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Calculation of the critical delay for the double inverted pendulum
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Single and double inverted pendulum systems subjected to delayed state feedback are analyzed in terms of stabilizability. The maximum (critical) delay that allows a stable closed-loop system is determined via the Multiplicity-Induced-Dominancy (MID) property of the characteristic roots, i.e., the dominant (rightmost) roots are associated with higher multiplicity under certain conditions of the system parameters. Other methods, such as tracking the changes of the D-curves with increasing delay and the Walton-Marshall method are also demonstrated for the example of the single pendulum. For the double inverted pendulum subjected to full state feedback, the number of control gains is four, and application of numerical methods requires therefore high computational effort (i.e., optimization in a four-dimensional space). It is shown that, with the MID-

Introduction

Stabilization of time delay systems is an important task in engineering control technology. Time delays typically arise in feedback systems and are often associated with unstable behaviour. Selection of the control parameters in order to stabilize the closedloop system is therefore a crucial task. Stabilizability is however limited by the size of the feedback delay [START_REF] Ma | Delay margin of low-order systems achievable by PID controllers[END_REF][START_REF] Zhu | Limits of Stability and Stabilization of Time-Delay Systems[END_REF]. The critical delay, τ crit , is the maximum delay in the feedback loop, for which stabilization is still possible. If the delay is less than τ crit then there exists a collection of control gains for which the closed-loop system is stable. If the delay is larger than τ crit then the closed-loop system is unstable for any control gain combinations.

It is known that in some simple case studies, the limit of stabilizability and the critical delay are associated with multiple rightmost roots [START_REF] Hayes | Roots of the transcendental equation associated with a certain difference-differential equation[END_REF][START_REF] Sieber | Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity[END_REF][START_REF] Boussaada | On the dominancy of multiple spectral values for time-delay systems with applications[END_REF]. The so-called Multiplicity-Induced-Dominancy (MID) has proved to be a useful property in determining the critical delay for various classes of delay systems. Application of the MID property to scalar and to second-order equations subjected to delayed proportional feedback was conducted in [START_REF] Boussaada | Multiplicity and Stable Varieties of Time-delay Systems: A Missing Link[END_REF] and in [START_REF] Boussaada | On the coalescence of spectral values and its effect on the stability of time-delay systems: Application to active vibration control[END_REF][START_REF] Boussaada | Further remarks on the effect of multiple spectral values on the dynamics of time-delay systems. application to the control of a mechanical system[END_REF], respectively. Extension to the delayed proportional-derivative (PD) feedback was studied in [START_REF] Boussaada | On the dominancy of multiple spectral values for time-delay systems with applications[END_REF][START_REF] Boussaada | Toward a decay rate assignment based design for time-delay systems with multiple spectral values[END_REF] where dominancy is proven using the argument principle. Motivated by the above examples, critical delay of feedback systems may be determined by the analysis of the multiplicity of the rightmost characteristic roots.

In this paper, the MID-based method is applied to a two-degree-of-freedom undamped unstable system, namely, the double inverted pendulum, subjected to delayed PD feedback. First, the method is demonstrated for the benchmark problem of the inverted pendulum with delayed PD feedback, where a closed-form expression of the critical delay is established. Then, the critical delay is determined for the double inverted pendulum with two system parameters (length of the pendulums) and four con-trol gains (associated with the angular position and angular velocity of both pendulum segments).

Stabilizability as function of feedback delay

There are several analytical and numerical methods that analyze the stability and stabilizability of time delay systems. These allow to determine the regions of control gains and feedback delay for which the system may be stabilized. In the following subsections, two particular methods are briefly presented in the framework of the characteristic equation

D(s, τ ) = A(s) + B(s)e -sτ = 0, (1) 
where deg(A) > deg(B). In the case of a mechanical system subjected to delayed feedback control, polynomial A expresses the behavior of the plant, while B corresponds to the controller. Indeed, the coefficients of A typically represent mechanical properties of the system (mass, mass moment of inertia, center of gravity), and, therefore are considered to be fixed, while the coefficients of B are associated with the control parameters to be tuned (control gains). The goal is to determine the values of the delay τ for which (1) has all its roots in the left-half plane.

