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Abstract

The numerical resolution of wave-matter interaction on complex micro het-
erogeneities constituting modern industrial materials poses significant com-
putational hurdles. These computations hold a crucial role in the design
cycle meant to optimize their participating behavior at high temperatures.
To arrive at a reasonable conclusion at the expense of optimal resources,
some textural details inherent to these materials are often truncated. For
the accurate resolution of multi-scale thermal radiative transport, very little
is known today about the role of these truncated textural information to the
overall effective radiative properties. With the ultimate prospect of large
scale finite element modeling of electromagnetic scattering for participating
media, this initial attempt in 2D explores this aspect, learning from the abil-
ity of fractals to quantify textural details or roughness of complex objects.
Based on a desirable error tolerance, critical quantitative limits were drawn,
with which future large scale electromagnetic scattering computations can be
performed confidently with optimum resources, without compromising the
accuracy. From intensive numerical experiments, ample textural details rele-
vant for a desired accuracy (1 % error) of the extinction efficiency, scattering
efficiency, and asymmetry parameter are quantified, and limits established.
Error estimates for the aforementioned radiative properties at the limiting
resolution (1 µm) of the economical imaging techniques today, are also drawn
for better insights.
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1. Introduction

The accurate modeling of thermal transport in participating media at
high temperatures often requires a thorough understanding of radiative trans-
port. Intensive industrial contexts such as aerospace, energy production (so-
lar power plants), etc. deal with materials demanding several antagonist
physical (thermo-mechanical, electrical) and chemical properties (oxidation
resistance). It appears that considerable efforts are being made today to
design advanced materials with an optimal blend of desirable multi-scale
properties by introducing particular chemical species. Coupling computer-
aided material design strategies, materials with optimum radiative properties
can be designed and finely tuned for extreme operating conditions [1].

Major advances have been reported for tailoring macro-porous mate-
rials, where local interactions of thermal radiation with internal absorb-
ing/scattering heterogeneities (struts, walls, pores, etc.) were treated with
confidence using geometrical optics approximation. The numerical method-
ologies involved handling 3D digitalized images obtained either through ex-
perimental investigation (X-Ray µ-Tomography) or synthetic generation al-
gorithms [2]. The spatial resolution of these X-Ray tomographs (10−100 µm)
provided Representative Elementary Volumes (REV) for numerical compu-
tations capable of predicting radiative quantities in close agreement with ex-
perimental observations. However, the significance of hidden or uncaptured
micronic details in the multi-scale texture [3] still remains unknown. For ma-
terials constituted of micronic heterogeneities, like carbon-fiber based felts,
granular ceramics, and agglomerate architectures, the geometrical optics ap-
proximation is inadequate to accurately treat their participating behavior.

When textural features are comparable to the wavelength of the exposed
radiation, the governing thermal model needs treatment by Maxwell’s equa-
tions, the fundamental law governing electromagnetic radiation. Resolving
Maxwell’s equations on arbitrary complex shapes throws significant compu-
tational hurdles in terms of resources and time. Valuable insights on de-
marcating regimes for two-dimensional opaque rough surfaces [4] has helped
saving computational resources without compromising accuracy in the past.
Though significant conclusions regarding the REV required to homogenize
a semi-transparent medium at macro scale exist in literature, very little is
known regarding the critical quantitative limit or resolution of micro textures
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for general two- and three-dimensional entities.
Wave-matter interaction at micro-scales has always been an occupied do-

main of research, especially with regard to isolated or co-related particles of
arbitrary cross-section [5]. When non-regular or complex shaped micro het-
erogeneities are to be treated, researchers tend towards numerical methods
for an approximate solution, whose accuracy greatly depends on the input
geometry and its inherent textural details. The influence of cross-sectional
shape [6] of these micro-heterogeneities on the overall effective radiative prop-
erties is not well-known today. There exist considerable computational chal-
lenges for the resolution of Maxwell’s equations with numerical methods like
the finite element method [7], popular in the scientific computing commu-
nity for its ease of handling complex computational domains. For an optimal
computational resource and time, a blind approximation is often done to the
input geometry and its inherent textural details, which can be detrimental
without a critical limit. Worth mentioning the level of accuracy desirable
in a specific domain of interest, this work with a finite element framework
narrows this gap of uncertain assumptions with quantitative conclusions.

