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ERGODIC BEHAVIOR OF CONTROL AND MEAN FIELD GAMES PROBLEMS
DEPENDING ON ACCELERATION

PIERRE CARDALIAGUET AND CRISTIAN MENDICO

ABSTRACT. The goal of this paper is to study the long time behavior of solutions of the first-order mean
field game (MFG) systems with a control on the acceleration. The main issue for this is the lack of small
time controllability of the problem, which prevents to define the associated ergodic mean field game prob-
lem in the standard way. To overcome this issue, we first study the long-time average of optimal control
problems with control on the acceleration: we prove that the time average of the value function converges
to an ergodic constant and represent this ergodic constant as a minimum of a Lagrangian over a suitable
class of closed probability measure. This characterization leads us to define the ergodic MFG problem as
a fixed-point problem on the set of closed probability measures. Then we also show that this MFG ergodic
problem has at least one solution, that the associated ergodic constant is unique under the standard mono-
tonicity assumption and that the time-average of the value function of the time-dependent MFG problem
with control of acceleration converges to this ergodic constant.
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1. INTRODUCTION

The main goal of this paper is to study the asymptotic behavior of mean field games (MFG) system
with acceleration. Let us recall that such systems, first introduced in [33, 1], aim to describe models with
infinite number of interacting agents who control their acceleration. The MFG models we study here
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read as follows

(1.1

—ouT (t,z,v) + 3| Dy’ (¢, z,0) > = (Dpu” (t,2,v),0) = F(z,v,m{), in[0,T]x T¢ x R?

oml — (v, D,ml) — div (mtTDUuT(t,x,v)) =0, in [0, T] x T¢ x R?

ul (T, z,v) = g(z,v,mL), m(z,v) =mo(z,v) in T¢ x RZ
The above coupled system is a particular case of the more general class of MFG systems, which aim
to describe the optimal value u and the distribution m of players, in a Nash equilibrium, for differential
games with infinitely many small players. This models were introduced independently by Lasry and
Lions [29, 30, 31] and Huang, Malhamé and Caines [27, 26] and since these pioneering works the MFG
theory has grown very fast: see for instance the survey papers and the monographs [15, 25, 8, 21] and
the references therein. In system (1.1) the pair (u?, m”) can be interpreted as follows: u” is the value
function of a typical small player for an optimal control problem of acceleration in which the cost depends
on the time-dependent family of probability measures (m] ); on the other hand, m/ is, for each time ¢,
the distribution of the small players; it evolves in time according to the continuity equation driven by the
optimal feedback of the players.

During the last years, the question of the long time behavior of solutions of (standard) MFG systems
has attracted a lot of attention. Results describing the long-time average of solutions were obtained in
several context: see [17, 18], for second order systems on T¢, and [16, 11, 10], for first order systems
on T? R and for state constraint case respectively. Recently, the first author and Porretta studied the
long time behavior of solutions for the so-called Master equation associated with a second order MFG
system, see [20]. In view of the results obtained in these works one would expect the limit of u” /T to
be described by the following ergodic system

$IDvu(z,v)* = (Dyu(z,v),v) = (95 v,m), (x,v) € T?x RY
(1.2) —(v, Dym) — div <mD u(z,v) ) = (z,v) € T¢ x R?
Jraygam(de, dv) = 1.

The main issue of this paper is that this ergodic system makes no sense. Indeed, as we explain below,
even for problems without mean field interaction, we cannot expect to have a solution to the correspond-
ing ergodic Hamilton-Jacobi equation (the first equation in (1.2)). As the drift of the continuity equation
(the second equation in (1.2)) is given in terms of solution to the ergodic Hamilton-Jacobi equation, there
is no hope to formulate the problem in this way. As far as we know, this is the first time this kind of
problem is faced in the literature.

To overcome the issue just described, we first study the ergodic Hamilton-Jacobi equation without
mean field interaction. More precisely, in the first part of the paper we investigate the existence of the
limit, as 7" tends to infinity, of u” (0, -, -)/T', where now u’ solves the Hamilton-Jacobi equation (without
mean field interaction)

—ouT (t,2,v) + 5| DyuT (¢, 2,0) > — (Dpul (t,2,v),0) = F(z,v), in[0,7T]x T¢ x R?
u?(T,z,v) =0 in ']I‘d X Rd

Here F : R? x R — R is periodic in space (the first variable) and coercive in velocity (the second one).
Following the seminal paper [32], it is known that the existence of the limit of u” /T is related with the
existence of a corrector, namely to a solution of the ergodic Hamilton-Jacobi equation:

1
—(Dyu(z,v),v) + §|Dvu(x, v)|? = F(z,v) +¢ (z,v) € xT? x RY,
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for some constant ¢. However, we stress again the fact that due to the lack of coercivity and due to the
lack of small time controllability of our model, we do not expect the existence of a continuous viscosity
solutions of the ergodic equation. This problem has been overcome in several other frameworks: we
can quote for instance [34, 19, 37, 14, 7, 5, 3, 6, 9, 24, 23], for related problems see also [2, 28] and
the references therein. Following techniques developed in [6] we prove in the first part of Theorem
2.2 that the limit of u” /T exists and is equal to a constant. However, this convergence result does not
suffice to handle our MFG system of acceleration: indeed, we also need to understand, when the map
F also depends on the extra parameter m, how this ergodic constant depends on m. For doing so, we
follow ideas from weak-KAM theory (see for instance [22]) and characterize the ergodic constant in
terms of closed probability measures: namely, we prove in the second part of Theorem 2.2 that, for any
(z,v) € T¢ x RY,

r 1
lim v (0,2,v) = inf / “Jw|? + F(z,v) | w(dz,dv,dw)
T—+00 T HEC JrdyRdxRd \ 2

where C is the set of Borel probability measures ;z on T¢ x R? with suitable finite moments and which
are closed in the sense that, for any test function p € C°(T? x R%),

Lo (1Dapt0).0) + (Dol ). w) e, do,dw) = o
TdxR4xRd
(see also Definition 2.1).

We now come back to our MFG of acceleration (1.1). In view of the characterization of the ergodic
constant for the Hamilton-Jacobi equation without mean field interaction, it is natural to describe an
equilibrium for the ergodic MFG problem with acceleration as a fixed-point problem on the Wasserstein
space: we say that (\, i) € R x C is a solution of the ergodic MFG problem of acceleration if

- 1
A= inf / <|w|2 + F(w,vmrjju)) w(dz, dv, dw)
TdxRe xR \ 2

1 — —
= /Td RIXRA <2|w|2 + F(:C,U,Trﬁp)) ,Lb(dl', d’U’dw),
XIRE X

where 7 : T4 x R? x R¢ — T? x R is the canonical projection onto the first two variables. We show that
such an ergodic MFG problem with acceleration has a solution and that the associated ergodic constant
is unique under the following monotonicity condition (first introduced in [29, 30]): there exists a constant
Mp > 0 such that for any my, ma € P(T¢ x R%)

/ (F(z,v,m1) — F(z,v,m3)) (m1(dz,dv) — ma(dz,dv))
Td x R4

> Mp (F(x,v,ml) —F(x,v,mg))2 dxdv,
TdxRd
see (1) in Theorem 2.5. The main result of the paper is the fact that, if (u?, m”) solves the MFG system
of acceleration (1.1), then u”' (0, 2, v) /T converges, as T tends to infinity, to the unique ergodic constant
) of the ergodic MFG problem, see (2) in Theorem 2.5. The main technical step for this is to rewrite the
MEFG system in terms of time-dependent closed measure (a kind of occupation measure in this set-up),
see Theorem 4.3, and to understand the long-time average of these measures.

The rest of this paper is organized as follows. In Section 2, we introduce the notation, some pre-
liminaries and the main results of this paper. In Section 3, we study the long time averaged of the
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Hamilton-Jacobi equation without mean field interaction. Section 4 is devoted to the analysis of the er-
godic MFG problem and to the asymptotic behavior of the solution of the time dependent MFG system.

Acknowledgement. The first author was partially supported by the ANR (Agence Nationale de la
Recherche) project ANR-12-BS01-0008-01, by the CNRS through the PRC grant 1611 and by the Air
Force Office for Scientific Research grant FA9550-18-1-0494. The second author was partly supported
by Istituto Nazionale di Alta Matematica (GNAMPA 2019 Research Projects).

2. MAIN RESULTS

2.1. Notations and preliminaries. We write below a list of symbols used throughout this paper.

e Denote by N the set of positive integers, by R the d-dimensional real Euclidean space, by (-, -)
the Euclidean scalar product, by | - | the usual norm in R%, and by Bp, the open ball with center

0 and radius R.
e If Aisareal n x n matrix, we define the norm of A by
[All = sup |Az].
|z|=1, xz€R?

