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Abstract: In this study we consider the stabilization of nth-order linear time-invariant (LTI)
dynamical systems using Multiplicity-Induced-Dominancy (MID)-based controller design in the
presence of delays in the input/output channels. A sufficient condition is given for the dominancy
of a real root with multiplicity n + 1 using an integral representation of the corresponding
characteristic function. Furthermore, this sufficient condition is analyzed in the case when the
characteristic function of the open-loop system is real-rooted, and delay intervals are derived
for the set of parameters satisfying stabilizability and dominancy conditions. The efficiency of
the proposed controller design is shown in the case of a multi-link inverted pendulum.
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1. INTRODUCTION

Stabilization of unstable equilibria and orbits in the pres-
ence of communication delay is an important and chal-
lenging task in engineering applications (see, for instance,
Michiels et al. (2002); Olgac and Sipahi (2002); Gu et al.
(2003); Landry et al. (2005)). In this context, as pointed
out by Ma and Chen (2018), computing the control param-
eters allowing stable operation for large (feedback) delays
is not a trivial task. Among the existing approaches, the so-
called parameter-based approach is largely used in the case
of low-order and/or low-complexity controllers (see, e.g.,
Bhattacharyya et al. (1995); Ackermann (2002); Michiels
and Niculescu (2014) and the references therein). In par-
ticular, the stability diagrams can be used to visualize
stability properties of the closed-loop system in the space
of control parameters Bellman and Cooke (1963); Stépán
(1989); Hassard (1997); Breda (2012).

It is commonly accepted that the delay in the feedback
loop is generally seen as a source of unstable behavior.
Furthermore, as the feedback delay gets larger, the stable
region in the stability diagrams (charts) gets smaller. In
this frame, a challenging task is to find the so-called
critical delay or delay margin 1 . To the best of the au-
1 i.e. the maximum delay, for which the system can still be stabilized
by some control law, but for larger delay, the corresponding closed-
loop system is unstable.

thors’ knowledge, the idea of exploiting the delay effects
in controllers’ design was first introduced in Suh and Bien
(1979) where it is shown that the conventional propor-
tional controller equipped with an appropriate time-delay
performs an averaged derivative action and thus it can re-
place the proportional-derivative controller. Furthermore,
it was pointed out by Niculescu et al. (2010) that, under
appropriate assumptions, the presence of some delay in the
control law may induce stability in closed-loop. Finally, in
the context of mechanical engineering problems, the effect
of time-delay was emphasized in Stépán (1989) where some
concrete applications are studied, such as the machine tool
vibrations and robotic systems.

It is worth noting that, in the case of stable linear time-
delay system, the rightmost root (or spectral abscissa)
of the characteristic function is actually the exponential
decay rate of its time-domain solution (see, for instance,
Mori et al. (1982) for an estimate of the decay rate).
Furthermore, to the best of the authors’ knowledge, the
first time an analytical proof of the dominancy of a spec-
tral value for the scalar equation with a single delay
was presented in Hayes (1950). This Multiplicity-Induced-
Dominancy (MID) property is further explored and ana-
lytically derived for scalar delay equations in Boussaada
et al. (2016). Next, for second-order systems controlled
by a delayed proportional is proposed in Boussaada et al.
(2018b, 2017) where its applicability in damping active



vibrations for a piezo-actuated beam is proved. Finally,
an extension to the delayed proportional-derivative con-
troller case is studied in Boussaada and Niculescu (2018);
Boussaada et al. (2018a) where the dominancy property
is parametrically characterized and proven by using the
argument principle.

In this paper, we analyze a general nth-order linear time-
invariant dynamical system with a single delay and show
that, under some appropriate conditions, the MID prop-
erty can be used to assess the delay margin (see, e.g.
Boussaada et al. (2015); Boussaada and Niculescu (2018);
Boussaada et al. (2018b)). The novelty of the paper lies
on the way we are exploiting the root location of the
open-loop characteristic polynomial in order to have the
multiplicity-induced-dominancy of the overall system, as
done in Boussaada et al. (2020) in the particular case of
second-order systems.

