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In this paper, we present result from a direct numerical simulation (DNS) of turbulent
�ow in a converging T-junction for both Newtonian (water) and non-Newtonian inelastic
�uid (dilute Xanthan Gum solution). Based on experimental data, the Bird-Carreau law
is used to capture the inelastic shear thinning property of the solution. For the Xanthan
solution, the viscosity at rest is about 100 times greater than the viscosity at high shear-
rate. A passive scalar is introduced in the transverse branch to investigate the mixing in such
con�guration. The nominal Reynolds number at the exit varies from 4800 to 8000 for the
Newtonian cases and for the same in�ow rates, the non-Newtonian �ow will be necessarily
at lower nominal Reynolds number. Two regimes are explored as a function of the inlet
velocity ratio r = Ub/Um : the "de�ecting" regime noted DR (r = 1) and the "impinging"
regime noted IR (r = 4). For the non-Newtonian cases, two viscous cores are observed
before the junction. After the junction a laminar state is obtained for the lower �ow rate
conditions. Surprisingly, in spite of a large viscosity at rest, a self-sustained non-Newtonian
turbulence is achieved except for one case. We describe existing vortex mechanisms which
pilot the scalar mixing. In addition, we show that in the non-Newtonian cases, the existing
peak of turbulence is only shifted in the DR case. The shift is probably due to the nature of
the �uid and not to the dynamical regime. After an intense turbulent zone, we show that a
re-laminarization zone appears in the non-Newtonian case which reduces the �uctuation as
well as mixing. As a result, IR has a better mixing quality than DR.

1. Introduction

Flows in T-junction con�gurations are encountered in various industrial applications and
physiological situations such as piping systems in nuclear power plants [1, 2], automobile air-
conditioning system [3], chemical reactors [4, 5], combustion chambers [6] and hemodynamic
studies [7�9] among others.

∗Corresponding author
Email address: haining_luo@hotmail.com (Haining Luo)

July 1, 2020



2

For T-junction con�gurations, there are two main �ow cases depending on the number
of inlet: diverging and converging �ow con�gurations. A diverging �ow has one inlet and
two outlets [10�16] whereas a converging �ow has two inlets and one outlet in order to mix
the two inlet �ows (see Figure 2). Other variations can also be accounted : due to di�erent
angles between inlet and outlet pipe axis; changing cross section shape (circular, rectangular
for example); leaving the junction either sharp or with chamfer, etc. In the current work,
we consider only the T-shape junction i.e with an angle of 90 degrees in converging �ow
con�gurations.

Main part of the litterature concerning non Newtonian e�ects studies inside T-junction
�ows are focused on diverging �ow con�gurations. Most of these studies consider hemody-
namics or micro-channel mixing with non-Newtonian �uid �ows and low Reynolds number
situations. They account for shear-thinning, viscoelasticity [8, 9, 12, 15, 17] and/or pulsating
inlet condition e�ects [7].

Studies focusing on the converging con�gurations are mainly interested in macro-scale [1�
3, 18�21] as the ones dedicated to nuclear power plant applications for which characteristic
duct diameter is of order 100mm. Another application concerns with milli-channels as micro-
technology reactors for multiphase reactions. For example, the work by Tourvieille et al.
[22] studies the gas-liquid mixing in a T-junction with a square cross-section of 2mm wide,
�lled with metal foams as catalysis material and for relatively small Reynolds numbers (the
Reynolds number for the liquid phase is around 80). Few 3D Direct Numerical Simulations
(DNS) are carried out for relatively high Reynolds number [18, 20, 21]. Among these studies,
the nominal Reynolds numbers (based on zero shear viscosity) at the inlets range from 243
to 4485 and from 4376 to 8970 at exits which covers both laminar and turbulent regimes.
Moreover, Georgiou and Papalexandris [21] take into account the variation of viscosity with
temperature. Sharing the same converging �ow con�guration, variations on geometry are
still present between litterature cases, which makes comparisons di�cult : Haren [20] used
circular pipes with chamfer and �llet at the junction; Both Georgiou and Papalexandris [21]
and Fukushima et al. [18] used rectangular ducts without any chamfer or �llet whereas the
relative inlet size ratio and the ways by which the transversal branch attaches to the main
duct are di�erent. In a T-junction con�guration, concerning scalar mixing quality, three
di�erent �ow regimes are proposed and found experimentally by Sroka [23] and Kamide
[24]. They are distinguished via one criteria, the velocity ratio r = Ub/Um between the
main longitudinal pipe velocities Um and the transverse branch pipe Ub. In the case for
which the diameter of the main pipe equals to that of the transverse branch pipe, the three
di�erent �ow regimes are the "wall-jet" regime for r < 0.07, the "de�ecting" regime (noted
DR) for 0.07 < r < 1 and the "impinging" regime (noted IR) for r > 1. Two fundamental
�ow phenomenom interests of T-junctions are the generations of a mixing layer and of a
re-circulation zone inducing di�erent �ow mixing characteristics. Flows in a T-junction
geometry could be considered as con�ned versions of the "Jet In Cross Flow" (JICF) which
is the subject of extensive studies [25, 26] and for which the ratio r is r > 1 for most part
of the studied cases. These two types of �ows are demonstrated to share similar coherent
structures as was shown in the work of Brucker [27] for a circular T-junction �ow and in the
works of Fric [28] and Haven [29] for JICF. In JICF, �ow pulsations is applied to control the
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penetration of the jet [30]. For such case, an optimal stroke ratio is discussed to maximize a
scalar mixing. In a T-junction, �ow pulsations, imposed on the two compressible gaz inlets,
do not necessarily improve mixing [6].

To our knowledge, only few publications studies focus on non-Newtonian e�ects in the
converging T-junction con�guration. Nguyen's experiments [31] focused on the "de�ecting"
regime r = 1 for both Xanthan Gum (XG) and Polyacrylamid (PAA) (both non-Newtonian)
solutions in a converging T-junction with circular pipes of D = 8mm diameter. While the
two initial converging currents remain highly viscous and laminar before the junction, in a
non-obvious way, the �ow becomes turbulent after the junction. This turbulence is obtained
at relatively low Reynolds numbers from ∼ 10 to 50 (based on the pipe diameter, the inlet
velocity (for three cases) and the zero shear viscosity (at rest)). The fact that XG has
a negligible elasticity, in contrast to PAA [32] suggests that the turbulent regime is due
to shear thinning e�ects, dominant for an XG solution. Moreover by comparing the �ow
with the XG solution to the one with a Newtonian �uid (water) �ow, Nguyen observed a
downstream-wise shifting of the turbulence peak. The present investigation aims to con�rm
these preliminary observations. In addition to the "de�ecting" regime (r = 1), we have
investigated the "impinging" regime (r = 4) which is not present in his experimental study.

Nevertheless our main objectives are to describe the non-Newtonian mechanisms that
allow a scalar to mix in such converging geometry and to quantify this mixing [23] as a
function of the di�erent dynamic regimes. The mixing quality is directly related to the
presence of turbulence developing from the viscous core located at the junction. Compared
to the Newtonian �ow, in the non-Newtonian case the junction zone has an additional speci-
�city. Indeed, from the junction, near the recirculation zone, the shear considerably reduces
the viscosity to values close to the Newtonian viscosity. This causes a strong turbulent
pu� which improves the mixing of the scalar. At the opposite, beyond the junction, the
shear decreases, resulting in a signi�cant increase of viscosity, which can lead to a zone of
relaminarization that prevents mixing.