Let (X, d) be a metric space (in the paper, we use X = T x R? or X = T? x R% x R%).
e For a Lebesgue-measurable subset A of X, we let £(A) be the Lebesgue measure of A and
14 : X — {0, 1} be the characteristic function of A, i.e.,

b0 gy g

We denote by LP(A) (for 1 < p < oo) the space of Lebesgue-measurable functions f with
[ fllp,a < oo, where

[ flloc,a == ess sup | f(z)],
z€EA

1
P
1l = (/A \f|de) L 1<p<o

For brevity, || f||~ and || f||,, stand for || f||s,x and || f||, x respectively.

e C,(X) stands for the function space of bounded uniformly continuous functions on X. CZ(X)
stands for the space of bounded functions on X with bounded uniformly continuous first and
second derivatives. C*(X) (k € N) stands for the function space of k-times continuously differ-
entiable functions on X, and C*°(X) := N2, C*(X). C°(X) stands for the space of functions
in C*°(X') with compact support. Let a < b € R. AC(]a, b]; X) denotes the space of absolutely
continuous maps [a, b] — X.

e For f € C1(X), the gradient of f is denoted by Df = (Dy, f, ..., Dy, f), where D, f = %,
i = 1,2,---,d. Let k be a nonnegative integer and let « = (a1, -+, ay) be a multiindex of
order k, i.e., k = |a| = a1 + - - - + a4 , where each component «; is a nonnegative integer. For
f € C*(X), define D*f := Dgl---Dgaf.

We recall here the notations and definitions of Wasserstein spaces and Wasserstein distance, for more
details we refer to [36, 4]. Here again we denote by (X, d) a metric space (having in mind X = T¢ x R?
or X = T? x R% x R?). Denote by B(X) the Borel o-algebra on X and by P(X) the space of Borel
probability measures on X. The support of a measure u € P(X), denoted by spt(u), is the closed set
defined by

spt(p) :== {x € X : u(Vz) > 0 for each open neighborhood V;, of x}
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We say that a sequence { /i }reny C P(X) is weakly-+ convergent to ; € P(X), denoted by ju, —
if

n—oo

lim f x) pin(dx) / f(z) p(dx), Vf e Cy(X).

Forp € [1,400), the Wassersteln space of order p is defined as

Pp(RY) := {m e P(RY) : / d(zg, z)? m(dx) < +oo},
Rd
for some (and thus all) zp € X. Given any two measures m and m’ in P,(X), define
@.1)  I(m,m') = {)\ € P(X x X): MA x X) =m(A), MX x A) = m/(4), VA ¢ B(X)}.

The Wasserstein distance of order p between m and m/ is defined by

1/p
d " = inf d PX(dx,d .
p(m7m) )\GHI(I:rlrL,m’) (/XxX (ﬂf,y) ( xz, y)>

The distance d; is also commonly called the Kantorovich-Rubinstein distance and can be characterized
by a useful duality formula (see, for instance, [36]) as follows

(2.2) di(m,m’) = sup {/ f(x) m(dx) / f(z | f: X —=>Risl LlpSChltZ}
X
for all m, m’ € P1(X).

2.2. Calculus of variation with acceleration. In our first main result we study the large time average
of an optimal control problem of acceleration. Let L : T¢ x R? x R? — R be the Lagrangian function
defined as

1
L(z,v,w) = 5]w|2 + F(x,v)

where F' : T4 x R? — R satisfies the following assumptions:

(F1) F'is globally continuous with respect to both variables;
(F2) there exists o > 1 and there exists a constant ¢z > 1 such that for any (z,v) € R? x R¢

1
(2.3) —]v[o‘ —cp < F(z,v) <cp(l+|v|Y)
cr

and, without loss of generality, we assume F(z,v) > 0 for an (z,v) € T¢ x R%
(F3) there exists a constant C'’r > 0 such that

| Do F (2, 0)] + [ Dy F(z,0)] < Cp(1 4 [0]*).

Let T be the set C! curves 7 : [0, +00) — T¢ (endowed with the local uniform convergence of the
curve and its derivative) and for (¢, z,v) € [0,7] x T? x R? let I'y(x, v) be the subset of I" such that
7(t) = x and %(t) = v. Define the functional J&T : T' — R as

T
(24) I () :/t @w( )P+ F(v(s),4(s ))> ds, ifye H*(0,T;T%),

and JbT(y) = +oo if v ¢ H?(0,T;T?), and let VT (¢, 2,v) denote the value function associated with
the functional J47 ', i.e.

(2.5) VIt z,0)= inf JT(y).
’Yert (Z‘,’U)
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Let H be the Hamiltonian associated with the Lagrangian L, that is for any (z,v,p,) € T¢ x R¢ x RY,
Lo
lf(x,v,pv):: §M%J _'wavv%

where p, € R? denotes the momentum variable associated with v € R?. Then, it is not difficult to see
that the value function V7 is a continuous viscosity solution of the following Hamilton-Jacobi equation:

1
—0 VT (t,x,0) = (D VT (t,3,0),0) + §|DUVT(t,33,v)|2 = F(z,v), in[0,7]xT¢ xR,
VI(T,z,v) =0 inT?x R%

Our aim is to characterize the behavior of V7'(0, -, ) as T — +o0. To state the result, we need the notion
of closed measure, which requires another notation: we set

Po2(T? x R x RY) = {u e P(T¢ x R x RY) : / (Jw]* + |v]|*) w(dz, dv, dw) < —1—00}

TdxRIx R4

endowed with the weak-* convergence.
Definition 2.1 (Closed measure)
Letn € Pa,z(Td x R% x R?). We say that n is a closed measure if for any test function o € C°(T? x RY)
the following holds

Lo (iDep(a,0).0) + (Dol w) i, do, dw) =0,
Td xR x R4
We denote by C the set of closed measures.

Theorem 2.2 (Main result 1). Assume that F' satisfies assumptions (F1) and (F2). Then, the following

limits exist:

1 1
lim —V7 = i inf —J7
TN Y

and are independent of (z,v) € T x R%. Moreover; if F satisfies also (F3) then
1 1
lim V7 = inf S|lw+F dz,dv, dw).
Jim gV ) =int [ (Gl Fo)) e dodu)

Remark 2.3. (1) If we denote by \ the above limits, the convergence of V7' (0,z,v) — AT is a
completely open problem in this context. This is related to the lack of solution of the ergodic HJ
equation.

(2) The (strong) structure condition on L and the fact that the problem is periodic in the x variable
can probably be relaxed: this would require however more refined and technical estimates and
we have chosen to work in this simpler framework.

2.3. Mean Field Games of acceleration. In our second main result, we consider a mean field game
problem of acceleration. The Lagrangian function L : T¢ x R? x R? x P;(T? x RY) — R now takes
the form

1
L(z,v,w,m) = §]w|2 + F(z,v,m)

where F': T? x R? x Py(T¢ x R?) — R satisfies the following assumptions:

(F1’) Fis globally continuous with respect to all the variables;
(F2’) there exists & > 1 and a constant ¢z > 1 such that for any (z,v,m) € R% x R? x P;(T? x R% x
R%)
1

—v|* —cp < F(z,0,m) < cp(l+ |v]?)
Cr
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and, without loss of generality, we assume F'(x,v,m) > 0 for any (z,v,m) € T? x R? x
P1(T? x R? x R%);
(F3’) there exists a constant C > 0 such that, for any (z,v,m) € R? x R? x Py (T¢ x R? x RY),
| Dy F(xz,v,m)| + |DyF(z,v,m)| < Cp(1+ |v|%).
We consider the time-dependent MFG system
(2.6)
—opuT (t,z,v) — (Dyu” (¢, z,0),v) + 5| Dyu’ (¢, z,0)[> = F(z,v,m{), in[0,T]x T¢ x R?
oym} — (v, Dym]) — div (m?DvuT(t,w,v)) =0, in [0, 7] x T¢ x R?
ul' (T, z,v) = g(z,v,m%), in T x RY,  ml =mo € P(T? x RY).
where the terminal condition of the Hamilton-Jacobi equation satisfies the following:
(G1) (z,v) — g(x,v,m) belongs to C}(T¢ x R?) for any m € P(T? x R?) and m ~ g(z,v,m) is
Lipschitz continuous with respect to the d; distance, uniformly in (z,v) € T¢ x R,
We recall that (u”, m”) is a solution of (2.6) if u” is a viscosity solution of the first equation and m”
is a solution in the sense of distributions of the second equation. For more details see [33, 1].
Our aim is to understand the averaged limit of u” as T' — 4-oo. For this we define the ergodic MFG
problem, inspired by the characterization of the limit in Theorem 2.2. Let us recall that the notion of
closed measure was introduced in Definition 2.1 and that C denotes the set of closed measures.

Definition 2.4 (Solution of the ergodic MFG problem)
We say that (A, i) € R x C is a solution of the ergodic MFG problem if

_ 1
A= inf/ <|w|2 +F(:U,U,7Tjjﬁ)> p(dz, dv, dw)
TdxRdxRd \ 2

1
2.7) = / <]w\2 +F(x,v,7rjjﬁ)> f(dx, dv, dw).
TdxRIxRA \ 2

Theorem 2.5 (Main result 2). Assume that F' and G satisfy (F1°), (F2’) and (G1).

(1) There exists at least one solution (5\, i) € R x C of the ergodic MFG problem (2.7). Moreover,
if I satisfies the following monotonicity assumption: there exists Mp > 0 such that for mq,
ma € P(T? x RY)

/ (F(xa v, ml) - F(LU, v, m2)) (ml(dxv dv) - m?(dxa d’l)))
(2.8) Tdx R4
> MF (F(x,v,ml) _F(x7vam2))2 d.%'d?),
Td x R4
then the ergodic constant is unique: If (A1, fi1) and (Na, fig) are two solutions of the ergodic
MFG problem, then A\1 = Aa.

