
HAL Id: hal-02890104
https://hal.science/hal-02890104v1

Submitted on 6 Jul 2020 (v1), last revised 3 Dec 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contact with coupled adhesion and friction:
Computational framework, applications, and new

insights
Janine C Mergel, Julien Scheibert, Roger A Sauer

To cite this version:
Janine C Mergel, Julien Scheibert, Roger A Sauer. Contact with coupled adhesion and friction:
Computational framework, applications, and new insights. Journal of the Mechanics and Physics of
Solids, 2021, 146, pp.104194. �hal-02890104v1�

https://hal.science/hal-02890104v1
https://hal.archives-ouvertes.fr


Contact with coupled adhesion and friction:
Computational framework, applications, and new insights

Janine C. Mergel1,2,a, Julien Scheibertb, Roger A. Sauer1,a,c

aGraduate School AICES, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany
bUniv Lyon, Ecole Centrale de Lyon, ENISE, ENTPE, CNRS, Laboratoire de Tribologie et Dynamique
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Abstract: Contact involving soft materials often combines dry adhesion, sliding friction, and
large deformations. At the local level, these three aspects are rarely captured simultaneously,
but included in the theoretical models by Mergel et al. (2019). We here develop a corresponding
finite element framework that captures 3D finite-strain contact of two deformable bodies. This
framework is suitable to investigate sliding friction even under tensile normal loads. First, we
demonstrate the capabilities of our finite element model using both 2D and 3D test cases, which
range from compliant tapes to structures with high stiffness, and include deformable-rigid and
deformable-deformable contact. We then provide new results on the onset of sliding of smooth
elastomer-glass interfaces, a setup that couples nonlinear material behavior, adhesion, and large
frictional stresses. Our simulations not only agree well with both experimental and theoretical
findings, they also provide new insights into the current debate on the shear-induced reduction
of the contact area in elastomeric contact.

Keywords: van der Waals interactions, computational contact mechanics, nonlinear finite
element methods, peeling, elastomer contact

1 Introduction

Soft materials like compliant tapes, elastomers, and biological adhesive pads (appearing e.g. in
insects and lizards) play a major role in a large variety of dry, solid contact. This kind of
contact usually features large adhesive (or tensile) stresses, large frictional stresses, and large
deformations, simultaneously. Present computational contact models do not appropriately cap-
ture all these three features at once. However, this would be desirable in order to reproduce
and interpret a wide range of experimental observations for such systems, including gecko pads
(Autumn et al., 2002), tape peeling (De Zotti et al., 2019), or rubber friction (Sahli et al., 2018).

Dry friction is often described with the classical Amontons-Coulomb law of friction

Ft = µFn, Fn > 0, (1)

where µ is a coefficient of friction relating the sliding friction force Ft to the normal load Fn.
However, in applications dominated by adhesion, this friction force is often found to be pro-
portional to the real contact area, Areal, i.e., the total area of small microasperities in actual
contact (Carpick and Salmeron, 1997; Degrandi-Contraires et al., 2012; Yashima et al., 2015;
Sahli et al., 2018). In this case,

Ft = τ0Areal, (2)
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where τ0 denotes a frictional shear strength that depends on both materials of the interacting
surfaces. It is thus natural that the following intermediate law had been proposed (Derjaguin,
1934; Bowden and Tabor, 1942):

Ft = µFn + τ0Areal, (3)

which interpolates between the two limit cases of Eqs. (1) and (2). In the following, Eq. (3) will
be referred to as the “extended” Amontons’ law of friction. According to Ruths et al. (2005),
it is suitable to describe the friction force between dry surfaces sliding over each other in the
presence of adhesion. As shown experimentally by Homola et al. (1990) and others, it depends
on the specific application which of these terms has stronger influence. The transition between
both terms is also discussed in Berman et al. (1998), Gao et al. (2004), and Jagota and Hui
(2011). Sometimes using a slightly different notation, relation (3) was considered in the context
of microtribology (Briscoe and Kremnitzer, 1979), molecular dynamics (Sivebæk et al., 2008;
Mo et al., 2009), or adhesion and friction of biologic and bio-mimetic systems (Zeng et al., 2009;
Hill et al., 2011). It was further used by Tabor (1981) to state a pressure-dependent, effective
friction coefficient, which was then incorporated into a computational model by Wriggers et al.
(1990). Moreover, Eq. (3) is also known as Mohr-Coulomb criterion in soil mechanics. For a
comprehensive review of tribological models, in general, we refer to Vakis et al. (2018).

Note that Eqs. (1) to (3) refer to the total forces Fn and Ft applied at the interface. Locally, the
normal contact stress may vary between tension and compression within the same macroscopic
contact area (see e.g. measurements by Eason et al. (2015) for gecko toes). It is thus desirable
to formulate the two macroscopic friction laws from Eqs. (2) and (3) in terms of local contact
tractions, resulting in two general continuum contact models for dry adhesion and friction. This
is exactly what was recently proposed in Mergel et al. (2019):

1) Model DI: In this model, the local sliding resistance is constant everywhere along the
contact interface, with a value equal to τ0. This yields Eq. (2) at the macroscale. The local
sliding resistance itself is independent of the (generally varying) contact pressure, which
in turn is expressed as function of the (small, but non-vanishing) local normal distance
between the contacting surfaces. The model is thus called DI, for Distance-Independent.

2) Model EA: This corresponds to a local version of Eq. (3), and is denoted EA for Extended
Amontons. Its local sliding resistance is the sum of a constant term (like in model DI)
and a term that linearly depends on the (local) normal pressure between the surfaces.

As will be seen, both models are capable of capturing friction even for zero or negative (tensile)
contact pressures. This capability is an important feature of the class of models investigated
here, and is motivated by e.g. soft and compliant bio-adhesive pads, which are able to generate
friction forces under tensile normal loads.

The first aim of the present paper is to formulate a computational framework for adhesive-
friction models in general, and for the two above-mentioned models in particular. For the sake
of self-consistency, we will first briefly review models DI and EA as well as the underlying
assumptions. We then derive the equations that are necessary to implement these models into a
nonlinear 3D finite element (FE) formulation based on large-deformation continuum mechanics.
Such formulations go back to Laursen and Simo (1993), and were extended subsequently to
consider e.g. wear (Strömberg et al., 1996), irreversible adhesion (Raous et al., 1999), reversible
adhesion (Sauer and Li, 2007), and multiscale contact (Wriggers and Reinelt, 2009). Regarding
non-adhesive 3D frictional contact, important computational advances were made in the context
of surface smoothing (Padmanabhan and Laursen, 2001; Krstulović-Opara et al., 2002), mortar
methods (Puso and Laursen, 2004; Gitterle et al., 2010; Dittmann et al., 2014), moving cone
formulations (Wriggers and Krstulović-Opara, 2004), isogeometric analysis (De Lorenzis et al.,
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2011; Temizer et al., 2012), and unbiased friction algorithms (Sauer and De Lorenzis, 2015).
The latter work is used as a basis for the present formulation. A literature survey on more
broadly related models (including e.g. cohesive zone models) is given in Mergel et al. (2019).

The second aim of this paper is to provide various examples of application for our framework.
The first three especially serve to illustrate the wide range of systems that can be studied using
this framework, including various shapes and dimensionalities. We then provide a detailed study
of a fourth example, which is currently a matter of scientific debate in the literature: the onset
of sliding of Hertz-like elastomer-glass contact (Sahli et al., 2018, 2019; Menga et al., 2018, 2019;
Mergel et al., 2019; Khajeh Salehani et al., 2019; Papangelo and Ciavarella, 2019; McMeeking
et al., 2020; Wang et al., 2020; Lengiewicz et al., 2020). We here present new results that agree
well with recent experimental (Sahli et al., 2019) and theoretical results (Chen et al., 2008;
Papangelo et al., 2019). These results lead us to suggest that the shear-induced reduction of
the contact area, discussed in those references, may exist even in the absence of adhesion as
well as for compressible materials.

The remainder of this paper is structured as follows. In Sect. 2 we state our general computa-
tional framework, and outline models DI and EA. Sect. 3 contains the algorithmic treatment of
adhesive friction as well as the resulting finite element formulation. In Sect. 4 we illustrate the
validity and applicability of our computational models by discussing 2D and 3D applications
ranging from soft and compliant tapes to rather stiff structures. A detailed study of the onset
of sliding for smooth elastomer-glass contact follows in Sect. 5. Sect. 6 concludes this paper.

2 Continuum modeling of dry adhesion and friction

The models for adhesive friction discussed here are expressed as functions of the (generally vary-
ing) local normal distance between two surfaces. We thus first provide the fundamentals to de-
scribe this distance mathematically. For this purpose, we introduce a co-variant description for
both surfaces, which will be described in the following. As commonly done in large-deformation
continuum mechanics, we use uppercase letters for variables in the reference configuration of a
body (denoted B0), and small letters for variables in the current configuration (B).

2.1 Contact kinematics

For a certain material point on the contact surface of one body, xk ∈ ∂cBk (k = 1, 2), we need
to determine its closest projection point, xp ∈ ∂cB` (` = 2, 1), that minimizes the distance
between xk and the surface ∂cB` of the neighboring body (Fig. 1). To this end, we assume that
∂cB` can be parametrized by two convective coordinates ξ = {ξ1, ξ2} such that xp = x`(ξp). At
this (still unknown) point xp, ∂cB` is characterized by its co-variant and contra-variant tangent
vectors, ap

α and aαp (α = 1, 2), and by its surface normal np. These vectors are defined as

ap
α :=

∂x`(ξ)

∂ξα

∣∣∣∣
ξ= ξp

, (4)

aαp := aαβp ap
β,

[
aαβp

]
=
[
ap
αβ

]−1
, ap

αβ = ap
α · a

p
β, (5)

np :=
ap

1 × a
p
2

‖ap
1 × a

p
2‖
, (6)

where × denotes the cross product, and the definition of aαp in Eq. (5) contains a summation
over β = 1, 2. The coordinates ξp of the projection point xp can then be determined by solving
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the (generally nonlinear) equations

(xp − xk) · ap
α = 0, α = 1, 2; (7)

see e.g. Appx. B of Sauer and De Lorenzis (2015). Once this projection point is found, one can
define a normal gap vector, gn, and a scalar normal gap, gn, as

gn := xk − xp, gn := gn · np. (8)

Figure 1 Closest projection point, xp = x`(ξp), of xk onto surface ∂cB`, and illustration of the
tangent vectors ap

α (α = 1, 2), surface normal np, and normal gap vector gn.