It is thus not obvious to predict how the mixing will behave both for the non-Newtonian
and for the Newtonian �uid cases as a function of the di�erent regimes (IR and DR). To
clarify this, we have performed Direct Numerical Simulations for low and moderate Reynolds
numbers for XG water solution and Newtonian �uid (water) corresponding to �uid cases
used in Nguyen's experiments. With the present DNS we have access to the tridimensional
organization of the �ows and the associated turbulent phenomena that enhance the scalar
mixing. To avoid numerical problems associated with meshing at junction, particularly for
the non-Newtonian �uid �ow cases, we consider a square cross section. We do think that the
phenomena observed in the experiments, where the cross-section is circular, are signi�cant
enough to be predominant considering mixing for the present square geometry.

In section 2, we describe the rheological model including the governing equations. We
provide also mesh analysis and simulation parameters. In section 3, we describe the non-
Newtonian organization of the �ow, focusing on the behavior di�erences between de�ecting
and impinging regimes. Section 4 describes the development of the non-Newtonian tur-
bulence production from the two viscous cores, the possible re-laminarizations as well as
the turbulence peak shifting for the de�ecting regime. Passive scalar mixing in�uenced by
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(a) (b)

Figure 1: (a) best �tting Bird-Carreau (BC) Law (equation 1c) from the Nguyen's experimental work [31],
used for the present DNS. Its shows the transition from ν0 to ν∞ as a function of shear. Law parameters
are n = 0.326, λ = 1s and α = 2. (b) Example of an histogram of the viscosity, here obtained from all the
values on a transversal planar DNS cut in the main pipe just before the junction for the case NN2

d (see
Table 2). Viscosity range, from ν∞ to ν0, is shown on the x axis. Frequency (percentage of all values on an
interval comparing to all used values) is on the y axis.

turbulence and its evolution along the main �ow direction is �nally analyzed.

2. Rheological model

2.1. Governing Equation

For DNS non Newtonian �uid viscosity, we take the one of the XG shear thinning solution
used in Nguyen's work [31] for studying the converging T junction con�guration (�gure 1a).
XG has a very e�ective thickening nature which increases the initial viscosity of the carrier
�uid and is often used as a stabilizer. Adding XG to water will make the solution very
viscous as a function of its concentration. In our case, the viscosity of the XG solution
at rest ν0 is 100 times more viscous than pure water. When shear is applied to an XG
solution, its viscosity will decrease (shear thinning e�ect) as a function of increasing shear
until reaching its lower viscosity limit ν∞ close to the viscosity of the carrier �uid. Here
we have ν0 = 3 × 10−4m2/s and ν∞ = 2 × 10−6m2/s (�gure 1a and 1b). To describe �ows
with such solutions, we use for numerical simulation, the Navier-Stokes equations (without
gravity e�ect) (equations 1a and 1b) combined with the Bird-Carreau (BC) Law (equation
1c). We further implement the mass transport equation (equation 1d) for a passive scalar c
transported by the �ow from one inlet (transverse branch) :

∂u

∂t
+ u · ∇u = −∇p∗ +∇ · νs∇u (1a)

∇ · u = 0 (1b)

νs(γ̇) = ν∞ + (ν0 − ν∞)[1 + (λγ̇)α]
n−1
α (1c)

∂c

∂t
+ u · ∇c = Dc∆c (1d)
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(a) (b)

Figure 2: (a) Computational domain for the T-junction mixing with two inlets and one outlet. The square-
shaped cross section has a side width D equal to 8mm. (b) Mesh details at a cut over plane (x, y) at z = 0
(pipe center) on the downstream edge.

where p∗ is the kinematic pressure and νs is the kinematic viscosity depending on the
local shear rate γ̇ = (2s : s)1/2 with the strain rate tensor s de�ned by : sij = (∂jui+∂iuj)/2
for which i, j = x, y or z.

Concerning the BC law, the power index n reveals its power-law nature for intermediate
values of the shear rate, and λ−1 represents a start-up threshold of strain rate for which shear
thinning e�ects begin to take place. The �tting from the experimental curve points could
not be exact. A small di�erence could be pointed out (�gure 1a for high shear values). The
experimental points didn't furnish the ν∞ plateau due to limitation of the used rheometer to
relatively low shears (under 103s−1). The arbitrary �xed ν∞, choosen here, could not lead to
noticeable numerical result changes, inducing to change our conclusions in any part of the
present work. From this Bird-Carreau law, we can extract by �tting with a power law for
intermediate shear rate νPL = K · γ̇n−1. For example, on Figure 1b, we plot the histogram
of the viscosities obtained from all values on a transversal plane cut in the main pipe just
before the junction, for the laminar regime computed here with DNS. As we can observe, a
large range of viscosity values are far from ν∞.

In the case of the Newtonian �uid, water's kinematic viscosity is used in Eq. (1a) inside
the term ∇·νs∇u. This term can then be simpli�ed as νwater∇2u with νwater = 10−6m2/s =
ν∞/2. For the passive scalar, we �x its di�usivity Dc to be uniform and Dc = νwater for all
simulations. The complete set of parameters is presented in section 2.3.

2.2. Numerical Method

The governing equations Eq. (1a,1b) and the constitutive law Eq. (1c) are implemented
in the Finite Volume based opensource code OpenFOAM which handles �ows in complex
geometries and di�erent rheological models. A transient solver is applied to perform fully
resolved Newtonian and non-Newtonian turbulence simulations of the start-up phases and
their steady state in a �xed T-junction con�guration. Inside this solver, a pressure based
semi-implicit algorithm PISO is applied where the decoupling of pressure and velocity is
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U p c
inlet1 u = ux(y, z) · n ∇p · n = 0 c = 0
inlet2 u = uy(x, z) · n ∇p · n = 0 c = 1
outlet ∇u · n = 0 ∇p = const. ∇c · n = 0
wall u = 0 ∇p · n = 0 ∇c · n = 0

Table 1: Boundary conditions for DNS. n is the normal vector at respective boundaries.

achieved by a velocity-predictor and pressure corrector. In those simulations, the main
e�ort of the PISO-algorithm resides on solving the Poisson equation especially during the
the start-up stage. We apply a �xed time step ∆t that is set to be 5 or 10 times smaller in
start-up phases than what we use once the solutions converge. The maximum CFL number
of all computations is held below 0.35 for all simulations, which leads to a ∆t of 10−6s.
In our simulations, the total cell number is around 25 million and parallel simulations are
carried out on 480 cores. The decomposition algorithm "scotch" is used and we have 50000
cells per core which is twice the prescribed optimal number given in the notes by Axtmann
et al. [33] and Guerrero [34].

Our computational domain for the T-junction con�guration with two inlets and one
outlet is shown on Figure 2 a). On this �gure, we distinguish the upstream and downstream
edges. The main longitudinal pipe has a length of 20D with D the width of the square
section. The transverse branch pipe has a length of 10D with the same width. At t = 0
�uid is set to be at complete rest (u = 0). Only inlet1 and inlet2 (see Figure (2a)) are
forced with the laminar pro�le of a �ow in a square duct as boundary condition to initialize
the start-up. On walls the no-slip condition is applied. A �xed-value boundary condition is
applied for pressure at outlet. We introduce a non-null passive scalar c only at inlet2 at each
time step. The imposed inlet velocity pro�le corresponds to a Newtonian Hagen-Poiseuille
�ow in a square duct [35]. For inlet1 , we impose in the plane (y, z):

ux(y, z) =
∆p∗

νL

4h2

π3

∞∑
n=1,3,5...