The developed finite element framework is employed on Koch snowflake
fractals as an initial step in this endeavor. Fractals, mostly termed as a
blend of simplicity and complexity, are popular in computer graphics and
imaging, to recreate real-world complex entities on finite pixels in memory.
Learning from the ability of fractals to quantify and characterize textural
parameters or roughness of complex objects, this work attempts to ponder
an appropriate quantitative limit or resolution of textures for a desired ac-
curacy, beyond which any further improvement ceases to – or has negligible
influence on the effective radiative properties of participating media with
micro-heterogeneities. To account for all the geometrical orientations of the
scatterer, and to ensure confidence on the quantitative limits derived for a
material across the desired spectrum, this work which is also an extension
of [8] involved intensive numerical experiments. Each scatterer dealt in this
work has been treated with 6 angle of incidences (after accounting for the pos-
sible geometrical symmetries), and a very fine spectrum of wavelength (100
data points in [4, 25] µm corresponding to 300 K) for both silicon carbide and
silica in both transverse electric (TE) and transverse magnetic (TM) mode.
Silica being a prototype for a semi-transparent material [9, 10, 11] and silicon
carbide for opaque material [12] for usual thickness ensures a general mate-
rial perspective to the study. All possible physical scenarios related to single
scatterers, to the best of our knowledge, have been accounted while tailoring
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the numerical experiments and these considered scenarios are treated with
extreme practical precision to arrive at accurate critical limits.

The paper is organized as follows: Section 2 introduces the mathematical
model underlying the modeled physical phenomenon: electromagnetic scat-
tering. The governing partial differential equations for the total-scattered
field formulation and the associated boundary conditions are detailed for
both mode of polarization dealt in this work, followed by the weak formula-
tion for approximation by the finite element method. Having discussed the
numerical model to obtain the scattered field, the empirical relations to com-
pute the interested radiative properties are detailed. This section concludes
with a discussion on the Koch snowflake fractal employed in this work. Sec-
tion 3 presents the results obtained from attempted numerical experiments;
evaluates the scattering phenomena of fractals leading to a critical limit. A
wide spectral range from 4 to 25 µm discretized into 100 discrete wavelengths
is considered to ensure the reliability of estimated limits; with 2 media: op-
tically thick, and optically thin; in 2 transverse modes: transverse electric
(TE) and transverse magnetic (TM); at 6 different angles of incidences; for
3 different fractal sizes, totaling 43, 200 simulations. This section concludes
with quantitative limits for each medium where the error associated with the
investigated radiative properties are enumerated. It is found that a resolu-
tion of 1 µm yields around 1 % error in averaged radiative properties in the
TE mode, while this error is slightly more in the TM mode. Section 4 gathers
all the critical observations and emphasize the critical limits or associated
error obtained. This section concludes by discussing possible extensions and
future perspectives.

2. Methodology

The physical process termed electromagnetic scattering occurs when an
electromagnetic wave interacts with a heterogeneity in the medium it prop-
agates. This heterogeneity often referred to as scatterer can be a particle
with refractive index different than the surrounding. The fundamental ob-
jective underlying the study of an electromagnetic scattering problem is to
understand and quantify the energy transformation during this wave-matter
interaction. This exchange of energy or extinction is due to scattering, which
involves re-radiating the energy of the incident wave to newer directions, and
absorption, which involves transformation of energy into other forms, like
thermal. Maxwell’s equations govern this physical phenomenon, and the en-
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ergy exchange involved can be quantified by resolving these equations for the
investigated medium.