(2) Assume in addition that o = 2, that (F3’) and (2.8) hold and that the initial distribution my is in
Po(T4 x RY). Let (u!',m™) be a solution of the MFG system (2.6) and let (\, [i) be a solution
of the ergodic MFG problem (2.7). Then T_luT(O, -, +) converges locally uniformly to \ and we
have

1 _
lim — (o dzx,dv) = \.
Tililw T /EdXRdu ( 73?71)) mo( “ U>

3. ERGODIC BEHAVIOR OF CONTROL OF ACCELERATION

3.1. Existence of the limit. Before proving the main result of this section, Proposition 3.8, we need a
few preliminary lemmas.
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Lemma 3.1. Assume that F satisfies (F1) and (F2). Then, for any (x,v) € T¢ x Bpg, with R > 0, and

for any T’ > 0, we have

1
TVT(O, z,v) < cp(l+ R%).

Remark 3.2. The result also holds when F = F(t,x,v) depends also on time, provided that F is
continuous and satisfies (F2) with a constant cp independent of t.

Proof. Define the curve £(t) = = + tv, for t € [0, T)]. Then, by definition of the value function V7, we
have

T
VT0,2,v) < JH(E) = /0 F(z+tv,v)dt <Tecp(l+ R%).
(|

Lemma 3.3. Assume that I satisfies (F1) and (F2). Let 6 > 1, (z0,vo) and (x,v) be in T? x Bg for
some R > 1. Then, there exists a constant Co > 0 (depending only the constants o and cg in (F2)) and
a curve o : [0,0) — R such that 0(0) = zo, 5(0) = vg and 0(0) = x, 5(0) = v and

(3.1 J?(0) < Co(R*07 + R%0).

Remark 3.4. The result also holds when F = F(t,x,v) depends also on time, provided that F is
continuous and satisfies (F2) with a constant cr independent of t.

Proof. Define the following parametric curve
o(t) = zg +vot + Bt2 + Ct3, t€]0,6].
Choosing

C = (=2(z — x0) + 0(v + v9))0 73,

we have that 0(0) = z¢, 6(0) =vp and (1) =z, 5(1) = v.
By definition of the functional .J¥ we get

7o) = /09 @a(t)? + F(o(t), &(t))) dt

{ B = 3(z — x0) — 0v — 20v)0~2

0
1
g/ <2|2B +6Ct* 4 cp(1 + |vo + 2tB + 3t20|0‘)> dt < Cy(R*07' + R*0),
0
for some constant C'> depending on the constants « and ¢ in (F2) only. ]

2
Lemma 3.5. Let T > 2 and (z,v) € T¢ x Bp, for some Ry > ci. Let v € I'(z,v) be optimal for
VT(0,x,v). Then for any X > 2 there exists 7 € T'(z,v) with 5(T) = z, ¥(T) = v and

JE(3) < JT(y) + C3(A*Rf + RgA™°T),
where the constant Cs depends on o and cg only.

Remark 3.6. The result also holds when F = F(t,x,v) depends also on time, provided that F is
continuous and satisfies (F2) with a constant cy independent of t. In addition, by the construction in the
proof, there exists T > 0 such that 4 = ~ on [0, 7] and

T
| GROP+colt+3017)d: < CoOPR3 + RA-°T).

Finally, the map which associates v and T to vy is measurable.



ERGODIC BEHAVIOR OF CONTROL AND MFG DEPENDING ON ACCELERETION 9

Proof. Let
sup{t > 0, [¥(¢)] < ARo} if [v(T'—1)] > ARy,
T = )
T—-1 otherwise.
If>T — 2, we set

i (t) for ¢ € [0, 7],
y(t) = { Z(‘[;—T) for t € [r,T],

where o is the map built in Lemma 3.3 with 6 = T — 7, 0(0) = (1), 6(0) = 4(7), o(T — 7) = =z,
(T —71)=v.If 1 <T — 2, then we set

~(t) for ¢t € [0, 7],
F(t) =< o1(t—1) fort € [r,7 +1],
oo(t—7—1) forte[r+1,T],

where o1 and o2 are the map built in Lemma 3.3 with § = 1, 01(0) = v(7), 61(0) = (1), 01(1) = =,
6(l]) =vand =T —7—1and 02(0) = 02(T' —7—1) =z and 652(0) = 62(T' —7—-1) = v
respectively. Note that 4(7) = z and 7(T) = v.

In order to estimate J7 (), we first show that 7 cannot be too small: Namely we claim that

1 [e}%
(3.2) F>T 1—M ~1
E(ARQ)O‘ —CF
Indeed, let us first recall that by Lemma 3.1 we have
JT(y) < cp(1+ RY)T.

On the other hand, by assumption (F2) and the fact that |y(¢)| > ARp on [7,7 — 1] and that F' > 0, we
also have that

T
o= [ (GHOF +FO@.5@)) a

) /TT—l <;|,.y(t),a —CF> dt > (T —7-1) (;()\RO)O‘ —cF>.

So (3.2) holds for Ry > ¢/®.
We estimate J7 () in the case 7 < T — 2, the other case being similar and easier. Note that |(7)| <
ARy. By Lemma 3.3 and the fact that F' > 0, we have

T 1
76 = [ GROP+FOOA0)+ [ GaOF -+ Fe@).oo)

« T 0 + Float). safe))
< J"(9) + Co((ARo)* + (ARo)* + R§(T — 7 — 1) ' + R§(T — 7 — 1)).
In view of (3.2) this implies that
JT(3) < JT() + C3(A*Rf + RgA™°T),
for a constant C'5 depending on « and cr only. ([l
Next we prove that the (V7(0, -, -)) have locally uniformly bounded oscillations:

Lemma 3.7. There exists a constant My(R) > 0 such that for any (z,v) and (xg,vo) in T x Bg we
have that
VT(0,z,v) — VT(0,20,v0) < Mi(R).
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Proof. Let v* be a minimizer for V7 (0, 29, vo) and let & : [0, 1] — T be such that ¢(0) = z, ¢(0) = v
and 0 (1) = g, 6(1) = vp as in Lemma 3.3 for § = 1. Define

- o(t), tel0,1
(=170 o
Yt —1), tel[l,T].
Then 4 € T'g(x, v) and, by Lemma 3.3 and the assumption that /' > 0, we have that
L
VIO =V O0.0m) < [ (G60F + (o0, 6(0)) a
0
T
# [ (G- D+ PO 107 1)) de- V00 m)
1
T-1 /9
<2cr s [ (GHOP+ PO, dt - VT0.00.m)
0
2 T 1 sk 2 * - % 2
< 203R* — JOF +F((),5°(t) | dt < 20:R7,
T—1

which is the claim. O

Proposition 3.8 (Existence of the limit). Assume that F' satisfies (F1) and (F2). Then, for any (z,v) €
T? x RY, the following limits exist:

1 1
TEIEOO TV (0,2,v) _TEI—EOOTWEII‘?(&W)J -

In addition the convergence is locally uniform in (x,v) and the limit is independent of (x,v).

Proof. Fix Ry > c?;/a such that [v| < Ry. Let {T}, }en and let {7, }nen be a sequence of minimizers
for V1 (0, , v) such that T), — oo as n — oo and

1 1
liminfTVT(O,x,v) = lim —J" ().

T—00 n—o0 T},
For \ > 2, let us define 7, is in Lemma 3.5. Then we know that 7,,(T) = z, 7,(T) = v and
(33) TT () < T () + C5(A2R3 + RGATh,).
Let us define #,, as the periodic extension of the curve 7, i.e. 4, is T,-periodic and it is equal to 7,, on

[0, T},]. Then, taking 4,, as competitors for J? we obtain that

1 1
limsup inf —=J7(y) <limsup =J% (3
T—oo YETo(z,v) T (,Y) T—00 T (’Y'fl)

1 1
= T < (7 ) + COPRT 4 BEA)).

where the equality holds true since we are taking the limit of a periodic function and the last inequality
holds by (3.3).
We get the conclusion letting n — oo and then A — oo, indeed: as n — oo we deduce that

1 1
lim su inf —J7T < lim — JT» 4+ C3RYN™®
msup _inf o) < Tim ST () + Ca g

1
=liminf inf —JT(y)+ C3RIN"®
’_ZI”I—I:-QI-IOIO'yGIl(I)I(z,v) (7> 3710
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and then, taking the limit as A — oo we get

1 1
limsu inf  —JT(y) <liminf inf —J7().
T—)OOp ’YGFO (ac,v) T (7) o ’YGFU ($7’U) (IY)
As the (VT(0,-,-)) have locally bounded oscillation (Lemma 3.7), the above convergence is locally
uniform and the limit does not depend on (z, v). O

3.2. Characterization of the ergodic limit. In this part we characterize the limit given in Proposi-
tion 3.8 in term of closed measures. The proof of the main result, Proposition 3.17, where this character-
ization is stated, is technical and requires several steps. Here are the main ideas of the proof. By using
standard results on occupational measures, one can obtain in a relatively easy way that

1 1
A= i inf  —J7(y) > inf S|lwl*+ F dz, dv,d
it o)zt [ (Gl Fe) udde.do.du),
where C denotes the set of closed probability measures (see Definition 2.1). The difficult part of the proof
is the opposite inequality. The first step for this is a min-max formula (Theorem 3.10) which gives, by
using the characterization of closed measures, that

1
inf/ <w|2—|—F(:B,v)> p(dz, dv, dw)
nEC JTdw R xR 2

1
= sup inf {—|thp(:r,v)’2 — (Dyp(z,v),v) + F(;p,v)} .
peCs (TdxRd) (@) €TIxRE | 2

In order to exploit this inequality, one just needs to find a map ¢ € C°(T¢ x RY) for which

—51Du(a, ) ~ (D, v), v) + Flz,v)

is almost equal to A. This is not easy because the corrector of our ergodic problem does not seem to exist
(at least in the usual sense) because of the lack of controllability and, if it existed, it certainly would not
be smooth with a compact support. The standard idea in this set-up is to use instead the approximate
corrector, i.e., the solution Vj to

1
Vs(z,v) + §|DUV5($,U)’2 + (D, Vs(x,v),v) = F(z,v) in T¢ x R%.

However, this approximate corrector has not a compact support either (it is even coercive, see Proposition
3.11) and 9V does not converge uniformly to —\, but only locally uniformly. We overcome these issues
by an extra approximation argument (Lemma 3.13).

