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In this study we consider the stabilization of n th -order linear time-invariant (LTI) dynamical systems using Multiplicity-Induced-Dominancy (MID)-based controller design in the presence of delays in the input/output channels. A sufficient condition is given for the dominancy of a real root with multiplicity n + 1 using an integral representation of the corresponding characteristic function. Furthermore, this sufficient condition is analyzed in the case when the characteristic function of the open-loop system is real-rooted, and delay intervals are derived for the set of parameters satisfying stabilizability and dominancy conditions. The efficiency of the proposed controller design is shown in the case of a multi-link inverted pendulum.

INTRODUCTION

Stabilization of unstable equilibria and orbits in the presence of communication delay is an important and challenging task in engineering applications (see, for instance, [START_REF] Michiels | Continuous pole placement for delay equations[END_REF]; [START_REF] Olgac | An exact method for the stability analysis of time-delayed linear time-invariant (LTI) systems[END_REF]; Gu et al. (2003); [START_REF] Landry | Dynamics of an inverted pendulum with delayed feedback control[END_REF]). In this context, as pointed out by [START_REF] Ma | Delay margin of loworder systems achievable by PID controllers[END_REF], computing the control parameters allowing stable operation for large (feedback) delays is not a trivial task. Among the existing approaches, the socalled parameter-based approach is largely used in the case of low-order and/or low-complexity controllers (see, e.g., Bhattacharyya et al. (1995); [START_REF] Ackermann | Robust control. The parameter space approach[END_REF]; [START_REF] Michiels | Stability, Control, and Computation for Time-Delay Systems. An Eigenvalue-Based Approach[END_REF] and the references therein). In particular, the stability diagrams can be used to visualize stability properties of the closed-loop system in the space of control parameters Bellman and Cooke (1963); [START_REF] Stépán | Retarded dynamical systems: stability and characteristic functions[END_REF]; [START_REF] Hassard | Counting roots of the characteristic equation for linear delay-differential systems[END_REF]; [START_REF] Breda | On characteristic roots and stability charts of delay differential equations[END_REF].

It is commonly accepted that the delay in the feedback loop is generally seen as a source of unstable behavior. Furthermore, as the feedback delay gets larger, the stable region in the stability diagrams (charts) gets smaller. In this frame, a challenging task is to find the so-called critical delay or delay margin1 . To the best of the au-thors' knowledge, the idea of exploiting the delay effects in controllers' design was first introduced in [START_REF] Suh | Proportional minus delay controller[END_REF] where it is shown that the conventional proportional controller equipped with an appropriate time-delay performs an averaged derivative action and thus it can replace the proportional-derivative controller. Furthermore, it was pointed out by [START_REF] Niculescu | Delay Effects on Output Feedback Control of Dynamical Systems[END_REF] that, under appropriate assumptions, the presence of some delay in the control law may induce stability in closed-loop. Finally, in the context of mechanical engineering problems, the effect of time-delay was emphasized in [START_REF] Stépán | Retarded dynamical systems: stability and characteristic functions[END_REF] where some concrete applications are studied, such as the machine tool vibrations and robotic systems.

It is worth noting that, in the case of stable linear timedelay system, the rightmost root (or spectral abscissa) of the characteristic function is actually the exponential decay rate of its time-domain solution (see, for instance, [START_REF] Mori | On an estimate of the decay rate for stable linear delay systems[END_REF] for an estimate of the decay rate). Furthermore, to the best of the authors' knowledge, the first time an analytical proof of the dominancy of a spectral value for the scalar equation with a single delay was presented in [START_REF] Hayes | Roots of the transcendental equation associated with a certain difference-differential equation[END_REF]. This Multiplicity-Induced-Dominancy (MID) property is further explored and analytically derived for scalar delay equations in [START_REF] Boussaada | Multiplicity and stable varieties of time-delay systems: A missing link[END_REF]. Next, for second-order systems controlled by a delayed proportional is proposed in [START_REF] Boussaada | Further remarks on the effect of multiple spectral values on the dynamics of timedelay systems. application to the control of a mechanical system[END_REF][START_REF] Boussaada | On the coalescence of spectral values and its effect on the stability of time-delay systems: Application to active vibration control[END_REF] where its applicability in damping active vibrations for a piezo-actuated beam is proved. Finally, an extension to the delayed proportional-derivative controller case is studied in [START_REF] Boussaada | Toward a decay rate assignment based design for timedelay systems with multiple spectral values[END_REF]; Boussaada et al. (2018a) where the dominancy property is parametrically characterized and proven by using the argument principle.