In order to distinguish between tangential sticking and sliding, we (for now only conceptually)
introduce a tangential gap vector, gt, which is decomposed into 1) a reversible (“elastic”)
part, ∆ge, associated with a non-vanishing, tangential stiffness of the interface during sticking,
and 2) an irreversible (“inelastic”) part, gs, due to local sliding,

gt = ∆ge + gs. (9)

The concept of an elastic, tangential gap is used for the algorithmic treatment of friction, and
explained in detail in Sect. 3.1.

2.2 Modeling of normal tractions

To allow for both tensile (adhesive) and compressive (repulsive) normal tractions at the con-
tact interface between Bk and B`, we use a model based on an integrated Lennard-Jones (LJ)
potential (Sauer and Li, 2007; Sauer and Wriggers, 2009). According to this model, the contact
traction (force per area) at point xk ∈ ∂cBk, due to B`, is given by

T n,k =
θk
J`
Tn(gn)np, Tn(gn) =

AH

2πr3
0

[
1

45

( r0

gn

)9
− 1

3

( r0

gn

)3
]
. (10)

Note that this contact law is formulated with respect to the undeformed reference configuration.
The function Tn is shown in Fig. 2, together with several characteristic parameters.

We here consider a surface-to-surface contact formulation in which we iterate over both contact
surfaces (see also Sect. 3.2). The index k (or `) thus switches from 1 to 2 (or vice versa).
According to Eq. (10), T n,k depends on the normal vector and normal gap from Eqs. (6)
and (8) as well as on the following quantities: the Hamaker constant AH, the characteristic
length r0 in the Lennard-Jones potential, the current volume change J` around xp ∈ ∂cB`, and
a scalar θk involving the inclination and deformation of the two bodies. In the following we use
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Characteristic parameters:

• Equilibrium distance: geq = r0/
6
√

15

• Max. adhesive traction: Tmax =

√
5AH

9π r3
0

• Location of −Tmax: gmax = r0/
6
√

5

• Work of adhesion: Wadh =
3
√

15AH

16π r2
0

Figure 2 Normal contact traction in the model of Sauer and Wriggers (2009) for frictionless
adhesion and repulsion as well as characteristic parameters; T0 = AH / (2πr3

0); the blue dashed
line shows a regularization of Tn based on linear extrapolation at gn = geq (Mergel et al., 2019).

two assumptions discussed in full detail in Mergel et al. (2019): θk ≈ 1 and J` ≈ Jc`, where Jc`

is the local stretch of the surface ∂cB`, given by

Jc` :=
ja`
JA`

, ja` :=
√

det
[
ap
αβ

]
, JA` :=

√
det
[
Ap
αβ

]
. (11)

The matrix entries of
[
ap
αβ

]
and

[
Ap
αβ

]
(α, β = 1, 2) are determined from Eq. (5), inserting

the co-variant tangent vectors from the current and the reference configurations, ap
α and Ap

α =
∂X`(ξ)/∂ξα|ξ= ξp , respectively.

Fig. 2 further shows a regularization of Tn based on linear extrapolation for small normal gaps,
gn < greg. This regularization is also shown in the following figures (Figs. 3 and 4), and increases
the robustness of the computational model by preventing infinitely large slope magnitudes. We
apply it in all our examples of Sects. 4 and 5, using greg = geq.

Due to the strong repulsion in Tn (Eq. (10) and Fig. 2), the two contacting surfaces are mainly
(without regularization: always) separated by a small, but positive, normal gap. This directly
affects the definition of the real contact area. Although this area is not explicitly required for our
computational framework, it is important for the interpretation of the results. We thus define
a gap, garea, to determine whether or not two neighboring surface points belong to the contact
area. It is reasonable to set garea somewhere between geq (below which the normal traction is
compressive) and gmax (above which tensile tractions decay). We found the sensitivity of the
contact area to be large for garea ≈ geq, and minimal at gmax. In this work, we thus consider
the real area of contact as that part of the interface that is separated by less than garea = gmax.

2.3 Modeling of tangential tractions

We now present a general framework for combined adhesion, repulsion, and sliding friction. As
specific examples we outline the two models DI and EA mentioned in the introduction. The
equations stated in the remaining section, as well as in the algorithm description (Sect. 3.1), all
refer to friction between a surface point xk ∈ ∂cBk (k = 1, 2) and the neighboring surface ∂cB`
(` = 2, 1). For a shorter notation, we omit the indices k and ` in the following.

In our framework we assume that the vector of tangential tractions, due to sticking and sliding
friction, depends on both the normal gap from Eq. (8) and the tangential slip vector introduced
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in Eq. (9), i.e. tt = tt(gn, gt). After defining a non-negative function tslide(gn) for the (magnitude
of the) frictional resistance during sliding, we consider friction laws of the general form

‖tt(gn, gt)‖

{
< tslide(gn) during sticking,

= tslide(gn) during sliding.
(12)

In Eq. (12) we assume that, for equal gn, the tangential traction required to initiate sliding
(after sticking) is equal to the traction in the final sliding state. The motivation, validity, and
restrictions of this assumption are addressed in detail in Mergel et al. (2019).

2.3.1 Model DI: Distance-independent sliding friction in the contact area

The first model, denoted DI (for Distance-Independent), is the local extension of Eq. (2). It
includes a constant sliding threshold for normal gaps smaller than a certain cutoff distance gcut:

tslide(gn) =

{
τDI, gn ≤ gcut,

0, gn > gcut,
(13)

where τDI > 0 is a constant interface parameter. Note that the adhesive-friction model DI is
stated in the current configuration of the bodies, which means that the sliding threshold τDI

refers to the actual area of the contact interface. To overcome the discontinuity in Eq. (13) at
gn = gcut, for our computational framework we use the following regularization,

tslide(gn) =
τDI

1 + e kDI(gn−gcut)
, (14)

where kDI > 0 is a sufficiently large regularization parameter for the transition between τDI and
zero. Its inverse, 1/kDI, can be regarded as a characteristic decay length. Both the original and
the regularized versions of model DI are shown in Fig. 3(a), together with the adhesion model
from Sect. 2.2.

(a) Sliding threshold for varying normal gap gn. (b) Friction law in 2D for different but fixed gn.

Figure 3 Model DI: Constant sliding traction within the cutoff distance gcut for τDI = 0.5Tmax,
gcut = 1.1 r0, and kDI = 80/r0; here, T0 = AH / (2πr3

0); the regularization of Tn is discussed in
Sect. 2.2; for εt see Sect. 3.1; the asterisks mark the distances gmax (where |Tn| = Tmax, yellow),
gcut (purple) and 1.5 gcut (light blue).

Fig. 3(b) shows the resulting friction law, i.e., the traction-separation law in tangential direction
for arbitrary, but fixed, normal distances. In this friction law, we regularize the transition
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between tangential sticking (‖tt‖ < tslide, see Eq. (12)) and sliding (‖tt‖ = tslide) by introducing
a penalty parameter εt. This parameter represents the finite tangential stiffness of the interface
during sticking, and allows for a small, but reversible, tangential motion (∆ge in Eq. (9)).
Further details are provided in Sect. 3.1.

The sliding traction of model DI, τDI, is independent from the normal gap, and thus from the
normal traction. If the same value is chosen for both gcut and garea (see Sect. 2.2), then the
sliding threshold will be equal to τDI everywhere within the real contact area Areal. Under such
a condition, model DI yields Eq. (2) at the macroscopic scale, with τDI = τ0. In this work, we
always use model DI like this, with gcut = garea = gmax. For future comparison with model EA
(Sect. 4), we further introduce a friction parameter3 µDI := τDI / Tmax, which relates the sliding
traction to the maximum adhesive traction from Fig. 2.

A constant sliding resistance has also been considered in previous studies, e.g. in the context of
sliding graphene sheets (Deng et al., 2012), adhesive (and small-deformation) contact between
a rigid sphere and an elastic half-space (Menga et al., 2018, 2019; Wang et al., 2020), or for non-
adhesive friction of hyperelastic materials (Lengiewicz et al., 2020). The strength of model DI is
that it combines adhesion and friction with large deformations and arbitrary-shaped geometries.
It includes the model of Deng et al. (2012) as a special case with gcut = geq, while providing an
additional regularization to overcome the discontinuity at gcut. Note that (the unregularized
version of) model DI is not to be confused with one of the earliest cohesive zone models, the
Maugis-Dugdale model. That model includes a constant normal traction for pure debonding,
while the blue curve in Fig. 3(a) concerns the tangential traction for sliding friction.

2.3.2 Model EA: Extended Amontons’ law in local form

The second adhesive-friction law, model EA (for Extended Amontons) is intended as a local
form of Eq. (3). Unlike model DI, this model explicitly depends on the (local) normal contact
tractions of our adhesion model, and thus on Tn(gn) from Eq. (10). Let us first choose a cutoff
distance somewhere between the equilibrium distance geq of Tn and the location gmax of −Tmax

(see Fig. 2):
gcut = scut gmax + (1− scut) geq, scut ∈ [0, 1]. (15)

We then consider a sliding threshold that is proportional to the shifted curve Tn(gn)+ |Tn(gcut)|,
where the function value Tn(gcut) is either zero or negative (because gcut ≥ geq):

Tslide(gn) =


µEA

Jc`

[
Tn(gn)− Tn(gcut)

]
, gn < gcut,

0, gn ≥ gcut.
(16)

The scalar µEA > 0 denotes the friction parameter for model EA (see also footnote 3). The first
term in Eq. (16) (top) expresses the dependence on the normal traction that is formulated, by
choice, w.r.t. the reference configuration. If desired, both the normal and tangential tractions
can be mapped to the current configuration using tn da = Tn dA. The second term corresponds
to an additional constant representing the effect of adhesion. Since gcut < gmax (Eq. (15)), the
sliding resistance in Eq. (16) is always positive.

Fig. 4 illustrates model EA for the parameter values scut = 0, 0.5, and 1. In analogy to Fig. 3,
the left-hand side of Fig. 4 depicts the relation between the normal gap, gn, and the sliding
threshold, Tslide, while the right-hand side shows the resulting friction laws. Note that the

3To avoid any confusion with the classical coefficient of friction (defined as the ratio between the frictional
resistance and the pressure), for our two models we use the terminology “friction parameter” instead.
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(a) Sliding threshold for varying gn; scut = 0. (b) 2D friction law for different but fixed gn; scut = 0.