The remaining paper is organized as follows. The problem
statement is presented in Section 2. Section 3 contains
some motivating example. Section 4 provides the main
ingredients of the dominancy proof, which consists in
writing the characteristic function with multiple real roots
as an integral operator. The main results are presented in
Section 5. An illustrative example is presented in Section
6, where the 5-link inverted pendulum is studied.

2. PROBLEM STATEMENT

Consider the quasipolynomial

D(s) = P (s) + e−sτQ(s) , (1)

where the polynomials P (s) and Q(s) are real and have
degrees n and n− 1, respectively:

P (s) = ans
n + an−1s

n−1 + ...+ a1s+ a0 ,

Q(s) = bn−1s
n−1 + bn−2s

n−2 + ...+ b1s+ b0 .
(2)

Assume that the coefficients ai of P are fixed and known,
and that an > 0.

The problem we are addressing can be resumed as follows:
computing the values of the delay parameter τ such that
the system (1) is stabilizable 2 if the control parameters bi
are tuned such that the characteristic function D(s) has a
real root s0 with multiplicity n+ 1?

3. MOTIVATING EXAMPLE: THE INVERTED
PENDULUM

Balancing an inverted pendulum in the presence of feed-
back delay is a frequently cited example in dynamics and
control theory (Atay, 1999; Sieber and Krauskopf, 2004;
Li et al., 2017). Different control methods are often imple-
mented in simple inverted pendulum systems (Habib et al.,
2017; Xu et al., 2017; Qin et al., 2014; Cieżkowski, 2016).
The inverted pendulum is also a basic concept in human
balancing models (Maurer and Peterka, 2005; Milton et al.,
2016; Milton and Insperger, 2019; Morasso et al., 2019).
The equation of motion of an inverted pendulum controlled
by a proportional-derivative (PD) controller reads as:

ϕ̈(t) + a0ϕ(t) = −b0ϕ(t− τ)− b1ϕ̇(t− τ) , (3)

2 i.e. there exist some real parameters bi (i = 0, 1, . . . , n − 1) de-
pending explicitly on (a0, a1, . . . , an, τ) such that the characteristic
roots of (1) have negative real part.

with a feedback delay τ > 0 and a system parameter
a0 < 0. The characteristic function corresponding to (3) is

D(s) = s2 + a0 + e−sτ (b0 + b1s) . (4)

The open-loop characteristic function P (s) = s2 + a0 has
real roots ±

√
−a0 since a0 < 0. This property proves to

be useful in Section 5.

The critical delay (delay margin) of the system (3) is well-
known from the literature (Schurer, 1948; Stépán, 2009):

τcrit =

√
− 2

a0
, (5)

that is, the trivial solution of system (3) can be asymp-
totically stable if and only if τ < τcrit. In the sequel, we
will show that the critical delay (5) can be obtained by
studying the multiple roots of the characteristic function.

Assume that D(s) has a real root s0 with algebraic
multiplicity at least degP (s) + 1 = 3. Then D(s0) = 0,
D′(s0) = 0 and D′′(s0) = 0:

s20 + a0 + e−s0τ (b0 + b1s0) = 0 ,

2s0 + e−s0τ (−τ(b0 + b1s0) + b1) = 0 ,

2 + e−s0τ (τ2(b0 + b1s0)− 2τb1) = 0 .

 (6)

From (6), one gets:

b0 = es0τ
(
τs30 + s20 + a0τs0 − a0

)
,

b1 = −es0τ
(
τs20 + 2s0 + a0τ

)
,

s0 =
−2±

√
2− a0τ2
τ

=: s0,± .


(7)

It can be shown that the triple root s0,+ is negative and
dominant for every 0 < τ < τcrit, and therefore the system
(3) is asymptotically stable. In particular, at the upper
bound τ = τcrit the triple root is s0,+ = 0 and it is
the dominant (rightmost) root of (4) with the control
parameters b0 = −a0 and b1 = −a0τcrit. The dominancy of
s0,+ may be shown by using the argument principle (see,
for instance, Boussaada and Niculescu, 2018; Boussaada
et al., 2018a). In the next section, to show the dominancy,
we use a method first introduced in Boussaada et al.
(2016) and based on an integral representation of the
characteristic function (see also Boussaada et al. (2018b)).