2.1. Mathematical model

Assuming source-free conditions, a 2D z-invariance, and the harmonic
propagation of the wave in the z-direction, the governing model of wave-
matter interaction for a non-magnetic medium characterized by the permit-
tiviy εr is given by,

−∆E − k2
0εrE = 0, (1)

the Helmholtz equation which links the electromagnetic field with frequency
ω, k0 = ω

√
µ0ε0 the free-space wave number, and εr the complex-valued

relative permittivity of the medium from the complex refractive index of
the medium ñ = n + iκ, as εr = ñ2. The problem statement investigated
in this work is developed on the total-scattered field formulation, widely
used in computational electromagnetics [13]. The formulation search for the
scattered field Es by exciting the scatterer Ωs characterized by εs with an
incident field Ei at the boundary Γ′, as shown in fig. 1, such that Ω′∪Ωs ⊂ Ω
models the total field E = Ei + Es.

Ωsεs Γ′′ Γ′ Γ

Ω′
εh

Ω \ Ωs ∪ Ω′

Ei

Figure 1: total-scattered field formulation

The mathematical statement of the scattering problem governing the
transverse electric (TE) scattered field Es in the computational domain Ω
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bounded by Γ is enumerated as:

−∆Es − k2
0εrEs = 0, in Ω \ Ωs ∪ Ω′, (2a)

−∆Es − k2
0εrEs = k2

0(εr − εh)Ei, in Ωs ∪ Ω′, (2b)

∂nEs = ik0Es, on Γ, (2c)

where εh is the complex permittivity of the host medium (εh = 1 for vacuum).
Note that first order absorbing boundary conditions truncate the computa-
tional domain at Γ. The analogous statement of the scattering problem
governing the transverse magnetic (TM) scattered field Es is:

− 1

εr
∆Es − k2

0Es = 0, in Ω \ Ωs ∪ Ω′, (3a)

− 1

εr
∆Es − k2

0Es =

(
1

εh
− 1

εs

)
∆Ei, in Ωs ∪ Ω′, (3b)

∂nEs = ik0Es, on Γ, (3c)

2.2. Numerical model

The aforementioned mathematical model eq. (1) can be resolved ana-
lytically only on regular geometries. Numerical methods are sought for an
approximate solution as the geometrical complexity increases. Detailed sur-
veys of existing numerical methods for scattering are available in the litera-
ture like [14, 15, 16], emphasizing the mathematical setting, pros and cons of
popular techniques like discrete dipole approximation (DDA), etc. Owing to
the ease of resolving partial differential equations on complex computational
domains, the finite element method has been chosen in this work. Contrary
to the popular finite difference method where the partial differential opera-
tor is approximated, the finite element method approximates the functional
spaces in which the solution is searched for. Choosing appropriate functional
space H1(Ω) = {u ∈ L2(Ω), |∇u| ∈ L2(Ω)}, the variational statement for the
TE mode involves finding Es ∈ H1(Ω) such that,

∫

Ω

∇V ∗ · ∇Es − k2
0εrV

∗Es dx− ik0

∫

Γ

V ∗Es dx

= k2
0

∫

Ω′∪Ωs

(εs − εh) V ∗Ei dx, ∀ V ∈ H1(Ω), (4)
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where * denotes the complex conjugate. The analogous statement in the TM
mode involves finding Es ∈ H1(Ω) such that,

∫

Ω

1

εr
∇V ∗ · ∇Es − k2

0V
∗Es dx− 1

εr
ik0

∫

Γ

V ∗Es dx

=

∫

Ω′∪Ωs

(
1

εh
− 1

εs

)
∇V ∗ · ∇Ei dx, ∀ V ∈ H1(Ω), (5)

Owing to the sparsity of the linear system obtained from the discrete
variational problem, large scale computational domains can be attempted at
the expense of computational resource and time. The problems in compu-
tational electromagnetics demand a minimum level of discretization of the
domain for the interested wavelength. This criterion can be detrimental at
the visible spectrum considering the requirement of the first order Lagrange
polynomial basis (P1) demanding at least 20 elements per wavelength ( λ

20
).