(c) Sliding threshold for varying gn; scut = 0.5. (d) 2D friction law for different but fixed gn; scut = 0.5.

(e) Sliding threshold for varying gn; scut = 1. (f) 2D friction law for different but fixed gn; scut = 1.

Figure 4 Model EA: Extended Amontons’ law in local form illustrated for µEA = 0.2, Jc` ≡ 1,
and three different values of scut; here, T0 = AH / (2πr3

0); the regularization of Tn is discussed in
Sect. 2.2; for εt see Sect. 3.1; the colored asterisks mark the distances 0.5 r0 (green), geq (where
Tn = 0, orange), and gmax (yellow).
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function Tslide(gn) is C1-continuous only if scut = 1 (Fig. 4(e)). In any other case, a kink occurs
at gn = gcut, which requires a special algorithmic treatment in the solution strategy (Sect. 3.3).

For gcut = geq (i.e., scut = 0, see Figs. 4(a) and 4(b)), model EA provides a frictional resistance
(i.e., Tslide > 0) only for positive, and thus compressive, normal tractions. This corresponds to
the local equivalent of the classical Coulomb-Amontons law for non-adhesive contact (Eq. (1)).
It also follows the approach of many cohesive zone models (Chaboche et al., 1997; Raous et al.,
1999; Del Piero and Raous, 2010), which consider both local tension and compression, but
include sliding friction only where the normal traction is compressive. Note that, in particular
for adhesion-dominated setups the model behavior may become very sensitive in this case. This
is demonstrated in Mergel (2017) for the setup investigated in Sect. 4.1. It also agrees with
the finding stated in Sect. 2.2, namely that the real contact area is very sensitive to garea for
garea ≈ gcut.

As soon as gcut > geq, a frictional resistance can arise also in regions where the normal traction
is slightly tensile (up to the value Tn(gcut)). Note that, since in the present work we use
garea = gmax (Sect. 2.2), and since gcut ≤ gmax, the tangential tractions are always zero outside
the real contact area.

3 Computational framework

This section contains the algorithmic treatment of adhesive friction and its implementation into
a nonlinear finite element code. We also address the validity and restrictions of our framework.

3.1 Algorithmic treatment of adhesive friction

In computational friction algorithms, sticking and sliding are often realized by means of a
predictor-corrector approach similar to that used for elastoplasticity, see, e.g., Simo and Hughes
(1998): One first predicts tangential sticking, checks whether the criterion for sliding is satisfied,
and if so, applies a return map to determine the sliding distance.

The following algorithm is formulated in the current configuration, i.e., in terms of the vari-
ables tt and tslide. However, as shown in Mergel (2017), it is also possible to analogously state
the algorithm with respect to Tt and Tslide, the variables with which model EA is formulated in
Sect. 2.3.2. Let us first define the sliding criterion

fs(tt, tslide) := ‖tt‖ − tslide, (17)

which must satisfy (Wriggers, 2006)

fs

{
< 0 for sticking,

= 0 for sliding.
(18)

These two cases are illustrated in Fig. 5(a) for model DI. Here, the colored surface marks fs = 0,
for which ‖tt‖ must be equal to the sliding threshold tslide from Eq. (14). As a consequence,
this surface corresponds to nothing else but tslide revolved around the gn-axis, cf. Figs. 3(a)
and 5(a). In analogy, Fig. 5(b) indicates sticking and sliding for model EA with gcut = gmax.
The remaining quantities in Fig. 5 will be required in the following.

During sliding we must enforce fs(t, tslide) = 0, and determine both the direction and the
magnitude of the resulting tangential gap. Since this projection is carried out at a certain
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(a) Model DI. (b) Model EA with gcut = gmax (i.e., scut = 1).

Figure 5 Illustration of the return map performed in the corrector step for tangential sliding.

(pseudo-)time step, the normal gap from Eq. (8), gn, is considered to be arbitrary but fixed. As
shown in Mergel (2017), both models EA and DI fulfill convexity of (i) the domain of feasible
tractions tt satisfying fs(tt, tslide) ≤ 0, and (ii) the function fs within this domain. These
properties ensure that the mapping performed as a corrective step will be unique. Let us now
define the non-negative dissipation during sliding,

Ds(tt;Lgs) := tt · Lgs, (19)

which represents the energy loss per time and area. The term

Lgs := ξ̇αs a
s
α, as

α :=
∂x`(ξ)

∂ξα

∣∣∣∣
ξ= ξs

, (20)

denotes the relative slip velocity, i.e., the Lie derivative of the slip vector gs associated with
sliding (Eq. (9), see also Sauer and De Lorenzis (2015)). Note that the dot denotes the material
time derivative of ξαs (keeping material point Xp fixed). According to the principle of maximum
dissipation (Simo and Hughes, 1998; Wriggers, 2006), for a given slip velocity Lgs, the actual
(physically true) traction tt maximizes the dissipation among all feasible tractions t∗t . By
keeping Lgs arbitrary but fixed, and by introducing the Lagrange multiplier γ ≥ 0, we formulate
the following constrained minimization problem

∂L (t∗t , γ;Lgs)

∂t∗t

∣∣∣∣
t∗t = tt

= 0 (21)

with Lagrangian
L (t∗t , γ;Lgs) := −Ds(t

∗
t ;Lgs) + γ · fs(t

∗
t , tslide), (22)

and the Karush-Kuhn-Tucker (KKT) conditions for optimality,

fs ≤ 0, γ ≥ 0, fs · γ = 0. (23)

From Eq. (21) we then obtain the evolution law for the slip velocity during sliding

Lgs = γ nt, nt :=
∂fs

∂tt
=

tt
‖tt‖

. (24)
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According to Eq. (24), the multiplier γ corresponds to the magnitude of the tangential slip
velocity. Since during sliding fs = 0, the traction satisfies

tt = tslident, (25)

as required. The time derivatives ξ̇αs in Lgs can finally be determined by inserting Eq. (24) into
Eq. (20), and contracting the result with the tangent vectors aαs , giving

ξ̇αs = γ nt · aαs , α = 1, 2. (26)

The following procedure corresponds to the friction algorithm proposed by Sauer and De Loren-
zis (2015), but extended to a general sliding threshold tslide. For the derivation of the resulting
equations we refer to the above-mentioned paper. The key idea is to decompose the convective
coordinates, ξαp , of the projection point into components that are either related to irreversible
sliding, ξαs , or to reversible (“elastic”) sticking, ∆ξαe (cf. Eq. (9)). As described in detail in the
following, for sliding the traction is determined such that it satisfies Eq. (18); see also Fig. 5.

Given all quantities at a pseudo-time step tn, one proceeds to the next step tn+1 as follows:

1) Assume tangential sticking and compute a corresponding trial traction (Fig. 5)

tn+1
trial = εt

[
xn+1
`

(
ξn+1

p

)
− xn+1

` (ξns )
]
. (27)

The large, but finite, penalty parameter εt is used for regularization, i.e., to allow for
a small, reversible tangential gap, given by xn+1

`

(
ξn+1

p

)
− xn+1

` (ξns ). εt is visualized in
Fig. 3(b) for model DI, and e.g. in Fig. 4(d) for model EA.

2) Insert tn+1
trial into the criterion

fs

(
tn+1
trial , t

n+1
slide

)
=
∥∥tn+1

trial

∥∥− tn+1
slide (28)

to check for sticking or sliding:

(a) If fs < 0, the point xp is sticking tangentially; thus

tn+1
t = tn+1

trial , ξαn+1
s = ξαns , α = 1, 2. (29)

(b) If fs ≥ 0, the point xp is sliding, and an additional correction is required to determine
the actual traction tn+1

t such that it satisfies fs = 0. Regarding Fig. 5, in this case
the trial traction lies outside the domain enclosed by the colored surface, and must
be mapped back onto this surface. First compute the incremental update of the
Lagrange multiplier in Eq. (24),

∆γn+1 =
fs

(
tn+1
trial , t

n+1
slide

)
εt

, (30)

and then determine the updated coordinates ξαn+1
s (α = 1, 2) associated with sliding

as well as the corresponding tangential traction,

ξαn+1
s = ξαns + ∆γn+1nn+1

t · aαn+1
p , nn+1

t =
tn+1
trial∥∥tn+1
trial

∥∥ , (31)

tn+1
t = tn+1

trial − εt ∆γn+1nn+1
t . (32)

Eq. (31) is based on the approximation aαn+1
s ≈ aαn+1

p (see Sauer and De Lorenzis (2015))4,
and on the discretization of Eq. (26) by means of the implicit Euler method.

The traction tn+1
t in Eq. (32) satisfies Eq. (25). In the case of frictionless sliding (i.e., tn+1

slide = 0),
one simply sets tn+1

t = 0 and ξαn+1
s = ξαn+1

p .

4The approximation simplifies the linearization of the computational formulation considerably, while intro-
ducing a negligible error that is proportional to 1/εt.
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3.2 Contact contributions to the finite element equations

In order to discretize the corresponding model equations in space, we use a standard Galerkin
finite element (FE) method. For the sake of brevity we only discuss the contact contributions
here. To this end, we introduce a global FE contact force vector fc(u), which depends on the
global displacement vector u for all finite element nodes. Following the sign convention by
Laursen (2002), we now decompose fc(u) into the normal force fn due to adhesion and repulsion
and the tangential force ft due to friction,

fc(u) := fn(u)− ft(u). (33)

The vectors fn and ft are obtained by assembling the contributions from each finite element on
the contact surfaces. For contact between two deformable bodies, we consider the two-half-pass
approach by Sauer and De Lorenzis (2013, 2015). We thus iterate over the elements of both
contact surfaces (k = 1, 2), and compute the elemental contribution to the normal forces from

f en,k = −
∫

Γe
c0k

NT
k T n,k dAk. (34)

Here, Γec0k ⊂ ∂cBh0k, T n,k is given by Eq. (10), and the array Nk contains the nodal shape
functions associated with the current element. The tangential forces are determined similarly,

f et,k = −
∫

Γe
ck

NT
k tt,k dak = −

∫
Γe
c0k

NT
k T t,k dAk, (35)

depending on whether the model is defined in the current (model DI, Eq. (14)) or the reference
configuration (model EA, Eq. (16)).