In this paper, we analyze a general n th -order linear timeinvariant dynamical system with a single delay and show that, under some appropriate conditions, the MID property can be used to assess the delay margin (see, e.g. Boussaada et al. (2015); [START_REF] Boussaada | Toward a decay rate assignment based design for timedelay systems with multiple spectral values[END_REF]; [START_REF] Boussaada | Further remarks on the effect of multiple spectral values on the dynamics of timedelay systems. application to the control of a mechanical system[END_REF]). The novelty of the paper lies on the way we are exploiting the root location of the open-loop characteristic polynomial in order to have the multiplicity-induced-dominancy of the overall system, as done in [START_REF] Boussaada | Multiplicity-induceddominancy in parametric second-order delay differential equations: Analysis and application in control design[END_REF] in the particular case of second-order systems.

The remaining paper is organized as follows. The problem statement is presented in Section 2. Section 3 contains some motivating example. Section 4 provides the main ingredients of the dominancy proof, which consists in writing the characteristic function with multiple real roots as an integral operator. The main results are presented in Section 5. An illustrative example is presented in Section 6, where the 5-link inverted pendulum is studied.

PROBLEM STATEMENT

Consider the quasipolynomial D(s) = P (s) + e -sτ Q(s) ,

(1) where the polynomials P (s) and Q(s) are real and have degrees n and n -1, respectively:

P (s) = a n s n + a n-1 s n-1 + ... + a 1 s + a 0 , Q(s) = b n-1 s n-1 + b n-2 s n-2 + ... + b 1 s + b 0 . (2) 
Assume that the coefficients a i of P are fixed and known, and that a n > 0.

The problem we are addressing can be resumed as follows: computing the values of the delay parameter τ such that the system (1) is stabilizable 2 if the control parameters b i are tuned such that the characteristic function D(s) has a real root s 0 with multiplicity n + 1?

MOTIVATING EXAMPLE: THE INVERTED PENDULUM

Balancing an inverted pendulum in the presence of feedback delay is a frequently cited example in dynamics and control theory (Atay, 1999;[START_REF] Sieber | Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity[END_REF][START_REF] Li | A frequency-sweeping framework for stability analysis of time-delay systems[END_REF]. Different control methods are often implemented in simple inverted pendulum systems [START_REF] Habib | Nonlinear model-based parameter estimation and stability analysis of an aero-pendulum subject to digital delayed control[END_REF][START_REF] Xu | Balancing a wheeled inverted pendulum with a single accelerometer in the presence of time delay[END_REF][START_REF] Qin | Control experiments on time-delayed dynamical systems[END_REF][START_REF] Cieżkowski | Method for determination of interaction between a two-wheeled self-balancing vehicle and its rider[END_REF]. The inverted pendulum is also a basic concept in human balancing models [START_REF] Maurer | A new interpretation of spontaneous sway measures based on a simple model of human postural control[END_REF][START_REF] Milton | Control at stability's edge minimizes energetic costs: expert stick balancing[END_REF][START_REF] Milton | Acting together, destabilizing influences can stabilize human balance[END_REF][START_REF] Morasso | Quiet standing: The single inverted pendulum model is not so bad after all[END_REF]. The equation of motion of an inverted pendulum controlled by a proportional-derivative (PD) controller reads as:

φ(t) + a 0 ϕ(t) = -b 0 ϕ(t -τ ) -b 1 φ(t -τ ) , (3) 
2 i.e. there exist some real parameters b i (i = 0, 1, . . . , n -1) depending explicitly on (a 0 , a 1 , . . . , an, τ ) such that the characteristic roots of (1) have negative real part.

with a feedback delay τ > 0 and a system parameter a 0 < 0. The characteristic function corresponding to (3) is

D(s) = s 2 + a 0 + e -sτ (b 0 + b 1 s) . (4 
) The open-loop characteristic function P (s) = s 2 + a 0 has real roots ± √ -a 0 since a 0 < 0. This property proves to be useful in Section 5.