The second order counter-part, (P2), demands only λ
10

, which can be favor-
able considering that providing a coarser triangulation of the domain will
be efficient in terms of memory and time for parallel large-scale computa-
tions. This coarsening can scrape off some relevant textures from the stud-
ied scatterer(s) contributing the accuracy, for which a quantitative critical
limit can help implement the coarsening confidently. Although some un-
certain assumptions can be derived from the current physical insights with
the regard to the involved size parameter (πd

′

λ
), d′ being the characteris-

tic dimension of the scatterer, some stronger quantitative conclusions are
to be drawn for further large-scale computations on scatterer(s) with fine
textural details. The critical limit particular to a medium at the interested
spectrum is also more reliable for accuracy than vague physical assump-
tions. Although the modern finite element libraries benefit from advanced
programming data structures and communication paradigms, the finite com-
putational resources can demand a compromise for the input triangulation
because of memory and mesh generation constraints, especially in 3D. The
number of elements in the triangulation of a spherical domain with a radius
of 15 µm for solving a problem involving wavelength of 5 µm (with a maxi-
mum element size: λ

20
= 0.25) is approximately 30 million tetrahedrons. The

triangulation of the interested micro-structures coming from popular imag-
ing techniques involve significant challenges which need serious re-meshing
and pre-processing strategies. Though splitting the coarsened input trian-
gulation after partitioning and distribution is a viable strategy, the splitting
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cannot account for the truncated textures while coarsening. This work orig-
inates at this impasse, where the authors plan massively parallel and large
scale electromagnetic scattering computations for the micro-scale analysis of
numerous industrial materials at visible and infra-red spectrum.

2.3. Radiative properties

In electromagnetism, the Poynting vector represents the energy carried
by an electromagnetic wave and the time-averaged Poynting vector for time-
harmonic fields represents the energy flux given by:

S =
1

2
<[E×H∗],

[
W/m2

]
. (6)

With the knowledge of the scattered field Es, the energy transformation
can be quantified in terms of the cross-section, which is defined as the ratio
of the net rate at which the electromagnetic energy [W] crosses the boundary
Γ′′ centered at the scatterer, to the incident energy Si = 1

2η
|Ei|2k̂θ [W/m2],

where η =
√

µ
ε

is the characteristic impedance of the medium, and k̂θ =
[cos θ, sin θ] is the direction of the incident plane wave. The scattering cross-
section cs relates the amount of power removed from the incident wave as
a result of scattering, which involves re-radiating the energy of the incident
wave to new directions [17]. It is given by:

cs =

∮
Γ′′

Ss · n̂

Si
, where Ss =

1

2
<[Es ×H∗s], (7)

where n̂ is the unit vector normal to Γ′′. The extinction cross-section ac-
counting the overall energy exchange, the scattering and absorption losses,
during the wave-matter interaction is given by,

ce =

∮
Γ′′

Se · n̂

Si
, where Se =

1

2
<[Es ×H∗i + Ei ×H∗s]. (8)

The respective efficiencies for a scatterer of geometrical cross-section cg is
given by:

Qs =
cs
cg
, (9)

Qe =
ce
cg
. (10)
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The asymmetry parameter g quantifying the mean direction of scattered
light, is defined as the average of the scattering angle weighted to the scat-
tered power, given by:

g =

∮
Γ′′

n̂ · k̂θ (Ss · n̂)

∮
Γ′′

Ss · n̂
. (11)

2.4. Koch snowflake

Koch snowflake, a fractal curve based on the Koch curve [18] is con-
structed by recursively altering line segments in steps starting from an equi-
lateral triangle. The initial curve, the equilateral triangle, is recursively
iterated ` times, leading to the fractal K`, whose perimeter increases with
`. To compare the fractals generated in the consecutive iterations pertain
to a scatterer with given cross-section cg = d′ and size parameter, fractals
of same cross-sectional area have been generated for consecutive levels. The
fractals with a given cross-sectional area d′ [µm] will be denoted as belonging
to the set Fd′ , where d′ is the diameter of the cylinder with equivalent cross-
sectional area. Figure 2 shows the fractals Fd′ obtained for 5 consecutive
levels.

