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Highlights 22 

- A new habitat modelling open-source framework for non-modeller ecologists. 23 
- An explicit consideration of the third dimension and habitat filter in the modeling procedure. 24 
- An automated procedure for data processing. 25 
- The proposed framework avoids higher projections of species loss. 26 

 27 
Abstract 28 
Species Distribution Models (SDMs) are useful tools to project potential future species distributions 29 
under climate change scenarios. Despite the ability to run SDMs in recent and reliable tools, there are 30 
some misuses and proxies that are widely practiced and rarely addressed together, particularly when 31 
dealing with marine species.  32 
In this paper, we propose an open-source framework that includes (i) a procedure for homogenizing 33 
occurrence data to reduce the influence of sampling bias, (ii) a procedure for generating pseudo-34 
absences, (iii) a hierarchical-filter approach, (iv) full incorporation of the third dimension by 35 
considering climatic variables at multiple depths and (v) building of maps that predict current and 36 
potential future ranges of marine species. This framework is available for non-modeller ecologists 37 
interested in investigating future species ranges with a user-friendly script. We investigated the 38 
robustness of the framework by applying it to marine species of the Eastern English Channel. 39 
Projections were built for the middle and the end of this century under RCP2.6 and RCP8.5 scenarios. 40 
 41 
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1. Introduction 48 
In a changing world, predicting suitable habitats and potential future species distributions is a central 49 
issue in ecology. To this end, Species Distribution Models (SDMs) (also called, depending on the 50 
study context, Ecological Niche Models (ENMs), Habitat Suitability Models (HSMs), Habitat 51 
Distribution Models (HDMs), Climate Envelope Models (CEM) and other nomenclatures) have been 52 
widely used in both terrestrial (e.g. Carboni et al. 2018) and marine realms (e.g. Cheung et al. 2009) to 53 
map and predict shifts in species ranges in response to global change, particularly climate change.  54 
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We refer here to all models that correlate species occurrences or abundance data with environmental 55 
spatial data layers to predict the suitability of any site for a given species. Shifts in species 56 
distributions are subsequently projected under different climate change scenarios. These SDMs are 57 
correlative and do not incorporate mechanistic information, such as species’ physiological response to 58 
abiotic conditions. 59 
 60 
In the marine realm, there is a flourishing literature carried at global (e.g. Tittensor et al. 2010), 61 
regional (e.g. Albouy et al. 2013) and local (e.g. Hattab et al. 2014) scales that have highlighted future 62 
species range shift towards the poles (e.g. Morley et al. 2018), deepening (e.g. Pinsky et al. 2013), 63 
local extinctions (e.g. Jones & Cheung 2014), habitat fragmentation (e.g. Ben Rais Lasram et al. 64 
2010), species invasions (e.g. Byrne et al. 2016) and impacts on life-history traits (e.g. Genner et al., 65 
2010), on abundances (e.g. Hermant et al., 2010) and on trophic networks (e.g. Doney et al. 2012) due 66 
to changing climate in the next few decades. 67 
 68 
SDMs have been applied at either the species (e.g. Alabia et al. 2015) or community level (Morley et 69 
al. 2018) to assess species vulnerabilities for conservation purposes (Jones et al. 2013) and fisheries 70 
management (Asch et al. 2018), and to couple with end-to-end models to simulate spatial patterns of 71 
predator-prey interactions (Grüss et al. 2018). Moreover, trophic ecologists are increasingly interested 72 
in using SDMs predictions as input for trophic models to investigate how food webs may reorganize 73 
due to individual species’ responses to climate change (Woodward et al. 2010, Chaalali et al. 2016). 74 
 75 
Although SDMs are useful and reliable tools to predict past, present and future species ranges, they 76 
rely on strong assumptions and are subject to many uncertainties (Goberville et al. 2015). These 77 
uncertainties are well known and occur at every stage of the modelling process (e.g. data collection, 78 
choice of algorithms and parameters, model evaluation), but few studies consider them explicitly 79 
(Planque 2015, Brun et al. 2020). Moreover, despite the ability to run SDMs in recent, reliable and 80 
user-friendly packages and the availability of data in huge global databases (e.g. GBIF, OBIS and 81 
FishBase for species occurrences; Bio-ORACLE and MarSpec for environmental variables), there are 82 
some misuses and proxies (e.g. data quality, selection of environmental drivers, parametrization, 83 
model selection, spatial and temporal scales) that are widely practiced and rarely addressed in the 84 
literature (see Jarnevich et al. 2015, Yalcin & Leroux 2017, Duffy & Chown 2017 for examples of 85 
reviews and recommendations).  86 
 87 
Although global georeferenced data have become more available for both species 88 
occurrence/abundance data and environmental variables, less concern has been given to assessing data 89 
quality in the marine realm. For example, sampling bias due to diverse and/or non-standardized 90 
monitoring surveys may increase the risk of undersampling (e.g. due to selectivity of a sampling 91 
method) or oversampling (e.g. in neritic regions or in areas with a long history of monitoring). 92 
Consequently, occurrence data often represent a biased sample of species populations, which may 93 
significantly alter models calibration (Guillera-Arroita et al. 2015). Careful assessment and pre-94 
processing of data are thus recommended to mitigate effects of sampling bias associated with large-95 
scale occurrence data. 96 
 97 
Most studies in the marine realm have been based on two-dimensional SDMs even though species are 98 
fundamentally distributed in three dimensions. Duffy & Chown (2017) emphasized the importance of 99 
incorporating the third dimension in marine ecological models and showed that ignoring it may 100 
influence predictions greatly. Some studies (e.g. Weinmann et al. 2013, Gallardo et al. 2015, Asch et 101 
al. 2018) continue to use sea-surface temperature for both pelagic and benthic species despite the 102 
temperature gradient between the surface and the bottom. 103 
 104 