1

n3
[1− cosh(nπz/D)

cosh(nπw/2D)
]sin(nπy/D), (2)

where h = w = D/2 and the �rst 20 terms of the series are taken into consideration to obtain
a converged sum. Note that in the experimental set [31], due to the homogenization boxes
at entrance of the 2 inlets, a non turbulent condition is found at 8D from both entrance.
For each case, we adjust the coe�cient ∆p∗

νL
to obtain the speci�c bulk velocity Ubulk given in

Table 2 (Ubulk = Um for inlet1 and Ubulk = Ub for inlet2). By symmetry we apply the similar
inlet condition at inlet2 (the branch inlet) named uy(x, z). For the passive scalar, we impose
two symbolic values at the entrance : c = 0 at inlet1 and c = 1 at inlet2 . Zero gradient
condition is imposed at outlet for concentration and velocity i.e ∇c · n = 0, ∇u · n = 0
where n is the normal vector at outlet. All boundary conditions are speci�ed in Table 1 for
u, c and p.
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Runs Ubulk(m/s) Fluid r RegenPL < Re >inlet < Re >exit t∗

NN1
d 0.3 NN 1 329 203 484 5.25 L

N1
d 0.3 N 1 4800 2400 4800 11.25 T

NN2
d 0.5 NN 1 773 449 1230 17.5 T

N2
d 0.5 N 1 8000 4000 8000 18.75 T

NN2
i (0.2 , 0.8) NN 4 (167, 1697) (107, 910) 1194 12.5 T

N2
i (0.2 , 0.8) N 4 (3200, 12800) (1600, 6400) 8000 12.5 T

Table 2: DNS parameters where N and NN represent the Newtonian and non-Newtonian �uids, lower index
d, i are the abbreviation for "de�ecting" regime and "impinging" regime. r = Ub/Um denotes the velocity
ratio (inlet1 velocity to inlet2 velocity)). The time t∗ = t

10D/<U>exit
is the real time divided by time of �ow

from junction to the outlet. When necessary two numbers are indicated in parenthesis for a given quantity.
Ubulk = Um for inlet1 and Ubulk = Ub for inlet2. This corresponds for the �rst one to value characteristic of
the cross �ow (inlet1 ) and for the second one to a value characteristic of the transversal jet (inlet2 ). There
is only one value when quantities are equals for both inlets. T and L indicate the turbulent state and the
laminar state, respectively. More comments are added on signi�cance of the < Re >exit in section 2.3.

2.3. Simulation Parameters

We have performed 6 simulations as listed in Table 2 where the last two are aimed to
investigate the IR regime and the �rst four simulations are aimed to reproduce the same DR
regime as in Nguyen's work [31] but using a square shaped cross section. Simulations' naming
are composed with N or NN representing respectively a simulation with a Newtonian �uid
(water) and with a non-Newtonian �uid (XG). At these N or NN is added an upper index
with the values 1 or 2 corresponding respectively to the 2 bulk velocities Ubulk = 0.3m/s and
0.5m/s treated here (as in Nguyen [31]) (remind that Ubulk = Um for inlet1 and Ubulk = Ub
for inlet2). Additionally are added the lower indices d or i as abbreviations for the �ow
regimes, respectively, "de�ecting" and "impinging". As shown on �gure (2), Ub denotes the
velocity at entrance of the vertical branch, inlet2 , and Um is the velocity at the entrance of
the main duct, inlet1 . As the square-shaped cross-section is constant all along the pipes for
the whole geometry, the velocity ratio de�ned by r = Ub/Um characterizes the �ow regime
as stated in the introdution : when r = 4, previous studies with Newtonian �uids [23, 24]
con�rm the IR regime; when this ratio is equal to 1, it corresponds to the DR regime.

The nominal Reynolds number at the exit (inlet) for water is de�ned by < Re >exit=<
U >exit D/νwater where the width of the square duct is D = 8mm as in Nguyen's work
[31] and < ∗ >exit (< ∗ >inlet) denotes the spatial average value on the exit (inlet) slice at
plane (y, z) for any quantity ∗. For the shear thinning XG solution, the viscosity varies in
space and time along the �ow. We de�ne the spatial averaged Reynolds numbers at the inlet
< Re >inlet=< U >inlet D/ < ν >inlet and at the outlet < Re >exit=< U >exit D/ < ν >exit.
At the inlet, this is computed a priori as the inlet velocity is imposed by an Hagen-Poiseuille
�ow with its associated shear rate and the induced viscosity. By this way we account for
the variability of ν at the inlet and the at the exit (at x/D = 9.5). Note that the Reynolds
number < Re >inlet remains almost unchanged along the branches of the pipes from inlets
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to the crossing zone at the junction. We can roughly say that, regarding both Newtonian
and non-Newtonian cases, the average Reynolds numbers at outlet for all our simulations
ranges from < Re >outlet= 500 to < Re >outlet= 8000. It would be not surprising for these
�ows to fall in the transition range between laminar and turbulent regimes. It is not easy to
characterise a potential turbulent behavior of non-Newtonian �uid �ows with the common
form of the Reynolds number. For the non-Newtonian cases, Re∞ = UexitD/ν∞ is the largest
as possible de�ned Reynolds number but is not characteristic of all the �ow behavior at the
outlet. However, e�orts have been made to improve such characterisation by introducing the
generalized Reynolds number, taking a power law viscosity νPL = K · γ̇n �tting the viscosity
curve (see �gure(1a)). This generalized Reynolds number is de�ned in the work of Madlener
et al. [36] and we apply this de�nition to characterise the �ow cases at their inlet :

RegenPL =
DnU2−n

bulk

K ((3n+ 1)/4n)n 8n−1

Values of the calculated RegenPL are shown on the Table 2. Note that RegenPL could be computed
a priori. In the case of Newtonian �uid, we have n = 1 andK = νwater so that the generalized
Reynolds number reduces to the nominal classic Reynolds number. As we observe in Table
2, the values of RegenPL are systematically bigger than those of < Re >inlet but of the same
order.

For the Newtonian cases, the value of the molecular di�usivity Dc of the scalar c into
water, is �xed in order to have a Schmidt number : ScN = νwater/Dc = 1. Under turbulent
regime hypothesis, the smallest scale for velocity is the Kolmogorov's scale ηNK de�ned by

ηNK = ν
3/4
waterε

−1/4
N where εN is the kinetic energy dissipation rate. In such case, the smallest

scalar scale ([? ],[37]) is the Batchelor's scale λNB de�ned by λNB = ηNK/Sc
1/2
N . This means, for

ScN = 1, that when the Kolmogorov's scale is fully resolved, so does the Batchelor's scale.
For non-Newtonian �uid �ow, since the viscosity νNN varies according to our Bird-

Carreau law (1c) then the associated Non-Newtonian Schmidt number ScNN = νNN/Dc

covers a large range from 2 to 300 as ScNN = ScN
νNN
νwater

and νNN ∈ [2νwater, 300νwater]. Here
the molecular scalar di�usion is hypothetised the same for Newtionan and non Newtonian
cases as the non Newtonian solvant is water and XG concentration is low.

