalities for the Sobolev distances (of all
sufficiently large orders) between any approximate solution of the MHD Cauchy
problem and the exact solution; this result prepares the subsequent Proposition 4.3,
introducing the control inequalities and indicating that the solutions of such in-
equalities yield bounds for the time of existence of the MHD exact solution and for
the previously mentioned Sobolev distances (see, especially, the forthcoming Eqs.
(4.20)-(4.26)). This framework is applied in Section 5 to the zero approximate so-
lution and yields a number of results, contained in Proposition 5.2. One of these
results, already mentioned in the previous subsection, is the global nature of the
exact MHD solution when µ := min(ν, η) is above an explicitly given critical value,
depending on the initial datum; the same proposition gives lower bounds for the
time of existence of the MHD solution when µ is below such a critical value, and
also proposes upper bounds for the Sobolev norms of the solution. Again in Section
5, the critical values of µ for global existence are computed when the initial data
are the Orszag-Tang vortex or the perturbed ABC flow. In Section 6 we present a
framework for Galerkin approximants; the links with the general theory of approxi-
mate MHD solutions are provided mainly by Proposition 6.5. Finally, in Section 7
we set ν = η ≡ µ and construct (in dimension 3) the already mentioned Galerkin
approximant with 124 Fourier modes for the perturbed ABC initial datum; the a
posteriori analysis of this approximate solution yields the results already mentioned
at the end of the previous paragraph and suggests, in particular, an improved critical
value of µ for global existence.

Note. After the acquisition of the structural analogies between the NS equations
(1.7) and the MHD equations (1.8), the main propositions about the MHD approxi-
mate solutions can be derived by a simple translation of similar propositions proved
in [25] for the NS approximate solutions; essentially, one applies the “correspondence
principle” (1.9). To some extent, a similar remark also applies to the analysis of the
Galerkin approximation for the MHD equations; many results on this subject are
obtained translating via (1.9) the analysis of the Galerkin method performed in [22]
for the NS equations.
In spite of this, in writing the present paper we have decided to give explicitly the
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above mentioned “translations” to the MHD framework, even at the price of textual
similarities with the corresponding statements of [22] [25] on NS equations. This
choice makes the present paper self-contained, a feature that we think could be
useful since the a posteriori analysis of the MHD approximate solutions is (to the
best of our knowledge) an essentially new subject. In any case, the connections of
the present results with [22] [25] are indicated explicitly whenever they occur.

2 General functional setting

We work in any space dimension

d ∈ {2, 3, ...} ; (2.1)

for a, b ∈ Cd we write a · b :=
∑d

r=1 arbr. We often use the lattice Zd, where Z is the
set of integers; denoting with 0 its zero element, we write Zd

0 := Zd \ {0}.
Sobolev spaces on the torus. Throughout the paper we stick rather closely to the
functional setting adopted in [22] [25] for the NS equations on Td; for convenience of
the reader, let us re-propose here the basic function spaces involved in this setting.
First of all, we write D′ for the space of Rd-valued distributions on Td (distributional
vector fields). Each v ∈ D′ has weakly convergent Fourier expansion v =

∑
k∈Zd vkek,

where ek(x) := (2π)−d/2eik·x and vk = v−k ∈ Cd are the Fourier coefficients. The
spaces of divergence free or zero mean distributional vector fields and their intersec-
tion are

D′
Σ := {v ∈ D′ | divv = 0 } = {v ∈ D′ | k · vk = 0 for k ∈ Zd} ; (2.2)

D′
0 := {v ∈ D′ |

∫
Td

v dx = 0 } = {v ∈ D′ | v0 = 0} ; D′
Σ0 := D′

Σ ∩ D′
0 . (2.3)

Let us consider the space L2 of square integrable vector fields on Td, and its standard
inner product ⟨ | ⟩L2 . For any p ∈ R, we define the Sobolev space Hp

Σ0 of divergence
free, zero mean vector fields on Td as

Hp
Σ0 := {v ∈ D′ | divv = 0,

∫
Td

v dx = 0,
√
−∆

p
v ∈ L2}

= {v ∈ D′ | k · vk = 0, v0 = 0,
∑
k∈Zd

0

|k|2p|vk|2 < +∞} .
(2.4)

(Here ∆ is the Laplacian; the fractional power
√
−∆

p
is defined by (

√
−∆

p
v)k =

|k|pvk, as suggested by the obvious Fourier representation (−∆v)k = |k|2vk). Hp
Σ0 is

a real Hilbert space with the inner product

⟨v|w⟩p := ⟨
√
−∆

p
v|
√
−∆

p
w⟩L2 =

∑
k∈Zd

0

|k|2pv̄k · wk (2.5)
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and the induced norm

∥v∥p :=
√
⟨v|v⟩p ; (2.6)

of course, for p = 0 we have

H0
Σ0 = D′

Σ0 ∩ L2 , ⟨ | ⟩0 = ⟨ | ⟩L2 . (2.7)

From now on we indicate with ↪→ a continuous imbedding. With this notation,
for p > q we have Hp

Σ0 ↪→ Hq
Σ0 (and, more quantitatively, ∥ ∥p > ∥ ∥q). Now we

introduce, analogously to Ref. [25], the infinite order Sobolev space

H∞
Σ0 := ∩p∈RHp

Σ0 . (2.8)

This carries the complete topology induced by the infinitely many norms ∥ ∥p (p ∈
R); indeed, this family of norms is equivalent to the countable family ∥ ∥p (p =
0, 1, 2, ...), so H∞

Σ0 is a Fréchet space. For k ∈ N ∪ {∞} we consider the space

Ck
Σ0(Td) := {v ∈ Ck(Td,Rd) | divv = 0,

∫
Td

v dx = 0 } , (2.9)

which is a Banach space for k < ∞ and a Fréchet space for k = ∞, with the usual
sup norms of the derivatives of all involved orders. Let h, k ∈ N, p ∈ R; then
Ch

Σ0 ↪→ Hp
Σ0 if h > p and, by the Sobolev lemma, Hp

Σ0 ↪→ Ck
Σ0 if p > k + d/2. These

imbeddings imply
H∞

Σ0 = C∞
Σ0 (2.10)

(equality as topological vector spaces).

Laplacian. Let us consider the Laplacian ∆ : D′ → D′; from the Fourier represen-
tation (∆v)k = −|k|2vk we readily infer the following: for each real p and v ∈ Hp+2

Σ0 ,
one has ∆v ∈ Hp

Σ0 and
∥∆v∥p = ∥v∥p+2 , (2.11)

⟨∆v|v⟩p = −∥v∥2p+1 6 −∥v∥2p . (2.12)

Using Eq.(2.11), one infers that ∆ is continuous from Hp+2
Σ0 to Hp

Σ0 for each real p,
and from H∞

Σ0 to H∞
Σ0.

Leray projection. This is the map

L : D′ → D′
Σ , v 7→ Lv such that (Lv)k = Lkvk for k ∈ Zd ; (2.13)

here Lk is the orthogonal projection of Cd onto k⊥ = {a ∈ Cd | k · a = 0} (so that
Lkc = c − (k · c)k/|k|2 and L0c = c, for k ∈ Zd

0 and c ∈ Cd). One proves that
LD′ = D′

Σ, LD′
0 = D′

Σ0, LL2 = D′
Σ ∩ L2.
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Fundamental bilinear map. Let us consider two vector fields v, w ∈ D′ such that

v ∈ L2, ∂sw ∈ L2 for s = 1, ..., d; (2.14)

then v · ∂w belongs to the space L1 of integrable vector fields on Td. The bilinear
map sending v, w as in (2.14) into

P(v, w) := −L(v · ∂w) ∈ LL1 (2.15)

will be referred to as the “fundamental bilinear map”. In terms of Fourier compo-
nents, we have

(v · ∂w)k =
i

(2π)d/2

∑
h∈Zd

[vh · (k − h)]wk−h. (2.16)

for all k ∈ Zd; this implies that the k-th Fourier component of P(v, w) is

Pk(v, w) = − i

(2π)d/2

∑
h∈Zd

[vh · (k − h)]Lkwk−h. (2.17)

(where, as in the previous paragraph, Lk indicates the orthogonal projection of Cd

onto k⊥). Of course, in Eqs. (2.16) (2.17) the sum over Zd can be replaced with a
sum over Zd \ {k}; moreover, if v has mean zero we can sum over the set Zd \ {0, k},
hereafter denoted with Zd

0k.
To go on let us remark that, for v, w as in (2.14),

⟨v · ∂w|w⟩L2 = ⟨P(v, w)|w⟩L2 = 0 if v · ∂w ∈ L2 and divv = divw = 0 (2.18)

(this follows, e.g., from Eq. (1.8) and Lemma 2.3 of [23]; note that v · ∂w ∈ L2

implies P(v, w) ∈ L2). We now add much more regularity. Let n, p denote two real
numbers; it is known that

p > d/2, v ∈ Hp
Σ0, w ∈ Hp+1

Σ0 ⇒ P(v, w) ∈ Hp
Σ0 (2.19)

and that there are constants Kpn, Gpn ∈ (0,+∞) such that the following holds:

∥P(v, w)∥p 6
1

2
Kpn(∥v∥p∥w∥n+1 + ∥v∥n∥w∥p+1) (2.20)

for p > n > d/2, v ∈ Hp
Σ0, w ∈ Hp+1

Σ0 ,

|⟨P(v, w)|w⟩p| 6
1

2
Gpn(∥v∥p∥w∥n + ∥v∥n∥w∥p)∥w∥p (2.21)

for p > n > d/2 + 1, v ∈ Hp
Σ0, w ∈ Hp+1

Σ0 .
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Of course, with p = n and Kp := Kpp, Gp := Gpp the above inequalities become

∥P(v, w)∥p 6 Kp∥v∥p∥w∥p+1 for p > d/2, v ∈ Hp
Σ0, w ∈ Hp+1

Σ0 , (2.22)

|⟨P(v, w)|w⟩p| 6 Gp∥v∥p∥w∥2p for p > d/2 + 1, v ∈ Hp
Σ0, w ∈ Hp+1

Σ0 , (2.23)

Statements (2.19) (2.22) indicate that P maps continuously Hp
Σ0×Hp+1

Σ0 to Hp
Σ0. The

same statements can be used in an obvious way to prove that P maps continuously
H∞

Σ0 ×H∞
Σ0 to H∞

Σ0.
Eq. (2.22) will be referred to as the “basic” inequality for P, since it is closely related
to the standard norm inequalities about multiplication in Sobolev spaces. Eq. (2.23)
was established by Kato [15] for integer p, and generalized to noninteger cases in [8];
it will be referred to as the “Kato inequality”. To our knowldege, the relevance of
the Kato inequality (2.23) for the a posteriori analysis of NS approximate solutions
was first pointed out in [7]. Eqs. (2.20) (2.21) are “tame” generalizations (in the
Nash-Moser sense) of the basic and Kato inequalities for P (for some inequalities
very similar to (2.21), see [1] [29] [34]).
The inequalities (2.20) (2.21) and the related constants were discussed in [21], gen-
eralizing previous results of [23] [24] on the special case p = n. The analysis of [21]
shows that the cited relations are fulfilled with

Kpn =
1

(2π)d/2

√
sup
k∈Zd

0

Kpn(k) , (2.24)