Moreover, species–environment relationships depend strongly on the scale at which the dependent (i.e. 105 
species occurrences) and independent (i.e. environmental data) variables are considered (Cushman & 106 
McGarigal 2004). Scale issues are thus important to consider in SDMs especially for the downscaling 107 
process (Da Re et al. 2020). It is for example important to choose the appropriate grid size and the 108 
relevant variables consistent with the scale at which the ecophysiological processes show greatest 109 
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variation (Austin et al. 2011). . The common view is that large-scale processes determine local species 110 
diversity, whereas small-scale processes tend to limit the number of species that currently occupy a 111 
given site (Pont et al. 2005). To address this issue, a two-stage hierarchical approach based on the 112 
concept of “hierarchical filters” is commonly (but not always) used in the terrestrial realm but more 113 
rarely in the marine realm (see Heino et al. 2009 and Hattab et al. 2014 for a review of underlying 114 
assumptions). In this filtering approach, SDMs are first built at the global scale to consider the full 115 
range of climatic conditions (temperature and salinity) species encounters (SDMs can then be termed 116 
as Bioclimatic Envelope Models (BEMs)). Then, a habitat filter considering factors at the local scale 117 
(such as seafloor type) is applied (the filter can then be termed as Habitat Models (HMs)) . This two-118 
stage approach improves predictions of species distributions at the local scale.  119 
Finally, as policy and decision making require spatially explicit information about the state of and 120 
future trends in species ranges, it is useful to generate current and future maps, along with response 121 
curves and model performances, for each species. 122 
 123 
A broad set of tools exists to model species distribution (e.g. BIOMOD (Thuiller et al. 2009), 124 
MAXENT (Phillips et al. 2006), openModeller (de Souza Muñoz et al. 2011), ModEco (Guo & Liu 125 
2010), ENMTool (Warren et al. 2010), sdm (Naimi & Araújo 2016), NPPEN (Beaugrand et al. 2011) 126 
and dismo package (Hijmans et al. 2017)). These platforms include a comprehensive set of advanced 127 
algorithms that generally need to be supplemented by R scripts to pre-process data or to be coupled 128 
with GIS softwares, making them somewhat difficult for non-modeller ecologists to use.  129 
 130 
In this paper, we propose a framework that includes (i) a procedure for homogenizing occurrence data 131 
to eliminate the influence of sampling bias, (ii) a procedure for generating pseudo-absences, (iii) a 132 
hierarchical-filter approach (i.e. global Bioclimatic Envelope Models (BEM) combined with local 133 
Habitat Models HM), (iv) full incorporation of the third dimension by considering climatic variables at 134 
multiple depths and (v) building of maps that predict current and future ranges of marine species. This 135 
framework is available as a ready-to-use R script hosted on GitHub for non-modeller ecologists 136 
interested in investigating future species ranges with a user-friendly script.  137 
We investigated the robustness of the framework by applying it to 46 species representing a large part 138 
of the biomass in the Eastern English Channel (EEC). Projections were built for the middle and the 139 
end of this century under Representative Concentration Pathway (RCP) 2.6 (i.e. rapid mitigation of 140 
anthropogenic climate change, optimistic) and RCP8.5 (i.e. business-as-usual, pessimistic) scenarios 141 
of the IPCC (Intergovernmental Panel on Climate Change). 142 
 143 
 144 
2. Model framework 145 
Although designed for the ecosystem of the EEC, our script can be applied to other ecosystems by 146 
replacing the habitat data files provided with the script with similar data files for another region. To 147 
illustrate application of the script, we considered 46 species representing a large part of the biomass of 148 
the EEC (Raoux et al. 2017), with at least 300 occurrences at the global scale and 100 occurrences at a 149 
regional scale. We provide the script and environmental data online, at 150 
https://github.com/TarekHattab/SDM. For the sake of reproducibility, the script comes with a Docker 151 
container (Merkel et al. 2014) including everything needed to run the script. The model framework is 152 
described in Figure 2.  153 
 154 
2.1 Step 1: Setting global parameters 155 
The script is designed to manage automatically all of the framework’s processing steps, described 156 
below. Users must set four parameters: (i) species’ scientific names, (ii) species’ vertical habitats, (iii) 157 
the algorithms to be used and (iv) the value of K in K-fold cross-validation.  158 
 159 
2.2 Step 2: Data acquisition 160 
2.2.1 Species occurrence data 161 
Species occurrences used in BEMs can be downloaded from five global biogeographic databases: 162 
 Ocean Biogeographic Information System (OBIS): http://www.iobis.org/ 163 
 Global Biodiversity Information Facility (GBIF): http://www.gbif.org/ 164 