The critical delay (delay margin) of the system (3) is wellknown from the literature [START_REF] Schurer | Zur Theorie des Balancierens[END_REF][START_REF] Stépán | Delay effects in the human sensory system during balancing[END_REF]:

τ crit = - 2 a 0 , (5) 
that is, the trivial solution of system (3) can be asymptotically stable if and only if τ < τ crit . In the sequel, we will show that the critical delay ( 5) can be obtained by studying the multiple roots of the characteristic function.

Assume that D(s) has a real root s 0 with algebraic multiplicity at least degP (s) + 1 = 3. Then D(s 0 ) = 0, D (s 0 ) = 0 and D (s 0 ) = 0:

s 2 0 + a 0 + e -s0τ (b 0 + b 1 s 0 ) = 0 , 2s 0 + e -s0τ (-τ (b 0 + b 1 s 0 ) + b 1 ) = 0 , 2 + e -s0τ (τ 2 (b 0 + b 1 s 0 ) -2τ b 1 ) = 0 .      (6)
From ( 6), one gets:

b 0 = e s0τ τ s 3 0 + s 2 0 + a 0 τ s 0 -a 0 , b 1 = -e s0τ τ s 2 0 + 2s 0 + a 0 τ , s 0 = -2 ± √ 2 -a 0 τ 2 τ =: s 0,± .                  (7) 
It can be shown that the triple root s 0,+ is negative and dominant for every 0 < τ < τ crit , and therefore the system (3) is asymptotically stable. In particular, at the upper bound τ = τ crit the triple root is s 0,+ = 0 and it is the dominant (rightmost) root of (4) with the control parameters b 0 = -a 0 and b 1 = -a 0 τ crit . The dominancy of s 0,+ may be shown by using the argument principle (see, for instance, [START_REF] Boussaada | Toward a decay rate assignment based design for timedelay systems with multiple spectral values[END_REF]Boussaada et al., 2018a). In the next section, to show the dominancy, we use a method first introduced in Boussaada et al. ( 2016) and based on an integral representation of the characteristic function (see also [START_REF] Boussaada | Further remarks on the effect of multiple spectral values on the dynamics of timedelay systems. application to the control of a mechanical system[END_REF]).

INTEGRAL REPRESENTATION AND A SUFFICIENT CONDITION FOR DOMINANCY

We have the following result: Proposition 1. If the quasipolynomial (1) has a real root s 0 with multiplicity at least n, then it can be written as

D(s) = (s -s 0 ) n a n + 1 0 e -(s-s0)τ t τ R n-1 (s 0 ; τ t) (n -1)! dt , (8) 
where the family of polynomials R k (s; τ ) is defined as

R k (s; τ ) = k i=0 k i P (i) (s)τ k-i , k ∈ Z + 0 . (9) 
Proof. The quasipolynomial D(s) has a root s 0 with algebraic multiplicity at least n if and only if D (k) (s 0 ) = 0, k = 0, 1, ..., n -1:

P (s 0 ) + e -s0τ Q(s 0 ) = 0 , P (s 0 ) + e -s0τ (-τ )Q(s 0 ) + Q (s 0 ) = 0 , . . . P (k) (s 0 ) + e -s0τ k i=0 k i Q (i) (s 0 )(-τ ) k-i = 0 ,
. . . 10) gives a linear system of equations for the control parameters. Solving (10) for b i enables the integral representation of the form (8).