Walton-Marshall method

The Walton-Marshall (WM) method [START_REF] Walton | Direct method for TDS stability analysis[END_REF] is a numerical tool that approximates the critical delay for fixed control and system parameters. The main steps of the method are the following. First, stability is determined for τ = 0. Then, the domain of the delay for which the system remains stable is established. If a root s = iω satisfies D(s, τ ) = 0 for a certain τ , then D(s, τ ) = 0 is also satisfied (s = -iω is the complex conjugate of s). Consequently, the problem of finding roots on the imaginary axis reduces to solving the system of equations

       A(s) + B(s)e -sτ = 0 A(-s) + B(-s)e +sτ = 0 . ( 2 
)
Eliminating the exponential term yields

A(s)A(-s) -B(s)B(-s) = 0. (3) 
Substituting s = iω into (3), one obtains a polynomial in ω 2 :

W (ω 2 ) = A(iω)A(-iω) -B(iω)B(-iω) = 0. (4) 
Imaginary roots correspond to positive ω 2 solutions of (4). If there are no such roots, then the system is stable/unstable independently of the delay. Otherwise, candidates for the critical delay are obtained after substituting the corresponding root s = iω into (1), namely

tan ωτ = Im A(iω) B(iω) Re -A(iω) B(iω)
.

(

) 5 
The next move consists in investigating whether the corresponding root s = iω crosses the imaginary axis from left to right as τ increases. Indeed, in [START_REF] Walton | Direct method for TDS stability analysis[END_REF], the root crossing direction is determined by the properties of W . If a root ω crosses from left to right, then W changes sign from positive to negative, i.e., W (ω 2 ) < 0. The maximum delay is determined by investigating all the crossing roots and their corresponding crossing directions.

Multiplicity-Induced-Dominancy

It is shown in [START_REF] Boussaada | Further remarks on the effect of multiple spectral values on the dynamics of time-delay systems. application to the control of a mechanical system[END_REF][START_REF] Boussaada | Toward a decay rate assignment based design for time-delay systems with multiple spectral values[END_REF], that the admissible multiplicity of the zero spectral value for

(1) is bounded by the Polya and Szegő bound denoted by P B S , which is the degree of the quasipolynomial (i.e., the sum of the polynomials' degrees plus the number of delays). The critical delay and the corresponding critical control gains are associated with the rightmost root s = 0 achieving the maximal admissible multiplicity. While multiplicity can be investigated by the vanishing of the successive derivatives of (1) with respect to s, the dominancy of the root s = 0 requires further inquiry in most cases. This latter property is demonstrated in the next sections for both the single and the double inverted pendulum.

Motivation: single inverted pendulum

Stabilization of an inverted pendulum with delayed feedback is a benchmark problem in control engineering literature [START_REF] Atay | Balancing the inverted pendulum using position feedback[END_REF][START_REF] Sieber | Extending the permissible control loop latency for the controlled inverted pendulum[END_REF][START_REF] Qin | Control experiments on time-delayed dynamical systems[END_REF][START_REF] Xu | Balancing a wheeled inverted pendulum with a single accelerometer in the presence of time delay[END_REF] as well as in understanding human balancing and human motor control [START_REF] Maurer | A new interpretation of spontaneous sway measures based on a simple model of human postural control[END_REF][START_REF] Milton | The time-delayed inverted pendulum: implications for human balance control[END_REF][START_REF] Milton | Acting together, destabilizing influences can stabilize human balance[END_REF][START_REF] Morasso | Quiet standing: The single inverted pendulum model is not so bad after all[END_REF]. As a matter of fact, many control concepts are often implemented in simple inverted pendulum systems, see, e.g., [START_REF] Tamas | On the robust stabilizability of unstable systems with feedback delay by finite spectrum assignment[END_REF][START_REF] Habib | Nonlinear model-based parameter estimation and stability analysis of an aero-pendulum subject to digital delayed control[END_REF][START_REF] Qin | Control experiments on time-delayed dynamical systems[END_REF][START_REF] Ciezkowski | Method for determination of interaction between a twowheeled self-balancing vehicle and its rider[END_REF]. As mentioned in the Introduction, stabilization by a delayed state feedback is not possible if the delay is larger than a critical value [START_REF] Stepan | Delay effects in the human sensory system during balancing[END_REF]. In this section, the stabilization of the single inverted pendulum is presented briefly, and the relation between the multiplicity of the rightmost characteristic roots and the critical delay is demonstrated. The critical delay is determined by three different techniques: 1) by analytical derivations; 2) by the MID approach; and 3) by the WM method.