4. INTEGRAL REPRESENTATION AND A
SUFFICIENT CONDITION FOR DOMINANCY

We have the following result:

Proposition 1. If the quasipolynomial (1) has a real root
s0 with multiplicity at least n, then it can be written as

D(s) = (s− s0)n

(
an +

∫ 1

0

e−(s−s0)τt
τRn−1(s0; τt)

(n− 1)!
dt

)
,

(8)
where the family of polynomials Rk(s; τ) is defined as

Rk(s; τ) =

k∑
i=0

(
k

i

)
P (i)(s)τk−i, k ∈ Z+

0 . (9)

Proof. The quasipolynomial D(s) has a root s0 with
algebraic multiplicity at least n if and only if D(k)(s0) = 0,
k = 0, 1, ..., n− 1:



P (s0) + e−s0τQ(s0) = 0 ,

P ′(s0) + e−s0τ
(
(−τ)Q(s0) +Q′(s0)

)
= 0 ,

...

P (k)(s0) + e−s0τ
k∑
i=0

(
k

i

)
Q(i)(s0)(−τ)k−i = 0 ,

...

P (n−1)(s0) + e−s0τ
n−1∑
i=0

(
n− 1

i

)
Q(i)(s0)(−τ)n−1−i = 0 .


(10)

Equation (10) gives a linear system of equations for the
control parameters. Solving (10) for bi enables the integral
representation of the form (8).

If D(s) has a real root s0 with multiplicity at least n + 1
then (8) holds and, in addition, D(n)(s0) = 0:

D(n)(s0) = n!

(
an +

∫ 1

0

τRn−1(s0; τt)

(n− 1)!
dt

)
= Rn(s0; τ) = 0 .

(11)

Proposition 2. Let s0 be a real root of Rn(s0; τ) = 0.
Assume that the parameters bi satisfy the conditions (10).
If Rn−1(s0; τt) ≤ 0, ∀t, 0 < t ≤ 1 then the root s0 with
multiplicity n+1 is the dominant root of the characteristic
function (8).

Proof. To prove that there exists no root s1 = γ1 +iω1 of
(8) such that γ1 > s0, substitute s1 into (8). Since an > 0
one can obtain that

an =

∣∣∣∣∣
∫ 1

0

e−(s1−s0)τt
τ

(n− 1)!
Rn−1(s0; τt)dt

∣∣∣∣∣
≤
∫ 1

0

e−(γ1−s0)τt
τ

(n− 1)!

∣∣Rn−1(s0; τt)
∣∣dt . (12)

Using the condition Rn−1(s0; τt) ≤ 0, ∀t, 0 < t ≤ 1 (12)
can be written as

an ≤ −
∫ 1

0

e−(γ1−s0)τt
τ

(n− 1)!
Rn−1(s0; τt)dt =: f(γ1) .

(13)
For γ1 = s0 the function f takes the value

f(s0) = −
∫ 1

0

τ

(n− 1)!
Rn−1(s0; τt)dt

= −
∫ 1

0

1

n!

dRn(s0; τt)

dt
dt

= − 1

n!

Rn(s0; τ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

−Rn(s0; 0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=ann!

 = an .

(14)

For γ1 > s0 the value of the integral in (13) is f(γ1) < an
since 0 < e−(γ1−s0)τt < 1 for γ1 > s0, τ > 0, 0 < t ≤ 1.
Therefore, from (13), we obtain that an < an which proves
the inconsistency of the hypothesis that the characteristic
function (8) has a root s1 = γ1 + iω1 with γ1 > s0.

5. OPEN-LOOP SYSTEMS WITH ONLY REAL
ROOTS

In this section, we assume that the polynomial P (s)
corresponding to the open-loop system has only real roots.
In this case, P (s) has the form P (s) = an

∏n
i=1(s − si),

si ∈ R, sn ≤ sn−1 ≤ ... ≤ s1. To apply the sufficient
condition in Proposition 2, first, we need to characterize
the algebraic properties of the polynomials Rk(s; τ). These
properties are outlined and discussed in the sequel.