P (n-1) (s 0 ) + e -s0τ n-1 i=0 n -1 i Q (i) (s 0 )(-τ ) n-1-i = 0 .                                            (10) Equation (
If D(s) has a real root s 0 with multiplicity at least n + 1 then (8) holds and, in addition, D (n) (s 0 ) = 0:

D (n) (s 0 ) = n! a n + 1 0 τ R n-1 (s 0 ; τ t) (n -1)! dt = R n (s 0 ; τ ) = 0 . ( 11 
)
Proposition 2. Let s 0 be a real root of R n (s 0 ; τ ) = 0. Assume that the parameters b i satisfy the conditions (10).

If R n-1 (s 0 ; τ t) ≤ 0, ∀t, 0 < t ≤ 1 then the root s 0 with multiplicity n+1 is the dominant root of the characteristic function (8).

Proof. To prove that there exists no root s 1 = γ 1 + iω 1 of (8) such that γ 1 > s 0 , substitute s 1 into (8). Since a n > 0 one can obtain that

a n = 1 0 e -(s1-s0)τ t τ (n -1)! R n-1 (s 0 ; τ t)dt ≤ 1 0 e -(γ1-s0)τ t τ (n -1)! R n-1 (s 0 ; τ t) dt . (12) 
Using the condition R n-1 (s 0 ; τ t) ≤ 0, ∀t, 0 < t ≤ 1 (12) can be written as

a n ≤ - 1 0 e -(γ1-s0)τ t τ (n -1)! R n-1 (s 0 ; τ t)dt =: f (γ 1 ) .
(13) For γ 1 = s 0 the function f takes the value

f (s 0 ) = - 1 0 τ (n -1)! R n-1 (s 0 ; τ t)dt = - 1 0 1 n! dR n (s 0 ; τ t) dt dt = - 1 n!     R n (s 0 ; τ ) =0 -R n (s 0 ; 0) =ann!     = a n . (14) 
For γ 1 > s 0 the value of the integral in ( 13) is f (γ 1 ) < a n since 0 < e -(γ1-s0)τ t < 1 for γ 1 > s 0 , τ > 0, 0 < t ≤ 1. Therefore, from (13), we obtain that a n < a n which proves the inconsistency of the hypothesis that the characteristic function ( 8) has a root s 1 = γ 1 + iω 1 with γ 1 > s 0 .

OPEN-LOOP SYSTEMS WITH ONLY REAL ROOTS

In this section, we assume that the polynomial P (s) corresponding to the open-loop system has only real roots.

In this case, P (s) has the form P (s) = a n n i=1 (s -s i ), s i ∈ R, s n ≤ s n-1 ≤ ... ≤ s 1 . To apply the sufficient condition in Proposition 2, first, we need to characterize the algebraic properties of the polynomials R k (s; τ ). These properties are outlined and discussed in the sequel.

Interlacing property of polynomials R k (s; τ )

The two-variable polynomials R k (s; τ ), k ∈ Z + have the following properties:

R k (s; τ ) = τ R k-1 (s; τ ) + ∂R k-1 (s; τ ) ∂s , (15) 
∂R k (s; τ ) ∂τ = kR k-1 (s; τ ) . ( 16 
)
The property (15) allows saying that, for a fixed τ , the polynomials R k (s; τ ) and R k-1 (s; τ ) interlace and R k (s; τ ) has only real roots for s since R 0 (s; τ ) = P (s) has only real roots [START_REF] Fadeev | Problems in Higher Algebra[END_REF]. Polynomials R n (s; τ ) and R n-1 (s; τ ) have n distinct real roots for s if τ = 0. Let s 0,k , k = 1, 2, ..., n denote the roots of R n (s; τ ), τ = 0 with s 0,n < s 0,n-1 < ... < s 0,1 .

It can also be shown that, for a fixed s, R n (s; τ ) has only real roots for τ [START_REF] Pólya | Problems and Theorems in Analysis II: Theory of Functions[END_REF]. Moreover, R k (s; τ ), k = 1, 2, ..., n -1 has only real roots for τ , and R k (s; τ ) and R k-1 (s; τ ) interlace which are direct consequences of the property ( 16) above and Rolle's theorem.