https://github.com/TarekHattab/SDM
http://www.gbif.org/


4 
 

 iNaturalist: http://www.inaturalist.org 165 
 VertNet (vertebrate biodiversity networks): http://vertnet.org/ 166 
 Ecoengine (UC Berkeley's Natural History Data): https://ecoengine.berkeley.edu/ 167 

Our script cleans the global dataset by deleting erroneous occurrences (e.g. species occurring on land) 168 
and occurrences outside a user-defined period. In this study, we deleted records before 1955 and 169 
ultimately retained 1 944 154 occurrences from the five databases for the 46 species considered. 170 
Additional scientific survey data are available at the regional scale for the EEC and the Bay of Biscay. 171 
Thus, the global dataset was supplemented by scientific survey data from IBTS (1990-2016, 172 
http://dx.doi.org/10.18142/17), CGFS (1988-2016, http://dx.doi.org/10.18142/11) and EVHOE (1997-173 
2006, http://dx.doi.org/10.18142/8) available from the DATRAS database (http://www.ices.dk/marine-174 
data/data-portals/Pages/DATRAS.aspx) and also from other surveys of benthic and demersal taxa, 175 
such as LANCIE (1997-2002), PECTOW(2001), BENTHOSEINE (1998-1999) and CAMANOC 176 
(http://dx.doi.org/10.17600/14001900) (Appendix A). Ultimately, we retained 148 096 occurrences at 177 
the regional scale. 178 
 179 
2.2.2 Current and projected climatic data 180 
To calibrate BEMs, users can consider temperature and salinity climatologies from the global database 181 
WOD 2013 V2 (https://www.nodc.noaa.gov/OC5/woa13/), with a spatial resolution of 0.25°. These 182 
climatologies represent mean decadal temperatures and salinities for 1955-1964, 1965-1974, 1975-183 
1984, 1985-1994, 1995-2004 and 2005-2012 for 40 depth layers. These variables were bilinearly 184 
interpolated at a 1/12

th
-degree spatial resolution (5 arcmin) and aggregated vertically by calculating 185 