Gpn =
1

(2π)d/2

√
sup
k∈Zd

0

Gpn(k) , (2.25)

where Kpn, Gpn : Zd
0 → (0,+∞) are the functions defined by

Kpn(k) := 4|k|2p
∑
h∈Zd

0k

Q2
h,k−h

(|h|p|k − h|n + |h|n|k − h|p)2
; (2.26)

Gpn(k) := 4
∑
h∈Zd

0k

(|k|p − |k − h|p)2Q2
h,k−h

(|h|p|k − h|n−1 + |h|n|k − h|p−1)2
. (2.27)

Here Zd
0k := Zd \ {0, k} (as already defined), and for all q, r, h, ℓ ∈ Rd \ {0} we

stipulate the following:
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ϑqr := convex angle between q, r (ϑqr ∈ [0, π]) , (2.28)

Qhℓ :=

{
sinϑhℓ if d > 3 ,
sinϑhℓ cosϑh+ℓ,ℓ if d = 2

(2.29)

(2). As examples for later use, let us give explicit values for the constants Kpp ≡
Kp, Gpp ≡ Gp and Gpn in space dimension 3, for some values of p, n of interest for
the sequel. From [21] [23] [24] we know that we can take (3)

K3 = 0.320, G3 = 0.438, K5 = 0.657, G5 = 0.749, G53 = 1.26 (d = 3). (2.30)

3 The MHD Cauchy problem

Formulation of the problem. Let us choose two parameters

ν, η ∈ [0,+∞) , (3.1)

that we call the viscosity and the resistivity following the Introduction. Moreover,
we fix a couple of initial data

u0, b0 ∈ H∞
Σ0 . (3.2)

The MHD Cauchy problem with viscosity, resistivity and initial data as above reads:

Findu, b ∈ C∞([0, T ),H∞
Σ0) (with T ∈ (0,+∞]) such that (3.3)

u̇ = ν∆u+ P(u, u)− P(b, b) ,

ḃ = η∆b+ P(u, b)− P(b, u) .

u(0) = u0, b(0) = b0

(with P as in Eq. (2.15)). In the above, one recognizes Eqs. (1.4) (1.5) of the
Introduction; the length T of the time interval considered in (3.3) is unspecified,
and depends on (u, b).

2Of course, cosϑqr =
q · r
|q||r|

and sinϑqr =

√
1− (q · r)2

|q|2|r|2
. In the definition of Qhℓ for d > 3,

ϑh+ℓ,ℓ is meant to indicate any angle in [0, π] if h + ℓ = 0; the chosen value is immaterial, since
in this case ϑhℓ = π and sinϑhℓ = 0. The coefficient Qhℓ arises in [21] as the norm of a certain
bilinear map acting on vectors of Rd, a fact not relevant for our present purposes.

3The value of K3 employed here is taken from [21]; this value slightly improves the estimate
given previously in [24].
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A reformulation of the previous setting for MHD. For the sake of brevity, let

D′ := D′ × D′ , D′
Σ0 := D′

Σ0 × D′
Σ0 (3.4)

L2 := L2 × L2 ; (3.5)

the last space is a Hilbert space with the inner product

⟨v|w⟩L2 := ⟨v|w⟩L2 + ⟨b|c⟩L2 for v = (v, b), w = (w, c) ∈ L2 . (3.6)

By comparison with the Cauchy problem (3.3), we see that this involves the linear
operator

A : D′ → D′ , v := (v, b) 7→ Av := (ν∆v, η∆b) (3.7)

and the bilinear map

v = (v, b),w = (w, c) 7→ P(v,w) := (P(v, w)− P(b, c),P(v, c)− P(b, w)) . (3.8)

The largest domain on which P is well defined is formed by the pairs (v,w) as
above with v, b ∈ L2 and ∂sw, ∂sc ∈ L2 for s ∈ {1, ..., d}; P maps this domain to
LL1 × LL1.

To go on, for any real p we introduce the Hilbert space

Hp
Σ0 := Hp

Σ0 ×Hp
Σ0, (3.9)

equipped with the inner product

⟨v|w⟩p := ⟨v|w⟩p + ⟨b|c⟩p, (3.10)

for v = (v, b),w = (w, c). From this inner product we also derive the norm

∥v∥p :=
√

⟨v|v⟩p =
√

∥v∥2p + ∥b∥2p. (3.11)

We also set
H∞

Σ0 := H∞
Σ0 ×H∞

Σ0 ; (3.12)

this is a Fréchet space with the infinitely many norms ∥ ∥p (p ∈ R or, equivalently,
p = 0, 1, 2, ...).
Keeping in mind Eqs. (2.11) (2.12), one readily obtains the following: for each real
p and v = (v, b) ∈ Hp+2

Σ0 , one has Av ∈ Hp
Σ0, and

∥Av∥p =
√

ν2∥v∥2p+2 + η2∥b∥2p+2 6 µ∥v∥p+2 , (3.13)

⟨Av|v⟩p = −ν∥v∥2p+1 − η∥b∥2p+1 6 −µ∥v∥2p+1 6 −µ∥v∥2p , (3.14)
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where we have set
µ := min(ν, η) . (3.15)

Eq. (3.13) implies that A is continuous from Hp+2
Σ0 to Hp

Σ0 for each real p, and from
H∞

Σ0 to H
∞
Σ0. In addition, due to the properties of P reviewed in the previous section,

P maps continuously Hp
Σ0 ×Hp+1

Σ0 to Hp
Σ0 for each p > d/2, and H∞

Σ0 ×H∞
Σ0 to H∞

Σ0.
Let v = (v, b), w = (w, c), with v, b, w, c, ∂sw, ∂sc ∈ L2, divv = divb = divw =
divc = 0 and v ·∂w, b ·∂c, v ·∂c, b ·∂w ∈ L2; then P(v,w) ∈ L2, and using Eq. (2.18)
one proves that (4)

⟨P(v,w)|w⟩L2 = 0 . (3.16)

For the sequel of this paper, it is essential to point out that the map P fulfills the
following inequalities, containing suitable constants K̂pn and Ĝpn and for the rest
structurally identical to the inequalities (2.20) (2.21) for P:

∥P(v,w)∥p 6
1

2
K̂pn(∥v∥p∥w∥n+1 + ∥v∥n∥w∥p+1)

for p > n > d/2, v ∈ Hp
Σ0, w ∈ Hp+1

Σ0 ;
(3.17)

|⟨P(v,w)|w⟩p| 6
1

2
Ĝpn(∥v∥p∥w∥n + ∥v∥n∥w∥p)∥w∥p

for p > n > d/2 + 1, v ∈ Hp
Σ0, w ∈ Hp+1

Σ0 .
(3.18)

We refer to Appendix A for the derivation of Eqs. (3.17) and (3.18) from Eqs. (2.20)
and (2.21), respectively (such a derivation is not so obvious, especially in the case
of (3.18)). This appendix shows that the constants in (3.17) (3.18) can be taken as
follows:

K̂pn :=
√
2Kpn , (3.19)

Ĝpn :=
√
2Gpn , (3.20)

where Kpn, Gpn are constants fulfilling (2.20) (2.21) (these could be taken as in Eqs.

(2.24) (2.25), respectively). Of course, with p = n and K̂p := K̂pp, Ĝp := Ĝpp we get

∥P(v,w)∥p 6 K̂p∥v∥p∥w∥p+1

for p > d/2, v ∈ Hp
Σ0, w ∈ Hp+1

Σ0 ;
(3.21)

|⟨P(v,w)|w⟩p| 6 Ĝp∥v∥p∥w∥2p
for p > d/2 + 1, v ∈ Hp

Σ0, w ∈ Hp+1
Σ0 ;

(3.22)

4in fact

⟨P(v,w)|w⟩L2 = ⟨P(v, w)|w⟩L2 − ⟨P(b, c)|w⟩L2 + ⟨P(v, c)|c⟩L2 − ⟨P(b, w)|c⟩L2 .

But ⟨P(v, w)|w⟩L2 = 0 and ⟨P(v, c)|c⟩L2 = 0 due to (2.18); moreover ⟨P(b, c)|w⟩L2 +⟨P(b, w)|c⟩L2 =
(1/2)⟨P(b, c + w)|c + w⟩L2 − (1/2)⟨P(b, c − w)|c − w⟩L2 = 0, where the first equality follows from
the bilinearity of P, ⟨ | ⟩L2 and the second equality relies again on (2.18).
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As an example, let us consider the case of space dimension d = 3 and give for later
use the explicit values for the constants K̂pp ≡ K̂p, Ĝpp ≡ Ĝp and K̂pn, Ĝpn for some
values of p, n. Taking the values of K3, etc. reported in Eq. (2.30), multiplying each
one of these values by

√
2 and rounding up the results to three digits, we conclude

that we can take

K̂3 = 0.453 , Ĝ3 = 0.620, K̂5 = 0.930, Ĝ5 = 1.06, Ĝ53 = 1.79 (d = 3) . (3.23)

Let us return to the case of any space dimension d > 2. With the previous notations,
for u0 = (u0, b0) ∈ H∞

Σ0, we can rephrase as follows the Cauchy problem (3.3):

Find u = (u, b) ∈ C∞([0, T ),H∞
Σ0) (T ∈ (0,+∞]) such that

u̇ = Au+P(u,u), u(0) = u0 . (3.24)

This formulation makes evident the analogies with the NS Cauchy problem u̇ =
ν∆u + P(u, u), u(0) = u0, on the grounds of a “correspondence principle” already
mentioned in the Introduction (see Eq. (1.9)).

Local existence and uniqueness results for the Cauchy problem. The in-
compressible MHD Cauchy problem has been extensively discussed in the literature
in appropriate functional settings, not necessarily coinciding with ours. To our
knowledge, the case ν, η > 0 was first studied in [10]; a subsequent, influential work
on the same case is [33]. Reference [32] first treated the case ν = η = 0 which is
technically harder, proving local existence and uniqueness and deriving a blow-up
criterion by means of techniques which in fact work for arbitrary ν, η > 0.
Paper [32] considers MHD on Rd, [10] works on a domain in Rd, [33] also considers
the case of Td (5); the reformulation of the main results from [10] [32] in the case of
Td is straightforward. Another feature of the three cited works is that they consider
(strong) solutions of the Cauchy problem taking values in Sobolev spaces of finite
order. However, the adaptation of their results to a C∞ framework is obtained by
standard arguments, as indicated explicitly in [32]; the infinite order Sobolev spaces
H∞

Σ0 considered here allow a precise definition of the C∞ framework. (6)
Summing up we can refer to the existing literature, and especially to [32], to account
for the following statement:

3.1 Proposition. For all ν, η > 0, u0 = (u0, b0) ∈ H∞
Σ0, the following holds.

i) Problem (3.3) (or (3.24)) has a unique maximal (i.e., unextendable) solution
u = (u, b), for suitable T ∈ (0,+∞]; any other solution is a restriction of the
maximal one.