It should be mentioned that, in general, the solutions of ( 15) and ( 16) can be investigated by using computer algebra techniques (see, e.g., [START_REF] Chyzak | Effective algorithms for parametrizing linear control systems over Ore algebras[END_REF]).

Monotonicity

In the (τ, s)-plane, the algebraic curve R n (s; τ ) = 0 has distinct branches, and every branch is strictly increasing since the derivative of the implicit function R n (s; τ ) = 0 in a point (s, τ ) writes as (using ( 15) and ( 16)):

ds dτ = - ∂Rn(s;τ ) ∂τ ∂Rn(s;τ ) ∂s = - nR n-1 (s; τ ) R n+1 (s; τ ) > 0 , ( 17 
)
where the fraction Rn-1(s;τ ) Rn+1(s;τ ) is negative since for a fixed τ = 0 at a root s of the polynomial R n (s; τ ) the function values R n-1 (s; τ ) and R n+1 (s; τ ) are nonzero and have different signs because of the interlacing property. A similar analysis can be done for the algebraic curve R n-1 (s; τ ) = 0.

Asymptotic properties

If τ → ∞ (or τ → -∞) then the roots of R k (s; τ ) for s approach the roots of P (s) (i.e. s n ≤ s n-1 ≤ ... ≤ s 1 ). Similarly, if s → ∞ or s → -∞ then the roots of R k (s; τ ) for τ approach the roots of τ k = 0 (i.e. 0 with multiplicity k). 5.4 Roots of R k (s; 0)

If τ = 0 then R k (s; τ ) = R k (s; 0) = P (k) (s). Therefore, if k = n, then R n (s; 0) = n!a n has no roots for s. If k = n-1, then R n-1 (s; 0) = n! 1! a n s + (n-1)! 0! a n-1
has one root for s:

s a = - 1 n a n-1 a n = 1 n n i=1 s i , (18) 
which is the average of the roots of P (s).

Sufficient conditions for dominancy and stabilizability if P (s) is real-rooted

Fig. 1 shows the branches of the algebraic curves R n (s; τ ) = 0 and R n-1 (s; τ ) = 0 corresponding to the interlacing and asymptotic properties on the (τ, s) plane (top), as well as the right half-plane in the neighborhood of the origin. The horizontal asymptotes corresponding to the roots of P (s) are indicated with dashed lines.

Let τ 0 denote the smallest positive root of R n (0; τ ) = 0 for τ . For τ > 0 the first branch of the algebraic curve R n (s; τ ) = 0 corresponds to the greatest s values, and it takes values in the interval ] -∞, s 1 [. Therefore, if s 1 > 0, then τ 0 corresponds to the first branch of R n (s; τ ) = 0. If s 1 ≤ 0 ,then R n (0; τ ) = 0 has no positive roots. In this case, set τ 0 = ∞.

Moreover, let τ a denote the smallest positive root of R n (s a ; τ ) = 0 for τ . If P (s) = a n (s -s 1 ) n then τ a corresponds to the first branch of R n (s; τ ) = 0 since s n < s a < s 1 . If P (s) = a n (s -s 1 ) n , then s a = s 1 and R n (s a ; τ ) = 0 has no roots. In this case, set τ a = ∞.

The curve R n (s; τ ) = 0 gives a connection between the delay τ and the possible values of the real root s 0 with multiplicity n+1, while the curve R n-1 (s; τ ) = 0 is needed to analyze the sufficient condition given in Proposition 2. It is clear that the condition R n-1 (s 0,k ; τ t) ≤ 0, ∀t, 0 < t ≤ 1 can be satisfied if and only if k = 1 and 0 < τ ≤ τ a (i.e. for the greatest s 0 and in a certain delay interval).

These observations are summarized as follows: Proposition 3. Consider the case s a ≥ 0. Then 1. τ 0 ≤ τ a 2. s 0,1 is the dominant root of system (8) if 0 < τ ≤ τ a , and system (8) is stabilizable if 0 < τ < τ 0 .