mean temperature and salinity for the first 50 m of depth to calibrate pelagic species models, for the 186 
first 200 m of depth for benthopelagic species models and for the last 50 m of depth for benthic and 187 
demersal species models.  188 
 189 
For projections, the script performs climate projections for 2041-2050 and 2091-2100 under two 190 
RCP2.6 (strong mitigation) and RCP8.5 (business-as-usual) scenarios. These projections are derived 191 
from three General Circulation Models (GCMs) of the Coupled Model Intercomparaison Project, 192 
Phase 5 (CMIP5) (Taylor et al. 2012): (i) ESM2G (Geophysical Fluid Dynamics Laboratory; NOAA), 193 
(ii) CM5A-MR (Institut Pierre-Simon-Laplace) and (iii) ESM-MR (Max-Planck-Institut für 194 
Meteorologie). To avoid potential bias of the GCMs compared to historical data, the script calculates 195 
anomalies between 2041-2050/2091-2100 and 1955-2012. These anomalies are then added to the 196 
observed mean temperatures and salinities for the same period in WOD 2013 data. Current and 197 
projected climatic data are provided with the script. 198 
 199 
2.2.3 Habitat data 200 
Seafloor type, bathymetry, slope and aspect of the slope (i.e. eastness and northness) are used to build 201 
HMs for benthic and demersal species. Data are available from EMODnet Bathymetry 202 
(http://www.emodnet-bathymetry.eu/) and EMODnet Seabed Habitats (http://www.emodnet-203 
seabedhabitats.eu/) at a spatial resolution of 250 m. In our study, we aggregated EUNIS seafloor 204 
substrate classes into six simplified categories (mud, sand, muddy sand, sandy mud, coarse sediment 205 
and gravel). Habitat data grids are provided with the script. 206 
 207 
2.3 Step 3: Data pre-processing  208 
Once occurrence data have been downloaded, the script performs a spatiotemporal match between 209 
climatologies and occurrence of each species based on geographic coordinates of occurrences and their 210 
corresponding decade (to consider climate trends over the past 58 years) and the correct vertical layer, 211 
which corresponds to the vertical habitat of the species.  212 
To address the risk of oversampling, and the ensuing over-representation of environmental features 213 
(Kramer-Schadt et al. 2013), we first applied an environmental filtering procedure (Beaugrand et al., 214 
2011, Varela et al. 2014) to species occurrences to assign the same weight to over- and under-sampled 215 
regions.  216 
To do this, the script creates a grid containing all combinations of temperature and salinity at the 217 
global scale for the period 1955-2012 with a resolution of 0.3°C × 0.3 salinity (which represents 100 × 218 

http://www.inaturalist.org/
https://ecoengine.berkeley.edu/
http://www.ices.dk/marine-data/data-portals/Pages/DATRAS.aspx
http://www.ices.dk/marine-data/data-portals/Pages/DATRAS.aspx
http://www.emodnet-bathymetry.eu/
http://www.emodnet-seabedhabitats.eu/
http://www.emodnet-seabedhabitats.eu/
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100 bins). Species occurrences are then projected onto this grid, and only one occurrence is retained in 219 
each cell of the grid 220 
 221 
The datasets we used were obtained from online databases of occurrences including presence-only 222 
data, but the BEMs used in the script require both presence and absence data. The script therefore 223 
generates pseudo-absences to better characterize the environmental conditions experienced by a 224 
species within the environmental background (Hattab et al. 2014). Pseudo-absences were generated 225 
outside the convex hull of presences in the environmental space (Cornwell et al. 2006, Getz & 226 
Wilmers 2004). The convex hull was defined as the smallest convex area in the environmental space 227 
containing all species records. A restricted convex hull was defined as a convex hull excluding 228 
occurrence points in the 1

st
 and 99

th
 percentiles for each environmental parameter in order to exclude 229 

observations in the most extreme environmental conditions. Thus, pseudo-absences are randomly 230 
selected by the script outside the environmental space described by this restricted convex hull, which 231 
is a proxy of the suitable environmental conditions (Figure 1). 232 
 233 
In HMs (SDMs used to characterize habitat), pseudo-absences were generated similarly but were 234 
based on the “Surface Range Envelope” (Thuiller et al. 2009). In this approach, rectilinear 235 
hypervolumes describing the 1

st
 and 99

th
 quantiles of the cells containing presences are used instead of 236 

the convex hull. Based on the statistical theory of model-based designs (d-designs; Hengl et al. 2009), 237 
the script generates as many pseudo-absences as presences.  238 
 239 

 240 
 241 
 242 
 243 
 244 
 245 
 246 
 247 
 248 
 249 
 250 
 251 
 252 
 253 
 254 
 255 
Figure 1. Generation of pseudo-absences. Grey cells represent the environmental space as a 256 
combination of temperature and salinity at the global scale. Green cells represent the presence of a 257 
given species. The grid represents the restricted convex hull describing the 1

st
 and 99

th
 quantiles of the 258 

cells containing presences. Red cells represent pseudo-absences, which are generated randomly 259 
outside the convex hull. 260 
 261 