K1 K2 K3 K4 K5

Figure 2: Koch snowflake fractals K` ∈ Fd′ , ` = {1, 2, 3, 4, 5}

3. Results and discussion

The numerical models eqs. (4) and (5) have been implemented in the
open-source finite element domain specific language FreeFEM, which is a
partial differential equation solver [19] written in C++. With the ultimate
objective of large scale resolution of Maxwell’s equations, an in-house nu-
merically validated parallel solver has been developed both in 2D and 3D.
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The resulting linear system is so huge for the electromagnetic spectrum of
interest, iterative methods based on domain decomposition and message pass-
ing interface (MPI) is relied through the open-source linear algebra library
HPDDM [20]. The numerical experiments have been attempted on silicon
carbide and silica fractals, an optically thick and thin medium, respectively
of three different sizes (d′) for the spectral range 4 µm to 25 µm. The optical
properties ñ = n + iκ of the studied materials across the aforesaid spectral
range is plotted in fig. 3.

silicon carbide (SiC)

silica (SiO2)

0 5 10 15 20 25
0

2

4

6

λ [µm]

n

0 5 10 15 20 25
10−4

10−3

10−2

10−1

100

101

λ [µm]

κ

Figure 3: optical properties of silicon carbide and silica across the interested spectrum

Table 1 lists the length of the smallest segment h̃ of all fractals K` dealt
with in this work. The triangulation of the domain Ω with element size ĥ < λ

20

K1 K2 K3 K4 K5

F6 2.33268 0.737658 0.240598 0.0794514 0.0263752

F18 6.99804 2.21297 0.721793 0.238354 0.0791257

F54 20.9941 6.63892 2.16538 0.715063 0.237377

Table 1: length of the smallest segment h̃ of fractal K` ∈ Fd′ , in [µm]

for convergence has been generated using the open-source finite element mesh
generator Gmsh [21]. First order Lagrange conforming finite element basis
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is employed to obtain the linear system. The resulting linear system has
been resolved with a parallel direct solver in the open-source linear algebra
package PETSc [22]. To ensure the physical reliability of conclusions drawn
from this work, intensive numerical experiments involving: 2 materials × 2
modes × 6 angle of incidences × 100 wavelengths in [4, 25] µm × 18 scatterers
(6 geometries (5 fractals and 1 cylinder) × 3 diameters: d′ = {6, 18, 54}). In
total, 43, 200 solves have been attempted. Each solve was done on 100 MPI
processes where timings range with fractal size from 10 to 400 s. A plane wave
propagating in the +x direction Ei = eik0x – adopting the sign convention for
the complex index of refraction ñ = n + iκ, excites the problem. Scattering
in free space (εh = 1) is dealt with in this work.

3.1. Total field plots

The modulus of the total field |E| ∈ H1(Ω) obtained by the superposition
of the incident field Ei and scattered field Es for silicon carbide fractals
at 4 µm in the TE mode is plotted in fig. 4. To have a clear distinction
between each level K` for a particular size Fd′ , the plots for each size Fd′
have individual scales. This aids in identifying the differences in scattering
patterns across each level more clearly. The scattering pattern or nature of
silicon carbide fractals shows convergence at K3 irrespective of the fractal
size d′ (the computed total electric field and the scattering pattern clearly
change from K1 to K3, as can be seen in fig. 4, while the scattering pattern
seems to stabilize from K3 to K5). This initial observation implies that
the subsequent smaller and additional details present on the scatterer is not
significantly influencing their near-field scattering. These scattering plots can
also serve as a starting point for further studies involving multiple scatterers.
The respective plots for silica fractals are shown in fig. 5. Contrary to silicon
carbide, the scattering pattern of silica fractals seem to rather converge at
K4. This difference between the optically thick and thin medium implies
the need of a critical limit specific to the medium of interest, and further
motivates the investigation in terms of other desired radiative properties.