Let us first explain why closed measures pop up naturally in our problem. To see this, let (xg,vg) €

T? x R? be an initial position and let 72";0 v0) be an optimal trajectory for V7 (0, zg, vg). We define the

family of Borel probability measures {1} 70 as follows: for any function ¢ € C°(T? x R? x R?)

1 T
3.4 T(de, dv, dw) = = L t), 4% t), 5L t)) dt.
(3.4) /]I‘deded o(z,v,w) p* (dz, dv, dw) T/o (Y (zo,00) (s Vwo,00) ()> V(o ,00) (1)

Lemma 3.9. Assume that I satisfies (F1) and (F2). Let the family of probability measures {u” }1o
be defined by (3.4). Then, {u" Yo is tight and there exists a closed measure y* such that, up to a
subsequence, i —* p* as T — +o0.
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Proof. We first prove that {ur}r~o its a tight family of probability measures. Indeed, by assumption
(F2) for (x0,v0) € T% x R? we know that

V70,0000 == [ (ST sy (O + FO Ty sy (61T 0 (8))
T s 40, V0O _T 0 2 W(xo,vo) PY(xOJUO) 77(1'07170)
1
:/ (51wl + F(,0)) 47 (da,dv, duw)
TdxRdxRE \2

1 1
>/ (*‘w|2 + —v]* = CF) MT(dx,dv,dw).
TdxRIxRE \2 CF
On the other hand, by Lemma 3.1 we have that
1
TVT(Oa xo, UO) < Cl

where C only depends on the initial point (zg, vg). Therefore, we obtain that
1 1
Lo GloP s el u e do.dw) < €
Td xR xR 2 Cp

which implies that { 1" } 7~ is tight. By Prokhorov theorem there exists a measure z* € P(T%xR%xR9)
such that up to a subsequence p —* p* as T — +o0.

We now show that the measure 1* is closed in the sense of Definition 2.1. Let ¢ € C°(T? x R%) be
a test function and let R > 0 be such that ¢(x,v) = 0 for any (z,v) € T¢ x B%. Moreover, define

. {sup{t 10,71 150y DI S RY, i B (T)] > R
T, if ‘;Y(xo,vo) (T)’ <R

andlet o : [7*, 7" +1] — T9be as in Lemma 3.3 such that o*(7*) = 7(7;0 UO)(T*), o (t*) = "7(7;;0 ,UO)(T*)
and o* (7" + 1) = xg, 6*(7* + 1) = vo. Moreover, define

N 7&071;0)(75)7 te[0,77]
) = {a*(t), te (™, +1].

Then we get

Lo (o). 0) + (Dol 0) w)) di ,0,0)
TdxRIx R4
e : : : )
- T/o <<Dx(p(7(j;0’”0)(t)’7(7;07“0)(75))’7(7;07710)@)> + <Dvgp(7(j;o7vo)(t)"Y(jﬂ;o,vo)(t))”y(j;ovvo)(t») di

1 T*+1 ] . ' )
T /0 (4D (T (1), AT (6, AT (6) + (Dup (37 (1), 37 (£)), A7 () )

T*+1
- ;/ ((sté?(a*(t),é*(t)),d*(t)) + <Dvg0(a*(t),d*(t)),&*(t)>> dt

B

T
[ (Do) O3 s O A g () F D0y (0,5 0y (0 T (B

®

¢]
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One can immediately observe that by construction C= 0 (since ¢ has a support in T¢ x Bg). By the
definition of 7 one also has that A = 0. The behavior of B is also immediate because, as ¢ is bounded,

T 41
;/ (<Dx80(0*(t)ad*(t)),d*(t» + (Dvcp(a*(t),d*(t))j&*(t») di
1

= T(gp(g*(r* +1),6"(7" +1)) —p(c*(77),0" (")) = 0, asT — +oo.
The proof is thus complete. ]
The next step consists in formulating in two different ways the expected limit of Proposition 3.8.

Theorem 3.10 (Minmax formula). Assume that I satisfies (F1) and (F2). Then, the following equality
holds true:

1
inf/ (w|2 —l—F(az,v)) p(dz, dv, dw)
HEC JTdwRd xR 2

1
= sup inf {—|Dv90(:n,v)|2 — (Dyp(z,v),v) + F(iﬂ,v)} )
pEC (TdxRd) (7,0)ETIXRY 2

(3.5)

Proof. By definition of a closed measure we can write

1
inf/ <w|2 —l—F(m,v)) p(dz, dv, dw)
HEC JTdw«RdxRd 2

1
= inf su “|w|? 4+ F(z,v) — (Dyp(z,v),v) — (Dyp(z,v), w dx, dv, dw).
U U Lo (5l0P o+ Fa0) = (Da.0),0) = (Duspla, o), w)) )

Our aim is to use the min-max Theorem (see Theorem A.1 below). We use for this the notation introduced
in Appendix A and set A = C°(T? x RY), B = Py (T¢ x R? x R?) and for any (¢, ) € A x B

L(p,p) = /deRded (%]w|2 + F(x,v) — (Dyp(z,v),v) — <Dyg0(:c,v),w)) w(dz, dv, dw).

Let us choose ¢*(z,v) = 0 and

1
=1+ inf sup / (f|w|2 + F(z,v)
HEP2,a (TEXRIXRY) e oo (Td xR J Td xRE x RE 2

— (Dyp(z,v),v) — (Dvgp(:v,v),w>) p(dz, dv, dw).

Note that ¢* is finite (since it is bounded below by assumption (2.3) and bounded above for 1 = §(,, 0,0

for any 2o € T%). In addition, the set B* = {u € B : L(¢*, ) < ¢*} is nonempty and tight, and thus
compact, in 7327a(?I‘d x R? x R?) for the weak-* convergence. Finally, we have

1
cF>14+ sup inf / <f\w]2+F(x,v)
€0 (TdxRd) HEP2,a (TIXRIXRY) JTd(RAXRd \ 2

— (Dapla,0),v) — (Dygplw,v), w) ) p(de, do, du).

Therefore, the min-max Theorem A.1 states that

1
inf su <7w2—|—F z,v) — {Dypo(z,v),v) — (Dyp(z,v ,w) dx, dv, dw
e o[ (G F )~ (D)) (Dt ) )

c

1
— s in / (51w + F(2,v) = (Dagp(a, v), v) — (Dusplw, v), w) ) p(de, do, du)
EC2 (Td xRd) HEP2 (T4 XREXRY) JTd x Rd xR \2
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1
— sup inf {|w|2 + F(x,v) — (Dyp(z,v),v) — <Dv¢(x,v),w)}
peC® (T4 xRd) (T,v w)e'ﬂ‘dx]Rdx]Rd 2

— sup inf {_Dv90(1'71))|2 — (Dyp(x,v),v) + F(z, u)} .
peCs (TdxRd) (z.v)€TIxRE | 2

This complete the proof. g

Next we introduce and study the discounted problem associated with (2.4). For any § > 0 and any
(z,v) € T? x R? we define J5 : T' — R U {+o00} as

+o00
5o = [T (GBOP + PO ) d

if 4 is absolutely continuous with [;™°° e~ (1|5(t)|? + [4(t))|*) dt < +oo, and J5(7) = -+oo other-
wise. We define the associated value function (the approximate corrector)

(3.6) Vs(x,v) = inf  Js(7).
vl (x,v)

We recall that Vj is the unique continuous viscosity solution with a polynomial growth of the following
Hamilton-Jacobi equation

37) 5Vi(a,0) + 5|DuVi(a,v) P + (DuVs(, v),v) = Flr,v).

As the convergence of V7' (0, -, -) /T is locally uniform (by Proposition 3.7), we can apply the Abelian-
Tauberian Theorem of [34] and we have that for any (x,v) € T¢ x R?

(3.8) lim §Vs(z,v) = lim —VT(O z,v) =: A\

d—0t T—oo T

In the proof of the main result of this section (Proposition 3.17) we will have to smoothen the map
V. This involves some local regularity properties of V%, which is the aim of the next result.

Proposition 3.11. Assume that F' satisfies (F1) — (F3). Then, we have:

(1) {6Vs(xz,v)}s>0 is locally uniformly bounded;
(i1) {Vs(z,v)}s>0 has locally uniformly bounded oscillation, i.e. there exists a constant M (R) > 0
such that for any (o, vo), (z,v) € T? x By

Vs(z,v) = Vs(zo,v0) < M(R).
(iii) there exists a constant C' > 0 such that for any (z,v) € T% x R¢
3.9 C ol = C6™ < Vs(x,v) < cpd (v]* +1);

(tv) the map © — Vs(x,v) is locally Lipschitz continuous and there exists a constant C5 > 0 such
that for a.e. (z,v) € T¢ x R? the following holds:

(3.10) 1D, Vis(z,0)| < C5(1 + [0]®).