If we note εNN the kinetic energy dissipation rate for non Newtonian �uid �ow
cases, the associated Kolmogorov's scale is related to the Newtonian one by : ηNNK =

ηNK

(
νNN
νwater

)3/4 (
εNN
εN

)−1/4

, following their respective de�nition. Thus ηNNK (= ηNK

(
νNN
νwater

)3/4

)

is always greater than the kolmogorov's scale of the corresponding Newtonian case and so
if resolution is su�cient for Newtonian case, it is for the non Newtonian cases.

If we assume that the kinetic energy dissipation rate for non-Newtonian �uid �ow case,
εNN , is of the same order than the one in Newtonian �uid �ow cases, i.e εNN ' εN (in our
case of dilute regime (low Deborah number) and negligible elastic contribution, the DNS
results by De Angelis et al. ([? ]) help to sustained such hypothesis), then we can conclude
that we have always ηNNK > ηNK .

In the same way, due to their de�nitions, the non-Newtonian Batchelor's scale is linked

to the Newtonian one by : λNNB ' λNB

(
νNN
νwater

)3/4

> λNB . If the Kolmogorov's scale ηNK is fully
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resolved for a Newtonian �uid case, then the Kolmogorov's scale ηNNK and the Batchelor's
scale λNNB are fully resolved for the non-Newtonian associated case. In conclusion, we shall
be able to fully resolve both velocity and passive scalar �eld of non Newtonian cases if we
do for the associated Newtonian cases.

2.4. Mesh

We manage to get a comparable meshing as for the work of Georgiou and Papalexan-
dris [21]. As for their T-junction which is submitted to slight variations of viscosity due to
temperature, we apply a re�nement in the junction zone in the x and y directions. Addi-
tionnally, we apply a re�nement in the z direction. Every rectangular cross-section is thus
discretized with 130× 130 cells with re�nement to walls.

The cell-spacing constraint to the wall satis�es the criteria x+ ≈ 0.5 (as for y+ and z+)
in wall unit for Newtonian case (N2

d .) A detail of meshing is shown on Figure 2 b). The
Newtonian cases are then considered fully resolved as the criteria for x+ (and other direction)
is satis�ed at the wall. Given the fact that we have ν∞ = 2νwater, all non Newtonian cases
are also over-resolved. The stretching ratio for the neighboring cells is kept to be constant
: 1.05 in the cross-section and 1.01 streamwise. The mesh is strictly orthogonal and skew-
free. The geometry is chosen to have two rather long inlet pipes and an equal length outlet
pipe (≈ 10D) so that we can isolate possible e�ects between the junction and inlet/outlet
boundary conditions.

3. Production of turbulent state

3.1. From laminar to turbulent state

For all simulations, u, c, ν,ω denote respectively instantaneous velocity, concentration,
kinematic viscosity and vorticity �eld where ω = ∇ × u. The IR and DR regimes are
illustrated in Figure 3 for non-Newtonian cases NN2

d and NN2
i , where we show contour

plots on plane z = 0 for |ω|, c and ν. By plotting the vorticity magnitude |ω| on �gures 3(a)
and (b), we see di�erent vortex scales in both cases: large-scale structures break into small
ones downstream.

On �gures 3(c) and (d), the concentration �eld is colored from red (c = 1 at inlet2 )
to blue (c = 0 at inlet1 ). We can then distinguish the DR regime (NN2

d ) from the IR
regime (NN2

i ) by the color-coding of c : in the DR case (NN2
d ), the jet is only de�ected and

bent slowly to �ow in the main longitudinal direction whereas in the IR case (NN2
i ) the jet

penetrates the cross-�ow resulting in a re�ection at the upper wall. We observe that the
separation takes place at 2 locations : one happens inside branch inlet2 before the upstream
edge due to a blocking e�ect from the cross-�ow; another separation happens from the
downstream edge forming a re-circulation bubble. At the downstream edge, the separation
angle is signi�cantly steep for the IR (NN2

i ) case which implies that the re-circulation bubble
occupies more space in the transverse direction than for the DR (NN2

d ) case. As for mixing,
at the junction, we see sharp boundaries between c ≈ 1 zones and c ≈ 0 zones. Near the
outlet we observe a much more uniform distribution of c.
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|ω|

|ω|

c

c

ν

ν

Figure 3: Contour of instantaneous quantity �elds on the longitudinal plane z = 0 for respectively vorticity
magnitude |ω|, passive scalar c and viscosity ν for : de�ecting case NN2

d a) c) e) and impinging case NN2
i

b) d) f). The symbol 4 represents the location of the probe corresponding to plots in �gure 4.
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Figure 4: For 6 cases, the time history (in second) of ux, uy, uz and c at the center of slice x/D = 2
(corresponding to the probe indicated by 4 in �gure 3 a)) is presented. ux, uy, uz and c are respectively
coded by blue, red, green and black lines. Each lines have a transitional part and a statistically stationary
part. The latter part is made thicker to distinguish from the former one. The horizontal axis represents the
time in s and the vertical axis represents either the velocity in m/s or the concentration 0 ≤ c ≤ 1 (arbitrary
unit).

We observe on �gures 3 e) and f) the viscosity �elds ν for the IR and DR cases : two
laminar �ows converge at the junction, each carrying a very viscous core. The two �ows
meet at the junction, from both the upstream and the downstream edges, two strong shear
layers are developped. As a result, in these two layers, XG solution exhibits a lower viscosity
due to shear thinning. Additionally, when approaching the outlet the non-Newtonian �uid
�ow seems to increase its viscosity from x/D = 2.

Consider that, for all our 6 simulations, the Reynolds number < Re >exit ranges from
small to relatively large values. We have �xed a probe at x/D = 2 at the duct center to
record mono-dimentional signals of each of our multiple variables. The �gure 4 shows the
time history of the three components of velocity u = (ux,uy,uz) and of the concentration
c at the probe location.

In each of our 6 simulations, the signals of ux, uy, uz, and c begin by a value of 0 (ux, due
to the imposed pressure gradient and velocity pro�le, has a very rapid increase) at the probe
location and within a certain amount of delay, �uctuations are detected. For concentration
it needs a minimum of the convection's time for the �uctuations to be detected as there is
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no scalar at the probe location at t = 0.
For each case, each lines have a transition part (thin line) and a statistically stationary

part (bold line) begining at the given time and from which we made our statistical analysis
(see after). Note that cases have non equal time of computation involving results till di�erent
times (for example the two last stop at t = 0.5 s.)

Quite noticeably, for the non-Newtonian the lowest �ow rate, at regime DR (NN1
d ) with

< Re >inlet= 203 (< Re >exit= 484), both velocity and concentration returns to a steady
constant value after the initial �uctuations (see Figure 4 case NN1

d ). This means that the
initial instability is not able to maintain and that the �ow stays laminar from inlets to outlet.
We have tried to destabilize this �ow by applying pulsated forcing at the inlet with an ux's
amplitude of 50%, compared to the original inlet condition value (see equation (2) ). No
sign of transition was observed during all the computational time, the �ow remains laminar.
This laminar state is relatively resilient.