Since the vector fc is nonlinear with respect to u, we linearize it to solve the governing equations
with Newton’s method. To this end, we derive the tangent matrix associated with fc, denoted
kc := ∂fc/∂u. Like the global contact forces fn and ft, kc is assembled from the contributions of
each single surface element, see App. A. Finally, we evaluate the integrals in Eqs. (34) and (35)
and App. A by means of Gaussian quadrature.

3.3 Active set strategy

As seen in Figs. 4(a), 4(c) and 4(e), the curve Tslide(gn) of model EA is C1-continuous at the
cutoff distance gcut only if gcut = gmax (i.e., scut = 1). Otherwise, it is C0-continuous at gcut.
Moreover, we must generally distinguish between discrete states of contact like tangential stick-
ing and sliding. Following Sauer and De Lorenzis (2015), we here consider an active set strategy.
To this end, we slightly modify the two active sets that are often used for unilateral and fric-
tional contact: (i) “(compressive) contact vs. no contact” and (ii) “sticking vs. sliding”. Since
the function Tn(gn) in Eq. (10) is continuous anyway (and thus does not require any active
set at all), we simply replace active set (i) by “frictional vs. frictionless sliding”. Note that
it is also reasonable to define certain cutoff values for which both the normal and tangential
contact stresses are considered to be negligible. This on one hand increases the efficiency, and
on the other hand circumvents computational problems in the sliding algorithm or closest point
projection (due to large separations of the bodies).

For changes in the (discrete) contact states, the FE force vector fc(u) actually becomes non-
differentiable, cf. Apps. A.2.1 and A.2.2. If the applied load step is too large, or if large parts of
the contact surface change their state at once, this may lead to a phenomenon called cycling, or
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also zig-zagging (Wriggers, 2006). That is, the solution algorithm alternates between two states
in consecutive iterations. This can be generally overcome e.g. by means of semi-smooth Newton
methods. Instead, we here pursue a strategy that is based on a temporary “freezing” of the
active sets; see also Wriggers (2006). Accordingly, we keep the active sets fixed at the beginning
of the iterations, until the residual falls below a certain tolerance. We then assume that the
changes in the state are sufficiently small to prevent cycling. Further improvement could be
made by adjusting the load step adaptively when the body starts or stops (full) sliding, in
particular when it changes its direction of sliding.

A special (and careful) treatment may be required for model EA with scut = 0, i.e., gcut = geq

(see also the end of Sect. 2.3.2). In this specific case, the switch from a non-zero to zero frictional
resistance is directly located at the equilibrium distance, geq, where the normal traction is
zero (Fig. 4(a)). Thus, for setups in which large parts of the contact area are close to this
distance (like those in Sects. 4.1 and 4.3), the tangential traction can then alternate back
and forth between the states of frictional and frictionless sliding. This may either require
unnecessarily small load steps, or even lead to a failure of the freezing strategy. As demonstrated
in Mergel (2017), however, this issue is successfully overcome by choosing a cutoff distance gcut

that is slightly smaller than geq. For such a case we recommend considering Eq. (15) with
a parameter scut that is negative but close to zero (e.g., scut = −0.001). Thus, the contact
pressure must first exceed a certain threshold to generate a frictional resistance.

3.4 Validity, restrictions, and possible extensions of our models

Let us now discuss the validity and restrictions of our models, in particular regarding computa-
tional aspects. For physical assumptions we refer to Mergel et al. (2019). For the properties of
the two-half-pass algorithm applied here, see Sauer and De Lorenzis (2013, 2015). A possible
extension of our models to incorporate sticking friction larger than the sliding resistance tslide

or Tslide is briefly addressed in Mergel (2017).

3.4.1 Jump-off and jump-to contact

Strong adhesion combined with soft materials may cause sudden jump-off or jump-to contact, see
e.g. Chaboche et al. (2001) and Sauer (2006). In that case the (de-)bonding process inherently
becomes physically unstable, and the assumption of quasi-static conditions (as considered in this
work) is not valid anymore. According to Raous (2011), this is caused by the non-convexity
and the “softening character” (i.e., a decreasing slope with increasing distance) of traction-
separation laws like that in Fig. 2. A similar effect can occur also for sliding friction (Mróz,
2002).

The issues mentioned above can be generally avoided by solving the model equations with an
arc length or continuation method (Sauer, 2006). Another possibility would be to account for
a viscous (velocity-dependent) regularization as done in several cohesive zone models involving
friction (Raous et al., 1999; Chaboche et al., 2001; Del Piero and Raous, 2010). This approach
is reasonable because viscous effects often occur not only in the bulk material but also at the
interface. Besides, it would also be possible to account for inertial effects and to consider the
problem to be dynamic. Since the study of dynamic and viscous effects lies outside the scope
of this paper, in the following application examples we focus on the attachment or detachment
process itself, but not on sudden jump-to or jump-off contact, respectively.
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3.4.2 Going from the nano- to the macroscale

As shown in Fig. 2, the normal contact traction Tn from the adhesion model by Sauer and
Wriggers (2009) decays rapidly for increasing distances gn: Depending on the involved materials,
Tn typically acts only within the range of several (tens of) nanometers. In addition, if gn

approaches zero, the traction increases to infinity while its slope approaches minus infinity.
These issues can cause numerical problems on one hand, and require a fine spatial resolution
(finite element size and applied displacements) on the other hand.

We thus recommend the following strategy to avoid such problems. First, a sufficiently accurate
surface discretization is crucial to reduce artificial oscillations (Sauer, 2011), which could cause
convergence problems in the numerical solution procedure. In Sects. 4 and 5 we thus use specially
surface-enriched finite elements based either on Hermite (Sauer, 2011) or Non-Uniform Rational
B-Spline (NURBS) shape functions (Corbett and Sauer, 2014, 2015). Second, we recommend
regularizing the normal tractions as discussed in Sect. 2.2. Third, it is generally possible to
calibrate the model parameters from Sect. 2.2 (AH, Tmax, and Wadh) such that they match
experimental data. This leads to a larger length parameter r0, which automatically regularizes
the curve Tn in Eq. (10). For further comments and restrictions see Mergel et al. (2019).

4 Application examples

With the three following examples we illustrate the properties and qualitative behavior of
our two models, and demonstrate the generality of our method. We consider not only dif-
ferent dimensions (2D and 3D), but also different contact types (rigid/deformable and de-
formable/deformable). A fourth, and more detailed, example follows in Sect. 5.

4.1 2D peeling of a thick strip from a rigid surface

We first consider a massless, beam-like strip that initially adheres to a flat and rigid substrate
(Fig. 6). Along this interface, the normal traction is initially zero, so that the gap between
the strip and the substrate is equal to the equilibrium distance gn = geq from Fig. 2. The
strip is then peeled off the substrate, moving the midpoint of its right boundary by the vertical
displacement u. Such a setup is representative e.g. for tape peeling.

 

120L0

60L0

30L0

Figure 6 2D strip peeling: Setup (left) and three peeling states for model EA with gcut = gmax

and µEA = 0.01 (right); the colors show the first invariant of the Cauchy stress, trσ, divided
by E.
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To avoid shear locking due to bending, we discretize the bulk of the strip with 320 × 8 quadratic
finite elements. The contact surface is further enriched by quadratic NURBS shape functions
(Q2N2.1 elements) (Corbett and Sauer, 2014). In this example, as well as in the following
subsection, we consider the Neo-Hookean material model stated in Bonet and Wood (1997).
For the geometry, material, and contact parameters see Tab. 1. All results, shown here and in
the following, are normalized by Young’s modulus E and the unit length L0.

E ν AH r0 L0

2 GPa 0.2 10−19 J 0.4 nm 1 nm

Table 1 2D strip peeling: Model parameters.

4.1.1 Contact tractions

Fig. 6 illustrates the peeling of the strip for model EA, gcut = gmax, and a small friction
parameter (µEA = 0.01). Figs. 7(a) and 7(b) show the normal and tangential contact tractions
directly before and after the onset of peeling (u = 5L0 and 10L0, respectively), as well as for
two of the configurations shown in Fig. 6. As seen in Fig. 7(a), for small u (like 5L0), adhesion
induces large tensile normal tractions at the right boundary of the adhesive zone. When these
tractions reach Tmax (at u ≈ 7L0), first detachment occurs, and a peeling front nucleates. This
front then propagates to the left, visible as a sharp peak in Fig. 7(a). Some distance ahead of
the peeling front, the normal tractions are repulsive due to the finite bending stiffness of the
strip. Together with the peeling front, also a sliding front nucleates and propagates to the left
(Fig. 7(b)). This front marks the boundary between the region still sticking to the substrate
and the region already sliding. Note that a sliding region ahead of the peeling front is indeed
observed in experiments (see e.g. Newby and Chaudhury (1997)). When the sliding front has
reached the left boundary of the strip, the (remaining part of) the contact interface is fully
sliding. As expected, for model EA the tangential traction distribution looks similar to the
normal traction distribution within the sliding region.

(a) Normal traction for model EA. (b) Tangential traction for model EA.

Figure 7 2D strip peeling: Traction at the contact area (in dependence of the horizontal
position X normalized by L0) for model EA with µEA = 0.01 and gcut = gmax; the dash-dotted
lines in Fig. (b) indicate sliding.

When repeating the simulation from Fig. 7 with model DI, a friction parameter of µDI = µEA =
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0.01, and the same cutoff distance (gcut = gmax), we find the following behavior (not shown):
The normal tractions are almost identical to those from model EA, while the tangential tractions
remain constant at τDI = µDI Tmax within the entire sliding region. In addition, the sliding front
evolves very similarly in both models.

4.1.2 Peeling forces

Let us now examine the horizontal and vertical pull-off forces for different friction parameters,
focusing on model EA (Figs. 8(a) and 8(b)).

(a) Horizontal force∗ vs. displacement. (b) Vertical force∗ vs. displacement.

(c) Peeling and sliding lengths vs. displacement. (d) Fracture energy∗ vs. peeling length.