5To be precise, in [10] [33] d is 2 or 3.
6A similar situation occurs for the incompressible NS equations; the arguments to extend ex-

istence theorems and blowup criteria from a finite order to an infinite order Sobolev setting are
reviewed, e.g., in Appendix B of [25].
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ii) (Blow-up criterion). If T < +∞, for any n > d/2 + 1 one has

lim sup
t→T−

∥u(t)∥n = +∞ . (3.25)

For completeness, let us add two remarks:
(i) There exist blow-up conditions finer than (3.25), and similar to the Beale-Kato-
Majda criterion for incompressible NS equations. For simplicity, let us consider
the case of space dimension d = 3. In [5], the following criterion was derived: if
T < +∞, then ∫ T

0

dt(∥ rotu(t)∥L∞ + ∥rotb(t)∥L∞) = +∞ . (3.26)

Let us note that, for n > d/2+1 = 5/2, the Sobolev imbedding gives ∥rotu(t)∥L∞ +

∥rot b(t)∥L∞ 6 const.∥u(t)∥n; thus if T < +∞ we also have
∫ T

0
dt∥u(t)∥n = +∞,

which of course implies (3.25).
(ii) The local existence (of strong solutions) for the MHD Cauchy problem in Sobolev
spaces of minimal order is obviously outside the scope of this paper; let us mention
the results of this kind obtained recently in [12] [13] in the especially hard case
ν > 0, η = 0. Another issue that we are not considering here consists of the blow-up
criteria derived in [11] (in a framework with low Sobolev regularity) in the cases
ν > 0, η = 0 and ν = 0, η > 0.

Energy balance law. This is a well known fact, that we review just for convenience.
Let us consider the (maximal) solution u = (u, b) of the Cauchy problem (3.3)(3.24);
for all t in its domain [0, T ), the squared norm

∥u(t)∥2L2 = ∥u(t)∥2L2 + ∥b(t)∥2L2 (3.27)

represents (twice) the total energy of the system at time t.

3.2 Proposition. One has

d

dt
∥u∥2L2 = 2⟨Au|u⟩L2 6 −2µ∥u∥2L2 (3.28)

(with µ as in Eq. (3.15)). This implies the following, for t ∈ [0, T ):

∥u(t)∥L2

{
= ∥u0∥L2 if ν = η = 0,
6 ∥u0∥L2e−µt for all ν, η > 0.

(3.29)

Proof. Writing ∥u∥2L2 = ⟨u|u⟩L2 , taking the t derivative and using Eqs. (3.24)
(3.16) (3.14) we get

d

dt
∥u∥2L2 = 2⟨du

dt
|u⟩L2 = 2⟨Au|u⟩L2 + 2⟨P(u,u)|u⟩L2 = 2⟨Au|u⟩L2 6 −2µ∥u∥2L2 .

This proves Eq. (3.28). If ν = η = 0 we have A = 0, and Eq. (3.28) yields the first
statement in (3.29). For all ν, η > 0, Eq. (3.28) gives as well the second statement
in (3.29). �
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4 Approximate solutions of the Cauchy problem

for incompressible MHD

The purpose of this section (and of the subsequent Section 5) is to convert to the
MHD case the framework developed in [25] for the approximate solutions of the
NS Cauchy problem; concerning this construction and its similarities with the cited
work, we recall the notice at the end of the Introduction.
From here to the end of the present section we fix a viscosity, a resistivity and a
MHD initial datum, namely

ν, η ∈ [0,+∞) , u0 = (u0, b0) ∈ H∞
Σ0 . (4.1)

The definition, the lemma and the proposition which follow correspond to Definition
4.1, Lemma 4.2 and Proposition 4.3 of [25] on NS equations; this remark applies as
well to the related proofs.

4.1 Definition. An approximate solution of the Cauchy problem (3.3) (or (3.24))
is any map ua = (ua, ba) ∈ C1([0, Ta),H

∞
Σ0), with Ta ∈ (0,+∞]. Given a map of

this kind, we use the following terminology:
(i) The differential error of ua is

e(ua) :=
dua

dt
−Aua −P(ua,ua) ∈ C([0, Ta),H

∞
Σ0). (4.2)

A differential error estimator of order p ∈ R for ua is a function ϵp ∈ C([0, Ta), [0,+∞))
such that

∥e(ua)(t)∥p 6 ϵp(t) for t ∈ [0, Ta). (4.3)

(ii) The datum error of ua is

ua(0)− u0 ∈ H∞
Σ0. (4.4)

A datum error estimator of order p ∈ R for ua is a real number δp > 0 such that

∥ua(0)− u0∥p 6 δp. (4.5)

(iii) A growth estimator of order order p ∈ R for ua is a function Dp ∈ C([0, Ta), [0,+∞))
such that

∥ua(t)∥p 6 Dp(t), for t ∈ [0, Ta). (4.6)

From here to the end of the section, we assume the following:
i) u = (u, b) is the maximal (exact) solution of the Cauchy problem (3.3)(3.24), of
domain [0, T );
ii) ua = (ua, ba) is an approximate solution of the same Cauchy problem, of domain
[0, Ta).
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We also introduce the following notations:
iii) for any real p, ϵp and δp are estimators of order p for the differential and datum
error; Dp is a growth estimator of the same order (see Definition 4.1);
iv) As in Eq. (3.15), we put

µ := min(ν, η) .

v) d+/dt stands for the right, upper Dini derivative; so, for each function f : [0, τ) →
R (with 0 < τ 6 +∞) we have

d+f

dt
: [0, τ) → [−∞,+∞], t 7→ d+f

dt
(t) := lim sup

h→0+

f(t+ h)− f(t)

h
. (4.7)

4.2 Lemma. For any real p consider the function t ∈ [0,min(T, Ta)) 7→ ∥u(t)− ua(t)∥p
(which is continuous, possibly non differentiable at times t such that u(t) = ua(t)).
If n, p ∈ R are such that d/2 + 1 < n 6 p < +∞, this function fulfills the inequality

d+

dt
∥u− ua∥p 6 (4.8)

6 −µ∥u− ua∥p + (ĜpDp + K̂pDp+1))∥u− ua∥p + Ĝpn∥u− ua∥n∥u− ua∥p + ϵp

everywhere on [0,min(T, Ta)) .

Proof. We work systematically on the time interval [0,min(T, Ta)), using the ab-
breviations

w := u− ua, e ≡ e(ua) . (4.9)

The definition (4.2) of the differential error amounts to

dua

dt
= Aua +P(ua,ua) + e ;

making use of (3.24) we obtain

dw

dt
=

du

dt
− dua

dt
= Au+P(u,u)−Aua −P(ua,ua)− e

= Aua +Aw +P(ua +w,ua +w)−Aua −P(ua,ua)− e ,

i.e.,
dw

dt
= Aw +P(ua,w) +P(w,ua) +P(w,w)− e . (4.10)

Let us consider an instant t0 such that w(t0) ̸= 0. In a neighborhood I of this
instant, the function ∥w∥p is differentiable and

d+∥w∥p
dt

=
d∥w∥p
dt

=
1

2∥w∥p
d∥w∥2p
dt

=
1

∥w∥p
⟨dw
dt

|w⟩p ,
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which implies, due to (4.10),
d+∥w∥p

dt
= (4.11)

=
1

∥w∥p
(⟨Aw|w⟩p + ⟨P(ua,w)|w⟩p + ⟨P(w,ua)|w⟩p + ⟨P(w,w)|w⟩p −⟨e|w⟩p) .

In the sequel we estimate the summands in the right hand side of Eq. (4.11). To
this purpose we note that the inequalities (3.18) (3.21) (3.22) for P, the Schwarz in-
equality, the inequalities (4.3) (4.6) defining the estimators ϵp, Dp and the inequality
in (3.14) for A give

⟨Aw|w⟩p 6 −µ∥w∥2p , (4.12)

⟨P(ua,w)|w⟩p 6 Ĝp∥ua∥p∥w∥2p 6 ĜpDp∥w∥2p , (4.13)

⟨P(w,ua)|w⟩p 6 ∥P(w,ua)∥p∥w∥p 6 K̂p∥ua∥p+1∥w∥2p 6 K̂pDp+1∥w∥2p , (4.14)

⟨P(w,w)|w⟩p 6 Ĝpn∥w∥n∥w∥2p , (4.15)

− ⟨e|w⟩p 6 ∥e∥p∥w∥p 6 ϵp∥w∥p . (4.16)

Inserting Eqs. (4.12-4.16) into Eq. (4.11) one obtains

d+∥w∥p
dt

6 −µ∥w∥p + (ĜpDp + K̂pDp+1)∥w∥p + Ĝpn∥w∥n∥w∥p + ϵp ; (4.17)

we repeat that this holds in a neighborhood of any instant t0 such that w(t0) ̸= 0.
Now, let us consider a instant t0 such that w(t0) = 0. In this case we use a general
result on the Dini derivative (see e.g. [27]), ensuring that

d+∥w∥p
dt

(t0) 6 ∥dw
dt

(t0)∥p ; (4.18)

on the other hand, Eq. (4.10) for dw/dt and the assumption w(t0) = 0 give
(dw/dt)(t0) = −e(t0) so that (recalling again Eq. (4.3) for ϵp)

d+∥w∥p
dt

(t0) 6 ∥e(t0)∥p 6 ϵp(t0) . (4.19)

But ϵp(t0) equals the right hand side of Eq. (4.17) at t = t0, again by the assumption
w(t0) = 0.
In conclusion, Eq. (4.17) is proved at each instant in [0,min(T, Ta)); recalling that
w = u− ua, we see that Eq. (4.17) coincides with the thesis (4.8). �
Combining the previous Lemma with the comparison theory for differential inequal-
ities one obtains the forthcoming proposition, which is the main statement of this
section:
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4.3 Proposition. Consider a real n > d/2 + 1, and assume there is a function
Rn ∈ C([0, Tc),R), with Tc ∈ (0, Ta], fulfilling the following control inequalities:

d+Rn

dt
> −µRn + (ĜnDn + K̂nDn+1)Rn + ĜnR2

n + ϵn everywhere on [0, Tc), (4.20)

Rn(0) > δn (4.21)

(with d+/dt as in Eq. (4.7); note that (4.20) (4.21) are fulfilled as equalities by
a unique function in C1([0, Tc),R) for a suitable, maximal Tc). Then, (i) and (ii)
hold.
(i) The maximal solution u of the MHD Cauchy problem (3.3) (3.24) and its time
of existence T are such that

T > Tc , (4.22)

∥u(t)− ua(t)∥n 6 Rn(t) for t ∈ [0, Tc) (4.23)

(and Eq. (4.23) of course implies Rn(t) > 0). In particular, if Rn is global (Tc =
+∞) then u is global as well (T = +∞).
(ii) Consider any real p > n, and let Rp ∈ C([0, Tc),R) be a solution of the linear
control inequalities

d+Rp

dt
> −µRp + (ĜpDp + K̂pDp+1 + ĜpnRn)Rp + ϵp everywhere on [0, Tc), (4.24)

Rp(0) > δp . (4.25)

Then
∥u(t)− ua(t)∥p 6 Rp(t) for t ∈ [0, Tc) (4.26)

(which of course implies Rp(t) > 0). Conditions (4.24) (4.25) are fulfilled as equal-
ities by a unique function Rp ∈ C1([0, Tc),R), given explicitly by

Rp(t) = e−µt+Ap(t)

(
δp +

∫ t

0

ds eµs−Ap(s)ϵp(s)

)
for t ∈ [0, Tc), (4.27)

Ap(t) :=

∫ t

0

ds(ĜpDp(s) + K̂pDp+1(s) + ĜpnRn(s)). (4.28)

Proof. (i) The inequality (4.8) of the previous lemma and Eq. (4.5) for the estimator
δp, with p = n, read

d+

dt
∥u− ua∥n 6

6 −µ∥u− ua∥n + (ĜnDn + K̂nDn+1)∥u− ua∥n + Ĝn∥u− ua∥2n + ϵn

everywhere on [0,min(T, Ta)) ;
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∥ua(0)− u0∥n 6 δn.

