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Introduction

Flows in T-junction congurations are encountered in various industrial applications and physiological situations such as piping systems in nuclear power plants [1,2], automobile airconditioning system [3], chemical reactors [4,5], combustion chambers [6] and hemodynamic studies [79] among others.

For T-junction congurations, there are two main ow cases depending on the number of inlet: diverging and converging ow congurations. A diverging ow has one inlet and two outlets [1016] whereas a converging ow has two inlets and one outlet in order to mix the two inlet ows (see Figure 2). Other variations can also be accounted : due to dierent angles between inlet and outlet pipe axis; changing cross section shape (circular, rectangular for example); leaving the junction either sharp or with chamfer, etc. In the current work, we consider only the T-shape junction i.e with an angle of 90 degrees in converging ow congurations.

Main part of the litterature concerning non Newtonian eects studies inside T-junction ows are focused on diverging ow congurations. Most of these studies consider hemodynamics or micro-channel mixing with non-Newtonian uid ows and low Reynolds number situations. They account for shear-thinning, viscoelasticity [8,9,12,15,17] and/or pulsating inlet condition eects [7].

Studies focusing on the converging congurations are mainly interested in macro-scale [1 3, 1821] as the ones dedicated to nuclear power plant applications for which characteristic duct diameter is of order 100mm. Another application concerns with milli-channels as microtechnology reactors for multiphase reactions. For example, the work by Tourvieille et al.

[22] studies the gas-liquid mixing in a T-junction with a square cross-section of 2mm wide, lled with metal foams as catalysis material and for relatively small Reynolds numbers (the Reynolds number for the liquid phase is around 80). Few 3D Direct Numerical Simulations (DNS) are carried out for relatively high Reynolds number [18,20,21]. Among these studies, the nominal Reynolds numbers (based on zero shear viscosity) at the inlets range from 243 to 4485 and from 4376 to 8970 at exits which covers both laminar and turbulent regimes. Moreover, Georgiou and Papalexandris [21] take into account the variation of viscosity with temperature. Sharing the same converging ow conguration, variations on geometry are still present between litterature cases, which makes comparisons dicult : Haren [20] used circular pipes with chamfer and llet at the junction; Both Georgiou and Papalexandris [21] and Fukushima et al. [18] used rectangular ducts without any chamfer or llet whereas the relative inlet size ratio and the ways by which the transversal branch attaches to the main duct are dierent. In a T-junction conguration, concerning scalar mixing quality, three dierent ow regimes are proposed and found experimentally by Sroka [23] and Kamide [24]. They are distinguished via one criteria, the velocity ratio r = U b /U m between the main longitudinal pipe velocities U m and the transverse branch pipe U b . In the case for which the diameter of the main pipe equals to that of the transverse branch pipe, the three dierent ow regimes are the "wall-jet" regime for r < 0.07, the "deecting" regime (noted DR) for 0.07 < r < 1 and the "impinging" regime (noted IR) for r > 1. Two fundamental ow phenomenom interests of T-junctions are the generations of a mixing layer and of a re-circulation zone inducing dierent ow mixing characteristics. Flows in a T-junction geometry could be considered as conned versions of the "Jet In Cross Flow" (JICF) which is the subject of extensive studies [25,26] and for which the ratio r is r > 1 for most part of the studied cases. These two types of ows are demonstrated to share similar coherent structures as was shown in the work of Brucker [27] for a circular T-junction ow and in the works of Fric [28] and Haven [29] for JICF. In JICF, ow pulsations is applied to control the penetration of the jet [30]. For such case, an optimal stroke ratio is discussed to maximize a scalar mixing. In a T-junction, ow pulsations, imposed on the two compressible gaz inlets, do not necessarily improve mixing [6].

To our knowledge, only few publications studies focus on non-Newtonian eects in the converging T-junction conguration. Nguyen's experiments [31] focused on the "deecting" regime r = 1 for both Xanthan Gum (XG) and Polyacrylamid (PAA) (both non-Newtonian) solutions in a converging T-junction with circular pipes of D = 8mm diameter. While the two initial converging currents remain highly viscous and laminar before the junction, in a non-obvious way, the ow becomes turbulent after the junction. This turbulence is obtained at relatively low Reynolds numbers from ∼ 10 to 50 (based on the pipe diameter, the inlet velocity (for three cases) and the zero shear viscosity (at rest)). The fact that XG has a negligible elasticity, in contrast to PAA [32] suggests that the turbulent regime is due to shear thinning eects, dominant for an XG solution. Moreover by comparing the ow with the XG solution to the one with a Newtonian uid (water) ow, Nguyen observed a downstream-wise shifting of the turbulence peak. The present investigation aims to conrm these preliminary observations. In addition to the "deecting" regime (r = 1), we have investigated the "impinging" regime (r = 4) which is not present in his experimental study.

Nevertheless our main objectives are to describe the non-Newtonian mechanisms that allow a scalar to mix in such converging geometry and to quantify this mixing [23] as a function of the dierent dynamic regimes. The mixing quality is directly related to the presence of turbulence developing from the viscous core located at the junction. Compared to the Newtonian ow, in the non-Newtonian case the junction zone has an additional specicity. Indeed, from the junction, near the recirculation zone, the shear considerably reduces the viscosity to values close to the Newtonian viscosity. This causes a strong turbulent pu which improves the mixing of the scalar. At the opposite, beyond the junction, the shear decreases, resulting in a signicant increase of viscosity, which can lead to a zone of relaminarization that prevents mixing.

It is thus not obvious to predict how the mixing will behave both for the non-Newtonian and for the Newtonian uid cases as a function of the dierent regimes (IR and DR). To clarify this, we have performed Direct Numerical Simulations for low and moderate Reynolds numbers for XG water solution and Newtonian uid (water) corresponding to uid cases used in Nguyen's experiments. With the present DNS we have access to the tridimensional organization of the ows and the associated turbulent phenomena that enhance the scalar mixing. To avoid numerical problems associated with meshing at junction, particularly for the non-Newtonian uid ow cases, we consider a square cross section. We do think that the phenomena observed in the experiments, where the cross-section is circular, are signicant enough to be predominant considering mixing for the present square geometry.

In section 2, we describe the rheological model including the governing equations. We provide also mesh analysis and simulation parameters. In section 3, we describe the non-Newtonian organization of the ow, focusing on the behavior dierences between deecting and impinging regimes. Section 4 describes the development of the non-Newtonian turbulence production from the two viscous cores, the possible re-laminarizations as well as the turbulence peak shifting for the deecting regime. Passive scalar mixing inuenced by pigure IX @A est (tting firdEgrreu @fgA vw @eqution IA from the xguyen9s experimentl work QID used for the present hxF sts shows the trnsition from ν 0 to ν ∞ s funtion of sherF vw prmeters re n = 0.326D λ = 1s nd α = 2F @A ixmple of n histogrm of the visosityD here otined from ll the vlues on trnsversl plnr hx ut in the min pipe just efore the juntion for the se N N 2 d @see le PAF isosity rngeD from ν ∞ to ν 0 D is shown on the x xisF prequeny @perentge of ll vlues on n intervl ompring to ll used vluesA is on the y xisF turbulence and its evolution along the main ow direction is nally analyzed.