2.4 Step 4: Bioclimatic envelope models BEMs 262 
Filtered presence data and the generated pseudo-absences were used to build BEMs that consisted of 263 
SDMs applied at the global scale to characterize mainly the bioclimatic envelope of each species 264 
according to its temperature and salinity preference. For each species, the script applies eight 265 
modelling techniques belonging to four model categories using the BIOMOD multi-model platform 266 
(Thuiller et al. 2009): multiple regressions (Generalized Linear Model, Generalized Additive Model, 267 
Multiple Adaptive Regression Splines), regression trees (Boosted Regression Tree, Random Forest, 268 
Classification Tree Analysis), discriminant analysis (Flexible Discriminant Analysis) and learning 269 
techniques (Artificial Neural Network). For each species, the eight models were calibrated using a 270 
random sample of the initial data (67%), while the remaining 33% were used to evaluate the model. 271 
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Users can perform a 3-fold cross validation procedure and assess model performance using both the 272 
True Skill Statistic (TSS; Allouche et al. 2006) and Continuous Boyce Index (CBI; Hirzel et al. 2006). 273 
Note that the script uses mean temperature and salinity from the first 50 m of depth to calibrate pelagic 274 
species models, from the first 200 m of depth for benthopelagic species models and from the last 50 m 275 
of depth for benthic and demersal species models. 276 
 277 
For each species, 24 predictions of current climate envelopes (8 algorithms × 3 permutations) were 278 
calculated. Only models with CBI > 0.5 for all three permutations were retained (i.e. models that are 279 
resilient to occurrence permutations) for projections of future potential bioclimatic envelopes for each 280 
species according to RCP2.6 and RCP8.5 scenarios. Finally, the script generates ensemble suitability 281 
maps by calculating the mean suitability of the 24 predictions weighted by the CBI to estimate model-282 
based uncertainty (Thuiller et al. 2009). These maps could then be transformed into binary maps using 283 
a probability threshold that optimized the TSS. In addition, the script generates uncertainty maps by 284 
calculating the standard deviation of predictions. 285 
 286 
2.5 Step 5: Habitat models HMs 287 
HMs are SDMs used to characterize local habitat variability. Because habitat variables can be strongly 288 
intercorrelated, the script can remove multicollinearity by using the ordination method of Hill & Smith 289 
(1976). The resulting orthogonal and uncorrelated principal components are used as predictive 290 
variables in the HMs. The HMs, used only for benthic and demersal species, are built using the same 291 
method used to develop the BEMs. 292 
 293 
 294 
2.6 Step 6: Combining BEMs and HMs 295 
For benthic and demersal species, users can extract the predicted bioclimatic envelope for their study 296 
area from the projected BEM maps. This represents the first hierarchical filter. Next, the habitat map is 297 
used to filter out habitats deemed unsuitable by the HM. The extracted cells can be resampled on a 298 
grid (we used one with 250 m resolution) using bilinear interpolation. Thus, an area is considered 299 
suitable for a species if both the first filter (BEM) and second filter (HM) predict it as suitable. 300 
 301 
2.7 Step 7: Visualizing predictions 302 
The final stage of the framework automatically plots current and future species ranges for both periods 303 
(2041-2050 and 2091-2100) under both scenarios (RCP2.6 and RCP8.5) using only BEM for pelagic 304 
and benthopelagic species and combined BEM and HM for benthic and demersal species. Maps are 305 
plotted in both suitability index and binary format. Response curves, model performances and number 306 
of occurrences can also be provided for each species. 307 
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 308 
 309 
 310 
 311 
 312 

Figure 2. Computational framework and data processing steps  313 
 314 
  315 
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3. Focus on the Eastern English Channel 316 
We applied this modelling framework to the EEC, an epicontinental sea with relatively shallow water 317 
(maximum 50 m), subject to a variety of hydrodynamic forces, characterized by a strong tidal range 318 
(up to 9 m) and under the influence of river inputs, mainly from the Seine River on the French side 319 
(Carpentier et al. 2009) (Figure 3). We considered 46 species that dominate total biomass in the EEC: 320 
15 pelagic and benthopelagic (13 bony fishes and 2 cephalopods), to which we applied BEMs, and 31 321 
benthic and demersal (12 bony fishes, 5 cartilaginous fishes, 6 molluscs, 4 echinoderms, 3 annelids 322 
and 1 cnidarian), to which we applied BEMs filtered with HMs (Appendix B). 323 
 324 
By the end of the century (2091-2100), the GCMs ESM2G, CM5A-MR and ESM-MR predicted 325 
increases in temperature in the EEC of 0.54, 0.79 and 0.73°C, respectively, under RCP2.6 and 1.5, 2.4 326 
and 1.7°C, respectively, under RCP8.5 . For the same period, for ESM2G, CM5A-MR and ESM-MR, 327 
salinity anomalies were 0.12, -0.67 and -0.06, respectively, under RCP2.6 and -0.41, -1.45 and -1.11, 328 
respectively, under RCP8.5. 329 
 330 