These inequalities for ∥u−ua∥n are like the control inequalities (4.20) (4.21) for Rn,
with the reverse order relation; so, the comparison theorem of Čaplygin-Lakshmikhantam
[16] [18] ensures that

∥u(t)− ua(t)∥n 6 Rn(t) for t ∈ [0,min(T, Ta, Tc)) = [0,min(T, Tc)) (4.29)

(here and in the sequel, it should be kept in mind that Tc 6 Ta by definition).
Finally, let us prove that

T > Tc (i.e., min(T, Tc) = Tc) ; (4.30)

indeed, if it were T < Tc, for all t ∈ [0, T ) we would have ∥u(t)∥n 6 ∥u(t)−ua(t)∥n
+∥ua(t)∥n 6 Rn(t) + Dn(t) and this would imply lim supt→T− ∥u(t)∥n 6 Rn(T ) +
Dn(T ) < +∞, contradicting the blow-up criterion (ii) of Proposition 3.1.
(ii) From (i) we know that T > Tc and ∥u − ua∥n 6 Rn on [0, Tc). Making use of
this result and of the inequality (4.8), which is valid on the interval [0,min(T, Ta)),
we obtain that, on the shorter interval [0, Tc), there holds

d+

dt
∥u− ua∥p 6

6 −µ∥u− ua∥p + (ĜpDp + K̂pDp+1))∥u− ua∥p + ĜpnRn∥u− ua∥p + ϵp .

(4.31)

The inequality (4.31) and the relation ∥ua(0)−u0∥p 6 δp have the same structure as
the relations (4.24) and (4.25), with the reversed order. Therefore, as in the proof of
(i) one can apply a comparison argument à la Čaplygin-Lakshmikhantam ensuring
that

∥u(t)− ua(t)∥p 6 Rp(t) for t ∈ [0, Tc). (4.32)

Finally, using elementary facts on linear ODEs, one checks that the function Rp

defined by (4.27) and (4.28) is the unique C1 function on [0, Tc) satisfying (4.24)
and (4.25) as equalities. �

4.4 Remark. In the sequel we often refer to the case mentioned just after Eqs.
(4.20) (4.21), in which these control inequalities are fulfilled as equalities by a C1

function Rn ∈ C1([0, Tc),R), to be determined; this gives rise to the control Cauchy
problem

dRn

dt
= −µRn + (ĜnDn + K̂nDn+1)Rn + ĜnR2

n + ϵn, (4.33)

Rn(0) = δn (4.34)

for the unknown Rn.
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5 Simple analytical estimates arising from Propo-

sition 4.3

Let us consider again the Cauchy problem (3.3) (3.24); throughout this section
u = (u, b) ∈ C∞([0, T ),H∞

Σ0) is its maximal solution. In the sequel we present some
elementary, but useful consequences of Proposition 4.3 based on a very simple choice
of the approximate solution ua mentioned therein: the latter is assumed to be the
zero function.

5.1 Lemma. Let us introduce the function

ua : [0,+∞) → H∞
Σ0, ua(t) := 0 for all t (5.1)

and regard it as an approximate solution of problem (3.3)(3.24). The differential
and datum errors of this approximate solution are

e(ua)(t) = 0, for all t ∈ [0,+∞), ua(0)− u0 = −u0. (5.2)

Consequently, the zero approximate solution has the following differential error, da-
tum error and growth estimators of any order p:

ϵp := 0 , δp = ∥u0∥p , (5.3)

Dp(t) := 0 . (5.4)

For any fixed n > d/2 + 1, the following holds:
(i) The control Cauchy problem (4.33)-(4.34) with these estimators takes the form

dRn

dt
= −µRn + ĜnR2

n, (5.5)

Rn(0) = ∥u0∥n (5.6)

and admits a solution Rn ∈ C1([0, Tc)), [0,+∞)), given by

Rn(t) :=
∥u0∥ne−µt

1− Ĝn∥u0∥neµ(t)
for t ∈ [0, Tc) . (5.7)

Here

Tc :=



+∞ if µ > 0, ∥u0∥n 6 µ/Ĝn ,

− 1

µ
log

(
1− µ

Ĝn∥u0∥n

)
if µ > 0, ∥u0∥n > µ/Ĝn,

1

Ĝn∥u0∥n
if µ = 0

(5.8)
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(intending 1/(Ĝn∥u0∥n) := +∞ if u0 = 0), and

eµ(t) :=


1− e−µt

µ
if µ > 0,

t if µ = 0
(5.9)

(note that t = limµ→0+
1− e−µt

µ
).

(ii) For each real p > n, with Rn defined by (5.7) (5.9) and with the above mentioned
estimators, the function Rp of Eq. (4.27) is as follows:

Rp(t) =
∥u0∥pe−µt[

1− Ĝn∥u0∥neµ(t)
]Ĝpn/Ĝn

for t ∈ [0, Tc) . (5.10)

Proof. It is obtained by elementary computations (similar to those presented in
[25], page 305 for the zero approximate solution of the NS Cauchy problem). �
The previous lemma allows one to infer the following statement, similar to Proposi-
tion 5.1 of [25] on the NS Cauchy problem.

5.2 Proposition. Let u = (u, b) ∈ C∞([0, T ),H∞
Σ0) be the maximal solution of

the Cauchy problem (3.3)(3.24). Fix any real n > d/2 + 1 and define Tc and eµ as
in Eqs. (5.8) and (5.9). Then

T > Tc , ∥u(t)∥n 6
∥u0∥ne−µt

1− Ĝn∥u0∥neµ(t)
for t ∈ [0, Tc) , (5.11)

∥u(t)∥p 6
∥u0∥pe−µt[

1− Ĝn∥u0∥neµ(t)
]Ĝpn/Ĝn

for real p > n and t ∈ [0, Tc) . (5.12)

In particular

T = Tc = +∞ if ∥u0∥n 6
µ

Ĝn

; (5.13)

in this case u is global.

Proof. Use Proposition 4.3 with the approximate solution ua(t) := 0, along with
the previous Lemma 5.1; in particular, statement (5.13) follows from Eq. (5.8) of
this Lemma. �
Hereafter we present two consequences of Proposition 5.2; these have close analogies
with Corollaries 5.3 and 5.4 of [22] on NS equations.
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5.3 Corollary. Consider again the maximal solution u of the Cauchy problem
(3.3)(3.24). Assume that

∥u(t1)∥n 6
µ

Ĝn

for some n > d/2 + 1 and t1 ∈ [0, T ) . (5.14)

Then:

T = +∞, ∥u(t)∥n 6
∥u(t1)∥ne−µ(t−t1)

1− Ĝn∥u(t1)∥n eµ(t− t1)
for t ∈ [t1,+∞) , (5.15)

with eµ as in Eq. (5.9).

Proof. The function u � [t1, T ) is the maximal solution of the Cauchy problem with
initial datum u(t1) specified at time t1, rather than at time 0; therefore, after a shift
in the time variable we can apply to this function Eqs. (5.11)(5.13), which yield the
thesis (5.15). �

5.4 Corollary. Let ua = (ua, ba) ∈ C1([0, Ta),H
∞
Σ0) be any approximate solution

of the Cauchy problem (3.3)(3.24) with estimators ϵn, δn,Dn,Dn+1 for some n >
d/2 + 1; assume the control inequalities (4.20) (4.21) to possess a solution Rn ∈
C([0, Tc),R), with Tc ∈ (0, Ta] (this is nonnegative, see Proposition 4.3). Finally,
assume

(Dn +Rn)(t1) 6
µ

Ĝn

for some t1 ∈ [0, Tc) . (5.16)

Then, the maximal exact solution u of the Cauchy problem (3.24) has the following
features:

T = +∞, ∥u(t)∥n 6
(Dn +Rn)(t1)e

−µ(t−t1)

1− Ĝn(Dn +Rn)(t1) eµ(t− t1)
for t ∈ [t1,+∞) . (5.17)

Proof. Writing ∥u(t1)∥n 6 ∥ua(t1)∥n + ∥u(t1) − ua(t1)∥n and using at time t1 the
bounds (4.6) (with p = n) and (4.23) we get

∥u(t1)∥n 6 (Dn +Rn)(t1) . (5.18)

Now the assumption (5.16) gives the inequality

∥u(t1)∥n 6
µ

Ĝn

,

which has the form (5.14). By Corollary 5.3 we have Eq. (5.15), and inserting
therein Eq. (5.18) we obtain the thesis (5.17). �
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Applications to specific initial conditions. In this subsection the space dimen-
sion is

d = 3, (5.19)

and we apply Proposition 5.2 with n = 3. Eq. (5.13) from the cited proposition,
together with Eq. (3.23) about the constant Ĝ3, ensures the following: the MHD
Cauchy problem with a datum u0 ∈ H∞

Σ0 has a global solution if

µ > Ĝ3∥u0∥3 , Ĝ3 = 0.620. (5.20)

(in the above µ := min(ν, η), as in (3.15)). Hereafter we write explicitly the condition
(5.20) for two initial data often adopted in theoretical studies on MHD turbulence:
a three-dimensional Orszag-Tang vortex and an Arnold-Beltrami-Childress (ABC)
flow with a perturbing magnetic field (see, e.g., [6] [17] ).

i) Orszag-Tang vortex. This is the datum u0 = (u0, b0) where, as in [17],

u0(x) := (−2 sin x2, 2 sin x1, 0) , (5.21)

b0(x) := β(−2 sin(2x2) + sinx3, 2 sin x1 + sin x3, sinx1 + sin x2 ) (β ∈ R).

We have the Fourier representations

u0 =
∑

k=±a1,±a2

u0kek, b0 =
∑

k=±a1,±a2,±a3,±a4

b0kek, (5.22)

a1 := (1, 0, 0), a2 := (0, 1, 0), (5.23)

a3 := (0, 0, 1), a4 := (0, 2, 0),

u0,±a1 :=∓ (2π)3/2i(0, 1, 0), u0,±a2 := ±(2π)3/2i(1, 0, 0),

b0,±a1 :=∓ (2π)3/2iβ

(
0, 1,

1

2

)
, b0,±a2 := ∓(2π)3/2iβ

(
0, 0,

1

2

)
, (5.24)

b0,±a3 :=∓ (2π)3/2iβ

(
1

2
,
1

2
, 0

)
, b0,±a4 := ±(2π)3/2iβ(1, 0, 0)

(7). We find

∥u0∥3 = (2π)3/2
√

4 + 132β2 ; (5.25)

from here, we infer that the condition (5.20) of global existence for the MHD Cauchy
problem with the Orszag-Tang datum (5.22) holds if

µ > 9.77
√

4 + 132β2. (5.26)

7To avoid misunderstandings, let us explain the notations ±,∓ in Eq. (5.24) and in the subse-
quent Eq. (5.30). As an example, the first line in Eq. (5.24) means that u0,a1 := −(2π)3/2i(0, 1, 0),
u0,−a1 := (2π)3/2i(0, 1, 0) and u0,a2 := (2π)3/2i(1, 0, 0), u0,−a2 := −(2π)3/2i(1, 0, 0).
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ii) ABC flow with perturbing magnetic field. This is the datum u0 = (u0, b0) where,
as in [6],

u0(x) := (B cosx2 + C sin x3, A sin x1 + C cosx3, A cosx1 +B sin x2) , (5.27)

b0(x) := D(sinx1 cosx2,− cos x1 sin x2, 0) (A,B,C,D ∈ R) .