Rheological model

Governing Equation

For DNS non Newtonian uid viscosity, we take the one of the XG shear thinning solution used in Nguyen's work [31] for studying the converging T junction conguration (gure 1a). XG has a very eective thickening nature which increases the initial viscosity of the carrier uid and is often used as a stabilizer. Adding XG to water will make the solution very viscous as a function of its concentration. In our case, the viscosity of the XG solution at rest ν 0 is 100 times more viscous than pure water. When shear is applied to an XG solution, its viscosity will decrease (shear thinning eect) as a function of increasing shear until reaching its lower viscosity limit ν ∞ close to the viscosity of the carrier uid. Here we have ν 0 = 3 × 10 -4 m 2 /s and ν ∞ = 2 × 10 -6 m 2 /s (gure 1a and 1b). To describe ows with such solutions, we use for numerical simulation, the Navier-Stokes equations (without gravity eect) (equations 1a and 1b) combined with the Bird-Carreau (BC) Law (equation 1c). We further implement the mass transport equation (equation 1d) for a passive scalar c transported by the ow from one inlet (transverse branch) :

∂u ∂t + u • ∇u = -∇p * + ∇ • ν s ∇u (1a) ∇ • u = 0 (1b) ν s ( γ) = ν ∞ + (ν 0 -ν ∞ )[1 + (λ γ) α ] n-1 α (1c) ∂c ∂t + u • ∇c = D c ∆c (1d) (a) (b)
pigure PX @A gomputtionl domin for the Ejuntion mixing with two inlets nd one outletF he squreE shped ross setion hs side width D equl to 8mmF @A wesh detils t ut over plne (x, y) t z = 0 @pipe enterA on the downstrem edgeF where p * is the kinematic pressure and ν s is the kinematic viscosity depending on the local shear rate γ = (2s : s) 1/2 with the strain rate tensor s dened by : s ij = (∂ j u i +∂ i u j )/2 for which i, j = x, y or z.

Concerning the BC law, the power index n reveals its power-law nature for intermediate values of the shear rate, and λ -1 represents a start-up threshold of strain rate for which shear thinning eects begin to take place. The tting from the experimental curve points could not be exact. A small dierence could be pointed out (gure 1a for high shear values). The experimental points didn't furnish the ν ∞ plateau due to limitation of the used rheometer to relatively low shears (under 10 3 s -1 ). The arbitrary xed ν ∞ , choosen here, could not lead to noticeable numerical result changes, inducing to change our conclusions in any part of the present work. From this Bird-Carreau law, we can extract by tting with a power law for intermediate shear rate ν P L = K • γn-1 . For example, on Figure 1b, we plot the histogram of the viscosities obtained from all values on a transversal plane cut in the main pipe just before the junction, for the laminar regime computed here with DNS. As we can observe, a large range of viscosity values are far from ν ∞ .

In the case of the Newtonian uid, water's kinematic viscosity is used in Eq. (1a) inside the term ∇ • ν s ∇u. This term can then be simplied as ν water ∇ 2 u with ν water = 10 -6 m 2 /s = ν ∞ /2. For the passive scalar, we x its diusivity D c to be uniform and D c = ν water for all simulations. The complete set of parameters is presented in section 2.3.

Numerical Method

The governing equations Eq. (1a,1b) and the constitutive law Eq. (1c) are implemented in the Finite Volume based opensource code OpenFOAM which handles ows in complex geometries and dierent rheological models. A transient solver is applied to perform fully resolved Newtonian and non-Newtonian turbulence simulations of the start-up phases and their steady state in a xed T-junction conguration. Inside this solver, a pressure based semi-implicit algorithm PISO is applied where the decoupling of pressure and velocity is

U p c inlet1 u = u x (y, z) • n ∇p • n = 0 c = 0 inlet2 u = u y (x, z) • n ∇p • n = 0 c = 1 outlet ∇u • n = 0 ∇p = const. ∇c • n = 0 wall u = 0 ∇p • n = 0 ∇c • n = 0
le IX foundry onditions for hxF n is the norml vetor t respetive oundriesF achieved by a velocity-predictor and pressure corrector. In those simulations, the main eort of the PISO-algorithm resides on solving the Poisson equation especially during the the start-up stage. We apply a xed time step ∆t that is set to be 5 or 10 times smaller in start-up phases than what we use once the solutions converge. The maximum CFL number of all computations is held below 0.35 for all simulations, which leads to a ∆t of 10 -6 s.

In our simulations, the total cell number is around 25 million and parallel simulations are carried out on 480 cores. The decomposition algorithm "scotch" is used and we have 50000 cells per core which is twice the prescribed optimal number given in the notes by Axtmann et al. [33] and Guerrero [34]. Our computational domain for the T-junction conguration with two inlets and one outlet is shown on Figure 2 a). On this gure, we distinguish the upstream and downstream edges. The main longitudinal pipe has a length of 20D with D the width of the square section. The transverse branch pipe has a length of 10D with the same width. At t = 0 uid is set to be at complete rest (u = 0). Only inlet1 and inlet2 (see Figure (2a)) are forced with the laminar prole of a ow in a square duct as boundary condition to initialize the start-up. On walls the no-slip condition is applied. A xed-value boundary condition is applied for pressure at outlet. We introduce a non-null passive scalar c only at inlet2 at each time step. The imposed inlet velocity prole corresponds to a Newtonian Hagen-Poiseuille ow in a square duct [35]. For inlet1 , we impose in the plane (y, z):

u x (y, z) = ∆p * νL 4h 2 π 3 ∞ n=1,3,5... 1 n 3 [1 - cosh(nπz/D) cosh(nπw/2D) ]sin(nπy/D), (2) 
where h = w = D/2 and the rst 20 terms of the series are taken into consideration to obtain a converged sum. Note that in the experimental set [31], due to the homogenization boxes at entrance of the 2 inlets, a non turbulent condition is found at 8D from both entrance.