3.2. Far-field plots

Inferring the near-field behavior, the far-field patterns around the studied
fractals have been plotted in the TE mode at 4 µm following the near-field
to far-field transformation based on surface equivalence theorem [23]. After
taking into account the geometrical symmetry of the fractals (every 60◦), the
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far-field patterns for a set of angle of incidence (θ = 0◦, 20◦, and 30◦) are plot-
ted. The far-field plots of the fractals have also been compared against the
equivalent circular cylinder with same cross-sectional area, as shown in figs. 6
and 7. The far-field behavior also shows a global convergence at K3 – irre-
spective of the size, material or angle of incidence (the modulus of the electric
far-field and the pattern clearly have differences from K1 to K3, as can be
seen in figs. 6 and 7, while this seems to stabilize from K3 to K5). The more
pronounced scattering differences for the bigger fractals, as observed from
both the near-field and far-field plots, also agrees with the existing litera-
ture [6]. The discussed near-field and far-field plots at 4 µm portraying the
local spectral behavior is meant only for some initial qualitative assessments.
To realize more substantial conclusions across the spectrum for the radiative
properties of interest, results from intensive computations are detailed next.

3.3. Radiative properties across the spectrum

To infer a quantitative limit specific to a material across the spectrum of
interest regarding the influence of fine details on the desired radiative proper-
ties, the evolution of extinction efficiency, scattering efficiency and asymme-
try parameter have to be known across the spectral range. To account for the
polarization effects, the properties extracted from both TE and TM mode
computations are shown. The radiative properties averaged across 6 angle of
incidences have been plotted to take into account the different fractal orienta-
tions with respect to the incident radiation (θ = {0◦, 10◦, 20◦, 30◦, 40◦, 50◦}).
The averaged extinction efficiency Q̂e =

1

dim θ

∑
iQ

i
e is computed, with Qi

e

the extinction efficiency Qe for ith angle of incidence, and with dim θ = 6.
Plots for all the attempted test cases are shown in fig. 8 (note that each
plots are in their individual scale than a common scale for clear distinction
between each level).

The plots of extinction efficiency for all the investigated sizes (apparent
diameter d′ = {6, 18, 54}; optically thick and optically thin media; transverse
electric and transverse magnetic modes) show convergence at K3. The devia-
tion of the respective plots for fractals from those for the equivalent cylinders
seems to be more significant for optically thick scatterers. Respective plots
for averaged scattering efficiency Q̂s and averaged asymmetry parameter ĝ,
portraying the associated scattering, are shown in fig. 9 and fig. 10, respec-
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tively. For these properties also, a convergence around K3–K4 is observed.

3.4. Critical limit

For estimating a critical quantitative limit specific to a material, based on
an allowable error tolerance, an error criterion based on K5, the fractal with
3072 line segments and finest details was defined. From this, the associated
error in each investigated radiative property can be determined for all the
involved test cases. This also helps to quantify the textural details required
for an accurate resolution of the investigated radiative property. To arrive
quantitatively at a critical limit h̃ε for a desired accuracy, we define the
wavelength-averaged normalized error,

ε =

√∑
i (u

`(λi)− u5(λi))
2

∑
i (u

5(λi))
2 ∀Fd′ , (12)

where u` = {Q̂e, Q̂s, ĝ} are the averaged radiative properties for the fractal

K`, characterized by a minimum segment length h̃ as tabulated in table 1.
u`(λi) is compared against those for the reference fractal K5, u5(λi), ∀Fd′
across the spectrum. The associated error ε in radiative properties for all
fractals studied Fd′ , d