We have the Fourier representations

u0 =
∑

k=±a1,±a2,±a3

u0kek, b0 =
∑

k=±a5,±a6

b0kek, (5.28)

a1, a2, a3 as in (5.23), a5 := (1, 1, 0), a6 := (1,−1, 0), (5.29)

u0,±a1 := (2π)3/2
A

2
(0,∓i, 1), u0,±a2 := (2π)3/2

B

2
(1, 0,∓i),

u0,±a3 := (2π)3/2
C

2
(∓i, 1, 0), (5.30)

b0,±a5 :=± (2π)3/2i
D

4
(−1, 1, 0), b0,±a6 := ±(2π)3/2i

D

4
(−1,−1, 0),

In this case
∥u0∥3 = (2π)3/2

√
A2 +B2 + C2 + 4D2 ; (5.31)

from here, we see that the condition (5.20) of global existence for the MHD Cauchy
problem with the datum (5.28) holds if

µ > 9.77
√
A2 +B2 + C2 + 4D2. (5.32)

6 The Galerkin approximate solutions for the MHD

equations, and their errors

As well known, a Galerkin approximate solution for the NS equations, the MHD
equations or many other PDEs is supported by finite sets of Fourier modes. Hereafter
we adapt to the MHD case the presentation of the Galerkin approach already given
in [22] for the NS case (on this construction, see again the notice at the end of
the Introduction); in particular, Definition 6.1 and Propositions 6.2, 6.3, 6.5 in the
present section correspond, respectively, to Definition 6.3, Lemma 6.4, Proposition
6.7 and Lemma 6.8 in [22].
Throughout the section we consider a set G such that

G ⊂ Zd
0 , G finite , k ∈ G ⇔ −k ∈ G . (6.1)
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Galerkin subspaces and projections. By definition, the Galerkin subspace and
the projection corresponding to G are, respectively:

HG
Σ0 := {v ∈ D′

Σ0 | vk = 0 for k ∈ Zd
0 \G} (6.2)

= {
∑
k∈G

vkek | vk ∈ Cd, vk = v−k, k · vk = 0 for all k} ;

EG : D′
Σ0 → HG

Σ0 , v =
∑
k∈Zd

0

vkek 7→ EGv :=
∑
k∈G

vkek . (6.3)

It is clear that

HG
Σ0 ⊂ H∞

Σ0; EG(Hp
Σ0) = HG

Σ0 for p ∈ R ∪ {∞}; ∆(HG
Σ0) = HG

Σ0 . (6.4)

Moreover
⟨EGv|w⟩p = ⟨v|EGw⟩p for p ∈ R, v, w ∈ Hp

Σ0 . (6.5)

Let us also mention that

∥(1− EG)v∥p 6
∥v∥q
|G|q−p

for p, q ∈ R, p 6 q, v ∈ Hq
Σ0, |G| := min

k∈Zd
0\G

|k| (6.6)

(see e.g. [22], Lemma 6.2). We can introduce a “two-component” Galerkin subspace
and projection associated to G which are, respectively,

HG
Σ0 := HG

Σ0 ×HG
Σ0 , (6.7)

EG : D′
Σ0 → HG

Σ0 , v = (v, b) 7→ EGv := (EGv,EGb) . (6.8)

The previous statements about HG
Σ0 and EG have obvious implications for their two-

component analogues. In particular:

A(HG
Σ0) ⊂ HG

Σ0 , (6.9)

⟨EGv|w⟩p = ⟨v|EGw⟩p for p ∈ R, v,w ∈ Hp
Σ0, (6.10)

∥(1− EG)v∥p 6
∥v∥q
|G|q−p

for p, q ∈ R, p 6 q, v ∈ Hq
Σ0, (6.11)

with |G| as in Eq. (6.6).

Galerkin approximate solutions. Let us be given ν, η ∈ [0,+∞) and u0 =
(u0, b0) ∈ H∞

Σ0.
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6.1 Definition. The Galerkin approximate solution of the MHD equations cor-
responding to ν, η,u0 and to the set of modes G is the maximal (i.e., unextendable)
solution uG of the following Cauchy problem:

Find uG = (uG, bG) ∈ C∞([0, TG),H
G
Σ0) such that (6.12)

duG

dt
= AuG + EGP(uG,uG) , uG(0) = EGu0 .

Let us note that the Cauchy problem (6.12) rests on the finite dimensional vector
space HG

Σ0 and on the C∞ function HG
Σ0 → HG

Σ0, v 7→ Av + EGP(v,v). Recalling
the definitions (3.7) (3.8) (6.7) of A,P,EG we can rephrase as follows problem (6.12)
in terms of the components uG, bG of uG:

Find uG, bG ∈ C∞([0, TG),HG
Σ0) such that (6.13)

duG

dt
= ν∆uG+EGP(uG, uG)−EGP(bG, bG) ,

dbG
dt

= η∆bG+EGP(uG, bG)−EGP(bG, uG) ,

uG(0) = EGu0 , bG(0) = EGb0 .

The standard theory of ODEs in finite dimension grants local existence and unique-
ness for the (maximal) solution of (6.12) (or (6.13)); according to the same theory,
the finiteness of TG would imply lim supt→T−

G
∥uG(t)∥ = +∞ for any norm ∥ ∥ on

HG
Σ0 (recall that all norms on a finite dimensional vector space are equivalent).

Hereafter we consider, in particular, the evolution of the L2 norm t 7→ ∥uG(t)∥L2

(giving twice the “energy” of the Galerkin solution), and point out its implications
for TG:

6.2 Proposition. Let us consider the maximal solution uG of problem (6.12), of
domain [0, TG). With µ as in (3.15), one has

d

dt
∥uG∥2L2 = 2⟨AuG|uG⟩L2 6 −2µ∥uG∥2L2 . (6.14)

This implies the following, for t ∈ [0, TG):

∥uG(t)∥L2

{
= ∥EGu0∥L2 if ν = η = 0,

6 ∥EGu0∥L2e−µt for all ν, η > 0.
(6.15)

A consequence of these estimates is that

TG = +∞ . (6.16)

Proof. Writing ∥uG∥2L2 = ⟨uG|uG⟩L2 , taking the t derivative and using Eq. (6.12)
we get

d

dt
∥uG∥2L2 = 2⟨duG

dt
|uG⟩L2 = 2⟨AuG|uG⟩L2 + 2⟨EGP(uG,uG)|uG⟩L2 . (6.17)
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On the other hand, using Eq. (6.10) with p = 0 and Eq. (3.16),

⟨EGP(uG,uG)|uG⟩L2 = ⟨P(uG,uG)|EGuG⟩L2 = ⟨P(uG,uG)|uG⟩L2 = 0 ; (6.18)

moreover, due to Eq. (3.14) with p = 0,

⟨AuG|uG⟩L2 6 −µ∥uG∥2L2 . (6.19)

Inserting Eqs. (6.18) (6.19) into Eq. (6.17) we obtain Eq. (6.14). Eq. (6.15) is a
straightforward consequence of Eq. (6.14) (in connection with this statement, let us
recall that ν = η = 0 implies A = 0).
Finally, if TG were finite we would have lim supt→T−

G
∥uG(t)∥L2 = +∞ (see the

remark a few lines before the present proposition); this would contradict Eq. (6.15),
so TG = +∞. �

Fourier representation of the Galerkin approximants. Let us fix ν, η > 0
and an initial datum u0 = (u0, b0) ∈ H∞

Σ0; we consider the Fourier expansions

u0 =
∑
k∈Zd

0

u0kek , b0 =
∑
k∈Zd

0

b0kek (6.20)

with coefficients u0k, b0k ∈ Cd; these fulfill the conditions

u0−k = u0k, b0−k = b0k, k · u0k = k · b0k = 0 . (6.21)

Denoting again with G a finite set of modes as in (6.1), we provisionally write
uG = (uG, bG) to indicate an unspecified function in C∞([0,+∞),HG

Σ0) and associate
to it two families of Fourier coefficients γk, βk ∈ C∞([0,+∞),Cd) (k ∈ G), defined
by

uG(t) =
∑
k∈G

γk(t)ek , bG(t) =
∑
k∈G

βk(t)ek for t ∈ [0,+∞) ; (6.22)

we note that
γ−k = γk, β−k = βk, k · γk = k · βk = 0 . (6.23)

6.3 Proposition. uG fulfills the Cauchy problem (6.12) (or (6.13)) if and only if
its coefficients γk, βk fulfill the following for all k ∈ G:

dγk
dt

= −ν|k|2γk −
i

(2π)d/2

∑
h∈G

(
[γh · (k− h)]Lkγk−h − [βh · (k− h)]Lkβk−h

)
, (6.24)

dβk

dt
= −η|k|2βk −

i

(2π)d/2

∑
h∈G

(
[γh · (k − h)]Lkβk−h − [βh · (k − h)]Lkγk−h

)
,

γk(0) = u0k , βk(0) = b0k

(intending γk−h, βk−h := 0 if k − h ̸∈ G; as for Lk, recall the explanations after Eq.
(2.13)).
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Proof. Clearly, uG fulfills problem (6.13) if and only if, for all k ∈ G,

dγk
dt

= −ν|k|2γk+Pk(uG, uG)−Pk(bG, bG) ,
dβk

dt
= −η|k|2βk+Pk(uG, bG)−Pk(bG, uG) ,

γk(0) = u0k , βk(0) = b0k . (6.25)

Using the representation (2.17) for the Fourier component Pk( , ) with the fact that
(uG)h = γh, (bG)h = βh for h ∈ G and (uG)h = (bG)h = 0 for h ∈ Zd \G, we obtain

Pk(uG, uG) = − i

(2π)d/2

∑
h∈G

[γh · (k − h)]Lkγk−h ,

Pk(bG, bG) = − i

(2π)d/2

∑
h∈G

[βh · (k − h)]Lkβk−h

and so on, thus Eq. (6.25) coincides with Eq.(6.24). �

6.4 Remark. We can regard the system (6.24) as a Cauchy problem for finitely
many unknown functions γk, βk ∈ C∞([0,+∞),Cd) (k ∈ G). An elementary argu-
ment based on Eqs. (6.24) and (6.21) shows that the unique solution (γk, βk)k∈G of
this Cauchy problem automatically fulfills the conditions (6.23) (a similar statement
on the Galerkin approximants for the NS equations is proved in [22], Proposition
6.7).