For each case, we adjust the coecient ∆p * νL to obtain the specic bulk velocity U bulk given in Table 2 (U bulk = U m for inlet1 and U bulk = U b for inlet2). By symmetry we apply the similar inlet condition at inlet2 (the branch inlet) named u y (x, z). For the passive scalar, we impose two symbolic values at the entrance : c = 0 at inlet1 and c = 1 at inlet2 . Zero gradient condition is imposed at outlet for concentration and velocity i.e ∇c • n = 0, ∇u • n = 0 where n is the normal vector at outlet. All boundary conditions are specied in 10D/<U >exit is the rel time divided y time of )ow from juntion to the outletF hen neessry two numers re indited in prenthesis for given quntityF U bulk = U m for inletI nd U bulk = U b for inletPF his orresponds for the (rst one to vlue hrteristi of the ross )ow @inlet1 A nd for the seond one to vlue hrteristi of the trnsversl jet @inlet2 AF here is only one vlue when quntities re equls for oth inletsF nd v indite the turulent stte nd the lminr stteD respetivelyF wore omments re dded on signi(ne of the < Re > exit in setion 2.3F

Simulation Parameters

We have performed 6 simulations as listed in Table 2 where the last two are aimed to investigate the IR regime and the rst four simulations are aimed to reproduce the same DR regime as in Nguyen's work [31] but using a square shaped cross section. Simulations' naming are composed with N or N N representing respectively a simulation with a Newtonian uid (water) and with a non-Newtonian uid (XG). At these N or N N is added an upper index with the values 1 or 2 corresponding respectively to the 2 bulk velocities U bulk = 0.3m/s and 0.5m/s treated here (as in Nguyen [31]) (remind that U bulk = U m for inlet1 and U bulk = U b for inlet2). Additionally are added the lower indices d or i as abbreviations for the ow regimes, respectively, "deecting" and "impinging". As shown on gure (2), U b denotes the velocity at entrance of the vertical branch, inlet2 , and U m is the velocity at the entrance of the main duct, inlet1 . As the square-shaped cross-section is constant all along the pipes for the whole geometry, the velocity ratio dened by r = U b /U m characterizes the ow regime as stated in the introdution : when r = 4, previous studies with Newtonian uids [23,24] conrm the IR regime; when this ratio is equal to 1, it corresponds to the DR regime.

The nominal Reynolds number at the exit (inlet) for water is dened by < Re > exit =< U > exit D/ν water where the width of the square duct is D = 8mm as in Nguyen's work [31] and < * > exit (< * > inlet ) denotes the spatial average value on the exit (inlet) slice at plane (y, z) for any quantity * . For the shear thinning XG solution, the viscosity varies in space and time along the ow. We dene the spatial averaged Reynolds numbers at the inlet

< Re > inlet =< U > inlet D/ < ν > inlet and at the outlet < Re > exit =< U > exit D/ < ν > exit .
At the inlet, this is computed a priori as the inlet velocity is imposed by an Hagen-Poiseuille ow with its associated shear rate and the induced viscosity. By this way we account for the variability of ν at the inlet and the at the exit (at x/D = 9.5). Note that the Reynolds number < Re > inlet remains almost unchanged along the branches of the pipes from inlets to the crossing zone at the junction. We can roughly say that, regarding both Newtonian and non-Newtonian cases, the average Reynolds numbers at outlet for all our simulations ranges from < Re > outlet = 500 to < Re > outlet = 8000. It would be not surprising for these ows to fall in the transition range between laminar and turbulent regimes. It is not easy to characterise a potential turbulent behavior of non-Newtonian uid ows with the common form of the Reynolds number. For the non-Newtonian cases, Re ∞ = U exit D/ν ∞ is the largest as possible dened Reynolds number but is not characteristic of all the ow behavior at the outlet. However, eorts have been made to improve such characterisation by introducing the generalized Reynolds number, taking a power law viscosity ν P L = K • γn tting the viscosity curve (see gure(1a)). This generalized Reynolds number is dened in the work of Madlener et al. [36] and we apply this denition to characterise the ow cases at their inlet :

Re gen P L = D n U 2-n bulk K ((3n + 1)/4n) n 8 n-1
Values of the calculated Re gen P L are shown on the Table 2. Note that Re gen P L could be computed a priori. In the case of Newtonian uid, we have n = 1 and K = ν water so that the generalized Reynolds number reduces to the nominal classic Reynolds number. As we observe in Table 2, the values of Re gen P L are systematically bigger than those of < Re > inlet but of the same order.

For the Newtonian cases, the value of the molecular diusivity D c of the scalar c into water, is xed in order to have a Schmidt number : Sc N = ν water /D c = 1. Under turbulent regime hypothesis, the smallest scale for velocity is the Kolmogorov's scale η N K dened by

η N K = ν 3/4 water ε -1/4 N
where ε N is the kinetic energy dissipation rate. In such case, the smallest scalar scale ([? ], [37]) is the Batchelor's scale λ N B dened by

λ N B = η N K /Sc 1/2
N . This means, for Sc N = 1, that when the Kolmogorov's scale is fully resolved, so does the Batchelor's scale.

For non-Newtonian uid ow, since the viscosity ν N N varies according to our Bird-Carreau law (1c) then the associated Non-Newtonian Schmidt number Sc N N = ν N N /D c covers a large range from 2 to 300 as

Sc N N = Sc N ν N N νwater and ν N N ∈ [2ν water , 300ν water ].
Here the molecular scalar diusion is hypothetised the same for Newtionan and non Newtonian cases as the non Newtonian solvant is water and XG concentration is low.

If we note ε N N the kinetic energy dissipation rate for non Newtonian uid ow cases, the associated Kolmogorov's scale is related to the Newtonian one by : η

N N K = η N K ν N N νwater 3/4 ε N N ε N -1/4
, following their respective denition. Thus

η N N K (= η N K ν N N νwater 3/4
) is always greater than the kolmogorov's scale of the corresponding Newtonian case and so if resolution is sucient for Newtonian case, it is for the non Newtonian cases.

If we assume that the kinetic energy dissipation rate for non-Newtonian uid ow case, ε N N , is of the same order than the one in Newtonian uid ow cases, i.e ε N N ε N (in our case of dilute regime (low Deborah number) and negligible elastic contribution, the DNS results by De Angelis et al. ([? ]) help to sustained such hypothesis), then we can conclude that we have always η N N K > η N K . In the same way, due to their denitions, the non-Newtonian Batchelor's scale is linked to the Newtonian one by : λ

N N B λ N B ν N N νwater 3/4 > λ N B .
If the Kolmogorov's scale η N K is fully resolved for a Newtonian uid case, then the Kolmogorov's scale η N N K and the Batchelor's scale λ N N B are fully resolved for the non-Newtonian associated case. In conclusion, we shall be able to fully resolve both velocity and passive scalar eld of non Newtonian cases if we do for the associated Newtonian cases.

Mesh

We manage to get a comparable meshing as for the work of Georgiou and Papalexandris [21]. As for their T-junction which is submitted to slight variations of viscosity due to temperature, we apply a renement in the junction zone in the x and y directions. Additionnally, we apply a renement in the z direction. Every rectangular cross-section is thus discretized with 130 × 130 cells with renement to walls.

The cell-spacing constraint to the wall satises the criteria x + ≈ 0.5 (as for y + and z + ) in wall unit for Newtonian case (N 2 d .) A detail of meshing is shown on Figure 2 b). The Newtonian cases are then considered fully resolved as the criteria for x + (and other direction) is satised at the wall. Given the fact that we have ν ∞ = 2ν water , all non Newtonian cases are also over-resolved. The stretching ratio for the neighboring cells is kept to be constant : 1.05 in the cross-section and 1.01 streamwise. The mesh is strictly orthogonal and skewfree. The geometry is chosen to have two rather long inlet pipes and an equal length outlet pipe (≈ 10D) so that we can isolate possible eects between the junction and inlet/outlet boundary conditions.