Figure 8 2D strip peeling: (a) & (b) Horizontal and vertical forces∗ (∗: per out-of-plane
width); solid colored lines: model EA with gcut = gmax; dashed colored lines: model EA with
gcut = (geq + gmax)/2; solid gray lines: model DI with µDI = µEA and gcut = gmax; (c) nominal
peeling length Lpeel (solid) and nominal sliding length Lslide (dash-dotted); (d) fracture energy∗;
the white dots in Figs. (a) – (d) mark the configurations plotted in Fig. 6; the filled squares
indicate the onset of full sliding rounded to next integer value of u.

With increasing friction parameter µEA, large parts of the strip initially remain sticking to
the substrate, leading to both increasing horizontal and vertical forces. As also illustrated
in Figs. 8(a) and 8(b), the force curves change only slightly when a different value for gcut

(sufficiently larger than geq, see Sect. 2.3.2) is used. Moreover, in analogy to the contact
tractions, using model DI instead (with µDI = µEA and gcut = gmax) does not cause any
significant changes in the forces. The good agreement between models EA and DI is generally
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expected if (i) the surface stretches are small (such that Jck, Jc` ≈ 1, and thus tt,k ≈ T t,k),
(ii) the contacting interfaces are mainly separated by the equilibrium distance geq, and (iii) if
the model parameters are chosen as

geq < gcut ≤ gmax, µDI := µEA
|Tn(gcut)|
Tmax

. (36)

Note that models EA and DI will behave differently from each other if major parts of the
contact area are in tension or compression, or if the surface stretch has a strong influence.
This is discussed in the following two examples. Further deviation may be caused by the
regularization parameter kDI of Eq. (14). For model DI the regularized traction law in Eq. (14)
is C1-continuous for arbitrary cutoff distances gcut. In contrast, Eq. (16) for model EA has a
kink at gcut if gcut 6= gmax (see e.g. Fig. 4(c)). Nevertheless, due to our active set and freezing
strategy (Sect. 3.3), our algorithm works robustly for all cases investigated so far.

To understand both the shape of the force curves in Figs. 8(a) and 8(b) and the evolution of their
maximum when varying the friction parameter µEA, we next examine the evolution of the peeling
and sliding fronts during peeling. Fig. 8(c) hence shows the nominal length Lpeel of the part
that is peeled off the substrate already. It further illustrates the nominal sliding length, Lslide,
which we define as the initial contact length minus the nominal length of the currently sticking
part. The sliding front starts propagating directly after imposing a small, vertical displacement.
Larger friction parameters result in later propagation, because the local tangential tractions
must be larger to overcome the sliding threshold, Tslide (Eq. (16)). In contrast, the peeling front
nucleates (i.e., Lpeel > 0) only after a finite vertical displacement, u ≈ 20L0, where the precise
value slightly varies with µEA (Figs. 8(b) and 8(c)). At the nucleation of the peeling front, the
vertical force decreases afterwards for small µEA, but continues to increase (although with a
smaller slope) for the two largest values of µEA.

In the range of µEA considered here, we can distinguish between two types of evolution for Lpeel:
(i) For µEA . 0.02, the sliding front reaches the boundary of the strip (Lslide = 150L0) before
the peeling front nucleates (Lpeel > 0). In this case, Lpeel increases almost linearly, and the
strip detaches slightly earlier for increasing µEA. (ii) For µEA & 0.02, the sliding length has not
reached the limit of 150L0 before the peeling front nucleates. In this case, Lpeel initially evolves
independently from µEA. Then, when the entire strip starts sliding, Lpeel suddenly propagates
with a different slope, which abruptly causes the horizontal and vertical forces to decrease again
(Figs. 8(a) and 8(b)).

In the field of adhesive peeling, one quantity of major interest is the fracture energy, which is
required to separate a unit area from the interface (Creton and Ciccotti, 2016). To evaluate this
energy, we first compute the difference between the external work done during peeling and the
internal energy due to elastic deformation (∗ per out-of-plane width): ∆Π∗ = Π∗ext −Π∗int. The
fracture energy Γ∗, shown in Fig. 8(d), then corresponds to the derivative of ∆Π∗ with respect to
the peeling length, Γ∗ = ∂(∆Π∗)/∂Lpeel. Again, the behavior is found to be different for friction
parameters smaller and larger than ca. 0.02. Below this value, Γ∗ is essentially independent
from the peeling length. It is minimal for the frictionless case, for which Γ∗ approaches Wadh

from Fig. 2. This is expected because there is no dissipation due to friction, so that the fracture
energy corresponds to the work of adhesion per unit area. For increasing values of µEA, Γ∗ then
increases, because an additional energy is necessary to overcome frictional dissipation within the
sliding region, as discussed in Lu et al. (2007). For friction parameters beyond 0.02, the fracture
energy strongly increases (by a factor of 2 to 5) at full sliding (Lslide = 150L0). Afterwards,
large sliding distances are associated with each increment of u, inducing a much larger frictional
dissipation, and thus fracture energy.
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Our results suggest that the evolution of both the peeling forces and the fracture energy can
significantly depend on both the friction parameter and the finite size of the strip. For the two
highest friction parameters, the forces evolve very similarly at the beginning, because the sliding
region is still small compared to the initial contact length. This behavior is more related to the
behavior expected for peeling of adhesive tapes, for which the friction parameter is probably
considerably larger. Interestingly, our results in Fig. 8(d) predict that for small peeling lengths
(ca. 20− 60L0), the fracture energy reaches its maximum for a finite value of µEA ≈ 0.02. Such
a result is potentially of practical interest for the design of optimal adhesives. This could also
be tested experimentally, although we anticipate that the viscoelastic nature of real adhesives,
not accounted for here, may affect the fracture behavior significantly.

4.2 2D contact of two deformable cylinders

In this second example, we consider friction between Hertz-like solids. This setup is particularly
important for the field of tribology, because such solids are frequently used to represent either
micro-contact within rough surfaces or single contact between smooth solids. Although Hertz-
like geometries have been investigated in numerous studies (Vakis et al., 2018), their combination
with adhesion, friction, finite deformations, and hyperelasticity (as done here) is much rarer.

We consider two identical, deformable cylinders sliding along each other in plane strain (Fig. 9(a),
see their properties in Tab. 2). Their vertical positions are fixed such that their nominal overlap
is 25 % of their radius, R (Fig. 9(a)). We then impose a horizontal displacement u from 0 to 2R.
For each cylinder we use approximately 1, 500 elements and Hermite enrichment (Sauer, 2011)
at the contact surfaces. As discussed in Sect. 2.2, the volume change at the surfaces is approxi-
mated by J` ≈ Jc` in Eq. (10). Since in this example (and for our choice of parameters) Jc` has
only little influence (Mergel, 2017), we proceed with Jc` ≈ 1.

E ν AH r0 R

1 GPa 0.3 2.54 · 10−20 J 0.4 nm 40 nm

Table 2 2D contact of two deformable cylinders: Model parameters.

Figs. 9(b) to 9(d) show the two cylinders sliding across each other for three different adhe-
sion/friction models. Although the (two-half-pass) friction algorithm does not balance the
contact traction explicitly (Sauer and De Lorenzis, 2015), for each deformation state, the stress
fields of both cylinders are point-symmetric up to machine precision (not shown).

Fig. 9(b) corresponds to the frictionless, i.e. purely adhesive, case. The corresponding horizontal
and vertical forces (per out-of-plane width), acting on the lower cylinder, are shown as black
curves in Figs. 10(a) and 10(b). Even in the frictionless case, there exists a finite horizontal
force between the cylinders, caused by the geometrical setup. This force is positive (negative)
for u < R (u > R), where contact occurs on the trailing (leading) sides of the two asperities
(see also Fig. 9(a)). Thus, this setup cannot be reduced to an equivalent cylinder-plane contact
(as commonly done for two cylinders (Johnson, 1985)), because this would not capture any
horizontal forces.

Figs. 9(c) and 9(d) show analog snapshots for models EA and DI with a large friction parameter
(µEA = µDI = 0.9). In contrast to the previous example (where models EA and DI where almost
undistinguishable), the deformations of the cylinders considerably differ for both models, see
e.g. u = R. We thus investigate also the horizontal forces (Figs. 10(a) and 10(b)), while varying

18



(a) Problem setup.

u = 1R u = 1.5R u = 1.875R

(b) Frictionless adhesion.

u = 0.125R u = 0.5R u = 1R u = 1.5R u = 1.875R

(c) Model EA with µEA = 0.9.

u = 0.125R u = 0.5R u = 1R u = 1.5R u = 1.875R

(d) Model DI with µDI = 0.9.

Figure 9 2D contact of two deformable cylinders: (a) Setup; (b) – (d) deformation during sliding
for (b) frictionless adhesion or (c) & (d) models EA and DI with gcut = gmax, respectively; note
that the scaling of the colors (showing trσ /E) is adjusted for each deformation state.

both µEA and µDI. For µEA = µDI model EA systematically produces considerably larger forces
than model DI. This is explained by the fact that the normal contact tractions are strongly
compressible (unlike in the strip example), in particular when the two cylinders pass the apex
of each other. Such large normal tractions automatically increase the sliding threshold Tslide in
model EA, as can be seen in Eq. (16). In contrast, model DI depends on the normal traction
only implicitly, via a changing contact area. Compared to the horizontal force, the vertical force
(not shown) changes less with increasing µEA or µDI, especially for µDI ≤ 0.9.

In compression-dominated problems like this setup, the friction parameters µEA and µDI cannot
be related to each other via Eq. (36) anymore. We thus qualitatively compare cases that provide
similar maximum horizontal forces instead. One of these cases corresponds e.g. to µEA = 0.5 and
µDI = 3 (Fig. 10(c)). The shapes of the two corresponding curves are rather similar, suggesting
that the evolution of the horizontal force mainly results from the sum of the tractions, rather
than from their distribution, which differs in the two models. The main deviation can be seen
just before detachment of the cylinders, where model DI systematically predicts larger horizontal
forces as well as a more abrupt force drop.

The results stated above should be put more into perspective. If the cylinders were driven
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(a) Horizontal force∗ for model EA. (b) Horizontal force∗ for model DI up to µDI = 0.9.

(c) Comparison of models EA and DI. (d) Normal stress at trailing corner.