At this location, more speci�cally, this laminar non-Newtonian case NN1
d is characterized

by uz = 0 during the computational time. On the contrary, for all the other cases, both
the Newtonian and non-Newtonian at both DR and IR, uz �uctuates around zero. This
means that an increase of in�ow rate at both inlets breaks the plane of symmetry of �ow
structures and all four variables ux, uy, uz and c �uctuate. This is inherent to 3D turbulence.
The transition between laminar state and a turbulent state in DR, appears between <
Re >inlet= 203 (RegenPL = 329) and < Re >inlet= 449 (RegenPL = 773) for non-Newtonian �uid
�ow. According to our knowledge, there is no studies, showing whether instabilities should
occur and develop, for a T-junction geometry, either for Newtonian or non Newtonian �ow.
However, in the case of JICF, some studies [38] show that the jet is stable for an inlet
Reynold number Reinlet lower than a �xed critical Reynolds number Rec = 550 for the
case r = 1.5 and that such �ow seems to become more stable when decreasing r i.e. the
determined critical Reynolds number Rec increases. It could be noted, that for our r = 1
cases and for non Newtonian cases, the critical Reynolds number for JICF, induced by [38]'s
work, is largely greater than our inlet Reynolds numbers i.e. Reinlet > Rec. However, in
the Nguyen's experimental work, when the same input rate is applied as in the case of
NN1

d with < Re >inlet' 203 (RegenPL = 329), a turbulent state is observed. Possible reasons
for experiment-simulation disagreement are : 1. In the experimental work a cylindrical
T-junction is used. Curvature di�erence between circular and rectangular T-junction may
have in�uence on stability. 2. Wall roughness is strictly zero in simulation whereas the
roughness height is guaranted only to be lower than 1µm in the experimental pipes. 3.
The cross�ow as well as the transversal jet are both laminar in simulations. In experiment
�uctuations at various scales could persists at inlets in spite of upstream tranquilizing boxes
62.5D upstream. It is worth noting that Nguyen's experiment admits a 1% variation on �ow
rate measurement.
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(a)

(b)

Figure 5: Illustration of the organization of the non-Newtonian �ow for di�erent regimes. (a) "de�ecting"
regime NN2

d (b) "impinging" regime NN2
i . See details in text.
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3.2. Organization of the �ow

In order to study the mechanisms that produce the mixing, we use Reynolds decompo-
sition :

u = u + u′, (3a)

c = c+ c′, (3b)

ν = ν + ν ′, (3c)

ω = ω + ω′ (3d)

where we denote the time averaged component by adding a bar and the �uctuation
component by adding a prime. Average operations are performed on the statistical stationary
�eld (section 3.1). The structural organization of the �ow for IR and DR regimes are
illustrated on Figure 5 for case NN2

d and case NN2
i . Such a visualization of �ow structures

provides an overview of the impact of the �ow regime on the scalar mixing.
In order to analyze the tri-dimensional organization of the �ow, we plot several variables

on Figure 5 for both DR and IR regimes. On Figure 5, to illustrate the concentration
�uctuation, an iso-value of c is drawn in half-transparent white for c = 0.5 (NN2

d ) and in
red for c = 0.8 (NN2

i ). The value c = 0.5 for IR or c = 0.8 for DR corresponds to the
ideal mixing by taking into account the �ow rate ratio r = Ub/Um (see section 4.3). The
mean �eld c is shown on the 4 transversal slices at x/D = 0, 2, 4 and 6 (where x/D = 0
corresponds to the downstream edge) in order to illustrate the di�usion of the scalar c by
turbulence. This �eld is colored between red c = 1 and blue c = 0. Moreover, on the same
slices, 2D streamlines (in black) are drawn based on 2D mean velocity (uy,uz) illustrating
the 2D mean �ow structures. Some particular streamlines are explicitly named C1, C1′ and
C2. In addition, we superpose the iso-surfaces of the mean longitudinal vorticity �eld ωx to
visualize the rotating vortices. The value of the iso-surfaces are taken as : ωx = +3.47σω
for NN2

d and ωx = +4.2σω or NN2
i where σω denotes the root mean square of ωx over the

whole domain for respective cases. They are colored in yellow for positive vorticity ωx > 0
and in cyan for negative vorticity ωx < 0. The vortices and details are enlarged in the
sub-frames in the direction of �ow or in the opposite direction. Some particular vortices
are explicitly named V 1 ,V 1′ and V 2. Finally, tri-dimensional streamlines (in green) are
added based on the instantaneous velocity �eld and named G1 from main duct and G2 from
perpendicular duct.

Firstly, we observe that c �uctuates from the downstream edge till the exit showing a
non-Newtonian turbulent �ow in both de�ecting and impinging regimes. In particular, for
the DR case (NN2

d ), we observe a pair of counter-rotating swirling structures named V 1
(yellow) and V 1′ (cyan) on the zoomed �gure 5 a) (only V 1 on large �gure). This pair
(V 1, V 1′) is placed at the lower part of the square duct, close to the side wall corner and
extend almost in the streamwise direction.

This structure in our non-Newtonian simulation is similar to Newtonian lower-deck
steady kidney-vortices observed by Haven (�gure 7 a) in [29]) for the JICF case and with
a square nozzle. We extend the Haven's explanation to the non-Newtonian context : the
non-Newtonian kidney vortices are originated from the sidewall boundary layer inside the
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jet branch. It is also shown by 3D streamlines in green line (G1 and G2) that currents from
both inlets exhibit �rstly a motion in straight line, then deviate and are entrained by the ro-
tating structures. The instantaneous passive scalar �eld also wraps around these structures
and �uctuates. The existence of such kidney vortices near the junction plays as the motor
of scalar pre-mixing in the DR regime. These vortices then break down to turbulence and
enhence the ultimate mixing which occurs further downstream. Going further downstream,
some persistent longitudinal corner vortices (named C1 and C1′) appear at the upper part
of the square duct as shown in Gavrilakis's work on a periodic square duct [39].

On the other hand, for the IR case on zoomed �gure 5 b), the transversal jet impacts the
upper wall and a new vortex structure is organized from the upper corner and descends to
the lower part of the duct. These descending vortices named V 2 and the kidney-like vortices
V 1 as in DR case (NN2

d ), forms two co-rotating pairs (V 1, V 2) illustrated on sub-frames. To
our knowledge, such mechanism with 3D descending rotating structure V 2 is not yet studied
even in Newtonian literature. The instantaneous passive scalar �eld and the 3D streamlines
wrap around two pairs of co-rotating vortices (V 1, V 2). These rotating structures near the
junction shall, like in previous case, enhance the pre-mixing. Corner vortices named C2 in
the IR regime tends to grow larger than at the lower part of duct.

For non Newtonian �uid �ows, DR and IR cases have very di�erent �ow structures. For
a comparable �ow regime (DR or IR), the non-Newtonian �uid �ows tend to be more stable
than the Newtonian �uid �ows. We think that such di�erences will introduce a signi�cant
impact on the viscous core, the turbulence peak and the scalar mixing that will be discussed
hereafter.

4. E�ect of shear thinning on turbulence

4.1. Pressure drop and turbulence peak shifting

In order to describe deeper the turbulent properties of �ows, we de�ne the turbulent
kinetic energy k = 1

2
(u′2x + u′2y + u′2z ) by using velocity �uctuation components. The non-

dimensionalized form is k/kmax where kmax (�gure 6 a)) is the max value of k on the plane
z = 0 for each case.