Proof. (4) Fix (x,v) € T¢x Bp, and define a competitor v : [0, +-00] — T such that y(t) = x +tv.
By definition and (2.3) we get

Vs (x,v) < 5/00o e F(4(8),4(t)) ds < ep(L+ [v]*) < ep(l+ R%).

On the other hand, we have by (F2) that F' > 0 and thus V5 > 0, which completes the proof of
().
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Let (0, v0), (x,v) € T¢ x B be fixed points, let v* be a minimizer for Vs(z¢, vo) and let o be

defined as in Lemma 3.3 such that ¢(0) = z, 6(0) = v and o (1) = xg, 5(1) = vo. We define a
new curve 7 : [0, +-00) — T¢ as follows

_)a(®), t€10,1]
() = {'y*(t ~1),  te(l,+00).

Then

1
Vate, o) — VaGoow) < [ (GHOF +FG0,3(0))

+oo
# [T (GHOP + OO ) de - Viloo )

By a change of variable, we have that
oo sl 2 :
[ e (G ar s roro. o) d
1

—e /OOO e (;W*(S)lz + F(v*(s),ﬁ*(S))> ds = e~°Vs(xo, v0)-

Therefore, we obtain that

+oo
‘/ e % <;|&(t)|2 +F(7(t),7(t))) dt — Vs(zo, vo)
1
< 0|Vs(zo,v0)| < er(1+ RY),

< )6_6 - 1) Vs (0, vo)

where the last inequality holds true by (7). Moreover, by construction of ¢ in Lemma 3.3 we
have that

| e @I&(m? + Flo(t), d(t>>> dt < J(0) < Co(R? + R°).
0

Combining together inequality (3.12) and (3.13) in (3.11) we get (ii):
Vs(x,v) — Vs(z0,v0) < cp(1 4+ R¥) + Cy(R? + R®) =: M(R).

For some constants M and M, we have that the map Z : T¢ x RY — R such that Z(z,v) =
M v|® — My~ is a subsolution of (3.7), indeed

1
52(.%',1}) + §‘DUZ($7’U)’2 + <DwZ($,U),’U> - F(JJ,U)
1
< SM o™ — My + §M1_2a2|v|2(°‘_1) — it u|* + cp.
As2(a — 1) < a, since a € (1, 2], we get, for M, and My large enough,
1
0Z(x,v) + §|DUZ(1:, v)|? + (DyZ(x,v),v) — F(z,v) <O0.

By comparison we obtain Vs > Z, which proves the first inequality in (3.9).
In the same way, considering the map Z(z,v) = cpd~(Jv|* + 1), we have

0Z(x,v) + %|DUZ(IIZ‘,U)‘2 + (DyZ(z,v),v) — F(z,v)

1
> cp(|o]* +1) + 50 (cra)?|o 7 — cplo* —cp > 0,
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so that Z is a supersolution. By comparison we conclude that the second inequality in (3.9)
holds.
(iv) Let v* be optimal for Vs(z,v) and let b € R, Then

+o00
Vet o)< [ et (G OF + P00 +h ) ) de
+oo
(3.14) < V(s(x,vH/o e (F(* (1) + h, 7" (1) = F(Y*(8), (1)) dt

400
< Vi(,v) + / e lep(1+ 37 ()1)h] dt,
0

where the last inequality holds true by assumption (F3). Moreover, by (3.9) we deduce that there
exists a constant C5 > 0 such that

—+o00
| et e B 01 — er) de < VaGa,) < o1+ o).
0
Therefore, by (3.14) we deduce that
Vs(x + h,v) = Vs(x,v) < Cs(1 + |v|¥)|hl,

which implies that Vj is locally Lipschitz continuous in space and proves (iv).

We now strengthen a little the convergence in (3.8):

Proposition 3.12. Assume that F' satisfies (F1)—(F3). Then
A= lim inf  0Vs(x,v),

=0t (z,0)€TIxRY
with X defined in (3.8).

Proof. First we note that, by (i) in Proposition 3.11, the convergence in (3.8) is locally uniform. Fix
R > 0 such that

(3.15) ' R* —cp > \.
Then, for any ¢ > 0, there exists 6. > 0 such that for any 0 € (0, J.) we have that
(3.16) inf oVs(z,v) > X —e.

(z,w)ETIX B
Fix (z,v) € T¢ x R? and let v} be a minimizer for Vs(z,v). We define
bt e [0, ool [55(6) < R}, if {t € [0, +oc] : [§5(2)] < R} # 0
"7 ) 40, if {t € [0,+00] : |75(t)] < R} = 0.

By Dynamic Programming Principle we get

o — 1 o % * .k —oT, * <k
Vilo.o) = [ e (GHROR + FORO350) ) de+ e 53005 (7). 35 73)
and by assumption (2.3) and definition of 75 we deduce that
(3.17) 0Vs(x,0) > (cp' R* = cp)(1 = ) + =7 6V5(v5 (5), 45 (75))-

If 75 is finite, we have that |y} (7s)| is bounded by R and thus, by (3.15) and (3.16) we deduce that for
any 9 € (0,0.)
SVs(z,0) > A1 —e0) 4 e 0 (N—eg) > A —¢.
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By (3.15) and (3.17) the same inequality also holds if 75 = +o0c. Hence, we obtain that

lim inf  dVs(xz,v) >A—¢.
=071 (z,v)€TIxRY

By (3.8) we infer that

A= lim §V5(0,0) > lim inf  dVs(xz,v) >\ —¢,
6—07+ 0—07 (z,0)€TEXRY

which implies the desired result since € is arbitrary. O

As Vj is coercive, we cannot use it directly as a test function to test the fact that a measure is closed.
To overcome this issue we approximate Vs by family of Lipschitz maps (VaR).

Lemma 3.13 (Approximate problem 1). Assume that F' satisfies assumption (F1)—(F3). Let R > 0
and define Fr(x,v) = min{F(z,v), R} for any (z,v) € T? x R% Let V¥ be the unique continuous
and bounded viscosity solution to

(3.18) SVE(z,v —&—levR z,0) |2 + (D, VE(x,v),v) = Fg(z,v), (x,v) € T?x R
é 2 1 4

Then, the following holds:

i) V& is globally Lipschitz continuous;
Fy 8 Yy LIp.
ii) there are two positive constants ¢1 5 and Co 5 such that
p b b

(3.19) SV (z,v) > &1 5(1 +min{|v|* R}) — éz5
forany (z,v) € ']I‘d~>< R?;
(iii) there is a constant Cs > 0 such that
(3.20) |D, Vi (z,v)| < Cs(1 + min{|v|*, R})

fora.e. (z,v) € T% x R%;
(iv) V(;R converge, as R — +o0, uniformly on compact subsets of T* x R to the map Vs defined in
(3.6).

The proofs of (i) and (iv) are direct consequences of optimal control theory while the proofs of (3.19)
and (3.20) follow the same argument as for (3.9) and (3.10), respectively and we omit these proofs.

Lemma 3.14. Assume that F satisfies (F1) — (F3). Let Frp and V5R be defined in Lemma 3.13. Then we
have that

1
(3.21) inf (
uec Td xR x R4 2
Proof. Let €15 € C2°(RY) be such that spt(£1°) C B, £1¢(x) > 0 and st ¢1¢(x) dr = 1, and define

V(SR’E (z,v) = V%, ¢4 (2, v) where the mollification only holds in x. Then V§ satisfies the following
inequality in the viscosity sense

wf? + FR<m,v>) e dodu) >t V(o)

1
OV (2, 0) + S| DoV (2, 0) [+ (Do Vs (2,0), v) < Frr&“(w,v) < Fr(w,v)+Cre(l+min{|v]*, R})

where the last inequality holds true by (F3) and the definition of F. Now, let £2¢ € C°(R?) be such
that spt(¢>°) C B, £2(v) > 0 and [ €>°(v) dv = 1 and define goiz";(m,v) = €2 %, V¥ (2,0)
(where the the mollification now only holds in v). Then, by (3.20) we have that

€255, (Do V5™ (2, ), ) () = (D (2, 0),0)| < € [ DaVy™ || oo (s,09) < Coe(1+min{[v|*, R}),
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which implies that
5658 (@) + 51D () + (Dasgi (), )
< 665 (0, 0) + Do (@, V) + €5 %0 (DVF (2, 0),0) + Co (1L + minfof*, R))

< Fpx&%°(z,v) + Cse(1 + min{|v|*, R}) < Fr(z,v) + Cy (1 + min{|v|*, R})
where the last inequality holds true by assumption (F3). Thus, so far we have proved that for any
(z,v) € T x R?
5 £,0 1 D £,0 2 D €,0
¢p (z,0) + §| ver (@, 0)|7 + (Dagy (z,0),0)
< Fr(z,v) + Ci5e(1 +min{|v|*, R}).

Moreover, in view of (3.19) we deduce that there exists a constant C 5 > 0 such that for any (z,v) €
T x R we have that

(3.23) 5@26(1‘, v) > Cy s min{[v|*, R} — Cas.
We claim that for € > 0 small enough, the following holds:

1
inf/ (w]2+FR(a:,v)> du(z,v,w)
pnec TdxRd x R4 2

. 5 ) N
> (a:,v)ler'l]l‘f;lx[[{d (580; (z,v) — C1s¢e (1 + min{|v| ,R})) .