 331 
Figure 3. The Eastern English Channel, study area for the application of the script 332 
 333 
 334 
3.1 Potential changing patterns of species distributions according to the proposed approach 335 
By comparing predictive maps of current species richness to those of future projections in response to 336 
changing climate, potential impact of climate change on species’ assemblages can be assessed.  337 
Species richness in the EEC currently ranges from 19-46 species. Under RCP2.6, by 2041-2050, 338 
species richness was projected to decrease by a mean of 7.8% (i.e. -3.5 species for the entire EEC) and 339 
by a maximum of 13.0% (i.e. -6.0 species). The Bay of Seine and the central EEC would lose the most 340 
species. Under RCP2.6, by 2091-2100, the decrease would be a mean of 11.5% (i.e. -5.3 species) and 341 
a maximum of 19.6% (i.e. -9.0 species). As expected, more species would be lost under RCP8.5, 342 
reaching 17.4% of the initial pool by 2041-2050 (-8.0 species) and 54.4% by 2091-2100 (-25.0 343 
species) (Figure 4). 344 
 345 
Overall, for both scenarios and both periods, no increase in species range was projected, as none of the 346 
species considered was at its northern limit. Species range was projected to be maintained in the EEC 347 
for 42 species by 2041-2050 and 39 species by 2091-2100 under RCP2.6 and 41 species by 2041-2050 348 
and 21 species by 2091-2100 under RCP8.5.  349 
Under RCP2.6, by 2041-2050, only three benthic species (the fishes Pleuronectes platessa and 350 
Limanda limanda and the gastropod Buccinum undatum) and one benthopelagic species (the fish 351 
Gadus morhua) were projected to lose 100% of their current range in the EEC (i.e. local extinction). 352 
By 2091-2100, two other benthic species (the fish Platichthys flesus and the sea urchin Psammechinus 353 
miliaris) and one benthopelagic species (the fish Merlangius merlangus) were projected to lose 50-354 
75% of their ranges.  355 
Under RCP8.5, by 2041-2050, two benthic species (the fish P. flesus and the sea star Asterias rubens), 356 
in addition to those projected to go locally extinct under RCP2.6, were projected to lose 50% and 75% 357 
of their ranges, respectively. Under RCP8.5, by 2091-2100, 19 species, both benthic/demersal and 358 
pelagic, were projected to go locally extinct. 359 
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 360 

 361 
Figure 4. Current and projected species richness in the Eastern English Channel for a pool of the 46 362 
most abundant species. (a) current, (b) projection under RCP2.6 by 2041-2050, (c) projection under 363 
RCP2.6 by 2091-2100, (d) projection under RCP8.5 by 2041-2050 and (e) projection under RCP8.5 by 364 
2091-2100. 365 
 366 
3.2 Classic approach vs. the proposed framework 367 
According to the complete approach developed in our methodological framework (namely the 368 
proposed framework), current species richness was projected to decline by a mean of 3.6% by 2041-369 
2050 and 5.3% by 2091-2100 under RCP2.6 and by 4.4% by 2041-2050 and 16.0% by 2091-2100 370 
under RCP8.5. These rates could be mitigated by the arrival of species that are currently at their 371 
northern limit in the English Channel. According to the classic approach (i.e. considering only BEMs 372 
and sea surface temperature and salinity), species richness was projected to decline by a mean of 9.3% 373 
by 2041-2050 and 6.5% by 2091-2100 under RCP2.6 and by 11.6% by 2041-2050 and 40.8% by 374 
2091-2100 under RCP8.5. Thus, not considering the vertical temperature or salinity gradient or the 375 
type of seafloor resulted in higher projections of species loss (Figure 5).  376 
 377 
Moreover, considering both scenarios and both periods, the classic approach projected lower range 378 
loss (by a mean of 32%) for eight species (mainly benthic or demersal) but projected higher range loss 379 
(by a mean of 21%) for 11 species (also mainly benthic or demersal) (Figure 6). The proposed 380 
framework and the classic approach yielded similar projections for eight species, mainly benthopelagic 381 
(e.g. Pollachius pollachius, Trisopterus minutus, Trisopterus luscus, Gadus morhua). 382 
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Figure 5. Projected species richness anomalies between current climate conditions and projections for 383 
both periods (2041-2050 and 2091-2100), both scenarios (RCP2.6 and RCP8.5) and both approaches 384 
(the proposed framework with both vertical climatic conditions and habitat and the classic approach 385 
with surface climatic conditions only) 386 