′ = {6, 18, 54} in the TE mode are plotted in fig. 11. It

appears that the error ε increases with the minimum segment length h̃, for all
average radiative properties, for the two media, as expected [6]. Detailed data
pertaining to all the test cases studied – both in TE and TM mode, are also
tabulated in tables 2 and 3. These tables serve as a lookup information for
a specific material, that error associated for a particular radiative property
can be related to the available textural information. For a desirable error
tolerance ε of 1 %, a quantitative limit h̃ε has been derived. This critical
limit is tabulated in table 2 and is also shown as h̃ limit of the yellow shaded
portion in the respective plots of fig. 11. The blank cells that appear in table 2
imply that no critical limit met the 1 % error tolerance. It is worthwhile to
note that for the given desirable error tolerance of 1 %, the critical limits
for different radiative properties are different for each material. From this
table of information, appropriate critical limits can be chosen confidently
with the objective of an interested radiative property: approximately, 1 %
error tolerance yields critical limits varying around 1 µm, and, in any case,
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less than 4.5 µm. Also to mention that this lookup information for a given
material can also provide the likelihood of the associated error for a given
resolution of textural details, see table 3, and the blue shaded portion in
plots of fig. 11. The textural resolution of 1 µm yields maximum errors of
approximately 1 % for both TE and TM modes, for both optically thick and
thin media, for the extinction efficiency, scattering efficiency, and asymmetry
parameter. These quantitative error estimates can also provide and facilitate
with better understanding of the relative relevance of textural information
in the associated energy exchange.

Material
TE TM

Q̂e Q̂s ĝ Q̂e Q̂s ĝ

SiC 4,32 1,72 1,11 3,31 - -

SiO2 1,15 1,00 1,94 1,36 0,91 0,78

Table 2: Critical limits h̃ε [µm] for 1 % wavelength-averaged normalized error tolerance,

corresponds to h̃ limit of the yellow shaded region in fig. 11. Note that the blank cells that
appear for the TM mode imply that no critical limit met the 1 % error tolerance. Note
also that the union of yellow and blue colors yields the green color.

Material
TE TM

Q̂e Q̂s ĝ Q̂e Q̂s ĝ

SiC 0,82 1,12 1,23 2,70 7,11 5,57

SiO2 1,52 1,38 0,78 1,68 2,12 1,85

Table 3: Maximum wavelength-averaged normalized error [%] that can occur at 1 µm
resolution, corresponds to the ε limit of the blue shaded region in fig. 11. Note that the
union of yellow and blue colors yields the green color.
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F6 F18 F54

Figure 4: Modulus of the total electric field |E| ∈ H1(Ω) for silicon carbide at λ = 4 µm in
TE mode. Top row corresponds to K1, subsequent rows correspond to K2, K3, K4, and
K5, respectively. 14



F6 F18 F54

Figure 5: Modulus of the total electric field |E| ∈ H1(Ω) for silica at λ = 4 µm in TE
mode. Top row corresponds to K1, subsequent rows correspond to K2, K3, K4, and K5,
respectively. 15
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Figure 6: Modulus of electric far-field at 4 µm in the TE mode for silicon carbide scatterers
F18 (left) and F54 (right). Top row corresponds to excitation at 0◦ angle of incidence, the
second and third row corresponds to 20◦ and 30◦, respectively.
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Figure 7: Modulus of electric far-field at 4 µm in the TE mode for silica scatterers F18