(3.22)

(3.24)

By Remark 3.15 below, we can test the fact that a measure is closed by smooth and globally Lipschitz
continuous maps. Let £(T? x R?) be such a set. Then

1
inf/ <|w|2—|—FR(x,v)> w(dz, dv, dw)
HEC JTd xRl xRd

- o sup [ (Gl Frl) — (D2 0),0) — (D, 0),w) )l do )
HEPq, 2(TEXxRExRE) weg (T4 xR) ']I'dXR‘iX]Rd

> su w|? + Fr(z,v W (x,v),v) — (D, $,v,w) dx, dv, dw
2D e Lo (B FRE) (D, 0),0) — (Du ) ) )
> ot (510l + Fala, ) — (Dagi (2, 0),0) — (Do (2, ),w)) (i, dv, du)
pEPa,2(TEXRIXRY) JTd x Rd xR

. 5 5
= “ u)leITII‘fflde {_2|Dv§0; (x, U)|2 + Fr(x,v) — <D$gp‘§% (z, U),U>} ,

which proves (3.24) thanks to (3.22). Recalling (3.23), the right hand side of (3.24) is coercive in v
uniformly in ¢ for € small. As in addition go%"s converges locally uniformly to V5R as € — 0, we obtain
lim  inf (5 £9(x,v) — Cyge (1 + min{|v|% R ): inf  oVE(z,v).
by o s (09 (z,v) = Oy ( {lv|*, R}) AL (z,v)

So we can let ¢ — 0 in (3.24) to obtain the result. ]
In the proof we used the following:

Remark 3.15. Note that we can allow for a larger class of test functions in Definition 2.1, i.e. ¢ €
WLoo(Td x RY) N C(T4 x R?). Indeed, let p € W°(T4 x R?) N C>®(T? x RY) and for R > 1 let
¢r € C°(RY) be such that £g(x,v) = 1 for (z,v) € T x Bg, {r(w,v) = 0 for (x,v) € T x R4\ Bap,
0 < &gr(z,v) < 1for T? x Byg\Br and there exists a constant M > 0 such that | Dég(z,v)| < MR}
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for any (z,v) € T% x R%. Set or = p&R. Then, we have that o € C°(T? x R?), Dyp is uniformly
bounded and converges locally uniformly to D¢. For i € C we have:

(3.25) / (<Dx(pR(JJ,U),U> + (Dyor(z, v),w>) p(dz, dv, dw) = 0.
TdxR4x R4

Since p € Pa2.o(T?x RY x R?), we can pass to the limit in (3.25) as R — 00 by dominate convergence.
This proves that

/’H‘deded <<Dx<P(I, v),v) + (Dyp(x,v), w>> p(dz, dv, dw) = 0

for o € WH(T?% x R?) N C®(T? x RY). O
In the next step, we let R — +o0 in (3.21):
Lemma 3.16. Assume that F satisfies (F1) — (F3). Let V5 be defined in (3.6). Then

1
3.26 inf w2+ F dz, dv, dw) > inf 4 )
( ) /}L%C /’ﬂ‘dXRdXRd <2|w’ + (x7v)> plde, dv, dw) = (z,v)lel’}l‘ded Vo(z,v)

Proof. We first consider the left-hand side of (3.21), for which we obviously have, by the definition of
Frin Lemma 3.13,

1
inf/ <|w|2+FR(fv,v)> w(dz, dv, dw)
HEC JTdyRdxRd 2

1
(3.27) < inf/ <|w|2 —i—F(.Z‘,U)) w(dz, dv, dw).
peC JTdyrdxrd \ 2

As for the right hand side of (3.21), we note that, if (xr,vR) € T x R satisfies

R ; R -1
Vo) € VS ) TR

then, as V(;R < Vs and (3.19) holds, we have

¢1.5(1 + min{|vg|¥, R}) — éo5 < inf Vs(z,v) + R™L.
L ( {lvr*, R}) — é2 oyt 5(x,0)
This proves that vr remains bounded in R and we can find a subsequence of (x g, vg), denoted in the
same way, which converges to some (Z, %) € T¢ x R% as R — +o0. Then by local uniform convergence
of V;% to Vs, we obtain that

3.28 inf  Vi(z,v) <V3(z,0) = lim Vi¥(zg,vp) = li inf  Vi(z,v).
( ) (JC»U)IEITITdXRd 5($ U) B 6(ZE U) R—1>r—lr-loo 0 (xR UR) R—lg-loo (ac,v)ler’lﬂ‘ded 0 (:U v)
Passing to the limit as R — +oo in (3.21) proves the Lemma thanks to (3.27) and (3.28). O

We are now ready to prove the main result of this section.

Proposition 3.17 (Characterization with closed measures). Assume that F satisfies (F1) — (F3). For
any (xg,v9) € T? x R? we have that

1 1
lim —V7* = inf SlwP+F dz, dv, dw).
Jim VO =it [ (2rw| ¥ w)) u(de, dv, duw)
Proof. Let Vgeo,vo) be a minimum for the problem
inf  JT(y).

Y€ETo(z0,v0)
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Let us define the probability measures pur by

I . y
Lo ) au @) = £ [ ol (005 (05 0 (0)

for any o € C°(T? x RY x R?). By Lemma 3.9, the (u”') converge, up to a subsequence (7, ), weak-x
to a closed measure p*. Therefore

. . 1 T _ . 1 Tn 1 . Tn 2 Tn 2 Tn
i it 2to) =t [ (G OF + PO, 048, 0 )

T—o0 velg(wo,v0) T' n—oo Tp,
1
= lim <|w|2 —|—F(x,v)> pt (dz, dv, dw) > /
n=00 JpdxRdxRd \ 2 Td xR xR
Thus, taking the infimum over the set of closed measures C we obtain that
1 1

li inf —J7(y) > inf S|w]* + F d :
Pt 77002 [ g (G4 P20 it

To obtain the opposite inequality, we note that, by (3.26) (which holds for any § > 0) and Proposition
3.12, we have

1
inf w2+ F dx, dv, dw) > 1i inf 0V =\
/111616' /ﬂ-dXRdXRd <2’LU’ * (m7v)> 'u( ©av w) o (5—1>r(§lJr (oc,v)lerﬁll‘dx]Rd 5($,’U) ’

where \ defined in (3.8). Then we can conclude thanks to (3.8). ]

1
<2|w|2 + F(z, v)) w*(dx, dv, dw).

Proof of Theorem 2.2. The existence of the limit and the fact that it does not depend on (z, v) is the main
statement of Proposition 3.8 while the characterization of this limit is given by Proposition 3.17. U

4. ASYMPTOTIC BEHAVIOR OF MFG WITH ACCELERATION

We now turn to MFG problems of acceleration. In order to study the asymptotic behavior of these
problems, we first need to describe the expected limit: the ergodic MFG problems of acceleration. The
difficulty here is that, as explained in the previous part, we do not expect the existence of a corrector and
therefore the ergodic MFG problem cannot be phrased in these terms. We overcome this issue by using
the characterization of the ergodic limit given by Theorem 2.2 in terms of closed measures. This suggests
the definition of equilibria for ergodic MFG of acceleration (Definition 2.4). We prove the existence and
the uniqueness of a solution in Proposition 4.1. In order to pass to the limit in the time-dependent MFG
system of acceleration, we first need to rephrase the solution of this system in terms of closed measures
(more precisely in terms of the so-called T'—closed measures, see Definition 4.2). This is the aim of the
second part of the section (Theorem 4.3). Thanks to this characterization, we are then able to conclude
on the long time average and complete the proof of Definition 2.4.

4.1. Ergodic MFG with acceleration. Following Definition 2.1 we recall that C C Py 2(T? x R? x R%)
denotes the set of closed measures, i.e. 1 € C if it satisfies for any test function ¢ € C°(T¢ x R?) the
following condition:

/deRded <<Dx<P(x,v), v) + (Dugo(x,v),w)) w(dx, dv, dw) = 0.

The candidate limit problem that we are going to study is the following fixed point problem: we look
for a measure ;1 € C such that

1
4.1) [ € argmin {/ <|w|2 + F(x,v, Wjj,u)) n(dx, dv, dw)}
TdxRIxRd \ 2

neC

where 7 : T¢ x R? x RY, defined as 7(x, v, w) = (z,v), is the projection function.
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Proposition 4.1. Assume that F satisfies (F1’) and (F2’). Then, there exists at least one solution
(A, 1) € R x C of the ergodic MFG problem.

Moreover; if F satisfies the monotonicity assumption (2.8) and if (M1, fi1) and (A2, fiz) are two solu-
tions of the ergodic MFG problem, then A\| = \o.

Proof. Let IC be the set of probability measures u € C such that
1 2 —1y,,|x
(5w + cg|v]|Y) p(dz, dv, dw) < 2cf,
TdxRd 2

where o and cp are given by assumption (F2’). We endow /C with the d; distance and define, for any
p € K, the set ¥(p) as the set of minimizers 77 € C of the map defined on C

1
(42) n— <|w|2 + F(%Umﬁ#)) n(dz, dv, dw)
TdxRIxRE \ 2

We also denote by A(yu) the value of this minimum. First, we show that the set-valued map ¥ is well-
defined from X into KC. Indeed, if 4 € K and 7 € C is any minimum of (4.2), we have by assumption
(F2’) (setting 17 = 0(4,,0,0y € C for an arbitrary point zo € T%):

1 o ) 1 .
/Td y Rd(ilw\2+cpllv\ — cp) f(dz, dv, dw) S/ S|wl? + F(z, v, wp)) 7(dz, dv, dw)
X X

TdxRIxRE 2

1
< / (Glwl + F(z, v, mw4p)) ii(de, dv, dw) < cp.
Tdx R4 x R4

So 7 belongs to K. Moreover, we observe that a solution of the ergodic MFG problem exists if the set-
valued map W has a fixed-point and we prove that this is the case using the Kakutani fixed-point theorem.
Since o > 1, by the above considerations, we know that the space C is compact with respect to the d;
distance. Thus, for any p € K, the set W(u) is convex and compact. It remains to check that ¥ has
closed graph. Fix a sequence {/;}jeny C K and a sequence {7;};jen C K such that

pi =M, my =, and ;€ () Vi EN.