Production of turbulent state

3.1. From laminar to turbulent state For all simulations, u, c, ν, ω denote respectively instantaneous velocity, concentration, kinematic viscosity and vorticity eld where ω = ∇ × u. The IR and DR regimes are illustrated in Figure 3 for non-Newtonian cases N N 2 d and N N 2 i , where we show contour plots on plane z = 0 for |ω|, c and ν. By plotting the vorticity magnitude |ω| on gures 3(a) and (b), we see dierent vortex scales in both cases: large-scale structures break into small ones downstream.

On gures 3(c) and (d), the concentration eld is colored from red (c = 1 at inlet2 ) to blue (c = 0 at inlet1 ). We can then distinguish the DR regime (N N 2 d ) from the IR regime (N N 2 i ) by the color-coding of c : in the DR case (N N 2 d ), the jet is only deected and bent slowly to ow in the main longitudinal direction whereas in the IR case (N N 2 i ) the jet penetrates the cross-ow resulting in a reection at the upper wall. We observe that the separation takes place at 2 locations : one happens inside branch inlet2 before the upstream edge due to a blocking eect from the cross-ow; another separation happens from the downstream edge forming a re-circulation bubble. At the downstream edge, the separation angle is signicantly steep for the IR (N N 2 i ) case which implies that the re-circulation bubble occupies more space in the transverse direction than for the DR (N N 2 d ) case. As for mixing, at the junction, we see sharp boundaries between c ≈ 1 zones and c ≈ 0 zones. Near the outlet we observe a much more uniform distribution of c. We observe on gures 3 e) and f) the viscosity elds ν for the IR and DR cases : two laminar ows converge at the junction, each carrying a very viscous core. The two ows meet at the junction, from both the upstream and the downstream edges, two strong shear layers are developped. As a result, in these two layers, XG solution exhibits a lower viscosity due to shear thinning. Additionally, when approaching the outlet the non-Newtonian uid ow seems to increase its viscosity from x/D = 2.

Consider that, for all our 6 simulations, the Reynolds number < Re > exit ranges from small to relatively large values. We have xed a probe at x/D = 2 at the duct center to record mono-dimentional signals of each of our multiple variables. The gure 4 shows the time history of the three components of velocity u = (u x , u y , u z ) and of the concentration c at the probe location.

In each of our 6 simulations, the signals of u x , u y , u z , and c begin by a value of 0 (u x , due to the imposed pressure gradient and velocity prole, has a very rapid increase) at the probe location and within a certain amount of delay, uctuations are detected. For concentration it needs a minimum of the convection's time for the uctuations to be detected as there is no scalar at the probe location at t = 0.

For each case, each lines have a transition part (thin line) and a statistically stationary part (bold line) begining at the given time and from which we made our statistical analysis (see after). Note that cases have non equal time of computation involving results till dierent times (for example the two last stop at t = 0.5 s.)

Quite noticeably, for the non-Newtonian the lowest ow rate, at regime DR (N N 1 d ) with < Re > inlet = 203 (< Re > exit = 484), both velocity and concentration returns to a steady constant value after the initial uctuations (see Figure 4 case N N 1 d ). This means that the initial instability is not able to maintain and that the ow stays laminar from inlets to outlet. We have tried to destabilize this ow by applying pulsated forcing at the inlet with an u x 's amplitude of 50%, compared to the original inlet condition value (see equation ( 2) ). No sign of transition was observed during all the computational time, the ow remains laminar. This laminar state is relatively resilient.

At this location, more specically, this laminar non-Newtonian case N N 1 d is characterized by u z = 0 during the computational time. On the contrary, for all the other cases, both the Newtonian and non-Newtonian at both DR and IR, u z uctuates around zero. This means that an increase of inow rate at both inlets breaks the plane of symmetry of ow structures and all four variables u x , u y , u z and c uctuate. This is inherent to 3D turbulence. The transition between laminar state and a turbulent state in DR, appears between < Re > inlet = 203 (Re gen P L = 329) and < Re > inlet = 449 (Re gen P L = 773) for non-Newtonian uid ow. According to our knowledge, there is no studies, showing whether instabilities should occur and develop, for a T-junction geometry, either for Newtonian or non Newtonian ow. However, in the case of JICF, some studies [38] show that the jet is stable for an inlet Reynold number Re inlet lower than a xed critical Reynolds number Re c = 550 for the case r = 1.5 and that such ow seems to become more stable when decreasing r i.e. the determined critical Reynolds number Re c increases. It could be noted, that for our r = 1 cases and for non Newtonian cases, the critical Reynolds number for JICF, induced by [38]'s work, is largely greater than our inlet Reynolds numbers i.e. Re inlet > Re c . However, in the Nguyen's experimental work, when the same input rate is applied as in the case of N N 1 d with < Re > inlet 203 (Re gen P L = 329), a turbulent state is observed. Possible reasons for experiment-simulation disagreement are : 1. In the experimental work a cylindrical T-junction is used. Curvature dierence between circular and rectangular T-junction may have inuence on stability. 2. Wall roughness is strictly zero in simulation whereas the roughness height is guaranted only to be lower than 1µm in the experimental pipes. 3. The crossow as well as the transversal jet are both laminar in simulations. In experiment uctuations at various scales could persists at inlets in spite of upstream tranquilizing boxes 62.5D upstream. It is worth noting that Nguyen's experiment admits a 1% variation on ow rate measurement. pigure SX sllustrtion of the orgniztion of the nonExewtonin )ow for di'erent regimesF @A 4de)eting4 regime N N 2 d @A 4impinging4 regime N N 2 i F ee detils in textF

Organization of the ow

In order to study the mechanisms that produce the mixing, we use Reynolds decomposition :

u = u + u , (3a) 
c = c + c , (3b) 
ν = ν + ν , (3c) 
ω = ω + ω (3d)
where we denote the time averaged component by adding a bar and the uctuation component by adding a prime. Average operations are performed on the statistical stationary eld (section 3.1). The structural organization of the ow for IR and DR regimes are illustrated on Figure 5 for case N N 2 d and case N N 2 i . Such a visualization of ow structures provides an overview of the impact of the ow regime on the scalar mixing.