Mechanical model

The mechanical model of the pendulum-cart system is shown in Fig. 1. The mass of the cart is assumed to be negligible compared to the mass of the pendulum. The linearized equation governing the motion of the stick is

φ(t) - mgl 2I ϕ(t) = l 2I F (t), (6) 
where ϕ is the angular position of the stick, m, l and I = 1/12ml 2 are the mass, length and the mass moment of inertia of the stick, respectively, g is the gravitational acceleration and F is the control force. In case of delayed PD feedback of the angular position, the control force may be modeled as

F (t) = k p ϕ(t -τ ) + k d φ(t -τ ), (7) 
where k p and k d are the proportional and the derivative control gains, respectively, and τ is the feedback delay.

Hence, the characteristic function generated by ( 6) and ( 7) reads

D(s) = s 2 + a 0 + (b 0 + b 1 s)e -sτ , (8) 
where

a 0 = - mgl 2I , b 0 = k p l 2I , b 1 = k d l 2I . (9) 
It can be seen that the coefficient a 0 involves only the plant parameters (m, I, l), while b 0 and b 1 depend on the control parameters k p and k d , too. 

Analytical stabilizability analysis

Substituting s = ±iω(ω ≥ 0) into the characteristic equation ( 8) and decomposing into real and imaginary parts yields the D-curves in the implicit form

a 0 -ω 2 + b 0 cos(τ ω) + b 1 ω sin(τ ω) = 0, (10) 
b 1 ω cos(τ ω) -b 0 sin(τ ω) = 0. (11) 
If ω = 0 then [START_REF] Casanova | Controlling the Double Rotary Inverted Pendulum with Multiple Feedback Delays[END_REF] gives b 0 = -a 0 , which is a so-called real root boundary [START_REF] Ackermann | Robust Control -The Parameter Space Approach[END_REF]. If ω > 0, then [START_REF] Casanova | Controlling the Double Rotary Inverted Pendulum with Multiple Feedback Delays[END_REF] and [START_REF] Ciezkowski | Method for determination of interaction between a twowheeled self-balancing vehicle and its rider[END_REF] give the parametric curve

b 0 = (ω 2 -a 0 ) cos(ωτ ), (12) 
b 1 = ω 2 -a 0 ω sin(ωτ ), (13) 
which is called complex root boundary [START_REF] Ackermann | Robust Control -The Parameter Space Approach[END_REF]. The D-curves split the plane (b 0 , b 1 ) into an infinite number of domains, where each domain exhibits a constant number of unstable characteristic roots. Stability can be attained by computing the number of unstable characteristic roots in each individual domain and/or by checking the root tendency (root-crossing direction) along the D-curves [START_REF] Stepan | Retarded dynamical systems[END_REF][START_REF] Olgac | An exact method for the stability analysis of timedelayed linear time-invariant (LTI) systems[END_REF][START_REF] Michiels | Stability and stabilization of time delay systems -An eigenvalue based approach[END_REF]. Some sample stability diagrams for different feedback delays are depicted in Fig. 2 for the set of parameters in Table 1.