The Galerkin solutions in the framework of Section 4. From now on we
consider, for given ν, η > 0 and u0 = (u0, b0) ∈ H∞

Σ0:
i) the MHD Cauchy problem (3.3) (3.24) and its maximal solution u ∈ C∞([0, T ),H∞

Σ0);
ii) the Galerkin approximant uG = (uG, bG) ∈ C∞([0,+∞),HG

Σ0) defined by Eq.
(6.12), for a finite set G of modes as in Eq. (6.1). We also refer to the Fourier
representations (6.20)(6.22)(6.24) of u0,uG and of the Galerkin Cauchy problem.
We regard uG as an approximate solution of the MHD Cauchy problem (3.3) (3.24),
to be treated using the methods of Section 4 (and 5); to this purpose, we need
growth and error estimators for uG.
Concerning the growth of G, we have the tautological growth estimators

Dp(t) := ∥uG(t)∥p =
√∑

k∈G

|k|2p
(
|γk(t)|2 + |βk(t)|2

)
(p ∈ R, t ∈ [0,+∞)) ; (6.26)

the errors of uG and their estimators are discussed heferafter.
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6.5 Proposition. (i) The Galerkin solution uG has the datum error

uG(0)− u0 = −(1− EG)u0 = −
( ∑
k∈Zd

0\G

u0kek,
∑

k∈Zd
0\G

b0kek
)
. (6.27)

For each p ∈ R, the datum error has the tautological estimator

δp := ∥uG(0)− u0∥p =
√ ∑

k∈Zd
0\G

|k|2p
(
|u0k|2 + |b0k|2

)
. (6.28)

and a rougher estimator, depending on another real number q > p,

∥uG(0)− u0∥p 6 δ′pq , δ′pq :=
∥u0∥q
|G|q−p

. (6.29)

(ii) The differential error of uG is

e(uG) = −(1− EG)P(uG,uG) = −

(∑
k∈dG

ρkek ,
∑
k∈dG

σkek

)
(6.30)

where:
dG := (G+G) \ (G ∪ {0}) , (6.31)

ρk := − i

(2π)d/2

∑
h∈G

(
[γh · (k − h)]Lkγk−h − [βh · (k − h)]Lkβk−h

)
,

σk := − i

(2π)d/2

∑
h∈G

(
[γh · (k − h)]Lkβk−h − [βh · (k − h)]Lkγk−h

)
.

(In the above: G+G := {p+ q| p, q ∈ G}; \ is the set-theoretical difference; again,
γk−h := 0 and βk−h := 0 if k − h ̸∈ G.)
For each p ∈ R, the differential error has the tautological estimator

ϵp := ∥e(uG)∥p =
√∑

k∈dG

|k|2p
(
|ρk|2 + |σk|2

)
; (6.32)

there is a rougher estimator, depending on a second real number q > p, of the form

ϵ′pq :=
K̂q

|G|q−p
∥uG∥q∥uG∥q+1 (6.33)

where K̂q ∈ (0,+∞) is constant fulfilling (3.21) with p replaced by q (i.e., ∥P(v,w)∥q 6
K̂q∥v∥q∥w∥q+1 for all v ∈ Hq

Σ0, w ∈ Hq+1
Σ0 ).
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Proof. (i) Eqs. (6.27) (6.28) are self-evident. To derive Eq. (6.29), write ∥uG(0)−
u0∥p = ∥(1− EG)u0∥p and use the inequality (6.11).
(ii) Definition 4.2 for the differential error and Eq. (6.12) for uG give

e(uG) =
duG

dt
−AuG −P(uG,uG)

= EGP(uG,uG)−P(uG,uG) = −(1− EG)P(uG,uG) ; (6.34)

this proves the first equality in (6.30). In order to derive the second equality in
(6.30) we must compute the Fourier representation of (1 − EG)P(uG,uG). Let us
start from the equation

P(uG,uG) =
(
P(uG, uG)− P(bG, bG),P(uG, bG)− P(bG, uG)

)
(6.35)

and use the Fourier representation (2.17) of P, recalling again that (uG)h = γh,
(bG)h = βh for h ∈ G and (uG)h = (bG)h = 0 for h ̸∈ G; this readily gives

P(uG,uG) =

∑
k∈Zd

0

ρkek ,
∑
k∈Zd

0

σkek

 , (6.36)

where ρk, σk are defined following Eq. (6.31) for all k ∈ Zd
0. Let us consider, for

example, the coefficient ρk, which is a sum over h ∈ G containing terms of the form
γk−h and βk−h. If k ̸∈ G+G, for all h ∈ G we have k−h ̸∈ G (since k−h ∈ G would
imply k = (k − h) + h ∈ G + G); but k − h ̸∈ G implies γk−h = 0 and βk−h = 0.
In conclusion we have ρk = 0 for k ̸∈ G+G; for similar reasons we have σk = 0 for
k ̸∈ G+G. Summing up, we can reformulate Eq. (6.36) as

P(uG,uG) =

 ∑
k∈(G+G)\{0}

ρkek ,
∑

k∈(G+G)\{0}

σkek

 . (6.37)

Application of 1 − EG to the above sums deletes all terms with k ∈ G; since (G +
G) \ (G ∪ {0}) = dG (see Eq. (6.31)), we obtain

(1− EG)P(uG,uG) =

(∑
k∈dG

ρkek ,
∑
k∈dG

σkek

)
. (6.38)

Eqs. (6.34) (6.38) fully justify Eq. (6.30).
Once one has Eq. (6.30), statement (6.32) is obvious. The subsequent statement
(6.33) is proved using Eq. (6.11) and the inequality involving K̂q, which imply

∥(1− EG)P(uG,uG)∥p 6
1

|G|q−p
∥P(uG,uG)∥q 6

K̂q

|G|q−p
∥uG∥q∥uG∥q+1 .

�
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6.6 Remarks. We think it is conceptually important to propose here the ana-
logues of two remarks made in [22] about the Galerkin approach to NS equations.
(i) The “rough” error estimator ϵ′pq of Eq. (6.33) is determined by the norm ∥uG∥q =(∑

k∈G |k|2q(|γk|2 + |βk|2)
)1/2

and by the analogous norm of order q + 1, whose
computation involves sums over G. The tautological estimator ϵp of Eq. (6.32) is
obviously more precise, but involves a sum over the set dG which is significantly
bigger than G. In applications with a large G, the sum over dG becomes too
expensive from a computational viewpoint and one is led to use the rough estimator
(6.33).
(ii) The Galerkin equations (6.24) are usually solved numerically; of course, this
procedure does not give the exact solution (γk, βk) (k ∈ G) but, rather, some ap-
proximant whose distance from (γk, βk) should be estimated. In the application
presented in the next section, relying on a relatively small set G of modes, we have
assumed this distance to be negligible; this viewpoint should be revised if G were
much larger.
(iii) To get reliable results for Galerkin computations in many modes, one could
perhaps use an ODE solver implementing a standard numerical method and its
theoretical error estimates via a software for certified numerical computations, like
arb [14] or INTLAB [30]. Of course, an ODE solver of this kind would be also useful
to treat numerically the control Cauchy problem associated with the Galerkin (or
to any other) approximation. For general considerations on certified computations,
including applications to ODEs, see [31]. Let us also mention that the possibility
of future, certified numerical computations for Galerkin approximants and their a
posteriori analysis has been indicated in the already cited work [3], dealing with the
nonlinear PDE for a surface growth model.
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7 An application of the Galerkin method

In this section we apply the general framework developed in Secs. 2-4 adopting, as
approximate solutions, the Galerkin solutions described in Sec. 6. We will work in
space dimension

d = 3. (7.1)

Moreover, we will specialize our analysis to the case where the dimensionless viscosity
and resistivity are equal:

ν = η ≡ µ ∈ [0,+∞) . (7.2)

We will choose as initial datum the ABC flow with perturbing magnetic field, given
by Eqs. (5.27)-(5.30), with the following values for the parameters appearing therein:

A = B = C = D = 1. (7.3)

The previous sections frequently refer to a basic Sobolev order n > d/2+1; here we
will take

n = 3. (7.4)

We remark that, with our choice for the initial datum, one has

∥u0∥3 = 41.6695... (7.5)

and the criterion (5.32) grants global existence for the solution of the Cauchy prob-
lem (3.24) if

µ > 25.9 . (7.6)

As shown hereafter, the use of a Galerkin approximant for this Cauchy problem
allows, among other things, to improve significantly the bound (7.6).
So, let us consider the Galerkin approximate solution uG(t) = (uG(t), bG(t)) for a
suitable, finite set G of Fourier modes. Following Eq. (6.22), we write

uG(t) =
∑
k∈G

γk(t)ek , bG(t) =
∑
k∈G

βk(t)ek for 0 6 t < +∞. (7.7)

with γk, βk ∈ C∞([0,+∞),C3), to be determined. We choose

G := {k = (k1, k2, k3) ∈ Z3
0 | − 2 6 k1, k2, k3 6 2} . (7.8)

This set consists of 124 modes and admits the representation (used in the sequel)

G := S ∪ −S, −S := {−k : k ∈ S}, (7.9)

S := { k ∈ G | k1 > 0, or (k1 = 0 and k2 > 0), or (k1 = k2 = 0 and k3 > 0) } ;

note that S ∩ −S = ∅, and S is made of 62 modes.
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The Galerkin approximation and its implications about the exact solution u of the
MHD Cauchy problem (3.24) have been considered for several values of µ between
0 and 20, following for each µ the scheme (i)(ii)(iii) described hereafter; the related
numerical computations have been implemented using Mathematica on a PC. Here
is the scheme, for a given value of µ.
(i) First of all, the Galerkin approximate solution uG is computed numerically on a
finite time interval [0, TF ), for the set of modes G in Eqs. (7.8) (7.9); this amounts to
solve numerically on [0, TF ) the system of equations (6.24) for the unknowns γk, βk.
Due to the relations γ−k(t) = γk(t) and β−k(t) = βk(t), known from Section 6, the
computation is reduced to modes k ∈ S.
In our numerical computations, TF is between 0.5 and 2 (more details on this are
given in the sequel); the CPU time required to solve the system (6.24) on [0, TF ) is
of the order of 1 minute in all cases considered. The rather small number of modes
in G and the precision of the Mathematica routines for ODEs presumably make
negligible the numerical errors in the treatment of (6.24). Our analysis assumes
this and confuses the numerical solution of (6.24) via Mathematica with the exact
solution (γk, βk) (k ∈ G) (concerning this point, let us recall Remarks 6.6 (ii) (iii)).
(ii) The next step is to determine the growth and error estimators for uG. Our
attention is focused on the tautological growth estimators

Dp(t) := ∥uG(t)∥p =
√∑

k∈G

|k|2p
(
|γk(t)|2 + |βk(t)|2

)
(p = 3, 4, 5, 6) (7.10)

and on the tautological, differential error estimators

ϵp(t) := ∥e(uG)(t)∥p =
√∑

k∈dG

|k|2p
(
|ρk(t)|2 + |σk(t)|2

)
(p = 3, 5) (7.11)

with dG determined by G and ρk, σk determined by the components γk and βk

(k ∈ G) according to Eq. (6.31). The choice of the orders p in Eqs. (7.10) (7.11)
will be clarified by the subsequent item (iii).
In the case under analysis, the initial datum u0 belongs to the Galerkin subspace
HG

Σ0, so the datum error −(1 − EG)u0 vanishes, and the corresponding estimators
can be set to zero:

δp = 0 (p ∈ R) . (7.12)