Let us show that 7 € U(u). Note that 7 € C. It remains to check that 77 minimizes (4.2). By standard
lower-semi continuity arguments and continuity of F', we have:

4.3)

1
/ 1wl + P, v, 740)) i(de, dv, dw) < lim inf /
TdxRIxRE 2 iJr

1
(z|w* + F(x, v, mu;)) nj(de, dv, dw).
dyRixRd 2

We now check that the right-hand side is not larger that A (). Indeed, let 77 belong to ¥ () and fix n > 0.
As 7 belongs to K we can find R > 0 such that

1
/ (=|w|* + cr|v|* + cr) 7(dz, dv, dw) < €.
(TAxRIXRIN\Br 2

As mipu; converges to miu for the d; distance, we have by assumption (F1°) that, for j large enough,

dim  sup |F(x,v,mhu;) — F(x,v, )| <e.
UBSES (I,’U)EBR
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So, by optimality of 7; and the estimates above,
1
Lo Gl + Pl ntag) e, do,dw) = )
TdxRd xR
1 -
<[ GleP s Pl vm) e, do.du)
TdxRixRd 2

1 1
< / (Gl + F(z, v, mtp) i(de, dv, dw) + / (51wl +cplv]* + cr) (dx, dv, dw)
Br

Bg
1
< [ (Gl + Fo,v.mi) e, dv,dw) + 26 < () + 2.
Br
Coming back to (4.3), this shows that

1
/ (z|w|* + F(z,v, 7)) 7(dz, dv, dw) < A(p),
TdxRExRE 2

and therefore that 77 belongs to W(u). Therefore, applying Kakutani fixed-point theorem we have that
there exists a fixed point 7 of ¥ and this is a solution of the ergodic MFG problem.

Now, we prove that under the monotonicity assumption (2.8) the critical value is unique. Let (A, fi1)
and (A, fi2) be two solutions of the ergodic MFG problem. Then, by definition we have that, for i = 1
ort =2,

1
\i = inf/ <lw|2+F(a:,v,7Tjjui)> p(dx, dv, dw)
(4 4) nec Td xR x R4 2

1 - _
— /Td RxRA <2|UJ|2+F(x,v,7TﬁMi)) i (dz, dv, dw).
X X

Thus, exchanging the role of fi; and Jio as competitor for A\; and )9, respectively, we get

- 1
4.5) A1 < / (\w|2 + F(x,v,wjjuﬁ) fa(dz, dv, dw)
TdxRIxRY \ 2
and
- 1
(4.6) Ao < / (|w\2 + F(:c,v,wjjm)) a1 (dz, dv, dw).
TdxRixRd \ 2

We first take the difference between (4.5) and (4.4) for ¢ = 2 and we get
AL — Ao §/ (F(z,v,m8i1) — F(z,v, mi2)) diz(dz, dv, dw).
TdxRI xR
Taking the difference between (4.5) for 7 = 1 and (4.6) we get
AL — Ao 2/ (F(z,v,m8i1) — F(z,v,m2)) dir(dz, dv, dw).
TdxRI xR
Thus, taking the difference of the above expressions we deduce that
0> / (F(.’L’, v, Wﬁﬂl) - F(:I}, v, Wﬁﬂ?)) (ﬂl (d.’L‘, dv, dw) - ﬂ?(d$7 dv, dw))
TdxRI xR

which implies by monotonicity assumption (2.8) that F'(z,v, 1) = F(x,v, 7fjiz). Coming back to
(4.5), it follows that A1 = Ag. O
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4.2. Representation of the solution of the time-dependent MFG system. We now consider the time-
dependent MFG system (2.6). In [33, 1], it has been proved that such system has a solution (u?, m7)

and that the function u” can be represented as

T
an o=t {7 (GROREFOEE.mD) ds g @A) mb)}.

In order to compare the solution of this time-dependent problem with the solution of the ergodic MFG
problem, which is written in terms of closed measures, we need to rewrite the time-dependent problem
in term of flows of Borel probability measures on T¢ x R¢ x R¢. The following definition mirrors the
definition of closed measure in the ergodic setting:

Definition 4.2 (T-Closed measures)

Let T be a finite time horizon and let mg € Py (T4 x RY). Ifn € C([0,T]; P1(T? x R? x R%)), we say
that 1) is a T-closed measure associated with mq if for any test function ¢ € C°([0,T] x T¢ x RY) the
following holds

T
/0 /T o (Bt 0) 4 (Dee(t2,0).0) + (Dol 0) 1)) (i, v, )
4.8) XIREX

= / (,D(T,x,'l)) 77T(d377d’07dw) - / QO(O,.Z',’U) mO(dx7dv)'
Td xR x R4 TdxRIxR4

We denote by CT (my) the set of T-closed measures associated with mg € Py (T? x R).
The goal of the subsection is to prove the following equality:

Theorem 4.3. Assume that F satisfies (F1°), (F2’) and g satisfies (G1). Let M > 0 and assume that
(4.9) / |v|* mo(dz, dv) < M.
Td xRd

Let (u”',m") be a solution to (2.6). Then

g 1
i w2+F:r,v,mT> dz, dv, dw)dt
#GCT(mo){/o /TdX]Rded <2| | ( ¢) ) Hl )

(4.10) +/ g(x,v,m%) MT(dx,dv,dw)}
TdxR%x R4

= / ul (0, 2, v) mo(dz, dv).
TdxRd

In addition, there exists a minimizer i¥ € CT(my) of the problem in the left-hand side of (4.10) such
that m] = wtil, where T : T¢ x R? x R* — T9 x R? is the canonical projection on the two first
coordinates, i.e. such that w(x,v,w) = (x,v).

The proof of Theorem 4.3 follows standard arguments but is slightly technical because the problem
is stated in the whole space in velocity. The main problem is to regularize the map u” in order to
have a smooth function with a compact support which satisfies a suitable (approximate) Hamilton-Jacobi
inequality. The first step towards this aim is the following Lemma:

Lemma 4.4 (Approximate problem 2). Let f : T? x R? x [0,T] — R be a continuous map with at
most a polynomial growth and which is locally Lipschitz continuous in space locally uniformly in time
and g : T% x R® — R be a locally Lipschitz continuous map with at most a polynomial growth. Let
R > 0 and let £ be a smooth cut—off function such that €% > 0, £%(z,v) = 1 if (z,v) € T¢ x Bp,
0 < &8z, v) < 1if (z,v) € T x Byr\Bg and %(z,v) = 0 if (x,v) € T¢ x By. Define fr :
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T? x R4 x [0,7] — Rand gg : T* x R = Ras fr = £8f and gr = £%g. Let uk, be the viscosity
solution of the following problem

—opuk(t, z,v) + S Dyuk(t, 2, v)|* — (Dyuk(t, z,v),v)
4.11) = fr(t,z,v), in [0, T] x T¢ x R?
ul (T, 2,v) = gr(z,v), in T¢ x R,

Then, the following hold:

(1) u% has compact support;
(2) uﬁ is Lipschitz continuous in space and velocity variable;
(3) ug converge, as R — o0, locally uniformly to the solution u” of the following problem

—opuT (t, 2, v) + 3| Dy (t,z,0) > — (Dpul (t,2,v),0) = f(t,z,v), in [0, 7] x T¢ x R?
ul (T, z,v) = g(x,v), in T¢ x R,

The proof of the Lemma follows standard argument in optimal control and we omit it. Next we prove
Theorem 4.3 in the simpler case where F' and g are replaced by Fr and gg:

Proposition 4.5. Assume that F' satisfies (F1’) and (F2’) and g satisfies (G1). Let (uT, mT) be a solution
of system (2.6). For R > 0, let £ be a smooth cut—off function as in Lemma 4.4 and let us set Fp = £RF
and gr = &8g. Let u% be the continuous viscosity solution of the following problem

—ok(t,z,v) + L Dyuki(t, 2, v)|? — (Dyuk(t, 2, v),0)
(4.12) = Fr(z,v,m}), in [0, 7] x T¢ x R?

uf(T, z,v) = gr(z, v, mL), in T¢ x R<.

Then

T
1
inf {// (f\wIQ—I—FR(x,U,m;*F)) p(dx, dv, dw)dt
peCT(mo) LJo  JTdxraxrd \2

+/ QR(JU,U,m%) MT(d.’L‘,d’U,d’Uj)}
TdxR4x R4
:/ uh(0, 2, v) mo(dz, dv).