As observed in Fig. 2, the stable domain shrinks with increasing feedback delay, and completely vanished at a critical value τ crit , when the tangent of the parametric curve (37)-( 38) is vertical. This happens at the limit

lim ω→0 dk p dk d = lim ω→0 dkp dω dk d dω = 3a 0 τ 2 + 6 a 0 τ 3 + 6τ = 0, (14) 
from which we infer, the critical delay τ crit = -2/a 0 , i.e., τ crit = 0.58 s for the set of parameters in Table 1. 

MID-based stabilizing controller design

The critical delay may also be recovered using the MID property. The following result is a direct consequence of Theorem 4.2 from [START_REF] Boussaada | Multiplicity-induced-dominancy in parametric second-order delay differential equations: analysis and application in control design[END_REF]. It provides a bound for the quasipolynomial roots' multiplicity. In addition, it explicitly computes the stabilizing MID-based controller's gains and delay. Proposition 1 Considering equation (8), the following assertions hold.

i) The multiplicity of any given root of the quasipolynomial function (8) is bounded by 3. ii) For an arbitrary positive delay τ , the quasipolynomial (8) admits a real spectral value at s = s ± with algebraic multiplicity 3 if and only if,

s ± = -2 ± √ 2 -τ 2 a 0 τ , (15) 
and the system parameters satisfy:

         b 0 = 2 a 0 + 10 s ± τ + 6 τ 2 e s±τ , b 1 = 2 s ± + 2 τ e s±τ .
( ± )

iii) If ( + ) (respectively ( -)) is satisfied then s = s + is the spectral abscissa corresponding to (8) (respectively s -cannot be the spectral abscissa corresponding to (8)). Furthermore, for an arbitrary delay τ the multiple spectral value at s - is always dominated by a single real root s 0 . iv) If ( + ) is satisfied then the trivial solution is asymptotically stable if, and only if, τ ∈ 0, -2 a0 .

Thanks to the above result which is proved using the principle argument in [START_REF] Boussaada | Multiplicity-induced-dominancy in parametric second-order delay differential equations: analysis and application in control design[END_REF], one exploits ( + ) to assert that the maximal admissible multiplicity of the rightmost root at s = 0 of (8) is 3. Next, (9) provides the critical feedback delay and the associated control gains

τ crit = - 2 a 0 , (16) 
k p,crit = - 2I l a 0 , (17) 
k d,crit = - 2I l a 0 τ crit . (18) 
The corresponding numerical results are τ crit = 0.58 s, k p,crit = 98.1 N/rad, k d,crit = 57.2 Ns/rad.

An alternative proof of the dominancy of the triple root at s = 0 may be deduced following [START_REF] Boussaada | Multiplicity and Stable Varieties of Time-delay Systems: A Missing Link[END_REF]. As a matter of fact, characteristic function may be rewritten as follows

D(s) = s 2 + a 0 + e -sτ1 (-a 0 -a 0 τ 1 s) = s 2 + a 0 -a 0 e -sτ1 (1 + τ 1 s) = s 2 1 + 1 0 a 0 τ 2 1 te -sτ1t dt = s 2 1 - 1 0 2te -sτ1t dt . (19) 
In order to prove that there exists no root s 1 = γ 1 + iω 1 of ( 19) such that γ 1 > 0, substitute s 1 into (19) which leads to

1 = 1 0 2te -s1τ1t dt ≤ 1 0 2te -s1τ1t dt = 1 0 2te -γ1τ1t dt =: f (γ 1 ). (20) 
Observing that

f (γ 1 = 0) = 1 0 2t dt = 1, (21) 
it follows that for γ 1 > 0 the value of the integral is f (γ 1 ) < 1 which proves the inconsistency of the hypothesis that the characteristic function [START_REF] Michiels | Stability and stabilization of time delay systems -An eigenvalue based approach[END_REF] has an unstable root s 1 = γ 1 + iω 1 with γ 1 > 0. Hence, no characteristic roots exist with positive real part, thus, the triple root s = 0 is indeed the dominant root. 