Figure 10 2D contact of two deformable cylinders: (a) – (c) Horizontal forces∗ (∗: per out-
of-plane width) acting on each body for models EA and DI, both with gcut = gmax; asterisks
indicate the horizontal displacement at which snap through would occur in a horizontally load-
controlled setup; (d) normal stress σyy /E at the (left) trailing corner of the bottom cylinder for
the cases from Fig. 9(b) – 9(d); the inset in Fig. (d) shows σyy /E along the base of the lower
cylinder for a displacement of u = 0.5R; the dots in Figs. (a) – (d) mark the configurations
shown in Fig. 9(b) – 9(d), respectively.

by a horizontal load instead of a displacement, a snap-through instability would occur at the
maximum of the F ∗x curves, marked with asterisks in Figs. 10(a) to 10(c). Note than in real
tribological tests, finite stiffness springs are used to drive the system, so that snap through
may occur even when the springs themselves are displacement-driven. Thus, in practice the
duration of contact may be much smaller than predicted in Figs. 10(a) to 10(c). Finally note
that increasing friction reduces both the possibility of negative forces and the tendency for a
snap-through before the (midpoints of the) cylinders have moved across each other (u = R).

The interaction between two cylinders, as considered here, has recently gained renewed attention
in the context of wear modeling. In particular, Molinari and co-workers performed atomistic
simulations to investigate the conditions for formation of debris when two circular asperities
collide tangentially. They found that, depending on the size of the formed junction, such
asperities can either deform plastically, or create debris via crack propagation (Aghababaei
et al., 2016). In the latter case, a crack nucleates at the trailing corner of each asperity, where
it connects to its underlying bulk (Fig. 9(a)). While the contact geometry is similar to ours, the
constitutive laws used by Aghababaei et al. (2016) are considerably different. They especially
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consider a perfectly adhering interface, at which particles coming into contact remain attached
to each other as they would be in the bulk. We suggest that our friction models could be used
to investigate the effect of a contact interface with a more realistic behavior, including finite
adhesion and friction.

To illustrate this, Fig. 10(d) shows the evolution of the normal stress at the (left) trailing corner
of the bottom cylinder, where crack nucleation starts in Aghababaei et al. (2016). Here, the
cases from Figs. 9(b) to 9(d) are considered. For high friction, like in case 9(c) with model EA,
the stress is always tensile (positive), with a maximum reached when the two cylinders pass each
other (u ≈ R). Assuming a critical stress at which de-bonding between the asperity and its rigid
base initiates, our simulations may allow to investigate for which parameters and geometrical
properties this de-bonding would occur. The outcome of such an investigation may not be
trivial, because both the stress profile along the base (see the inset in Fig. 10(d)) and the stress
evolution at the trailing corner can differ significantly for different models.

4.3 3D peeling of a tape-like membrane

We now study 3D peeling of a soft and compliant tape (Fig. 11(a) and Tab. 3), which is modeled
as a membrane (Sauer et al., 2014). Like other pure membrane models, this formulation only
captures in-plane stresses, but does not account for any bending moments.

E · T ν AH r0 L0

0.02 N/m 0.3 10−20 J 0.4 nm 1 nm

Table 3 3D peeling of a membrane: Model parameters; T denotes the thickness of the tape.

Initially, the entire lower surface of the tape is pre-stretched and attached to a rigid and motion-
less substrate. The (uniform) pre-stretch of the tape is chosen as λ = 1.001. This is sufficient
to avoid any local in-plane compression during peeling (which cannot be resisted by a pure
membrane). The frictional sticking to the substrate prevents the tape from directly shrinking
back to its un-stretched configuration. Afterwards, we start peeling off one side of the tape by
prescribing a displacement along the angle θ = 45◦. Note that this angle corresponds to the
direction of motion, and not to the angle between the tape and the substrate at the peeling
front.

Since (pure) membranes do not have any bending stiffness, the normal gap from Eq. (8) between
the tape and the plane always satisfies gn ≥ geq during peeling (in contrast to the behavior
observed in Sect. 4.1). From Fig. 2 then follows that the normal contact traction is purely
adhesive/tensile within the entire contact area. As a consequence, this particular setup cannot
be investigated with friction models that yield a tangential resistance only under compression.
Such models include both model EA with scut = 0 (corresponding to the classical Amontons-
Coulomb law for friction) and the model of Deng et al. (2012). Apart from that, even though it
would be possible to model tangential sticking by means of a cohesive zone model, the membrane
would slide without any frictional resistance after debonding.

The membrane is described by an incompressible Neo-Hookean material model (see Sauer et al.
(2014)) with the parameters given in Tab. 3. To exploit the symmetry of the tape shown in
Fig. 11(a), we discretize only one half of it by means of 540 quadratic NURBS (N2.1) elements
(Sauer et al., 2014), and apply suitable boundary conditions along the center line.
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(a) Problem setup and boundary conditions.

Sticking-dominated
peeling (µEA = 0.05)

1L0

3.5L0

6L0

8.5L0

11L0

13.5L0

Sliding-dominated
peeling (µEA = 0.01)

1L0

3.5L0

6L0

8.5L0

11L0

13.5L0

(b) Detachment at θ = 45◦ dominated by either sticking (top) or sliding (bottom) for model EA and gcut = gmax;
the colors show the logarithmic area stretch ln Jc; the figure shows both halves of the tape.

(c) Sticking-dominated peeling: µEA = µDI = 0.05. (d) Sliding-dominated peeling: µEA = µDI = 0.01.

Figure 11 3D peeling of a membrane: (a) Setup; (b) detachment at θ = 45◦ for strong and
weak friction; (c) & (d) forces in horizontal (dashed lines) and vertical (solid lines) directions
for models EA and DI, the dots mark the configurations of Fig. (b).
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Fig. 11(b) shows the peeling process once for a large and once for a small friction parameter,
leading either to strong sticking or immediate sliding. As can be seen in Figs. 11(c) and 11(d),
in both cases the forces in the vertical direction are very close to each other for models EA and
DI. The horizontal forces, however, are similar only for small friction. This is caused by the
flexibility of the tape (see also Fig. 11(b) top), for which the surface stretch Jck is not negligible
anymore. It also explains the differences between the behavior observed here and the results
from Sect. 4.1.2. Note that the kink in Figs. 11(c) and 11(d) appears at the onset of full sliding,
also as observed in Sect. 4.1.2.

As this example demonstrates, we are able to model adhesive friction even for very soft structures
exhibiting small or negligible bending stiffness. These include adhesive tapes as well as adhesive
pads of insects. Even though the bending stiffness of such adhesive pads is sufficiently large at
small length scales (in order to prevent self-sticking and resulting entanglement), at larger length
scales, the bending stiffness becomes negligible, as it scales with thickness cubed. The proposed
computational model is able to describe sliding friction during peeling also for negligible bending
stiffness, which would not be possible with conventional friction models or cohesive zone models.

5 Onset of frictional sliding for elastomer-like contact

Let us finally investigate adhesive friction between a smooth elastomer cap and a rigid substrate,
as considered experimentally e.g. in Sahli et al. (2018) and Mergel et al. (2019), theoretically
e.g. in Papangelo and Ciavarella (2019), and numerically considering linear elasticity (Khajeh
Salehani et al., 2019). To this end, we bring a rigid plate into contact with a deformable,
cylindrical cap by applying a constant normal force Fn (Fig. 12(a)). Due to adhesion between
the cap and the plate, this force can be compressive, zero, or even slightly tensile. Keeping Fn

constant, we then move the rigid plate horizontally, while keeping the lower boundary of the
cap fixed. As demonstrated in a short preliminary study (Mergel et al., 2019), model DI is
well-suited to investigate this specific setup.

(a) Problem setup. (b) Sliding under zero normal load.

Figure 12 Adhesive friction of a 2D cap: (a) Setup (the height of 10L0 refers to the unde-
formed cap before contact); (b) contact tractions (top panel) as well as deformation and stress
distribution (bottom panel) at the interface during full sliding for Fn = 0 according to model DI
with gcut = gmax and µDI = 1; the vertical axis of the deformation plot is stretched by a factor
of 2; the colors show the first invariant of the Cauchy stress, trσ /E; the dashed line indicates
the contour of the cap before horizontal sliding (u = 0).

We here consider 2D plane-strain conditions, nonlinear and nearly incompressible Neo-Hookean
material behavior (Bonet and Wood, 1997), and the model parameters from Tab. 4. The cap
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itself consists of 42,300 linear elements with quadratic NURBS enrichment (Q1N2.1 elements)
on the surface (Corbett and Sauer, 2014). To prevent volumetric locking arising from the
near-incompressibility, we consider reduced integration for the volumetric part of the material.
For the sake of facilitating a comparison with 3D experimental and theoretical results, in the
following we will introduce an unspecified out-of-plane width of the cap, referred to as W .

E ν Tmax Wadh L0

2 MPa 0.49 0.33 MPa 0.027 J/m2 1µm

Table 4 Adhesive friction of a 2D cap: Model parameters.

5.1 Adhesive friction between cap and substrate

Fig. 12(b) illustrates the contact interface deformation for sliding at Fn = 0, including the stress
distribution in the bulk of the cap as well as the corresponding contact tractions. The negative
peaks in the normal traction indicate adhesive stresses at the two contact edges. Fig. 13(a)
shows the tangential force versus the prescribed displacement for different normal forces, while
Fig. 13(b) depicts the corresponding contact length Lc (see also Fig. 12(a)). The combination
of both, i.e., the contact length in dependence of the tangential force, is shown in Fig. 13(c).
We find that for all investigated normal loads (compressive or tensile), the contact length is a
decreasing function of the tangential force. By nature of model DI, this decrease stops when all
points within the contact have reached the frictional shear strength µDI Tmax (see the squares).
This explains why all curves in Fig. 13(c) end at the dotted line.

For the two shortest initial contact lengths (black solid lines in Figs. 13(a) to 13(c)), Newton’s
method applied in the (quasi-static) computation stops converging to a unique solution when the
contact length decreases down to a certain, common value. A likely explanation is that for these
cases, the tensile normal force is sufficiently large so that the cap snaps from the substrate before
full tangential sliding. This behavior can also be observed in experiments (Waters and Guduru,
2010; Mergel et al., 2019). To test our hypothesis, we consider the generalized plane-strain JKR
model by Chen et al. (2008), and compute the critical length Ldetach for which the cap detaches
from the substrate. Inserting the parameters from Tab. 4 results in Ldetach = 4.42L0, which
is very close to the smallest possible lengths observed in our simulations (see the dashed black
lines and the black crosses in Figs. 13(b) and 13(c)). This good agreement suggests that the
lower limit for the contact length is indeed related to a (physically unstable) contact separation.