In order to analyze the tri-dimensional organization of the ow, we plot several variables on Figure 5 for both DR and IR regimes. On Figure 5, to illustrate the concentration uctuation, an iso-value of c is drawn in half-transparent white for c = 0.5 (N N 2 d ) and in red for c = 0.8 (N N 2 i ). The value c = 0.5 for IR or c = 0.8 for DR corresponds to the ideal mixing by taking into account the ow rate ratio r = U b /U m (see section 4.3). The mean eld c is shown on the 4 transversal slices at x/D = 0, 2, 4 and 6 (where x/D = 0 corresponds to the downstream edge) in order to illustrate the diusion of the scalar c by turbulence. This eld is colored between red c = 1 and blue c = 0. Moreover, on the same slices, 2D streamlines (in black) are drawn based on 2D mean velocity (u y , u z ) illustrating the 2D mean ow structures. Some particular streamlines are explicitly named C1, C1 and C2. In addition, we superpose the iso-surfaces of the mean longitudinal vorticity eld ω x to visualize the rotating vortices. The value of the iso-surfaces are taken as : ω x = +3.47σ ω for N N 2 d and ω x = +4.2σ ω or N N 2 i where σ ω denotes the root mean square of ω x over the whole domain for respective cases. They are colored in yellow for positive vorticity ω x > 0 and in cyan for negative vorticity ω x < 0. The vortices and details are enlarged in the sub-frames in the direction of ow or in the opposite direction. Some particular vortices are explicitly named V 1 ,V 1 and V 2. Finally, tri-dimensional streamlines (in green) are added based on the instantaneous velocity eld and named G1 from main duct and G2 from perpendicular duct.

Firstly, we observe that c uctuates from the downstream edge till the exit showing a non-Newtonian turbulent ow in both deecting and impinging regimes. In particular, for the DR case (N N 2 d ), we observe a pair of counter-rotating swirling structures named V 1 (yellow) and V 1 (cyan) on the zoomed gure 5 a) (only V 1 on large gure). This pair

(V 1, V 1
) is placed at the lower part of the square duct, close to the side wall corner and extend almost in the streamwise direction.

This structure in our non-Newtonian simulation is similar to Newtonian lower-deck steady kidney-vortices observed by Haven (gure 7 a) in [29]) for the JICF case and with a square nozzle. We extend the Haven's explanation to the non-Newtonian context : the non-Newtonian kidney vortices are originated from the sidewall boundary layer inside the jet branch. It is also shown by 3D streamlines in green line (G1 and G2) that currents from both inlets exhibit rstly a motion in straight line, then deviate and are entrained by the rotating structures. The instantaneous passive scalar eld also wraps around these structures and uctuates. The existence of such kidney vortices near the junction plays as the motor of scalar pre-mixing in the DR regime. These vortices then break down to turbulence and enhence the ultimate mixing which occurs further downstream. Going further downstream, some persistent longitudinal corner vortices (named C1 and C1 ) appear at the upper part of the square duct as shown in Gavrilakis's work on a periodic square duct [39].

On the other hand, for the IR case on zoomed gure 5 b), the transversal jet impacts the upper wall and a new vortex structure is organized from the upper corner and descends to the lower part of the duct. These descending vortices named V 2 and the kidney-like vortices V 1 as in DR case (N N 2 d ), forms two co-rotating pairs (V 1, V 2) illustrated on sub-frames. To our knowledge, such mechanism with 3D descending rotating structure V 2 is not yet studied even in Newtonian literature. The instantaneous passive scalar eld and the 3D streamlines wrap around two pairs of co-rotating vortices (V 1, V 2). These rotating structures near the junction shall, like in previous case, enhance the pre-mixing. Corner vortices named C2 in the IR regime tends to grow larger than at the lower part of duct.

For non Newtonian uid ows, DR and IR cases have very dierent ow structures. For a comparable ow regime (DR or IR), the non-Newtonian uid ows tend to be more stable than the Newtonian uid ows. We think that such dierences will introduce a signicant impact on the viscous core, the turbulence peak and the scalar mixing that will be discussed hereafter.

Eect of shear thinning on turbulence

Pressure drop and turbulence peak shifting

In order to describe deeper the turbulent properties of ows, we dene the turbulent kinetic energy k = 1 2 (u 2 x + u 2 y + u 2 z ) by using velocity uctuation components. The nondimensionalized form is k/k max where k max (gure 6 a)) is the max value of k on the plane z = 0 for each case.

On gure 6 a) and b), we present k max values and pressure drops for all dierent cases. We observe that for a same exit Reynolds number, < Re > exit (see Table 2), the IR cases generate a much higher level of turbulence (caracterised by the peak of k max ) than the DR cases do, both for Newtonian and Non-Newtonian uid ows, i.e. (N

2 i vs N 2 d ) and (N N 2 i vs N N 2 d ).
The specic vortex mechanisms, described in part (3.2), producing the turbulence, do not generate the same magnitude of turbulence. Indeed, in the IR cases, the jet impact the upper wall generating more background uctuations (and an higher level of turbulence) that are redistributed downstream by the descending vortex V 2 (shown on gure 5 b)). Moreover, for the same ow rate, the Newtonian cases have an higher turbulence levels than the corresponding non Newtonian uid ows (N 2 i vs N N 2 i ) and (N 2 d vs N N 2 d ). It is consistent with the fact that < Re > exit is higher in Newtonian cases than in Non-Newtonian case (see Table 2). This result is in agreement with preliminary experiment of Nguyen [31] using a circular-section T-junction. pigure TX he two histogrms for k max nd pressure drop X ed rs for nonExewtonin sesD lue rs for xewtonin sesF @A he peks of turulent kineti energy k max on plne z = 0 for the six omputed sesF @A he ssoited pressure drops ∆p/ρF here re two olumns for eh se X opque one for p inlet1 -pexit

ρ Y trnsprent one for p inlet2 -pexit ρ F (a) < Re > exit = 8000 (N 2 d ) (b) < Re > exit = 8000 (N 2 i ) (c) < Re > exit = 4800 (N 1 d ) (d) < Re > exit = 1194 (N N 2 i ) (e) < Re > exit = 1230 (N N 2 d ) (f) < Re > exit = 484 (N N 1 d )
pigure UX gontour plots of normlized kineti energy k/k max where k max denotes the mximum turulent kineti energy on the slie z = 0F

For a given uid (Newtonian or non Newtonian uid), the increase of turbulent peak k max comes at the price of an increased pressure drop over the T-junction (see Figure 6b)). This denotes also that pressure drop is a measure of dissipation. Given the same ow rate with the same < Re > exit (Table 2) the IR cases are more expensive in term of pressure drop than the DR ones : 37% for non-Newtonian and 20% for Newtonian (N N 2 i vs N N 2 d ) and (N 2 i vs N 2 d ). This is of fundamental importance to have an a priori estimation on the energy cost for mixing processes.

However, the uctuations due to turbulence are not uniformly distributed in the ow : intuitively, the location of the peak gives us information on the area that mix the most.

On gure 7, the spatial distributions of k/k max are plotted for laminar (N N 1 d ) and all other turbulent cases. For the laminar case (gure 7 f)), we found no perturbations generated from the downstream edge. The uctuation k max is negligible and concentrated in "a thin uctuating band". It is actually part of the initial perturbation which is not yet convected to the exit neither fully dissipated. Due to computational cost, we stopped the calculation before its exit.