For the computation of Dp (p = 3, ..., 6) and ϵp (p = 3, 5) via Mathematica, we
have used a two-step approach. First of all, we have used Eqs. (7.10) (7.11) at a
grid of about 40 points in the interval [0, TF ); then we have asked Mathematica to
interpolate the results. The calculation of ϵ3 and ϵ5 at the above mentioned grid of
points in [0, TF ) is the most expensive part of the present scheme in terms of time,
since it requires 15 minutes approximately for each one of the two estimators; all
the other computations for the present item (ii) are performed within few seconds.
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In the sequel, it is assumed that the interpolating functions produced in this way
can be confused with the actual functions Dp, ϵp.
(iii) Having the necessary estimators, we can pass to the control inequalities. In
particular, the control Cauchy problem of order 3 reads: find R3 ∈ C1([0, Tc),R)
(0 < Tc 6 TF ) such that

dR3

dt
= −µR3 + (Ĝ3D3 + K̂3D4)R3 + Ĝ3R2

3 + ϵ3, (7.13)

R3(0) = 0 (7.14)

with K̂3, Ĝ3 as in Eq.(3.23) (see Remark 4.4, here used with n = 3 and δn = 0). The
numerical solution of problem (7.13) (7.14) is performed almost instantaneously by
Mathematica, which easily detects the possible blow-up of R3 at a time Tc < TF .
In the sequel we assume that the numerical solution provided by Mathematica can
be confused with the actual solution R3 of (7.13) (7.14), even for what concerns its
domain (in connection with this issue, let us recall again Remark 6.6 (ii)).
On the grounds of Proposition 4.3, the solution u of the MHD Cauchy problem
(3.24) is granted to exist at least up to time Tc, and to fulfill

∥u(t)− uG(t)∥3 6 R3(t) for t ∈ [0, Tc). (7.15)

Let us also recall Corollary 5.4 which grants the following: if

(D3 +R3)(t1) 6
µ

Ĝ3

for some t1 ∈ [0, Tc) , (7.16)

the solution u of (3.24) exists up to T = +∞, and

∥u(t)∥3 6
(D3 +R3)(t1)e

−µ(t−t1)

1− Ĝ3(D3 +R3)(t1) eµ(t− t1)
for t ∈ [t1,+∞) . (7.17)

(eµ as in Eq. (5.9)). Once R3 is known, using item (ii) of Proposition 4.3 one could
construct for each p > 3 a function Rp with the same domain [0, Tc), giving a bound
on ∥u(t) − uG(t)∥p. For example, if p = 5 we have a function R5 ∈ C1([0, Tc),R)
fulfilling as equalities the relations (4.24) (4.25) with p = 5 and n = 3, i.e.:

dR5

dt
= −µR5 + (Ĝ5D5 + K̂5D6 + Ĝ53R3)R5 + ϵ5 everywhere on [0, Tc), (7.18)

R5(0) = 0 , (7.19)

with K̂5, Ĝ5, Ĝ53 as in Eq.(3.23). For the function R5 we have an integral represen-
tation, provided by Eqs. (4.27)(4.28); however, the direct numerical solution of the
Cauchy problem (7.18) (7.19) via Mathematica is almost instantaneous, and it has
been preferred to the computation of the integrals in (4.27)(4.28).
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Given the numerical solution R5 of Eqs. (7.18) (7.19) (that we confuse with the
exact solution), we have the bound

∥u(t)− uG(t)∥5 6 R5(t) for t ∈ [0, Tc). (7.20)

In the subsequent applications of the scheme (i)(ii)(iii) for several values of µ, the
graph of R5 is reported only in a case with rather large µ, in which R5(t) is small
with respect to D5(t) = ∥uG(t)∥5; this fact makes the bound (7.20) interesting. In
the other cases considered, R5(t) is sensibly larger than D5(t); this makes the bound
(7.20) less interesting, so the graph of R5 is not so useful.

Let us pass to exemplify the procedure (i)(ii)(iii) for some values of µ.

Case µ = 20. System (6.24) for the unknowns γk, βk (k ∈ G) has been integrated
on a time interval of length TF = 0.5. Figures 1a and 1b report, as examples, the

graphs of |γk(t)| and |βk(t)| for k = (0, 1, 0) (where |z| :=
√∑3

i=1 |zi|2 is the standard
C3 norm). Figures 1c-1f report the graphs of the estimators Dp, ϵp for p = 3, 5 (the
graphs of Dp for p = 4, 6 are omitted just for brevity).
The solution R3 of the control Cauchy problem (7.13) (7.14) is found to exist on
the whole interval [0, TF ) = [0, 0.5); its graph is given by Figure 1g.
It turns out that condition (7.16) (D3 + R3)(t1) 6 µ/Ĝ3 is fulfilled for any t1 ∈
[0.01, 0.5); this ensures that the solution of the MHD Cauchy problem (3.24) is
global (T = +∞) and decays exponentially as indicated by (7.17). For example, let
us write down the estimate (7.17) choosing t1 = 0.25; with appropriate roundings we
have (D3+R3)(0.25) = 0.186 and Ĝ3(D3+R3)(0.25) = 0.115, so the cited equation
gives

∥u(t)∥3 6
0.186e−20(t−0.25)

1− 0.115 e20(t− 0.25)
for t ∈ [0.25,+∞) . (7.21)

(e20 as in (5.9)). Figure 1h gives the graph of R5(t) for t ∈ [0, 0.5). Of course, we
have

∥u(t)− uG(t)∥3 6 R3(t), ∥u(t)− uG(t)∥5 6 R5(t) for t ∈ [0, 0.5). (7.22)

The first of these estimates is certainly interesting on the whole interval [0, 0.5),
where R3(t) is always much smaller than D3(t) := ∥uG(t)∥3 (R3(t) < D3(t)/100 for
t ∈ [0, 0.5)). Concerning the second estimate, it should be pointed out that R5(t) is
smaller than D5(t) := ∥uG(t)∥5 on the whole interval [0, 0.5), and sensibly smaller
on a shorter interval (R5(t) < D5(t)/2 for t ∈ [0, 0.5) and R5(t) < D5(t)/10 for
t ∈ [0, 0.047)).
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(a) µ = 20. Graph of |γk(t)| for k = (0, 1, 0)
and for t ∈ [0, 0.5).

(b) µ = 20. Graph of |βk(t)| for k = (0, 1, 0)
and for t ∈ [0, 0.5).

(c) µ = 20. Graph of D3(t) for t ∈ [0, 0.5). (d) µ = 20. Graph of ϵ3(t) for t ∈ [0, 0.5).

(e) µ = 20. Graph of D5(t) for t ∈ [0, 0.5). (f) µ = 20. Graph of ϵ5(t) for t ∈ [0, 0.5).

(g) µ = 20. Graph of R3(t) for t ∈ [0, 0.5). (h) µ = 20. Graph of R5(t) for t ∈ [0, 0.5).

Figure 1: Plots related to the case µ = 20.
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Case µ = 6. System (6.24) for γk, βk (k ∈ G) has been integrated on a time
interval of length TF = 2. Figures 2a and 2b give the graphs of |γk(t)| and |βk(t)|
for k = (0, 1, 0). Figures 2c and 2d report the graphs of the estimators D3 and ϵ3.
The solution R3(t) of the control Cauchy problem (7.13) (7.14) is found to exist
on the whole interval [0, TF ) = [0, 2); its graph is given by Figure 2e. Condition
(7.16) (D3 + R3)(t1) 6 µ/Ĝ3 is fulfilled for any t1 ∈ [0.32, 2); this ensures that
the solution u of the MHD Cauchy problem (3.24) is global (T = +∞) and decays
exponentially as indicated by (7.17). For example, let us write down the estimate
(7.17) choosing t1 = 1; with appropriate roundings we have (D3 + R3)(1) = 1.09
and Ĝ3(D3 +R3)(1) = 0.68, so the cited equation gives

∥u(t)∥3 6
1.09e−6(t−1)

1− 0.68 e6(t− 1)
for t ∈ [1,+∞) (7.23)

(e6 as in (5.9)). Of course,

∥u(t)− uG(t)∥3 6 R3(t) for t ∈ [0, 2). (7.24)

The above estimate is especially interesting when R3(t) is sensibly smaller than
D3(t) := ∥uG(t)∥3. This does not hold on the whole interval [0, 2), but it is true on
shorter intervals: for example, R3(t) < D3(t)/10 for t ∈ [0, 0.11].

(a) µ = 6. Graph of |γk(t)| for k = (0, 1, 0)
and for t ∈ [0, 2).

(b) µ = 6. Graph of |βk(t)| for k = (0, 1, 0)
and for t ∈ [0, 2).

(c) µ = 6. Graph of D3(t) for t ∈ [0, 2). (d) µ = 6. Graph of ϵ3(t) for t ∈ [0, 2).

(e) µ = 6. Graph of R3(t).

Figure 2: Plots related to the case µ = 6.
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Case µ = 5. System (6.24) for γk, βk (k ∈ G) has been integrated on a time
interval of length TF = 2. Figures 3a and 3b give the graphs of |γk(t)| and |βk(t)|
for k = (0, 1, 0). Figures 3c and 3d report the graphs of the estimators D3 and ϵ3.
The solution R3 of the control Cauchy problem (7.13) (7.14) has domain [0, Tc)
where Tc = 0.3238...; R3(t) is found to diverge for t → Tc. Figure 3e contains the
graph of R3.
Due to the features of our general scheme, the solution u of the MHD Cauchy
problem (3.24) is predicted to exist (at least) up to time Tc. We have

∥u(t)− uG(t)∥3 6 R3(t) for t ∈ [0, Tc) = [0, 0.3238...); (7.25)

this inequality is especially interesting in the smaller interval [0, 0.1], where R3(t) is
sensibly smaller than D3(t) := ∥uG(t)∥3 (R3(t) < D3(t)/10 for t ∈ [0, 0.1]).

(a) µ = 5. Graph of |γk(t)| for k = (0, 1, 0)
and for t ∈ [0, 2).

(b) µ = 5. Graph of |βk(t)| for k = (0, 1, 0)
and for t ∈ [0, 2).

(c) µ = 5. Graph of D3(t) for t ∈ [0, 2). (d) µ = 5. Graph of ϵ3(t) for t ∈ [0, 2).

(e) µ = 5. Graph of R3(t). This function
diverges as t → Tc with Tc = 0.3238....

Figure 3: Plots related to the case µ = 5.

38



Case µ = 0. Again, system (6.24) for γk, βk (k ∈ G) has been integrated on a time
interval of length TF = 2. Figures 4a and 4b give the graphs of |γk(t)|, |βk(t)| for
k = (0, 1, 0). Figures 4c and 4d report the graphs of the estimators D3 and ϵ3.
The solution R3 of the control Cauchy problem (7.13) (7.14) has domain [0, Tc)
where Tc = 0.1211..., and diverges for t → Tc. The graph of R3 is presented in
Figure 4e.
The solution u of the MHD Cauchy problem (3.24) is predicted to exist up to time
Tc. We have

∥u(t)− uG(t)∥3 6 R3(t) for t ∈ [0, Tc) = [0, 0.1211...); (7.26)

this inequality is especially interesting in the smaller interval t ∈ [0, 0.067], where
R3(t) is sensibly smaller thanD3(t) := ∥uG(t)∥3 (R3(t) < D3(t)/10 for t ∈ [0, 0.067]).