 387 
Figure 6. Projected range loss for both periods (2041-2050 and 2091-2100) and both scenarios 388 
(RCP2.6 and 8.5) according to the proposed framework (with both vertical climatic conditions and 389 
habitat) and the classic approach (with surface climatic conditions only). Plots show species for which 390 
a range loss was projected for at least one period, scenario or method. 391 
 392 
The framework’s projections of the 46 species revealed that the classic approach (i.e. considering only 393 
BEMs without vertical climatic conditions or seafloor type) projected higher loss of species richness. 394 
In contrast, no general trend was observed in the projected range loss for individual species. 395 
Nevertheless, the classic approach may have projected higher range losses more often than it predicted 396 
lower range losses, and mainly for benthic or demersal species, which depend on a specific type of 397 
seafloor. The classic approach projected range loss of benthic and demersal species due to the loss of 398 
suitable temperature conditions at the surface. However, since temperature fluctuates more at the 399 
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surface than at the bottom, temperature conditions could remain suitable at the depth range of the 400 
species modelled, thus explaining why the classic approach projected higher range losses.  401 
Our results highlight that ignoring the vertical gradient of climatic conditions, even in shallow seas, 402 
and the habitat filter leads to inconsistent results. This is even more critical in ecosystems like the EEC 403 
that are strongly structured by the seafloor substrate (Dauvin & Desroy 2005, Garcia et al. 2011).  404 
 405 
Similar studies exist for marine areas next to the EEC, but none used such a complete framework. 406 
Moreover, they are based on the outdated IPCC SRES scenarios and consider only a few species (e.g. 407 
only 4 benthic species in the western English Channel; (Rombouts et al. 2012)) or only benthic species 408 
(75 benthic species in the North Sea; (Weinert et al. 2016)), making comparison of results difficult. 409 
 410 
There are several research perspectives to refine marine species distribution models. Among them, 411 
incorporating mechanistic information such as species’ physiological response to abiotic conditions 412 
(e.g., Feng et al. 2020) is a promising avenue to increase the realism of predicted responses to 413 
environmental conditions. In addition, marine species can have complex life cycles with phases that 414 
may require distinct models, and thus may be good candidates for infra-specific models (Smith et al. 415 
2018). Another important perspective to consider is the biotic interactions in the process of model 416 
building, for example by constructing joint species distribution models. 417 
 418 
 419 
4. Conclusion 420 
Our results reinforce the need to consider species’ positions in the water column and their dependence 421 
on a given type of seafloor to avoid biased predictions of species distributions or even misleading 422 
results (e.g. Duffy & Chown 2017). In this paper, using the EEC as a case study, we went further and 423 
demonstrated that the simple and classic approach that considers sea surface climatic conditions as a 424 
proxy of bottom conditions and ignores habitat variables predicts higher species loss. 425 
Species distribution maps are informative, and many atlases contain them. However, they remain 426 
descriptive and show only current ranges (e.g. CHARM Atlas of the English Channel; Martin et al. 427 
2009, Carpentier et al. 2009). As assessing species’ future distributions is increasingly required for 428 
conservation biology and fisheries management, routinely generating maps using a relevant 429 
methodological framework would be useful. 430 
 431 
We developed a complete and operational framework, from data acquisition and preparation to a two-432 
stage modelling procedure, that considers habitat type, temperature and salinity at species’ depth 433 
ranges. It creates maps illustrating current and projected ranges as well as response curves for each 434 
species. Our script can be adapted for individual needs (e.g., integrating other maps of climatic 435 
variables in the same data format) and is suitable for non-modeller ecologists to easily and widely 436 
address issues related to changes in species ranges due to climate change.  437 
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Appendix A. Scientific surveys used in this study 601 