In the Newtonian DR cases, N 1 d and N 2 d (Figure 7 a) and c)), we have a similar distribution of k/k max whereas the Reynolds number varies. The uctuations appear from the downstream edge and are concentrated close to the bottom edge. Moreover, the higher uctuations remain inside the re-circulation zone with a peak center whose location is indicated via a green dash line. From the peak, the uctuations are rapidly (at a distance around 1D) decreasing till 1% of the peak intensity. We call this region "intense turbulence zone" (ITZ) that could be visualized on gure 7 by the white boundary level (corresponding to levels around 0.2%) after black level color from the peak. Note that the ITZ is a part of the re-circulation zone for each case. Its location seems to be dependent on the exit Reynolds number : when < Re > exit decreases from 8000 to 4800, the peak location is shifted toward the exit.

In contrast, for non-Newtonian turbulent DR case (N N 2 d we can see on gure 7 e)) that the great values of k are much less concentrated compared to the Newtonian cases (N 2 d and N 1 d shown on gures 7 a) andc)). In addition, the position of the peak k max is shifted further streamwise compared to the Newtonian cases. This is also conrmed in the preliminary Nguyen's work [31] with a circular-section T-junction. It seems to be a Reynold number dependance eect.

For the IR cases and both Newtonian N 2 i (gure 7 b)) and non-Newtonian N N 2 i (gure 7 d)) uid ows the jet impacts the top wall inducing the ITZ to extend higher upward (to the top wall) and streamwise (to the exit) less further. In these cases, the distribution of the kinetic energy is similar inside the ITZ even if the exit Reynolds numbers < Re > exit are dierent from 1194 to 8000 and no noticeable peak shifting is noted. Unlike, for the DR cases and for the same dierence between the exit Reynolds numbers, dierence as for the IR case, the ITZ's shape is similar but with a noticeable peak shifting (gures 7 a) to e)). This seems to indicate that the origin of the peak shifting is not related to a Reynolds number's eect but results from the shear thining nature of the uid.

From viscous core to turbulence and its relaminarization

By observing the contour plots of ν in gures 3 e) and f) (N N 2 d vs N N 2 i ), laminar ows are obtained, for each case, between the two inlets and the junction. In these zones, the maximum of viscosity ν max is located at the center of ducts for both DR and IR where ν max = 2.7 × 10 -4 m 2 /s ≈ ν 0 . The center part is then characterized by an high viscosity, which is about 100 times more viscous than the viscosity close to the wall, of the same order than ν ∞ (gure 1b)) : we call this region the "viscous core". On the two plots, the viscous cores merge from the inlets inside the junction leading to turbulent ow in both cases. It is not obvious, a priori, that these highly viscous cores can be destabilized enough to generate a turbulent state that allows a more or less homogeneous mixing of the scalar transported from inlets 2. Indeed, an high viscosity tends to attenuate or prohibit any uctuation and therefore any ow mixing (versus molecular one). In this section, we have characterized the spatial evolution of the viscous eld from the junction to the outlet.

For all non-Newtonian cases, we show on gure 8a) several slices of the average viscosity eld ν demonstrating its evolution from the junction to the outlet. Slices are taken on a longitudinal plane z = 0 and several transversal planes x/D = 0, 4 and 8 where x/D = 0 corresponds to the downstream edge (the same kind of 2D vertical cuts are shown on gure 5 for x/D = 0, 2, 4 and 6). In order to describe the distribution of ν on these transversal planes, we have also highlighted on gure 8b) the normalized histograms of ν. Moreover, on gures 9 a) and b) are shown the longitudinal evolution of the rst two moments,of µ ν (x) and σ ν (x), calculated for each x/D locations, to summarize the distribution of ν on these transversal slices between the downstream edge at x/D = 0 and the outlet at x/D = 10. We use the average µ ν and the standard deviation σ ν dened by :

µ ν (x) = 1 S(x) S(x) νdydz (4a) σ ν (x) 2 = 1 S(x) S(x) (ν -µ ν (x)) 2 dydz (4b)
If σ ν is small, then the distribution of ν is almost homogeneous and concentrated around µ ν .

In the DR laminar case (i.e. N N 1 d ), we observe that the average viscosity µ ν (x) is high but constant up to x/D 4 like the standard deviation σ ν . Above x/D 4, the standard deviation σ ν increases as the average viscosity µ ν (x) increases. This behavior indicates that the viscosity is not homogeneous at x/D 4. Furthermore, on gure 8a), we can see that the center of the pipe is gradually occupied by a horseshoe-like structure constituted with uid at high viscosity. This transversal structure is responsible for the non-homogeneity of the viscosity and therefore for the increase of the standard deviation.

In the DR and IR turbulent cases (i.e. N N 2 d vs N N 2 i ), the viscous cores are weaker in terms of µ ν compared to the laminar case (see gure 9 a)). The moments µ ν and σ ν grow monotonously from x/D = 2 and x/D = 4 for IR and DR. Their levels are lower than the laminar case. On the gure 8 a), we do not detect any particular structure. The viscosity eld appears to be more homogeneous than for the laminar case.

The knowledge of the magnitudes of µ ν and σ ν is not sucient to correctly describe the spatial distribution of ν (gure 8 b)). In particular, it is necessary to examine statistics of the points that have a local high viscosity. This local high viscosity is deduced and observed from the tails of the local (for each x/D) ν histograms i.e. ν > µ ν + σ ν . We dene this extreme viscosity between high viscosity and low viscosity by :

ν ex = µ ν + σ ν (5)
This choice is ow dependent because such reference ν ex varies from case to case and it is less arbitrary than if a unique threshold had been imposed for analysing. For example, for a Gaussian distribution of ν, 68% of points have a viscosity ν in the range [µ ν -σ ν , µ ν +σ ν ] and thus only 16% of points have a viscosity ν greater than ν ex (black dashed lines on gure 8 b)).

On gure 9 c), we observe that the evolution of ν ex (x), after a transition, has a global tendency to increase compared to its initial value ν ex (x = 0) for the threee cases. We now quantify the percentage of points with an higher viscosity than ν ex (x = 0) by calculating the probability of having a high viscosity value with respect to the junction input P (ν ≥ ν ex (x = 0)) (gure 9 d)).

In the laminar case N N 1 d , the percentage of points with an high viscosity doesn't uctuate a lot and converges to 50%. This means that the distribution is extended to high viscosities. Unlike the turbulent cases (N N 2 d and N N 2 i ) which have their percentage of points close to 0% for IR and decrease until 4% for DR after a short transition to 18%. Their viscosity distributions is shrinking around low viscosities for the locations 0 ≤ x/D ≤ 6. Such low percentage of high-viscosity points could help turbulence to develop in both IR and DR (N N 2 d and N N 2 i ) cases. This is consistent with the presence of a turbulence peak shown in the gures 7 d) and e) (shown by the green dashed line) compare to its absence for N N 1 d (gure 7 f).