(a) µ = 0. Graph of |γk(t)| for k = (0, 1, 0)
and for t ∈ [0, 2).

(b) µ = 0. Graph of |βk(t)| for k = (0, 1, 0)
and for t ∈ [0, 2).

(c) µ = 0. Graph of D3(t) for t ∈ [0, 2). (d) µ = 0. Graph of ϵ3(t) for t ∈ [0, 2).

(e) µ = 0. Graph of R3(t). This function
diverges as t → Tc with Tc = 0.1211....

Figure 4: Plots related to the case µ = 0.
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Other cases. The conjecture of a critical value for µ. We have performed
computations similar to those described before even for µ = 10 and µ = 3. In the
first of these supplementary cases, one infers global existence for the exact solution
u of the MHD Cauchy problem (3.24); in the second case the solution R3(t) of the
control Cauchy problem (7.13) (7.14) diverges for t → Tc = 0.1853..., so we can
ensure existence of u only up to Tc.
Summing up: for µ = 20, 10, 6 our framework indicates that the solution of the MHD
Cauchy problem (3.24) is global; on the contrary, for µ = 5, 3, 0 the same framework
only ensures existence of u up to a time Tc (where, we recall, Tc = 0.3238..., 0.1853...,
0.1211..., respectively).
The above results suggest that there should be a critical value µcrit ∈ (5, 6] such
that: for µ > µcrit, the framework of this section predicts global existence for the
solution u of the MHD Cauchy problem, while for 0 6 µ < µcrit we can just predict
existence of u up to a finite time Tc = Tc(µ) (where, probably, Tc(µ) → +∞ for
µ → µ−

crit).
Since our approach (to the Galerkin and) to the control Cauchy problem is numerical,
locating µcrit with high precision is an engaging task, that we prefer to leave to future
investigations (these could take some advantage from the use of a certified numerical
approach, of the type mentioned in Remark 6.6(iii)).
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A Appendix. Proof of Eqs. (3.17)- (3.20)

In this appendix we frequently use the following inequalities, holding for all α, β, γ, δ
∈ R:

αγ + βδ 6
√

α2 + β2
√
γ2 + δ2 , (A.1)

γ + δ 6
√
2
√

γ2 + δ2 . (A.2)

Eq. (A.1) is just the Schwartz inequality for the standard inner product of R2; Eq.
(A.2) is the specialization of (A.1) to the case α = β = 1. We will also use the
parallelogram law

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2 , (A.3)

holding for all elements x, y of any Hilbert space with norm ∥ ∥.

A.1 Proposition. Consider two reals p > n > d/2. For v ∈ Hp
Σ0, w ∈ Hp+1

Σ0 one
has the inequality

∥P(v,w)∥p 6
1

2
(
√
2Kpn)(∥v∥p∥w∥n+1 + ∥v∥n∥w∥p+1), (A.4)

where Kpn is a constant fulfilling Eq. (2.20). Thus, Eqs. (3.17) (3.19) hold.

Proof. Let us fix p > n > d/2 and v = (v, b) ∈ Hp
Σ0, w = (w, c) ∈ Hp+1

Σ0 . The
definition (3.8) of P gives

∥P(v,w)∥p =
√

∥P(v, w)− P(b, c)∥2p + ∥P(v, c)− P(b, w)∥2p . (A.5)

Let us note that

∥P(v, w)− P(b, c)∥p 6 ∥P(v, w)∥p + ∥P(b, c)∥p

6 1

2
Kpn(∥v∥p∥w∥n+1 + ∥v∥n∥w∥p+1 + ∥b∥p∥c∥n+1 + ∥b∥n∥c∥p+1)

6 1

2
Kpn(

√
∥v∥2p + ∥b∥2p

√
∥w∥2n+1 + ∥c∥2n+1 +

√
∥v∥2n + ∥b∥2n

√
∥w∥2p+1 + ∥c∥2p+1 )

=
1

2
Kpn(∥v∥p∥w∥n+1 + ∥v∥n∥w∥p+1). (A.6)

In the above chain of relations, to go from the first to the second line we have used
the inequality (2.20); to go from the second to the third line, after exchanging the
order of summands we have used twice Eq. (A.1).
Similarly, we obtain

∥P(v, c)− P(b, w)∥p 6
1

2
Kpn(∥v∥p∥w∥n+1 + ∥v∥n∥w∥p+1). (A.7)
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Consequently, from (A.6) and (A.7), we obtain

∥P(v,w)∥p =
√

∥P(v, w)− P(b, c)∥2p + ∥P(v, c)− P(b, w)∥2p

6
√

K2
pn

4
(∥v∥p∥w∥n+1 + ∥v∥n∥w∥p+1)2 +

K2
pn

4
(∥v∥p∥w∥n+1 + ∥v∥n∥w∥p+1)2

=
Kpn√

2
(∥v∥p∥w∥n+1 + ∥v∥n∥w∥p+1),

which yields the inequality (A.4). �

A.2 Proposition. Consider two reals p > n > d/2 + 1. For v ∈ Hp
Σ0, w ∈ Hp+1

Σ0

one has the inequality

|⟨P(v,w)|w⟩p| 6
1

2
(
√
2Gpn)(∥v∥p∥w∥n + ∥v∥n∥w∥p)∥w∥p, (A.8)

where Gpn is a constant fulfilling (2.21). Thus, Eqs. (3.18) (3.20) hold.

Proof. In the sequel p > n > d/2 + 1 and v = (v, b) ∈ Hp
Σ0, w = (w, c) ∈ Hp+1

Σ0 are
fixed; we proceed in several steps.
Step 1. One has

⟨P(v,w)|w⟩p = ⟨P(v, w)|w⟩p + ⟨P(v, c)|c⟩p+ (A.9)

−1

2
⟨P(b, w + c)|w + c⟩p +

1

2
⟨P(b, w − c)|w − c⟩p .

To prove this, we note that Eq. (3.8) for P implies

⟨P(v,w)|w⟩p = ⟨(P(v, w)− P(b, c),P(v, c)− P(b, w))|(w, c)⟩p
= ⟨P(v, w)|w⟩p − ⟨P(b, c)|w⟩p + ⟨P(v, c)|c⟩p − ⟨P(b, w)|c⟩p .

(A.10)

On the other hand, by elementary manipulations relying on the bilinearity of P and
⟨ | ⟩p we get

⟨P(b, c)|w⟩p + ⟨P(b, w)|c⟩p =
1

2
⟨P(b, w + c)|w + c⟩p −

1

2
⟨P(b, w − c)|w − c⟩p (A.11)

and inserting this result into (A.10) we get the thesis (A.9).
Step 2. One has

|⟨P(v,w)|w⟩p| 6 |⟨P(v, w)|w⟩p|+ |⟨P(v, c)|c⟩p|+ (A.12)

+
1

2
|⟨P(b, w + c)|w + c⟩p|+

1

2
|⟨P(b, w − c)|w − c⟩p| .
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This is an obvious consequence of (A.9).
Step 3. One has

|⟨P(v, w)|w⟩p|+ |⟨P(v, c)|c⟩p| 6
1

2
Gpn∥v∥p∥w∥n∥w∥p +

1

2
Gpn∥v∥n∥w∥2p . (A.13)

In fact, due to (2.21),

|⟨P(v, w)|w⟩p| 6
1

2
Gpn(∥v∥p∥w∥n + ∥v∥n∥w∥p)∥w∥p (A.14)

=
1

2
Gpn(∥v∥p∥w∥n∥w∥p + ∥v∥n∥w∥2p) ;

one treats similarly the term |⟨P(v, c)|c⟩p|, so

|⟨P(v, w)|w⟩p|+ |⟨P(v, c)|c⟩p| (A.15)

6 1

2
Gpn(∥v∥p∥w∥n∥w∥p + ∥v∥n∥w∥2p) +

1

2
Gpn(∥v∥p∥c∥n∥c∥p + ∥v∥n∥c∥2p)

=
1

2
Gpn∥v∥p(∥w∥n∥w∥p + ∥c∥n∥c∥p) +

1

2
Gpn∥v∥n(∥w∥2p + ∥c∥2p) .

On the other hand, due to (A.1)

∥w∥n∥w∥p + ∥c∥n∥c∥p 6
√

∥w∥2n + ∥c∥2n
√
∥w∥2p + ∥c∥2p = ∥w∥n∥w∥p , (A.16)

while
∥w∥2p + ∥c∥2p = ∥w∥2p ; (A.17)

inserting Eqs. (A.16) (A.17) into (A.14) we get the thesis (A.13).
Step 4. One has

1

2
|⟨P(b, w + c)|w + c⟩p|+

1

2
|⟨P(b, w − c)|w − c⟩p| (A.18)

6 1

2
Gpn∥b∥p∥w∥n∥w∥p +

1

2
Gpn∥b∥n∥w∥2p .

In fact, using the inequality (2.21) for each one of the above two terms we get

1

2
|⟨P(b, w + c)|w + c⟩p|+

1

2
|⟨P(b, w − c)|w − c⟩p| (A.19)

6 1

4
Gpn(∥b∥p∥w+c∥n+∥b∥n∥w+c∥p)∥w+c∥p+

1

4
Gpn(∥b∥p∥w−c∥n+∥b∥n∥w−c∥p)∥w−c∥p

=
1

4
Gpn∥b∥p(∥w+c∥n∥w+c∥p+∥w−c∥n∥w−c∥p)+

1

4
Gpn∥b∥n(∥w+c∥2p+∥w−c∥2p) ;
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from here and from Eq. (A.1) we infer

1

2
|⟨P(b, w + c)|w + c⟩p|+

1

2
|⟨P(b, w − c)|w − c⟩p| (A.20)

6 1

4
Gpn∥b∥p

√
∥w + c∥2n + ∥w − c∥2n

√
∥w + c∥2p + ∥w − c∥2p+

1

4
Gpn∥b∥n(∥w+c∥2p+∥w−c∥2p) .

On the other hand, the parallelogram law (A.3) for the Hilbert spaces Hn
Σ0,H

p
Σ0 gives

∥w + c∥2n + ∥w − c∥2n = 2∥w∥2n + 2∥c∥2n = 2∥w∥2n , (A.21)

∥w + c∥2p + ∥w − c∥2p = 2∥w∥2p + 2∥c∥2p = 2∥w∥2p
and inserting Eq. (A.21) into (A.20) we get the thesis (A.18).
Step 5. The inequality (A.8) holds (so the proof is concluded). In fact, from Eqs.
(A.12) (A.13) (A.18) we get:

|⟨P(v,w)|w⟩p| (A.22)

6 1

2
Gpn(∥v∥p + ∥b∥p)∥w∥n∥w∥p +

1

2
Gpn(∥v∥n + ∥b∥n)∥w∥2p .

On the other hand, Eq. (A.2) gives

∥v∥p + ∥b∥p 6
√
2
√
∥v∥2p + ∥b∥2p =

√
2 ∥v∥p , (A.23)

∥v∥n + ∥b∥n 6
√
2
√
∥v∥2n + ∥b∥2n =

√
2 ∥v∥n ,

and inserting these inequalities into (A.22) we obtain the thesis (A.8). �
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