On �gure 6 a) and b), we present kmax values and pressure drops for all di�erent cases.
We observe that for a same exit Reynolds number, < Re >exit (see Table 2), the IR cases
generate a much higher level of turbulence (caracterised by the peak of kmax) than the DR
cases do, both for Newtonian and Non-Newtonian �uid �ows, i.e. (N2

i vs N2
d ) and (NN2

i vs
NN2

d ). The speci�c vortex mechanisms, described in part (3.2), producing the turbulence,
do not generate the same magnitude of turbulence. Indeed, in the IR cases, the jet impact
the upper wall generating more background �uctuations (and an higher level of turbulence)
that are redistributed downstream by the descending vortex V 2 (shown on �gure 5 b)).
Moreover, for the same �ow rate, the Newtonian cases have an higher turbulence levels than
the corresponding non Newtonian �uid �ows (N2

i vs NN
2
i ) and (N

2
d vs NN

2
d ). It is consistent

with the fact that < Re >exit is higher in Newtonian cases than in Non-Newtonian case (see
Table 2). This result is in agreement with preliminary experiment of Nguyen [31] using a
circular-section T-junction.
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(a) (b)

Figure 6: The two histograms for kmax and pressure drop : Red bars for non-Newtonian cases, blue bars for
Newtonian cases. (a) The peaks of turbulent kinetic energy kmax on plane z = 0 for the six computed cases.
(b) The associated pressure drops ∆p/ρ. There are two columns for each case : opaque one for pinlet1 −pexit

ρ

; transparent one for pinlet2 −pexit
ρ .

(a) < Re >exit= 8000 (N2
d ) (b) < Re >exit= 8000 (N2

i )

(c) < Re >exit= 4800 (N1
d ) (d) < Re >exit= 1194 (NN2

i )

(e) < Re >exit= 1230 (NN2
d ) (f) < Re >exit= 484 (NN1

d )

Figure 7: Contour plots of normalized kinetic energy k/kmax where kmax denotes the maximum turbulent
kinetic energy on the slice z = 0.
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For a given �uid (Newtonian or non Newtonian �uid), the increase of turbulent peak
kmax comes at the price of an increased pressure drop over the T-junction (see Figure 6b)).
This denotes also that pressure drop is a measure of dissipation. Given the same �ow rate
with the same < Re >exit (Table 2) the IR cases are more expensive in term of pressure
drop than the DR ones : 37% for non-Newtonian and 20% for Newtonian (NN2

i vs NN2
d )

and (N2
i vs N2

d ). This is of fundamental importance to have an a priori estimation on the
energy cost for mixing processes.

However, the �uctuations due to turbulence are not uniformly distributed in the �ow :
intuitively, the location of the peak gives us information on the area that mix the most.

On �gure 7, the spatial distributions of k/kmax are plotted for laminar (NN1
d ) and all

other turbulent cases. For the laminar case (�gure 7 f)), we found no perturbations generated
from the downstream edge. The �uctuation kmax is negligible and concentrated in "a thin
�uctuating band". It is actually part of the initial perturbation which is not yet convected
to the exit neither fully dissipated. Due to computational cost, we stopped the calculation
before its exit.

In the Newtonian DR cases, N1
d and N2

d (Figure 7 a) and c)), we have a similar distri-
bution of k/kmax whereas the Reynolds number varies. The �uctuations appear from the
downstream edge and are concentrated close to the bottom edge. Moreover, the higher �uc-
tuations remain inside the re-circulation zone with a peak center whose location is indicated
via a green dash line. From the peak, the �uctuations are rapidly (at a distance around
1D) decreasing till 1% of the peak intensity. We call this region "intense turbulence zone"
(ITZ) that could be visualized on �gure 7 by the white boundary level (corresponding to
levels around 0.2%) after black level color from the peak. Note that the ITZ is a part of the
re-circulation zone for each case. Its location seems to be dependent on the exit Reynolds
number : when < Re >exit decreases from 8000 to 4800, the peak location is shifted toward
the exit.

In contrast, for non-Newtonian turbulent DR case (NN2
d we can see on �gure 7 e)) that

the great values of k are much less concentrated compared to the Newtonian cases (N2
d and

N1
d shown on �gures 7 a) andc)). In addition, the position of the peak kmax is shifted further

streamwise compared to the Newtonian cases. This is also con�rmed in the preliminary
Nguyen's work [31] with a circular-section T-junction. It seems to be a Reynold number
dependance e�ect.

For the IR cases and both Newtonian N2
i (�gure 7 b)) and non-Newtonian NN2

i (�gure 7
d)) �uid �ows the jet impacts the top wall inducing the ITZ to extend higher upward (to
the top wall) and streamwise (to the exit) less further. In these cases, the distribution of
the kinetic energy is similar inside the ITZ even if the exit Reynolds numbers < Re >exit

are di�erent from 1194 to 8000 and no noticeable peak shifting is noted. Unlike, for the
DR cases and for the same di�erence between the exit Reynolds numbers, di�erence as for
the IR case, the ITZ's shape is similar but with a noticeable peak shifting (�gures 7 a) to
e)). This seems to indicate that the origin of the peak shifting is not related to a Reynolds
number's e�ect but results from the shear thining nature of the �uid.
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4.2. From viscous core to turbulence and its relaminarization

By observing the contour plots of ν in �gures 3 e) and f) (NN2
d vs NN2

i ), laminar �ows
are obtained, for each case, between the two inlets and the junction. In these zones, the
maximum of viscosity νmax is located at the center of ducts for both DR and IR where
νmax = 2.7 × 10−4m2/s ≈ ν0. The center part is then characterized by an high viscosity,
which is about 100 times more viscous than the viscosity close to the wall, of the same order
than ν∞ (�gure 1b)) : we call this region the "viscous core". On the two plots, the viscous
cores merge from the inlets inside the junction leading to turbulent �ow in both cases. It is
not obvious, a priori, that these highly viscous cores can be destabilized enough to generate
a turbulent state that allows a more or less homogeneous mixing of the scalar transported
from inlets 2. Indeed, an high viscosity tends to attenuate or prohibit any �uctuation and
therefore any �ow mixing (versus molecular one). In this section, we have characterized the
spatial evolution of the viscous �eld from the junction to the outlet.

For all non-Newtonian cases, we show on �gure 8a) several slices of the average viscosity
�eld ν demonstrating its evolution from the junction to the outlet. Slices are taken on a
longitudinal plane z = 0 and several transversal planes x/D = 0, 4 and 8 where x/D = 0
corresponds to the downstream edge (the same kind of 2D vertical cuts are shown on �gure 5
for x/D = 0, 2, 4 and 6). In order to describe the distribution of ν on these transversal planes,
we have also highlighted on �gure 8b) the normalized histograms of ν. Moreover, on �gures 9
a) and b) are shown the longitudinal evolution of the �rst two moments,of µν(x) and σν(x),
calculated for each x/D locations, to summarize the distribution of ν on these transversal
slices between the downstream edge at x/D = 0 and the outlet at x/D = 10. We use the
average µν and the standard deviation σν de�ned by :

µν(x) =
1

S(x)

∫
S(x)

νdydz (4a)

σν(x)2 =
1

S(x)

∫
S(x)

(ν − µν(x))2dydz (4b)

If σν is small, then the distribution of ν is almost homogeneous and concentrated around
µν .

In the DR laminar case (i.e. NN1
d ), we observe that the average viscosity µν(x) is high

but constant up to x/D ' 4 like the standard deviation σν . Above x/D ' 4, the standard
deviation σν increases as the average viscosity µν(x) increases. This behavior indicates that
the viscosity is not homogeneous at x/D ' 4. Furthermore, on �gure 8a), we can see that
the center of the pipe is gradually occupied by a horseshoe-like structure constituted with
�uid at high viscosity. This transversal structure is responsible for the non-homogeneity of
the viscosity and therefore for the increase of the standard deviation.