Above x/D > 6, the percentage of points with an high viscosity increases to 50% for both IR and DR cases : this is a sign of relaminarization of ow which prevents any uctuation and therefore any ecient mixing. This is consistent with the large decrease levels of the turbulence uctuations for the IR and DR cases shown on gures 7 d) and e) close to their outlets. As a conclusion, for the DR and IR turbulent cases (N N 2 d and N N 2 i ), the viscous core disappears right after the junction but a re-laminarization is expected close to the outlet at x/D 6 due to an increasing spatial domain with an high viscosity level.

Eect on mixing and quality of mixing

In this section, we quantify the passive scalar mixing from the junction to the outlet. As explained in section 2.2 we inject dierent values of passive scalar, (c = 0 at inlet1 and c = 1 at inlet2 ). As noted in section 3, DR and IR have inherently dierent ow structures. This shall have a large impact on the scalar mixing whose result can be visualized by c-valued iso-surfaces' tilting and folding ( gure 5(a) and (b)). As we did in the section 4.2, for the mean viscosity ν (gure 8), we drew on gures 10 and 11 the contours and histograms of the scalar c for the same transversal slices S(x) evolving along the x-axis. z = 0
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In order to quantify the mixing, as done for the previous viscosity analysis (section 4.2), we use the spatial average of µ c (x) dened by :

µ c (x) = 1 S(x) S(x) cdydz (6) 
This value µ c (x) should be compared with the value, c i , obtained in the case of an ideal mixing. Indeed, by taking into account the ow rate ratio r (r = 1 for the DR cases and r = 4 for the IR cases), the ideal mixing is expected to be c i = r r+1 (c i = 0.5 for the DR cases and c i = 0.8 for the IR cases). However when such value is not reached everywhere, it is necessary to characterize the mixing quantifying the dispersion around the average value µ c [40]. We characterized it by the following standard deviation :

σ c (x) 2 = 1 S(x) S(x) (c -µ c (x)) 2 dydz (7)
From these two quantities, the mixing tends to be qualied as homogeneous and ideal when µ c (x) is close to the ideal value c i and the standard deviation σ c (x) is close to zero. The longitudinal evolutions of these quantities (µ c (x) and σ c (x)) have been plotted on gure 12 for each 6 cases.

For both turbulent IR cases, Newtonian and non-Newtonian uid ows (N N 2 i and N 2 i ), µ c converges quickly ,along x, close to the ideal value as µ c (x) c i = 0.8 (gure 12 a)).

Their standard deviations σ c (x) converges also quickly to zero. The mixing is close to be ideal with an homogeneous scalar distribution. Such state is obtained almost at x/D = 2.0 (gures 12 a) and b) ).

Note that for the Newtonian case (N 2 i ) there is a better pre-mixing at x/D = 0 comparing to the non-Newtonian case N N 2 i (see histogram on the gure 11). Nevertheless, for both cases, the scalar distribution is close to a Dirac-like distribution around the outlet at x/D = 8. Since the XG is initially more viscous than water, the fact that the mixing quality of the XG solution converge to the Newtonian situation after a short length (of x/D = 2), suggests that the ux in the non Newtonian case (N N 2 i ) a very good pre-mixing. This could be aected to the presence of the near-junction vortex structure for this IR case (section 3.2). In this case the < Re > exit is not relevant to qualify the mixing state because of the relaminarisation tendency (described in section 4.2).

Unlike, for the non-Newtonian laminar ow for the DR case (N N 1 d ), the mean value is almost constant and close to the ideal value : µ c (x) c i = 0.5. Nevertheless, its standard deviation σ c (x) is comparable to its average, which means that the mixing remains heterogeneous and far from being ideal. This is probably due to the presence, from x/D = 4, of a c horseshoe structure (gure 10 a)), corresponding to the one for the viscosity eld ν from the viscous core (gure 9). The high-viscosity horseshoe is so stable that it is transported downstream while preventing the velocity from uctuating and thus any scalar uctuation in the transverse direction of the ow. For this laminar case, this high-viscosity horseshoe-shaped structure prevents the ow to have a rapid good ultimate scalar mixing.

For the other DR turbulent cases, either for Newtonian (N 1 d and N 2 d ) or non-Newtonian (N N 2 d ) uid ow cases, the average µ c is almost constant and close to the ideal value µ c (x) c i = 0.5. On the other hand, there is a dierence in terms of dispersion between Newtonian and non-Newtonian cases. Indeed, for the Newtonian DR case N 1 d , the standard deviation σ c (x) tends slowly towards 0 compared to the turbulent IR case N 1 i . By comparing both cases N 1 d and N 2 d , it seems that the Newtonian mixing, for DR situations and for this small range of Reynolds numbers, is rapidly independent of Reynolds number. Nevertheless, for the Non-Newtonian DR case N N 2 d , the standard deviation σ c (x) decreases much slower than for the corresponding Newtonian case N 2 d . This means that the mixing is less ecient in the Non-Newtonian case than in the Newtonian case. Note that the mixing is delayed in the non-Newtonian case compared to the Newtonian case. This delay is illustrated by the scalar maps of the eld c : in the Newtonian case N 1 d , the scalar map c at slice x/D = 4 (gure 10) looks very similar, for the N N 2 d case, to the slice at x/D = 8 (gure 11). The origin of this delay may not be linked directly to the level of the maximum turbulence peak k max and its induced eects on mixing : on gure 6 a), the non-Newtonian ow case (N N 2 d ) has a turbulence peak k max comparable to the Newtonian ow case (N 1 d ). Therefore this delay is mainly correlated with the downstream shifting (comparing both situations) of this turbulent peak and the fact that turbulence is in a less concentrated zone (section 4.1). Furthermore, for the non-Newtonian case, the re-laminarization at the output (section 4.2) prevents scalar uctuations and therefore a good ultimate mixing is not expected further downstream.

By comparing non-Newtonian cases, for a same xed outow rate, in the DR case, N N 2 d , the mixing is partially achieved at the output x/D = 10 while for the IR case, N N 2 i , it is homogeneous at x/D = 2. Mixing is signicantly enhanced passing from a DR to an IR.

The mixing quality can be further quantied by the factor I s = σ c M ax(σ c ) which is obtained by normalizing the dispersion by its maximum value, i.e at x/D = 0. This factor has already been used in the work by Sakowitz et al. [41] where the authors carried out Large Eddy Simulations (LES) for compressible gaz mixing study in a circular cross-section T-junction at a fully turbulent regime (Re ≈ 10 5 ). The smaller the I s factor is, the better the quality of mixing is. For the present study, the quality of the mixing follows generally the same trends as described above. The mixing quality is quickly achieved over a short distance in the IR case. Again, this result seems to be independent of the nature of the uid (Newtonian or non-Newtonian) and of the Reynolds number < Re > exit levels in the present range. The mixing quality is worse in the DR cases than in the IR cases that is consistent with the work by Sakowitz et al. [6]. In the DR cases, the mixing quality is achieved after a greater distance than for the IR cases. For the Newtonian DR cases, mixing quality appears to be independent of the Reynolds number < Re > exit in our range of study. Nevertheless, whereas the mixing quality is the same from the junction (x/D = 0) to x/D = 2, it increases toward the oulet, more slowly for the non Newtonian case than for the Newtonian case. And the stable non Newtonian case has the worste mixing quality.