(left) and F54 (right). Top row corresponds to excitation at 0◦ angle of incidence, the
second and third row corresponds to 20◦ and 30◦, respectively.
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Figure 8: Averaged extinction efficiency Q̂e plots across the spectrum λ [µm]. The columns
(from left) correspond to fractals F6, F18, and F54, respectively. Top 2 rows correspond to
silicon carbide; with first row for TE and second row for TM mode. The bottom 2 rows
correspond respectively to silica; with third row for TE and fourth row for TM mode.
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Figure 9: Averaged scattering efficiency Q̂s plots across the spectrum λ [µm]. The columns
(from left) correspond to fractals F6, F18, and F54, respectively. Top 2 rows correspond to
silicon carbide; with first row for TE and second row for TM mode. The bottom 2 rows
correspond respectively to silica; with third row for TE and fourth row for TM mode.
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Figure 10: Averaged asymmetry parameter ĝ plots across the spectrum λ [µm]. The
columns (from left) correspond to fractals F6, F18, and F54, respectively. Top 2 rows
correspond to silicon carbide; with first row for TE and second row for TM mode. The
bottom 2 rows correspond respectively to silica; with third row for TE and fourth row for
TM mode.

20



10−1 100 101
10−3

10−2

10−1

h̃

ε
F6 F18 F54

10−1 100 101
10−3

10−2

10−1

h̃

ε

F6 F18 F54

10−1 100 101
10−3

10−2

10−1

h̃

ε

F6 F18 F54

10−1 100 101
10−3

10−2

10−1

h̃

ε

F6 F18 F54

10−1 100 101
10−3

10−2

10−1

h̃

ε

F6 F18 F54

10−1 100 101
10−3

10−2

10−1

h̃

ε

F6 F18 F54

Figure 11: Wavelength-averaged normalized error ε plotted against h̃, ∀Fd′ , d′ =
{6, 18, 54} for silica (left) and silicon carbide (right) fractals in the TE mode. Top row

correspond to the error associated with the averaged extinction efficiency Q̂e, second row
to the averaged scattering efficiency Q̂s and third row to the averaged asymmetry param-
eter ĝ. The shaded region in yellow shows the critical limit h̃ε for 1 % error tolerance,
and the one in blue shows the error associated with 1 µm resolution (please note that the
union of yellow and blue colors yields the green color). Data pertaining to the TM mode
is available in tables 2 and 3.
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4. Conclusion

The prospect of undertaking a study on fractals – reliable for quantifying
the roughness of complex objects, along with the finite element framework –
capable of accurately modeling the generated complexities, provided some
valuable insights regarding the ample textural details crucial for accurate
radiative transport modeling. The critical limits tabulated in this study can
serve as a lookup information for the studied materials across the spectrum,
from where critical limit of textures needed for a required accuracy, or con-
versely the associated error while preferring an available resolution, can be
quantitatively known beforehand. Quantitative limits of adequate textural
details needed for an accurate radiative transport modeling estimated for the
optically thick and thin medium in this work demonstrated the methodology
to arrive at these limits, taking into account the orientation of the scatter-
ers and polarization influences. For a desired level of accuracy ε preferred
among diverse domains of interest, the critical limit h̃ε of ample textural de-
tails relevant for the interested problem can differ. Briefly, It can be stated
with confidence that 1 µm resolution is ample or adequate enough to provide
accurate radiative transport predictions with error around 1 %. The inten-
sive numerical experiments modeled several possible physical scenarios, that
the established quantitative limits pertain close to the physical reality. The
finite element method modeled the studied complex fractals with relative
ease and provided a wide variety of data plots to draw conclusions. The
total field and far-field plots obtained served as ideal starting points which
motivated the intense numerical experiments to further broaden the physical
understanding. Thus, the finite element method proved to be the ideal tool
to undertake similar future studies. It appears that investigations of this sort
are the need of the hour, taking into account the modern compact industrial
materials demanding maximum durability. This work served as a starting
point for more general studies in 3D, where the computational challenges are
more significant, and similar estimates can prove to be more crucial saving
computational resources without compromising the accuracy. As only sin-
gle scatterer was addressed in this study, future works addressing multiple
scatterers can also further improve radiative transport modeling.
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