Critical delay by the WM method

The WM method can also be applied to determine the critical delay (delay margin)

for a fixed pair of control gains (k p , k d ). In this case (4) reads

W (ω 2 ) = ω 4 + mgl I - k 2 d l 2 4I 2 ω 2 + m 2 g 2 l 2 4I 2 - k 2 p l 2 4I 2 . (22) 
Only one positive root ω 0 exists for any combination of the gains k p and k d and the critical delay is provided by [START_REF] Boussaada | Multiplicity and Stable Varieties of Time-delay Systems: A Missing Link[END_REF]. The critical delays over the plane (k p , k d ) are shown in Fig. 3 where the maximal critical delay is attained by the critical gains k p,crit = 98.1 N/rad, k d,crit = 57.2 Ns/rad.

The double inverted pendulum

The double inverted pendulum is often referred to as the most simple nonlinear multi-body system featuring all the properties of higher-degree-of-freedom nonlinear systems, such as complexity or chaos. As such, it is often used to demonstrate control concepts of complex systems [START_REF] Casanova | Controlling the Double Rotary Inverted Pendulum with Multiple Feedback Delays[END_REF][START_REF] Lukowska | Acceleration control approach of double inverted pendulum system[END_REF][START_REF] He | Transportation control of cooperative double-wheel inverted pendulum robots adopting Udwadia-control approach[END_REF]. The corresponding full state feedback involves the angular position and angular velocity of both pendulum segments, which implies that the number of control gains is four. Hence optimization and stabilization shall be performed in the four dimensional space of the control gains. Note that the double inverted pendulum is also an often used important model in human balancing research [START_REF] Pinter | The dynamics of postural sway cannot be captured using a one-segment unverted pendulum model: A PCA on segment rotations during unperturbed stance[END_REF][START_REF] Suzuki | Intermittent control with ankle, hip, and mixed strategies during quiet standing: A theoretical proposal based on a double inverted pendulum model[END_REF][START_REF] Morasso | Quiet standing: The single inverted pendulum model is not so bad after all[END_REF].

Mechanical model

The mechanical model of the double inverted pendulum is shown in 

F (t) =k p1 ϕ 1 (t -τ ) + k d1 φ1 (t -τ )+ k p2 ϕ 2 (t -τ ) + k d2 φ2 (t -τ ), (23) 
where subscript 1 and 2 refer to the lower and upper pendulum, respectively. The linearized equation of motion reads

Mq(t) + Sq(t) = Q(t), (24) 
where the mass and the stiffness matrix are 

M =   1 0 0 1   (25) 
and

Q(t) =   0 F (t)   . ( 27 
)

Stabilizability analysis

Stability and stabilizability analysis of the double inverted pendulum is less straightforward compared to that of the single pendulum, since the orders of the plant and the controller are higher. Although D-curves can be generated in a similar way, the stable domains should be represented in the four-dimensional space (k p1 , k p2 , k d1 , k d2 ). In this section, stabilizability in terms of the critical delay is determined using the MID property and the results are confirmed with the numerical semidiscretization method.

First, the characteristic polynomial (1) with 

A(s) = s 4 + a 3 s 3 + a 2 s 2 + a 1 s + a 0 , (28) 
B(s) = b 3 s 3 + b 2 s 2 + b 1 s + b 0 (29) 
D(0) = a 0 + b 0 = 0, (30) 
D (0) = a 1 + b 1 -b 0 τ = 0, (31) 
D (II) (0) = 2a 2 + 2b 2 -2b 1 τ + b 0 τ 2 = 0, (32) 
D (III) (0) = 6a 3 + 6b 3 -6b 2 τ + 3b 1 τ 2 -b 0 τ 3 = 0, (33) 
D (IV) (0) = 24 -24b 3 τ + 12b 2 τ 2 -4b 1 τ 3 + b 0 τ 4 = 0, (34) 
so that zeroing the fifth derivative

D (V) (0) = -60a 3 τ 2 -40a 2 τ 3 -15a 1 τ 4 -4a 0 τ 5 = 0 (35) 
is in contradiction with [START_REF] Zhu | Limits of Stability and Stabilization of Time-Delay Systems[END_REF], which suggests that the maximal admissible multiplicity is 5. Solving b 0 , b 1 , b 2 and b 3 from ( 30)-( 33) and substituting into (34) yields a polynomial in τ . As in the previous section, the coefficients of the polynomial may be expressed in terms of the parameters of the plant as