From a practical point of view, from the above observations, for the mixing of XG solutions, we will certainly favor the "impinging" regime rather than the "deecting" regime for the same outgoing ow (< Re > exit ). For the DR mixing, it is relatively dicult to obtain the ideal mixing c i = 0.5 with good homogeneity i.e. with low σ c (x). Unlike for the IR mixing and r = 4, an ideal mixing will be obtained within a short distance with the expected value of µ c = 4/5.

N.B. : To obtain the value µ c = 0.5 in the "impinging" regimes, it is necessary to impose a scalar with a value c = 5/8 instead of c = 1 at the inlet2 .

Conclusion and Perspective

In this work, ows in a square cross-section T-junction are investigated using Direct Numerical Simulation for dierent cases with a non-Newtonian inelastic uid (Xanthan Gum solution) or Newtonian uid (water) and dierent inlet velocity ratios. The shearthinning property of the Xanthan Gum solution is modeled by the Bird-Carreau Law to correspond to experimental data by Nguyen [31]. The chosen lowest viscosity,ν ∞ , limit of the non-Newtonian uid is twice that of the Newtonian uid. Note that we impose the same ow rates for Newtonian and non-Newtonian uid ow even if the average Reynolds number at the inlet or outlet does not have the same order. Therefore, the Newtonian cases can be seen as the upper limit in terms of turbulent intensity, for the non-Newtonian cases. By introducing a passive scalar, we quantify mixing of the ow.

For non-Newtonian uid ow, at relatively low nominal Reynolds number, both crossow and transversal jet are laminar and carry a very viscous core before the junction. However, due to strong shear rate at the junction, the uid viscosity decreases dramatically and a self-sustaining non-Newtonian turbulent ow is produced with specic properties comparing x/D = 8 We have described the dierent vortex mechanisms that lead to the mixing. In the DR case, a non-Newtonian version of the kidney vortex pair, similar to the Newtonian "Jet In Cross Flow", is shown to be the motor of the scalar mixing. Furthermore, for the IR case, another downward vortex pair is added and signicantly modies the turbulent ow. This is due to the change of regime. This mechanism is new and have an impact on the quality of the mixing, in particular in the re-circulation zone. Such mechanism could probably be established in the Newtonian situations.
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Unlike the IR case, for the DR one there is a displacement of the turbulent kinetic energy peak in the upper part of the recirculation zone with a widening of the uctuating zone. It conrms the preliminary results from the experimental work of Nguyen [31] on a T-junction with circular cross section for DR cases.

For the non-Newtonian uid ows , both for DR and IR cases, we demonstrate that a viscous core degenerates into turbulence at the junction and that a relaminarization zone appears with a high viscosity level that reduces uctuations and mixing near the outlet (x = 10D from the junction). The mixing is then restricted to a part of the junction. We show that at xed ow rate, by switching from DR to IR, the non-Newtonian mixing is considerably improved with a more ecient mixing obtained over a distance of 2D length from the junction. In addition, in the IR case, unlike the DR case, the mixing seems to be independent of the Reynold's number (in the studied range) and of the nature of the uid.

The quantication of mixing quality provided in this work was initiated by the work of Nguyen [31] and other experimental or numerical works with circular cross-section T junction. It was conducted for both IR and DR in order to have a complete comparison for predicting the best mixing. For future works, it should be possible to compare more deeply and to extract some universal and non-universal properties of mixing in T-junction.
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  of instntneous quntity (elds on the longitudinl plne z = 0 for respetively vortiity mgnitude |ω|D pssive slr c nd visosity ν for X de)eting se N N 2 d A A eA nd impinging se N N 2 i A dA fAF he symol represents the lotion of the proe orresponding to plots in (gure RF pigure RX por 6 sesD the time history @in seondA of u x D u y D u z nd c t the enter of slie x/D = 2 @orresponding to the proe indited y in (gure Q AA is presentedF u x D u y D u z nd c re respetively oded y lueD redD green nd lk linesF ih lines hve trnsitionl prt nd sttistilly sttionry prtF he ltter prt is mde thiker to distinguish from the former oneF he horizontl xis represents the time in s nd the vertil xis represents either the veloity in m/s or the onentrtion 0 ≤ c ≤ 1 @ritrry unitAF

  plots nd histogrms of di'erent slies for verge onentrtion (eld c for the low )ow rte xewtonin N 1 d nd nonE xewtonin N N 1 d sesF A gontour plots of c on vertil plne z = 0 nd vertil trnsverse plnes t x/D = 0, 4 nd 8F A xormlized histogrms of c on vertil trnsverse plnesF Exis rnges from 0% to 40% denoting the frequeny in perentge %F he ed line mrks the position for µ c nd the lk dshed lines for µ c ± σ c F July 1

  plots nd histogrm of vertil slies for verge onentrtion (eld c for higher )ow rte xewtonin N 2 d D N 2 i nd nonE xewtonin N N 2 d nd N N 2 i sesF A gontour plots of c on vertil plne z = 0 nd vertil trnsverse plnes t x/D = 0, 4 nd 8F A xormlized histogrms of c on vertil trnsverse plnesF Exis rnges from 0% to 40% denoting the frequeny in perentge %F he ed line mrks the position for µ c nd the lk dshed lines for µ c ± σ c F July 1, 2020 pigure IPX vongitudinl evolution of vertil trnsverse slie sttistil prmeters of the men onentrtion (eld c from the juntion x/D = 0 to the outlet x/D ≈ 10 X verge cD root men squre σ c nd mixing qulity ftor I s @ll de(ned in the textAF to the Newtonian case. Parameterized by the velocity ratio r = U b /U m , two ow regimes are investigated : the "deecting" (r = 1, DR) and the "impinging"(r = 4, IR) regimes.

  

  

  Table 1 for u, c and p.

	Runs U bulk (m/s) Fluid r	Re gen P L	< Re > inlet	< Re > exit	t *	
	N N 1 d	0.3	NN	1	329	203	484	5.25	L
	N 1 d	0.3	N	1	4800	2400	4800	11.25 T
	N N 2 d	0.5	NN	1	773	449	1230	17.5	T
	N 2 d	0.5	N	1	8000	4000	8000	18.75 T
	N N 2 i	(0.2 , 0.8)	NN	4	(167, 1697)	(107, 910)	1194	12.5	T
	N 2 i	(0.2 , 0.8)	N	4	(3200, 12800)	(1600, 6400)	8000	12.5	T
	le PX hx prmeters where N nd N N represent the xewtonin nd nonExewtonin )uidsD lower index
	d, i re the revition for 4de)eting4 regime nd 4impinging4 regimeF r = U b /U m denotes the veloity
	rtio @inlet1 veloity to inlet2 veloityAAF he time t * =	t			
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