In the DR and IR turbulent cases (i.e. NN2
d vs NN2

i ), the viscous cores are weaker in
terms of µν compared to the laminar case (see �gure 9 a)). The moments µν and σν grow
monotonously from x/D = 2 and x/D = 4 for IR and DR. Their levels are lower than the
laminar case. On the �gure 8 a), we do not detect any particular structure. The viscosity
�eld appears to be more homogeneous than for the laminar case.
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The knowledge of the magnitudes of µν and σν is not su�cient to correctly describe the
spatial distribution of ν (�gure 8 b)). In particular, it is necessary to examine statistics of
the points that have a local high viscosity. This local high viscosity is deduced and observed
from the tails of the local (for each x/D) ν histograms i.e. ν > µν + σν . We de�ne this
extreme viscosity between high viscosity and low viscosity by :

νex = µν + σν (5)

This choice is �ow dependent because such reference νex varies from case to case and it is
less arbitrary than if a unique threshold had been imposed for analysing. For example, for a
Gaussian distribution of ν, 68% of points have a viscosity ν in the range [µν−σν , µν+σν ] and
thus only 16% of points have a viscosity ν greater than νex (black dashed lines on �gure 8
b)).

On �gure 9 c), we observe that the evolution of νex(x), after a transition, has a global
tendency to increase compared to its initial value νex(x = 0) for the threee cases. We now
quantify the percentage of points with an higher viscosity than νex(x = 0) by calculating
the probability of having a high viscosity value with respect to the junction input P (ν ≥
νex(x = 0)) (�gure 9 d)).

In the laminar caseNN1
d , the percentage of points with an high viscosity doesn't �uctuate

a lot and converges to 50%. This means that the distribution is extended to high viscosities.
Unlike the turbulent cases (NN2

d and NN2
i ) which have their percentage of points close to

0% for IR and decrease until 4% for DR after a short transition to 18%. Their viscosity
distributions is shrinking around low viscosities for the locations 0 ≤ x/D ≤ 6. Such low
percentage of high-viscosity points could help turbulence to develop in both IR and DR
(NN2

d and NN2
i ) cases. This is consistent with the presence of a turbulence peak shown in

the �gures 7 d) and e) (shown by the green dashed line) compare to its absence for NN1
d

(�gure 7 f).
Above x/D > 6, the percentage of points with an high viscosity increases to 50% for both

IR and DR cases : this is a sign of relaminarization of �ow which prevents any �uctuation
and therefore any e�cient mixing. This is consistent with the large decrease levels of the
turbulence �uctuations for the IR and DR cases shown on �gures 7 d) and e) close to their
outlets. As a conclusion, for the DR and IR turbulent cases (NN2

d and NN2
i ), the viscous

core disappears right after the junction but a re-laminarization is expected close to the outlet
at x/D ' 6 due to an increasing spatial domain with an high viscosity level.

4.3. E�ect on mixing and quality of mixing

In this section, we quantify the passive scalar mixing from the junction to the outlet. As
explained in section 2.2 we inject di�erent values of passive scalar, (c = 0 at inlet1 and c = 1
at inlet2 ). As noted in section 3, DR and IR have inherently di�erent �ow structures. This
shall have a large impact on the scalar mixing whose result can be visualized by c-valued
iso-surfaces' tilting and folding ( �gure 5(a) and (b)). As we did in the section 4.2, for the
mean viscosity ν (�gure 8), we drew on �gures 10 and 11 the contours and histograms of
the scalar c for the same transversal slices S(x) evolving along the x-axis.
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Figure 9: Evolution from the downstream edge x/D = 0 to the exit x/D ≈ 10 of viscosity statistical
parameters : average µν (left top), standard deviation σν (left botton), high viscosity value νex (right
top) and conditional probability P (ν ≥ νex(x = 0)) of having an high viscosity value (right bottom) (all
quantities de�ned in the text)

From a qualitative point of view, for the Non-Newtonian cases, an observation of the
slices indicates that in the DR stable case (NN1

d (�gure 10), the scalar is less mixed at the
last location x/D = 8 than it is for the IR turbulent case (NN2

i ) (�gure 11) at the same
location.

In order to quantify the mixing, as done for the previous viscosity analysis (section 4.2),
we use the spatial average of µc(x) de�ned by :

µc(x) =
1

S(x)

∫
S(x)

cdydz (6)

This value µc(x) should be compared with the value, ci, obtained in the case of an ideal
mixing. Indeed, by taking into account the �ow rate ratio r (r = 1 for the DR cases and
r = 4 for the IR cases), the ideal mixing is expected to be ci = r

r+1
(ci = 0.5 for the DR

cases and ci = 0.8 for the IR cases). However when such value is not reached everywhere, it
is necessary to characterize the mixing quantifying the dispersion around the average value
µc [40]. We characterized it by the following standard deviation :

σc(x)2 =
1

S(x)

∫
S(x)

(c− µc(x))2dydz (7)

From these two quantities, the mixing tends to be quali�ed as homogeneous and ideal when
µc(x) is close to the ideal value ci and the standard deviation σc(x) is close to zero. The
longitudinal evolutions of these quantities (µc(x) and σc(x)) have been plotted on �gure 12
for each 6 cases.

For both turbulent IR cases, Newtonian and non-Newtonian �uid �ows (NN2
i and N2

i ),
µc converges quickly ,along x, close to the ideal value as µc(x) ' ci = 0.8 (�gure 12 a)).
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Their standard deviations σc(x) converges also quickly to zero. The mixing is close to be
ideal with an homogeneous scalar distribution. Such state is obtained almost at x/D = 2.0
(�gures 12 a) and b) ).

Note that for the Newtonian case (N2
i ) there is a better pre-mixing at x/D = 0 comparing

to the non-Newtonian case NN2
i (see histogram on the �gure 11). Nevertheless, for both

cases, the scalar distribution is close to a Dirac-like distribution around the outlet at x/D =
8. Since the XG is initially more viscous than water, the fact that the mixing quality of the
XG solution converge to the Newtonian situation after a short length (of x/D = 2), suggests
that the �ux in the non Newtonian case (NN2

i ) induces a very good pre-mixing. This could
be a�ected to the presence of the near-junction vortex structure for this IR case (section
3.2). In this case the < Re >exit is not relevant to qualify the mixing state because of the
relaminarisation tendency (described in section 4.2).

Unlike, for the non-Newtonian laminar �ow for the DR case (NN1
d ), the mean value is

almost constant and close to the ideal value : µc(x) ' ci = 0.5. Nevertheless, its standard
deviation σc(x) is comparable to its average, which means that the mixing remains hetero-
geneous and far from being ideal. This is probably due to the presence, from x/D = 4, of a c
horseshoe structure (�gure 10 a)), corresponding to the one for the viscosity �eld ν from the
viscous core (�gure 9). The high-viscosity horseshoe is so stable that it is transported down-
stream while preventing the velocity from �uctuating and thus any scalar �uctuation in the
transverse direction of the �ow. For this laminar case, this high-viscosity horseshoe-shaped
structure prevents the �ow to have a rapid good ultimate scalar mixing.