Let us now compare our results with experiments on shearing of smooth elastomer spheres on
glass plates. As explained in Mergel et al. (2019), these comparisons are only qualitative due
to length scale differences between computations (µm range, related to the adhesion model by
Sauer and Wriggers (2009)), and experiments (mm range). In such experiments, the initially
circular contact area shrinks to an ellipse during the onset of sliding (Mergel et al., 2019; Sahli
et al., 2018, 2019). Sahli et al. (2019) demonstrated experimentally that (i) the width of the
contact area perpendicular to the direction of sliding nearly remains constant; and (ii) the
length Lc parallel to the direction of sliding is well-captured by the quadratic fit

Lc(Ft) = Lc,0 − ξ F 2
t . (37)

In Eq. (37), Lc,0 is the initial contact length (at Ft = 0), and ξ is a parameter that is independent
from Ft, but depends on the applied normal load, or equivalently the initial contact length.
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(a) Tangential force vs. horizontal displacement. (b) Contact length vs. horizontal displacement.

(c) Contact length vs. tangential force. (d) Parameter ξ vs. initial contact length.

Figure 13 Adhesive friction of a 2D cap: (a) & (b) Tangential force and contact length, obtained
for model DI (gcut = gmax, µDI = 1) and different normal forces; the two solid black lines indicate
contact vanishing under sufficient shear; (c) contact length in dependence of the tangential force;
the five grey lines correspond to non-adhesive friction (Sect. 5.3); (d) parameter ξ from Eq. (37)
fitted for all the cases from Fig. (c) with (non-vanishing) adhesive and non-adhesive contact.

As the dash-dotted lines in Fig. 13(c) indicate, Eq. (37) is also well-suited to fit the curves from
our numerical results, using the least-squares method. Although the caps in the experiments
by Sahli et al. (2019) and those in our simulations have different dimensions (spherical in the
experiments vs. cylindrical in the simulations), we observe consistent behavior. This motivates
us investigating whether the dependence of the parameter ξ on the initial contact length/area
is similar, too. Sahli et al. (2019) observe for their experiments ξ(Ac,0) ∼ A−2

c,0 , with Ac,0 being
their (circular) initial contact area. Regarding the initial contact length Lc,0, this translates
with Ac,0 ∼ L2

c,0 into ξ(Lc,0) ∼ L−4
c,0 . For comparison, Fig. 13(d) shows the parameter ξ fitted

for our numerical results in dependence of Lc,0. As can be seen, these data are also linear with

logarithmic scales. Our simulations yield ξ(Lc,0) ∼ Lβc,0 with β = −3.71, which is in rather good
agreement with the −4 inferred from Sahli et al. (2019).

Note that the experimental results by Sahli et al. (2018, 2019) also match well with the fracture-
mechanics models by Papangelo and Ciavarella (2019) and Papangelo et al. (2019). Those
models describe the evolution of the contact area of adhesive sphere-plane contact under shear,
assuming either a circular or an elliptic contact area, respectively. For an initially circular area
and for small Ft, Papangelo and Ciavarella (2019) predict the relation Ac(Ft) = Ac,0 − αF 2

t
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with α(Ac,0) ∼ A−5/4
c,0 . This equation can be related to the parameter ξ from Eq. (37) as follows:

Motivated by their experiments, Sahli et al. (2019) assume that the contact area shrinks only
along the shear direction and has an elliptic shape afterwards. With these two assumptions,
the authors show that the exponents of α and ξ differ by the value −1/2, so that one expects

ξ(Ac,0) ∼ A
−7/4
c,0 . This, in turn, translates into ξ(Lc,0) ∼ L

−7/2
c,0 , which gives an exponent close

to the −3.71 fitted for our numerical results (Fig. 13(d)). In summary, our exponent β lies in
between the two values observed experimentally and determined theoretically.

Motivated by this good agreement, we investigate another finding by Papangelo et al. (2019).
The authors conclude that the contact area does not always decrease as F 2

t , but rather as F ηt ,
where η is an exponent depending also on the normal load. η is found to be close to 2 only
for sufficiently large normal loads (such as those applied in Sahli et al. (2018, 2019)), while
increasing with smaller loads. To test whether our simulations produce a similar behavior,
in Fig. 14(a) we plot the evolution of (1 − Lc /Lc,0) as a function of Ft. We here consider
the adhesive cases from Fig. 13 (except those for which the contact area vanishes before full
sliding). For each normal force, the curves are linear in logarithmic scales, indicating that
indeed (1 − Lc /Lc,0) ∼ F ηt . The least-square fitting of η to the numerical results is shown as
dashed lines in Fig. 14(a).

(a) Contact length vs. tangential force (logarithmic). (b) Parameter η from Fig. (a) vs. normal force.

Figure 14 Adhesive friction of a 2D cap: (a) Logarithmic representation of the contact length
in dependence of the tangential force as considered in Papangelo et al. (2019); the figure shows
the adhesive cases from Fig. 13 with stable (non-vanishing) contact; (b) parameter η (fitted
from (1− Lc /Lc,0) ∼ F ηt , and illustrated in Fig. (a) as dotted lines) versus the normal force.

Fig. 14(b) shows the evolution of the fitted exponent η as a function of the normal force Fn.
Although η monotonously decreases with increasing Fn, it is close to 2 for all considered normal
loads, explaining why the quadratic fits in Fig. 13(c) are rather good. Overall, both plots in
Fig. 14 are in good qualitative agreement with those of Fig. 10 in Papangelo et al. (2019).

To summarize, even though we have different contact dimensions here, our 2D simulations agree
very well with both experiments (Sahli et al., 2018, 2019) and theoretical models (Papangelo
and Ciavarella, 2019; Papangelo et al., 2019) for adhesive friction of smooth elastomer spheres
and glass plates.
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5.2 Compressible vs. nearly incompressible material

Since most experiments on the shear-induced reduction of the contact area include elastomers
(Savkoor and Briggs, 1977; Waters and Guduru, 2010; Sahli et al., 2018; Mergel et al., 2019), all
simulations from Figs. 13 and 14 are based on nearly incompressible material. To test whether
our findings also extend to compressible materials, we repeat the simulations discussed in the
previous section with ν = 0.4 (instead of 0.49). These new results are shown in the supplemen-
tary material as Fig. S1. Below, we just summarize both common points and differences with
respect to the nearly incompressible case.

Overall, the qualitative behavior does not change, meaning that the main features of the onset of
sliding of Hertz-like contact is not specific to incompressible materials. Only small quantitative
differences can be observed. In the compressible case: (i) both the initial contact length and
the final tangential forces are slightly larger; (ii) the exponent β is −3.54 rather than −3.71;
and (iii) exponent η approaches slightly smaller values, so that the quadratic fits of the Lc/Ft

curves are slightly less accurate.

5.3 Adhesive vs. non-adhesive friction

The good agreement found in Sect. 5.1 between our results and the fracture-based adhesion mod-
els of Papangelo and Ciavarella (2019) and Papangelo et al. (2019) suggest that, in the absence
of adhesion, the contact area would not decrease under shear. With our numerical model, we are
able to test this hypothesis under more realistic assumptions, such as finite deformations, and
adhesion/friction described explicitly rather than being lumped in a phenomenological mode-
mixity function. Thus, we now consider five additional cases without adhesion, simply setting
the normal traction Tn in Eq. (10) to zero for gn > geq. The normal forces are chosen such that
the initial contact lengths are close to five adhesive cases (while the latter require a considerably
smaller normal load).

As the five grey curves in Fig. 13(c) show, the contact length decreases under tangential shear
even in the absence of adhesion. This observation alone implies that, in contrast to the prevailing
view in the literature, adhesion is not necessary to generate a shear-induced decrease of the
contact length. The curves still seem to be well-fitted by the quadratic decay (37), but the
decrease in Lc is lower than for the adhesive cases. As a consequence, the reduction parameter ξ
also becomes smaller for the adhesionless cases (Fig. 13(d)), indicating that adhesion enhances
the amount of area reduction.

Assuming that ξ still follows a power law of the form ξ(Lc,0) ∼ Lβc,0, its exponent is found to be
β = −2.42 (instead of −3.71 with adhesion). This difference suggests that adhesion influences
the area reduction especially for small initial contact lengths or, equivalently, for small normal
loads. The enhancement due to adhesion, expressed by the factor (ξadh − ξnon−adh)/ξnon−adh,
is e.g. +163 % for Lc,0 ≈ 8.5L0, but only +24 % for Lc,0 ≈ 15L0 (Fig. 13(d)). For this
specific setup, we thus expect adhesion to play a negligible role for an initial contact wider than
ca. 17L0. Finding a general prediction for Lc,0 beyond which adhesion is not relevant anymore
is an interesting question left for future studies.

If we (in theory) considered contact between an incompressible, linearly elastic material and a
rigid half-space, we would expect the normal and tangential displacements in the bulk to remain
uncoupled (Johnson, 1985). In that case, the tangential shear would not have an influence on
the contact length. From this we can conclude that in the adhesionless case, the reduction of
the contact length is expected to mainly result from the nonlinear deformation of the cap. This
assumption has recently been confirmed in 3D simulations for adhesionless friction between a
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hyperelastic sphere and a rigid plane under high normal loads (Lengiewicz et al., 2020). That
paper identifies various elementary mechanisms all contributing to changes in the contact area.
Investigating those mechanisms with our model, and comparing their influence with the 3D case,
is again a promising topic for future work, but beyond the scope of this paper.

6 Conclusion

This work provides a computational framework to incorporate theoretical models for local adhe-
sion and friction into 3D, large-deformation simulations. These models include the two theoret-
ical continuum models DI and EA, which were recently proposed by Mergel et al. (2019). Such
models are applicable to natural and technical systems, in which friction is either considerably
influenced or purely dominated by adhesive effects. Up to a certain distance of the adhering
surfaces, both models DI and EA capture friction even for zero or tensile contact tractions.
This distinguishes them from existing approaches, and is motivated by soft bio-adhesive pads
that are able to generate friction even under tensile normal loads.

While Mergel et al. (2019) contains the motivation of the models DI and EA, e.g. in terms of new
experimental results, in the first part of this article we derive the corresponding model equations
necessary for a 3D, large-deformation finite element (FE) formulation. We then describe the
algorithmic treatment of sticking and sliding friction, using the unbiased friction algorithm by
Sauer and De Lorenzis (2015). Finally, we state the resulting contact FE forces as well as their
tangent matrices for two deformable solids in 3D.