Scientific survey Period Organisation 

IBTS 1992-2015 IFREMER http://dx.doi.org/10.18142/17 

CGFS 1989-2016 IFREMER http://dx.doi.org/10.18142/11 

EVHOE 1997-2006 IFREMER http://dx.doi.org/10.18142/8 

CAMANOC 2014 IFREMER http://dx.doi.org/10.17600/14001900 

LANCIE 1997 UMR6143 M2C 

PECTOW 1996, 2001, 2006, 2011 UMR6143 M2C 

BENTHOSEINE 1998,1999 UMR6143 M2C 

BEMACE 2007 UMR6143 M2C 

COLMATAGE 2008-2010 UMR6143 M2C 

Saint Nicolas  UMR6143 M2C 

GEDANOR 2013-2015 UMR6143 M2C 

MABEMONO 2006-2007 UMR6143 M2C 

ROVMACE 2009 UMR6143 M2C 

VDC 2009-2011 UMR6143 M2C 

Copale-Authie 1998-2000 UMR6143 M2C 

 602 

Appendix B. List of species considered in this study. BEM = bioclimatic envelope model, HM = 603 
habitat model 604 

Species   Classification  Category in the  BEM only BEM + HM 605 
      water column 606 
Limanda limanda Bony fish  Benthic or demersal     x 607 
Platichthys flesus  Bony fish  Benthic or demersal    x 608 
Pleuronectes platessa Bony fish  Benthic or demersal    x 609 
Solea solea  Bony fish  Benthic or demersal    x 610 
Blennius ocellaris Bony fish  Benthic or demersal    x 611 
Callionymus lyra  Bony fish  Benthic or demersal    x 612 
Mullus surmuletus Bony fish  Benthic or demersal    x 613 
Labrus bergylta  Bony fish  Benthic or demersal    x 614 
Echiichthys vipera Bony fish  Benthic or demersal    x 615 
Chelidonichthys lucerna Bony fish  Benthic or demersal    x 616 
Trigloporus lastoviza Bony fish  Benthic or demersal    x 617 
Dicentrarchus labrax Bony fish  Benthic or demersal    x 618 
Spondyliosoma cantharus Bony fish  Benthopelagic   x  619 
Zeus faber  Bony fish  Benthopelagic   x  620 
Pollachius pollachius Bony fish  Benthopelagic   x  621 
Trisopterus minutus Bony fish  Benthopelagic   x  622 
Trisopterus luscus Bony fish  Benthopelagic   x  623 
Merlangius merlangus Bony fish  Benthopelagic   x  624 
Gadus morhua  Bony fish  Benthopelagic   x  625 
Clupea harengus  Bony fish  Pelagic    x  626 
Engraulis encrasicolus Bony fish  Pelagic    x  627 
Sprattus sprattus  Bony fish  Pelagic    x  628 
Sardina pilchardus Bony fish  Pelagic    x  629 
Trachurus trachurus Bony fish  Pelagic    x  630 
Scomber scombrus Bony fish  Pelagic    x  631 
Mustelus mustelus Cartilaginous fish Benthic or demersal     x 632 
Scyliorhinus canicula Cartilaginous fish Benthic or demersal     x 633 
Scyliorhinus stellaris Cartilaginous fish Benthic or demersal     x 634 
Raja clavata  Cartilaginous fish Benthic or demersal     x 635 
Raja montagui  Cartilaginous fish Benthic or demersal     x 636 
Lagis koreni  Annelid   Benthic or demersal     x 637 
Lanice conchilega Annelid   Benthic or demersal     x 638 
Owenia fusiformis Annelid   Benthic or demersal     x 639 
Pecten maximus  Bivalve mollusc  Benthic or demersal     x 640 
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Glycymeris glycymeris Bivalve mollusc  Benthic or demersal     x 641 
Aequipecten opercularis Bivalve mollusc  Benthic or demersal     x 642 
Ensis directus  Bivalve mollusc  Benthic or demersal     x 643 
Buccinum undatum Gastropod mollusc Benthic or demersal     x 644 
Sepia officinalis  Cephalopod mollusc Benthic or demersal     x 645 
Alloteuthis subulata Cephalopod mollusc Pelagic    x  646 
Loligo vulgaris  Cephalopod mollusc Pelagic    x  647 
Sagartia troglodytes Cnidarian  Benthic or demersal     x 648 
Ophiothrix fragilis Echinoderm  Benthic or demersal     x 649 
Echinocardium cordatum Echinoderm  Benthic or demersal     x 650 
Psammechinus miliaris Echinoderm  Benthic or demersal     x 651 
Asterias rubens  Echinoderm  Benthic or demersal     x 652 
 653 