P (τ ) = 24 + 24a 3 τ + 12a 2 τ 2 + 4a 1 τ 3 + a 0 τ 4 , (36) 
where

b 0 = -a 0 , (37) 
b 1 = -a 1 -a 0 τ, (38) 
b 2 = - 1 2 2a 2 + 2a 1 τ + a 0 τ 2 , ( 39 
) b 3 = - 1 6 6a 3 + 6a 2 τ + 3a 1 τ 2 + a 0 τ 3 . (40) 
The critical delay is the smallest positive τ solution of (36).

In the particular case of the double undamped inverted pendulum, the coefficients a 1 and a 3 are zero. For the sake of simplicity, we assume that the two pendulums are made of the same material, so their length is proportional to their mass. Without loss of generality, we consider the case where m 1 = ρL 1 and m 2 = ρL 2 with ρ = 1 kg/m.

Consequently, the mass moment of inertia is I 1 = L 3 1 /12 and I 2 = L 3 2 /12 for the center of gravity of each pendulum.

The non-zero coefficients of the characteristic equation are

a 0 = 9g 2 (L 1 + 2L 2 ) L 2 1 L 2 , (41) 
a 2 = - 3g(L 2 1 + 7L 1 L 2 + 2L 2 2 ) 2L 2 1 L 2 , ( 42 
) b 0 = - 9g(L 1 + 2L 2 )(k p1 + k p2 ) L 2 1 L 2 (L 1 + L 2 ) , (43) 
b 1 = - 9(k d1 + k d2 )g(L 1 + 2L 2 ) L 2 1 L 2 (L 1 + L 2 ) , ( 44 
) b 2 = 6L 1 L 2 k p1 + 3L 2 2 k p1 -3L 2 1 k p2 L 2 1 L 2 (L 1 + L 2 ) , ( 45 
) b 3 = -3k d2 L 2 1 + 3k d1 l 2 (2L 1 + L 2 ) L 2 1 L 2 (L 1 + L 2 ) . (46) 
Note that for a physically realistic case a 0 > 0 and a 2 < 0. This property will be exploited later. The system is investigated with respect to the lengths L 1 and L 2 of the pendulum segments.

If a 1 = 0 and a 3 = 0 then the polynomial (36) reduces to an incomplete quadratic equation of the form

P (τ ) = 24 + 12a 2 τ 2 + a 0 τ 4 = 0. (47) 
Descartes' rule of signs indicates that the number of positive roots of (47) is two, hence, two positive and two negative solutions are obtained for τ . The smaller positive value is the critical delay.

The two positive solutions for τ are

τ 1 = 2 -3a 2 - √ 3 3a 2 2 -2a 0 a 0 , (48) 
τ 2 = 2 -3a 2 + √ 3 3a 2 2 -2a 0 a 0 . (49) 
After substituting (41) and (42), one can see that 3a 2 2 -2a 0 > 0, hence τ 1 and τ 2 are positive real roots indeed. The dominance of the quintuple root s = 0 for the case τ = τ 1 < τ 2 is proved following the argument in [START_REF] Boussaada | Multiplicity and Stable Varieties of Time-delay Systems: A Missing Link[END_REF].