In the second part, we investigate various application examples to illustrate the capabilities
of our simulation framework, as well as the physical properties of models DI and EA. The
considered systems include flexible tapes with a negligible bending stiffness, for which sliding
friction cannot be modeled with existing approaches like cohesive zone or other friction models.
Overall, although qualitative, our results provide interesting perspectives for future studies,
e.g. in the field of wear, or for the design of adhesives. It would also be promising to apply our
peeling strip model to horizontal peeling, as reported experimentally for elastomers e.g. in Ponce
et al. (2015). Besides, our models are suitable to computationally investigate peeling of gecko
spatulae (Mergel, 2017; Gouravaraju et al., 2020a,b), or “friction hairs” at the feet of insects
(Mergel, 2017). They can be further combined with a geometrically exact beam formulation
(Sauer and Mergel, 2014), as done in Mergel (2017).

In the third part of this article, we finally study in more detail an example that is inspired by
the onset of sliding of Hertz-like elastomer-glass contact. To this end, we investigate friction
of a soft cap and a rigid plate to compare our results both with experimental findings (Sahli
et al., 2018, 2019) and theoretical investigations (Chen et al., 2008; Papangelo and Ciavarella,
2019; Papangelo et al., 2019). As these results demonstrate, our computational model is able
to capture remarkably well the qualitative behavior of smooth elastomer-glass interfaces. Our
findings suggest that the shear-induced area reduction of such interfaces is not specific to (nearly)
incompressible materials. They also suggest that adhesion is not a necessary ingredient to model
this phenomenon, but enhances an effect due to finite, non-linear material deformations. These
results contribute to the current debate on the shear-induced area reduction in elastomer contact
(Sahli et al., 2018, 2019; Menga et al., 2018, 2019; Mergel et al., 2019; Papangelo and Ciavarella,
2019; Papangelo et al., 2019; Khajeh Salehani et al., 2019; Scheibert et al., 2020; McMeeking
et al., 2020; Wang et al., 2020; Lengiewicz et al., 2020).
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A Tangent matrices for adhesive and frictional contact

This section summarizes the tangent matrices that are required for the linearization of the
contact terms in the governing equations (Sect. 3). For details on the derivation of these
matrices we refer to Sauer and De Lorenzis (2013, 2015) and Mergel (2017).

As becomes apparent in Fig. 1, the normal gap gn, and hence also the elemental contact force
f ec,k = f en,k − f et,k, depend on the surfaces of both interacting bodies, k, ` = 1, 2, k 6= `. For
linearization we thus need the following two tangent matrices

kec,kk =
∂f ec,k
∂uek

, kec,k` =
∂f ec,k
∂ue`

, (38)

where the vector uek contains the nodal displacements for element Γeck, and ue` is the displacement
vector of all elements Γec` that are affected by Γeck. In analogy to Eq. (33), the tangent matrices in
Eq. (38) can be decomposed into the contributions kec,kk = ken,kk−ket,kk and kec,k` = ken,k`−ket,k`.

A.1 Tangent matrices for normal (adhesive and repulsive) contact

For normal contact (Sect. 2.2) with θk ≡ 1 and J` ≈ Jc`, the first matrix is given by

ken,kk = −
∫

Γe
c0k

NT
k

∂T n,k

∂xk
Nk dAk, (39)

where
∂T n,k

∂xk
=
T ′n
Jec`

np ⊗ np +
Tn

Jec`

∂np

∂xk
− Tn

(Jec`)
2 np ⊗

∂Jec`
∂xk

, (40)

and

T ′n =
∂Tn

∂gn
= − AH

2πr4
0

[
1

5

( r0

gn

)10
−
( r0

gn

)4
]
, (41)

∂np

∂xk
=

1

gn

[
1− np ⊗ np − cαβp ap

α ⊗ a
p
β

]
. (42)

The scalar Jec` is the surface stretch at projection point xp: Jec` = ‖ap
1 × a

p
2‖ / ‖A

p
1 ×A

p
2‖ (see

also Eq. (11)). The derivative of Jec` with respect to xk can be computed from

∂Jec`
∂xk

= Jec`,α c
αβ
p ap

β, Jec`,α :=
∂Jec`
∂ξαp

= Jec`

[
aβp ·

∂ap
β

∂ξα
−Aβ

p ·
∂Ap

β

∂ξα

]
. (43)

In Eq. (42), 1 denotes the identity tensor, ap
α and np are given by Eqs. (4) and (6), and cαβp are

the components of the matrix[
cαβp

]
=
[
ap
αβ − gn

(
np · ap

α,β

)]−1
, ap

α,β =
∂aα(ξ)

∂ξβ

∣∣∣∣
ξ= ξp

; (44)

see Eq. (5). The second tangent matrix, containing the derivatives with respect to the neigh-
boring nodes ue` , is determined from

ken,k` = −
∫

Γe
c0k

NT
k

∂T n,k

∂ue`
dAk (45)

and

∂T n,k

∂ue`
= −

∂T n,k

∂xk
N` −

Tn

Jec`

[
cαβp ap

α ⊗ np + np ⊗ aβp + gn

Jec`,α
Jec`

cαβp np ⊗ np

]
N`,β. (46)

In Eq. (46), N`,β contains the partial derivatives of the nodal shape functions N` with respect
to coordinate ξβ.
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A.2 Tangent matrices for tangential (sticking and sliding) contact

For a friction model stated in the reference configuration (like model EA), the associated tangent
matrices have a form that is very similar to Eqs. (39) and (45):

ket,kk = −
∫

Γe
c0k

NT
k

∂T t,k

∂xk
Nk dAk, ket,k` = −

∫
Γe
c0k

NT
k

∂T t,k

∂ue`
dAk. (47)

In contrast, for a model in the current configuration (like model DI), we must additionally
linearize the surface stretch appearing in dak = Jeck dAk; this leads to a second term in ket,kk,

ket,kk = −
∫

Γe
ck

NT
k

∂tt,k
∂xk

Nk dak −
∫

Γe
ck

NT
k tt,k ⊗ aαk Nk,α dak, (48)

ket,k` = −
∫

Γe
ck

NT
k

∂tt,k
∂ue`

dak, (49)

see e.g. Sauer and De Lorenzis (2015). The partial derivatives appearing in Eqs. (47) to (49)
are specified in the following for both sticking and sliding friction. Unless stated otherwise,
all quantities are evaluated at the current pseudo-time step, tn+1; see Sect. 3.1. Like in that
section, we first discuss the case for which the traction is defined in the current configuration.

A.2.1 Sticking friction

During sticking, the tangential traction corresponds to the trial value ttrial; see Eqs. (27)
and (29). The derivatives of this trial value with respect to both uek and ue` are given by

∂ttrial

∂xk
= εt c

αβ
p ap

α ⊗ a
p
β, (50)

∂ttrial

∂ue`
= −∂ttrial

∂xk
N`(ξp) + εt

[
N`(ξp)−N`(ξ

n
s )
]

+ εt gn c
αβ
p ap

α ⊗ np N`,β(ξp). (51)

Regarding a model in the reference configuration, one obtains the same two expressions for ∂T trial/∂uek
and ∂T trial/∂ue` , but with a penalty parameter that refers to the reference area, dAk.

A.2.2 Sliding friction

During sliding, the contact traction satisfies Eq. (25). After introducing

pt =
tslide

‖ttrial‖
[
1− nt ⊗ nt

]
, nt =

ttrial

‖ttrial‖
, (52)

and using Eqs. (50) and (51), we obtain

∂tt,k
∂xk

= pt

∂ttrial

∂xk
+ nt ⊗

∂tslide

∂xk
, (53)

∂tt,k
∂ue`

= pt

∂ttrial

∂ue`
+ nt ⊗

∂tslide

∂ue`
. (54)

In analogy, we obtain for the reference configuration

∂T t,k

∂xk
= P t

∂T trial

∂xk
+N t ⊗

∂Tslide

∂xk
, (55)

∂T t,k

∂ue`
= P t

∂T trial

∂ue`
+N t ⊗

∂Tslide

∂ue`
, (56)
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where

P t =
Tslide

‖T trial‖
[
1−N t ⊗N t

]
, N t =

T trial

‖T trial‖
. (57)

The derivatives in Eqs. (53) to (56) are either stated in App. A.2.1, or they are specified next.

A.2.3 Partial derivatives of the sliding threshold

1) Model DI (Sect. 2.3.1): The partial derivatives of tslide from Eq. (14) are given by

∂tslide

∂xk
= t′slide(gn)np,

∂tslide

∂ue`
= −t′slide(gn) NT

` np, (58)

where

t′slide(gn) =
∂tslide

∂gn
=

τDI kDI

1 + e kDI(gn−gcut)

[
1

1 + e kDI(gn−gcut)
− 1

]
. (59)

2) Model EA (Sect. 2.3.2): From Eq. (16) follows that

∂Tslide

∂xk
=
µEA

Jec`
T ′n(gn)np −

Tslide

Jec`

∂Jec`
∂xk

, (60)

∂Tslide

∂ue`
= −µEA

Jec`
T ′n(gn) NT

` np −
Tslide

Jec`

∂Jec`
∂ue`

. (61)

The surface stretch Jec` and its derivatives are given in Eqs. (11) and (43) and[
∂Jec`
∂ue`

]T

= −Jec`,α cαβp

[
ap
β

]T
N`(ξp) +

[
Jec` a

β
p + gn J

e
c`,α c

αβ
p np

]T
N`,β(ξp). (62)
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Supplementary material on

Contact with coupled adhesion and friction:
Computational framework, applications, and new insights

Janine C. Mergel, Julien Scheibert, Roger A. Sauer

(a) Tangential force vs. horizontal displacement. (b) Contact length vs. horizontal displacement.

(c) Contact length vs. tangential force. (d) Parameter ξ vs. initial contact length.

(e) Contact length vs. tangential force (logarithmic). (f) Parameter η from Fig. (e) vs. normal force.

Figure S1 Adhesive friction of a 2D cap: Test cases of Sect. 5.1 (panels analogous to Figs. 13
and 14), but for compressible material (ν = 0.4 instead of ν = 0.49).
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