Proof. If s a > 0 then there is at least one positive root s 1 of P (s), therefore there is a finite τ 0 corresponding to the first branch of R n (s; τ ) = 0. Then the inequality τ 0 ≤ τ a follows from the monotonicity of the curve R n (s; τ ) = 0. Furthermore, if s a = 0 then τ 0 = τ a . Next, the dominancy and stabilizability properties follow from the sufficient condition in Proposition 2 and the fact that s 0,1 ≥ 0 if τ 0 ≤ τ ≤ τ a . Proposition 4. Consider the case s a < 0. Then 1. τ 0 ≥ τ a 2. s 0,1 is the dominant root of system (8) and system (8) is stabilizable if 0 < τ ≤ τ a .

Proof. The proof follows the same lines as the proof of Proposition 3.

MULTI-DEGREE-OF-FREEDOM MECHANICAL EXAMPLE: 5-LINK INVERTED PENDULUM

Consider a 5-link inverted pendulum with rods of equal mass m and length l. The control torque is applied at the first (lowest) rod:

M = - 5 i=1 p i ϕ i (t -τ ) - 5 i=1 d i ϕ i (t -τ ) . (19) 

Derivation of the equation of motion

The equation of motion can be derived by using the Euler-Lagrange equations. The generalized coordinates are chosen to be the pendulum angles ϕ i (i.e. angular displacement of the rods from the vertically upward position). The equation of motion linearized around the unstable equilibrium has the form:

Mq + Kq = Q , ( 20 
) where the mass matrix M and the stiffness matrix K can be written as

M = 1 6 l 2 m       
26 21 15 9 3 21 20 15 9 3 15 15 14 9 3 9 9 9 8 3 3 3 3 3 2

       , K = - 1 2 glm      
9 0 0 0 0 0 7 0 0 0 0 0 5 0 0 0 0 0 3 0 0 0 0 0 1

      . The generalized force Q reads Q = -      
p 1 p 2 p 3 p 4 p 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

      q(t-τ )-       d 1 d 2 d 3 d 4 d 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0       q(t-τ ).
Therefore, the characteristic function has the form ( 1) where the open-loop characteristic function P (s) reads

P (s) = det s 2 M + K . (21) 

Stabilizable delay interval

Since the mass matrix M is positive-definite and the stiffness matrix K is negative-definite, then P (s) has only real roots. The average of the roots is s a = 0 since the roots occur in real pairs ±s i . Therefore, we can apply the results of Proposition 3. More precisely, the system (20) is stabilizable if 0 < τ < τ 0 , where τ 0 can be calculated if the system parameters are known. For example, if the parameter a 0 := 3g l = 1 then τ 0 = 0.3816. Some numerical simulations are shown in Fig. 2 for τ = 0.22. Bhattacharyya, S., Chapellat, H., and Keel, L. (1995).

Robust control: the parametric approach. Prentice-Hall PTR, Englewood Cliffs, NJ, USA. Boussaada, I., Morȃrescu, I.C., and Niculescu, S.I. (2015).

Inverted pendulum stabilization: Characterization of codimension-three triple zero bifurcation via multiple delayed proportional gains. Systems & Control Letters, 82, 1-9. [START_REF] Boussaada | Toward a decay rate assignment based design for timedelay systems with multiple spectral values[END_REF]. On the dominancy of multiple spectral values for time-delay systems with applications. IFAC-PapersOnLine, 51(14), 55-60.

Fig. 1 .

 1 Fig. 1. Roots location of the polynomials R n (s; τ ) and R n-1 (s; τ ) on the (τ, s) plane for the open-loop characteristic function P (s) = (s -2)(s -1)(s + 2). Top: Entire (τ, s) plane. Bottom: Right half-plane near the origin.

Fig. 2 .

 2 Fig. 2. Time-domain simulation for system (20) with 3g/l = 1 and τ = 0.22 < τ 0 .

i.e. the maximum delay, for which the system can still be stabilized by some control law, but for larger delay, the corresponding closedloop system is unstable.
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