If τ = τ 1 and the coefficients b 0 , b 1 , b 2 and b 3 satisfy equations (37), (38), (39) and (40), respectively, then the characteristic function can be written in the following form:

D(s) =s 4 + a 2 s 2 + a 0 - 1 6 e -sτ1 6a 0 + 6a 0 τ 1 s + (3a 0 τ 2 1 + 6a 2 )s 2 +τ 1 (a 0 τ 2 1 + 6a 2 )s 3 =s 4 1 - 1 0 e -sτ1t τ 2 1 t -a 2 - 1 6 a 0 τ 2 1 t 2 dt . (50) 
To prove that there exists no root s 1 = γ 1 + iω 1 of (50) such that γ 1 > 0, substitute s 1 into (50), one gets

1 = 1 0 e -s1τ1t τ 2 1 t -a 2 - 1 6 a 0 τ 2 1 t 2 dt ≤ 1 0 e -γ1τ1t τ 2 1 t a 2 + 1 6 a 0 τ 2 1 t 2 dt = - 1 0 e -γ1τ1t τ 2 1 t a 2 + 1 6 a 0 τ 2 1 t 2 dt =: f (γ 1 ), (51) 
since

a 2 + 1 6 a 0 τ 2 1 t 2 = a 2 (1 -t 2 ) - 1 √ 3 t 2 3a 2 2 -2a 0 < 0. (52) 
For γ 1 = 0

f (γ 1 = 0) = - 1 0 τ 2 1 t a 2 + 1 6 a 0 τ 2 1 t 2 dt = 1, (53) 
so that for γ 1 > 0 the value of the integral is f (γ 1 ) < 1 which proves the inconsistency of the hypothesis that the characteristic function (50) has an unstable root

s 1 = γ 1 + iω 1 with γ 1 > 0.
The critical delay obtained by the MID-based method over the plane (L 1 , L 2 ) is shown in Fig. 5. In order to verify the results numerically, the critical delay was determined by the semidiscretization method [START_REF] Insperger | Semi-discretization for time-delay systems[END_REF] combined with an interval halving technique [START_REF] Bachrathy | Bisection method in higher dimensions and the efficiency number[END_REF] over a fixed grid of control parameters for L 1 = 5 m and L 2 = 5 m. In this case, τ crit = 0.26 s. A section of the stability regions in the four-dimensional space of the control gains is represented in Fig. 6 for τ = 0.25 s. As can be seen, the stable region disappears indeed at the critical parameters.

Conclusion

The MID property is employed to determine the critical feedback delay for the stabilization of a double inverted pendulum with full delayed state feedback. The method was shown to determine the critical delay with significantly smaller computational effort compared to other numerical methods, e.g., the Walton-Marschall or the semidiscretization method for a series of control gains combination. The main benefit of applying the MID-based approach is that the control space does not have to be swept, since the control gains associated with the critical delay are derived in closed form. Furthermore, in order to get the critical delay only the zeros of a quasipolynomial should be determined, while the corresponding control gains can be calculated by solving a finite set of linear equations. This is a useful feature especially for higher order plants or controllers design.

To the best knowledge of the authors, similar analytical method to determine the critical delay for higher-order system such as the double inverted pendulum is not available in the literature yet. The method applied in this paper to the double inverted pendulum can be adopted to more general systems under certain conditions on the characteristic function, see, e.g. [START_REF] Boussaada | Multiplicity-induced-dominancy in parametric second-order delay differential equations: analysis and application in control design[END_REF].
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 1 Figure 1: Mechanical model of the pendulum-cart system.
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 2 Figure 2: D-curves and the number of unstable characteristic roots of (8) for different delays. The stable region disappears when τ = τ crit and stabilization is not possible if τ > τ crit .
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 3 Figure 3: Critical delays for the single inverted pendulum.

Fig 4 .

 4 The parameters of the model are L 1 = 5 m, L 2 = 5 m, m 1 = 5 kg, m 2 = 5 kg. The control force may be modeled as

Figure 4 :

 4 Figure 4: Double inverted pendulum

Figure 5 :

 5 Figure 5: Critical delay for the double inverted pendulum deremined by the MID-based concept.

Figure 6 :

 6 Figure 6: Stability diagrams for the double inverted pendulum with L 1 = L 2 = 5 m in the neighbourhood of the critical point when τ = 0.25 s.

Table 1 :

 1 Mechanical parameters of the inverted single pendulum

	Parameter	Notation	Value
	Mass	m	10 kg
	Length	l	10 m
	Mass moment of inertia	I	83.33 kgm 2
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