5.1 Interlacing property of polynomials Rk(s; τ)

The two-variable polynomials Rk(s; τ), k ∈ Z+ have the
following properties:

Rk(s; τ) = τRk−1(s; τ) +
∂Rk−1(s; τ)

∂s
, (15)

∂Rk(s; τ)

∂τ
= kRk−1(s; τ) . (16)

The property (15) allows saying that, for a fixed τ , the
polynomials Rk(s; τ) and Rk−1(s; τ) interlace and Rk(s; τ)
has only real roots for s since R0(s; τ) = P (s) has only real
roots (Fadeev and Sominski, 1965). Polynomials Rn(s; τ)
and Rn−1(s; τ) have n distinct real roots for s if τ 6= 0.
Let s0,k, k = 1, 2, ..., n denote the roots of Rn(s; τ), τ 6= 0
with s0,n < s0,n−1 < ... < s0,1.

It can also be shown that, for a fixed s, Rn(s; τ) has
only real roots for τ (Pólya and Szegő, 1997). Moreover,
Rk(s; τ), k = 1, 2, ..., n − 1 has only real roots for τ , and
Rk(s; τ) and Rk−1(s; τ) interlace which are direct conse-
quences of the property (16) above and Rolle’s theorem.

It should be mentioned that, in general, the solutions
of (15) and (16) can be investigated by using computer
algebra techniques (see, e.g., Chyzak et al. (2005)).

5.2 Monotonicity

In the (τ, s)-plane, the algebraic curve Rn(s; τ) = 0 has
distinct branches, and every branch is strictly increasing
since the derivative of the implicit function Rn(s; τ) = 0
in a point (s, τ) writes as (using (15) and (16)):

ds

dτ
= −

∂Rn(s;τ)
∂τ

∂Rn(s;τ)
∂s

= −nRn−1(s; τ)

Rn+1(s; τ)
> 0 , (17)

where the fraction Rn−1(s;τ)
Rn+1(s;τ)

is negative since for a fixed

τ 6= 0 at a root s of the polynomial Rn(s; τ) the func-
tion values Rn−1(s; τ) and Rn+1(s; τ) are nonzero and
have different signs because of the interlacing property.
A similar analysis can be done for the algebraic curve
Rn−1(s; τ) = 0.

5.3 Asymptotic properties

If τ → ∞ (or τ → −∞) then the roots of Rk(s; τ) for s
approach the roots of P (s) (i.e. sn ≤ sn−1 ≤ ... ≤ s1).
Similarly, if s→∞ or s→ −∞ then the roots of Rk(s; τ)
for τ approach the roots of τk = 0 (i.e. 0 with multiplicity
k).
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Fig. 1. Roots location of the polynomials Rn(s; τ) and
Rn−1(s; τ) on the (τ, s) plane for the open-loop char-
acteristic function P (s) = (s− 2)(s− 1)(s+ 2). Top:
Entire (τ, s) plane. Bottom: Right half-plane near the
origin.

5.4 Roots of Rk(s; 0)

If τ = 0 then Rk(s; τ) = Rk(s; 0) = P (k)(s). Therefore, if
k = n, then Rn(s; 0) = n!an has no roots for s. If k = n−1,

then Rn−1(s; 0) = n!
1! ans+ (n−1)!

0! an−1 has one root for s:

sa = − 1

n

an−1
an

=
1

n

n∑
i=1

si , (18)

which is the average of the roots of P (s).

5.5 Sufficient conditions for dominancy and stabilizability
if P (s) is real-rooted

Fig. 1 shows the branches of the algebraic curvesRn(s; τ) =
0 and Rn−1(s; τ) = 0 corresponding to the interlacing and
asymptotic properties on the (τ, s) plane (top), as well as
the right half-plane in the neighborhood of the origin. The
horizontal asymptotes corresponding to the roots of P (s)
are indicated with dashed lines.

Let τ0 denote the smallest positive root of Rn(0; τ) = 0
for τ . For τ > 0 the first branch of the algebraic curve
Rn(s; τ) = 0 corresponds to the greatest s values, and it
takes values in the interval ]−∞, s1[. Therefore, if s1 > 0,
then τ0 corresponds to the first branch of Rn(s; τ) = 0. If
s1 ≤ 0 ,then Rn(0; τ) = 0 has no positive roots. In this
case, set τ0 =∞.