For the other DR turbulent cases, either for Newtonian (N1
d and N2

d ) or non-Newtonian
(NN2

d ) �uid �ow cases, the average µc is almost constant and close to the ideal value µc(x) '
ci = 0.5. On the other hand, there is a di�erence in terms of dispersion between Newtonian
and non-Newtonian cases. Indeed, for the Newtonian DR case N1

d , the standard deviation
σc(x) tends slowly towards 0 compared to the turbulent IR case N1

i . By comparing both
cases N1

d and N2
d , it seems that the Newtonian mixing, for DR situations and for this small

range of Reynolds numbers, is rapidly independent of Reynolds number. Nevertheless, for
the Non-Newtonian DR case NN2

d , the standard deviation σc(x) decreases much slower than
for the corresponding Newtonian case N2

d . This means that the mixing is less e�cient in
the Non-Newtonian case than in the Newtonian case. Note that the mixing is delayed in
the non-Newtonian case compared to the Newtonian case. This delay is illustrated by the
scalar maps of the �eld c : in the Newtonian case N1

d , the scalar map c at slice x/D = 4
(�gure 10) looks very similar, for the NN2

d case, to the slice at x/D = 8 (�gure 11). The
origin of this delay may not be linked directly to the level of the maximum turbulence peak
kmax and its induced e�ects on mixing : on �gure 6 a), the non-Newtonian �ow case (NN2

d )
has a turbulence peak kmax comparable to the Newtonian �ow case (N1

d ). Therefore this
delay is mainly correlated with the downstream shifting (comparing both situations) of this
turbulent peak and the fact that turbulence is in a less concentrated zone (section 4.1).
Furthermore, for the non-Newtonian case, the re-laminarization at the output (section 4.2)
prevents scalar �uctuations and therefore a good ultimate mixing is not expected further
downstream.

By comparing non-Newtonian cases, for a same �xed out�ow rate, in the DR case, NN2
d ,
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the mixing is partially achieved at the output x/D = 10 while for the IR case, NN2
i , it is

homogeneous at x/D = 2. Mixing is signi�cantly enhanced passing from a DR to an IR.
The mixing quality can be further quanti�ed by the factor Is = σc

Max(σc)
which is obtained

by normalizing the dispersion by its maximum value, i.e at x/D = 0. This factor has already
been used in the work by Sakowitz et al. [41] where the authors carried out Large Eddy
Simulations (LES) for compressible gaz mixing study in a circular cross-section T-junction
at a fully turbulent regime (Re ≈ 105). The smaller the Is factor is, the better the quality of
mixing is. For the present study, the quality of the mixing follows generally the same trends
as described above. The mixing quality is quickly achieved over a short distance in the IR
case. Again, this result seems to be independent of the nature of the �uid (Newtonian or
non-Newtonian) and of the Reynolds number < Re >exit levels in the present range. The
mixing quality is worse in the DR cases than in the IR cases that is consistent with the
work by Sakowitz et al. [6]. In the DR cases, the mixing quality is achieved after a greater
distance than for the IR cases. For the Newtonian DR cases, mixing quality appears to
be independent of the Reynolds number < Re >exit in our range of study. Nevertheless,
whereas the mixing quality is the same from the junction (x/D = 0) to x/D = 2, it increases
toward the oulet, more slowly for the non Newtonian case than for the Newtonian case. And
the stable non Newtonian case has the worste mixing quality.

From a practical point of view, from the above observations, for the mixing of XG
solutions, we will certainly favor the "impinging" regime rather than the "de�ecting" regime
for the same outgoing �ow (< Re >exit). For the DR mixing, it is relatively di�cult to obtain
the ideal mixing ci = 0.5 with good homogeneity i.e. with low σc(x). Unlike for the IR mixing
and r = 4, an ideal mixing will be obtained within a short distance with the expected value
of µc = 4/5.

N.B. : To obtain the value µc = 0.5 in the "impinging" regimes, it is necessary to impose
a scalar with a value c = 5/8 instead of c = 1 at the inlet2 .

5. Conclusion and Perspective

In this work, �ows in a square cross-section T-junction are investigated using Direct
Numerical Simulation for di�erent cases with a non-Newtonian inelastic �uid (Xanthan
Gum solution) or Newtonian �uid (water) and di�erent inlet velocity ratios. The shear-
thinning property of the Xanthan Gum solution is modeled by the Bird-Carreau Law to
correspond to experimental data by Nguyen [31]. The chosen lowest viscosity,ν∞, limit of
the non-Newtonian �uid is twice that of the Newtonian �uid. Note that we impose the same
�ow rates for Newtonian and non-Newtonian �uid �ow even if the average Reynolds number
at the inlet or outlet does not have the same order. Therefore, the Newtonian cases can be
seen as the upper limit in terms of turbulent intensity, for the non-Newtonian cases. By
introducing a passive scalar, we quantify mixing of the �ow.

For non-Newtonian �uid �ow, at relatively low nominal Reynolds number, both cross�ow
and transversal jet are laminar and carry a very viscous core before the junction. However,
due to strong shear rate at the junction, the �uid viscosity decreases dramatically and a
self-sustaining non-Newtonian turbulent �ow is produced with speci�c properties comparing
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Figure 12: Longitudinal evolution of vertical transverse slice statistical parameters of the mean concentration
�eld c from the junction x/D = 0 to the outlet x/D ≈ 10 : average c, root mean square σc and a mixing
quality factor Is (all de�ned in the text).

to the Newtonian case. Parameterized by the velocity ratio r = Ub/Um, two �ow regimes
are investigated : the "de�ecting" (r = 1, DR) and the "impinging"(r = 4, IR) regimes.

We have described the di�erent vortex mechanisms that lead to the mixing. In the DR
case, a non-Newtonian version of the kidney vortex pair, similar to the Newtonian "Jet In
Cross Flow", is shown to be the motor of the scalar mixing. Furthermore, for the IR case,
another downward vortex pair is added and signi�cantly modi�es the turbulent �ow. This
is due to the change of regime. This mechanism is new and have an impact on the quality
of the mixing, in particular in the re-circulation zone. Such mechanism could probably be
established in the Newtonian situations.

Unlike the IR case, for the DR one there is a displacement of the turbulent kinetic energy
peak in the upper part of the recirculation zone with a widening of the �uctuating zone. It
con�rms the preliminary results from the experimental work of Nguyen [31] on a T-junction
with circular cross section for DR cases.

For the non-Newtonian �uid �ows , both for DR and IR cases, we demonstrate that a
viscous core degenerates into turbulence at the junction and that a relaminarization zone
appears with a high viscosity level that reduces �uctuations and mixing near the outlet
(x = 10D from the junction). The mixing is then restricted to a part of the junction. We
show that at �xed �ow rate, by switching from DR to IR, the non-Newtonian mixing is
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considerably improved with a more e�cient mixing obtained over a distance of 2D length
from the junction. In addition, in the IR case, unlike the DR case, the mixing seems to be
independent of the Reynold's number (in the studied range) and of the nature of the �uid.

The quanti�cation of mixing quality provided in this work was initiated by the work
of Nguyen [31] and other experimental or numerical works with circular cross-section T
junction. It was conducted for both IR and DR in order to have a complete comparison for
predicting the best mixing. For future works, it should be possible to compare more deeply
and to extract some universal and non-universal properties of mixing in T-junction.

Investigating the viscoelastic response in the present geometrical con�guration is also
an interesting perspective. In particular, in the case of high elasticity regime, as with
elastoinertial turbulence [42] (moderate Reynolds number) or elastic turbulence [43] (low
Reynolds number), the mixing properties must change as a function of IR or DR, especially
if pulsating input conditions are used.
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