Moreover, let τa denote the smallest positive root of
Rn(sa; τ) = 0 for τ . If P (s) 6= an(s − s1)n then τa
corresponds to the first branch of Rn(s; τ) = 0 since
sn < sa < s1. If P (s) = an(s − s1)n, then sa = s1 and
Rn(sa; τ) = 0 has no roots. In this case, set τa =∞.
The curve Rn(s; τ) = 0 gives a connection between the
delay τ and the possible values of the real root s0 with
multiplicity n+1, while the curve Rn−1(s; τ) = 0 is needed
to analyze the sufficient condition given in Proposition 2. It
is clear that the condition Rn−1(s0,k; τt) ≤ 0, ∀t, 0 < t ≤ 1
can be satisfied if and only if k = 1 and 0 < τ ≤ τa (i.e.
for the greatest s0 and in a certain delay interval).

These observations are summarized as follows:

Proposition 3. Consider the case sa ≥ 0. Then

1. τ0 ≤ τa
2. s0,1 is the dominant root of system (8) if 0 < τ ≤ τa,

and system (8) is stabilizable if 0 < τ < τ0.

Proof. If sa > 0 then there is at least one positive root s1
of P (s), therefore there is a finite τ0 corresponding to the
first branch of Rn(s; τ) = 0. Then the inequality τ0 ≤ τa
follows from the monotonicity of the curve Rn(s; τ) = 0.
Furthermore, if sa = 0 then τ0 = τa. Next, the dominancy
and stabilizability properties follow from the sufficient
condition in Proposition 2 and the fact that s0,1 ≥ 0 if
τ0 ≤ τ ≤ τa.

Proposition 4. Consider the case sa < 0. Then

1. τ0 ≥ τa
2. s0,1 is the dominant root of system (8) and system

(8) is stabilizable if 0 < τ ≤ τa.

Proof. The proof follows the same lines as the proof of
Proposition 3.

6. MULTI-DEGREE-OF-FREEDOM MECHANICAL
EXAMPLE: 5-LINK INVERTED PENDULUM

Consider a 5-link inverted pendulum with rods of equal
mass m and length l. The control torque is applied at the
first (lowest) rod:

M = −
5∑
i=1

piϕi(t− τ)−
5∑
i=1

diϕi
′(t− τ) . (19)



6.1 Derivation of the equation of motion

The equation of motion can be derived by using the Euler–
Lagrange equations. The generalized coordinates are cho-
sen to be the pendulum angles ϕi (i.e. angular displace-
ment of the rods from the vertically upward position).
The equation of motion linearized around the unstable
equilibrium has the form:

Mq̈ + Kq = Q , (20)

where the mass matrix M and the stiffness matrix K can
be written as

M =
1

6
l2m


26 21 15 9 3
21 20 15 9 3
15 15 14 9 3
9 9 9 8 3
3 3 3 3 2

 ,K = −1

2
glm


9 0 0 0 0
0 7 0 0 0
0 0 5 0 0
0 0 0 3 0
0 0 0 0 1

 .
The generalized force Q reads

Q = −


p1 p2 p3 p4 p5
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

q(t−τ)−


d1 d2 d3 d4 d5
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 q̇(t−τ).

Therefore, the characteristic function has the form (1)
where the open-loop characteristic function P (s) reads

P (s) = det
(
s2M + K

)
. (21)

6.2 Stabilizable delay interval

Since the mass matrix M is positive-definite and the
stiffness matrix K is negative-definite, then P (s) has only
real roots. The average of the roots is sa = 0 since the
roots occur in real pairs ±si. Therefore, we can apply the
results of Proposition 3. More precisely, the system (20)
is stabilizable if 0 < τ < τ0, where τ0 can be calculated
if the system parameters are known. For example, if the
parameter a0 := 3g

l = 1 then τ0 = 0.3816. Some numerical
simulations are shown in Fig. 2 for τ = 0.22.
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