TdxRd

Proof. We first prove that
r 1
inf {/ / <f\w]2 +FR(x,v,m;‘F)> pe(dx, dv, dw)dt
peCT(mo) Lo  JTdxrixrd \2

(4.13) + / gr(z,v,mL) pr(de, dv,dw)}
Td xR xR

> / uh(0,2,v) mo(dz, dv).
TdxRd
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‘We have that

T
1
inf {// <f\w]2+FR(w,v,mf)>,u,t(dac,dv,dw)dt
pecT(mo) Lo JTdxrixrd \2

+ / gR(JU,U,m%) MT(d.’L‘,d’U,d’Uj)}
Tdx R4 x R4
g Lo T
= inf sup / / <f]w\ + Fr(z,v,m; ) + Owp(t, z,v)
REC((0,T];PLTAXRIXRY)) peooo ([0,T]xTéxRY) JO  JTdxRIxRE \2 !

+ (Dyp(t,x,v),v) + (Dvgo(t,x,v),w>) i (dax, dv, dw)dt

+ / (gR(fI?,U,m%) - 90(T7$7U)> /LT(d.’E,d”U,dU)) +/ QD(O,.%',’U) mU(dxadv)
Td xR xR T

d wRd

T

1

> sup inf / / <f|w|2 + Fr(z,v,ml) + Opp(t, z,v)
0eC([0,T]xTdxRA) LEC([0,TPLTIXRIXRY)) Jo  JTdxRIxRA \2

+ (Dapplt,2,0),0) + (Dosplt, 7, v), w) ) pu(dar, dv, du)dt

+ / (gR(x, v, m%) - @(T,x,v)) pr(dx, dv, dw) —I—/ ©(0, z,v) mo(dz, dv).
Tdx R4 x R4 T

d wRd

In the argument below, the constant cr depends on R and on the data and may change from line to line.
Let £ = £5°(z) be a smooth mollifier such that spt(§1°) C B, £°(z) > O and [ ¢4°(z) dz = 1,

and define ui’R = uﬁ xz EY¢(t, 2, v) (the convolution being in the x variable only). Let R > Rbe such

that spt(u%,), spt(Fr) and spt(gg) are contained in By . Then, we have that ui’R satisfies the following
inequality in the viscosity sense

1
- atu?R(t:xv U) + §|Dvu?R(t,$,’U>’2 - <Dxu§’R(t,£L',1}), U> < FR *él’a(ta I’,U)
< FR(xvvvmtT) + CFE(l + ‘U’a)l(x,v)erxBR/ :

Now, let £2¢ = ¢2¢(v) be a smooth mollifier such that spt(£2¢) C B, £%¢(v) > 0 and st £2¢(v) dv =

1 and define u§ © = €28 4, u{i’s(t, x,v) (the convolution being now in the v variable only). Then, by the
Lipschitz regularity of u£ stated in Lemma 4.4 we have that

|€27€ *u <D5Eu?’€(tv €, ')’ >(U) - <D5Eu§’€(ta €, U)v v>‘ <e ||DxU?’E||oo S CRrE 1(x,v)€Td><BR/ :
Hence uZ’R satisfies in the viscosity sense:
1
— B (t, x,v) + ileug’R(t, z,0)[2 = (Dyu™(t, x,0v),v)
< Fgr(z,v,ml)+cre 1(x,v)€Td><BR/ )

We finally regularize ug’R in time. Let £3° = ¢3¢(¢) be a smooth mollifier such that spt(£2€) C B.,
£24(t) > 0and [ €*°(t) dt = 1 and define ul® = €3¢ & ul®(t,2,v) (convolution in time). Thus,

ugR’E, for any (t,z,v) € (—o0o, T — €] x T? x RY, satisfies (in the classical sense)
1
— Byl (t,x,v) + §]DUu3R’8(t, z,0)[2 = (Dyul® (¢, z,v),v)

< 3 %y Fr(z,v,mT)(t) + cre l(x,v)gdeBR,.
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By [33, Theorem 5.9] we know that m” is Lipschitz continuous in time with respect to the d; distance.
Setting 42 (¢, z,v) = uf; “(t — e, m,v), 4L satisfies therefore

— 8u t,x,v Dya(t,z,v D,a(t,x,v),v
14 hiig (L, 2, v) + \ Bt z,0)* = (Dl (t, z,0),0)
< FR(xvvvmt ) +CR€1(1,U)€’]I“1><BR/'

We note that 4.2 is smooth and has a compact support and converges uniformly to u as ¢ — 0. Using
@ as test function we get

T
1
sup inf |/ (50l + Enla.v.m]) + diplt.2.0)
0eCo ([0,T]xTdxRd) HEC((0,T];PL(TIxRIxR)) Jo  JTdxRIxRE \2

+ (Datplt, 7,v),v) + (Dogplt, 2, v),w) ) puda, do, duw)dt

[ (amtwomb) - T 0)) (e, dodu) + [ p(0.0,0) mo(de,do)
TdxRIx R4 TdxRe

1
> inf (7w2+F v mT) + iR (v
T peC([0,T);P1(Td xR xRL)) /0 /deRded 2| | R( t) st ( )

+ (D ali(t, z,v),v) + (Dyal(t, z,v), >) pe(dx, dv, dw)dt
+/ (gR(x, v, mh) — ﬂf(T,m,v)) pr(dx, dv, dw) —I—/ a0, x,v) mo(dz, dv)
TdxRdx R4 TdxRd
= (t,x,v)e[(}%f]dede{ | Dyt (t, 2,v)|? + Frz,v,ml) — 82 (t, z,v) + (Dyal(t, z,v),v)
+ gr(x,v,my) — (T, v)} +/ w20, z,v) mo(dz, dv).
Tdx R4
By (4.14) we obtain that

(t,x,v)e[é,rjl“{idede{< Dyl (t, 2, 0)|? + Frz,v,mi ) + opali(t,z,v) + (Dyal(t, z,v), v>>

+ gr(z,v,mL) — (T, v)} +/ a0, x,v) mo(dz, dv)
TdxR?

>—cre+  inf { gr(z,v,my) — a2(T, :c,v)} +/ a0, z,v) mo(dz, dv).
(z,v)ETEXRE Tdx R4

As e — 0T we obtain (4.13).

On the other hand, since ug is a continuous viscosity solution we know that it can be represented as

follows:

T
@19 oz =t L (R0 + 0500 ) e+ gulo (@50, m) |

v€lo (2,0

We define the measure v € C([0, T]; P1(T¢ x RY x RY)) as
/ gO(.’IZ, v, U}) Vt(dl', dv, dw) - / SO(,.Y(I,U) (t)7 ;Y(:c,v) (t)7 ;)'/(x,v) (t)) mo(dl', d?)),
TdxR4xR4 TdxRIxRE

for any p € C°(T? x R? x RY) and any ¢ € [0, T], where Y(z,v) 18 @ measurable selection of minimizers
of problem (4.15), see Lemma 4.6. By the regularity of the minimizers it is not difficult to prove that
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v € CT(myg). Moreover, integrating the equality

T
1. . .
ug(O, €, U) = /0 (5 |7(x,v) (t)‘z + FR(’Y(J:,U) (t)> Y(z,v) (t)a m?)) dt + gR(’y(z,v) (T)7 Y(z,v) (T)a m%)

against the measure mg we deduce that

/er y uh (0, z,v) mo(dz, dv)
X

/]l‘d Rd/ xv) | +FR( Y(z, )(t)”y(m,v)(t%mzﬂ)) dt mo(dw,dv)
X

/ 98 (V(0) (1) A0y (T), m1) mo(da, do)
Td x R4

4 1
= / / (§|w|2 + FR(:L‘a U7 m?)) l/t(dl‘, d'U, dw)dt + / gR(:L" U, m%) Z/T(d.:U, dU7 dw)
0 JTexRIxRe TdxRdxRd

T
1
> inf / / (f\w|2 + FR(x,U,mtT)> we(dx, dv, dw)dt
neCT (mo) Jo  JTdxRdxRd \2
+ [ g, v,m%) pr(da, do, dw).
Td xR x R4
This completes the proof. O

Proof of Theorem 4.3. Using the notation of Proposition 4.5 we know that for any R > 0

inf / / <|w|2+FR(:L‘ v, my )> pe(dz, dv, dw)dt
peCT (mo) TdxRd xRd

+ [ gr(w,v,mE) pr(de, dv, dw)
TdxRdxRd

:/ uh (0, z,v) mo(dz, dv).
TdxR?

Then, on the one hand it is easy to see, by standard optimal control arguments, that for any (z,v) €
T4 x R? we have that |u%(0, z,v)| < C1(1 + |v|*). By Dominated Convergence Theorem we get

lim uk(0, z,v) mo(dz, dv) = / u® (0, z,v) mo(dz, dv).
R—+00 J1dyRd Td x Rd

On the other hand, without loss of generality we can define a cut-off function g as in Proposition 4.5
such that F'r and gr are non-decreasing in R. Thus

T
1
limsup inf // (|w2+FR(:v,v,mtT)> p(dz, dv, dw)dt
0 JTdxRixRrd \ 2

R—s4o00 peCT (mo)

+ / gR(l‘,’U,m%) ,uT(dCC,dU,dU))
TdxRIxR4

< inf / / ( |w|* + F(z,v,m] )> wi(dx, dv, dw)dt
HeCT (mo) TdxRdx R4

+ [ g(w, v,m¥) pr(de, dv, dw).
TdxRd xRd
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To prove the reverse inequality, let { R;} jen and { )} jen C CT(mo) be such that

T 1
liminf inf —|w|* + Fr(z,v,m! ) dx, dv, dw)dt
R—+00 pueCT (myop) /0' /TdXRdX]Rd <2| | R( t ) Mt( )

+ [ gr(w,v,mb) pr(de, dv, du)
Td x R4 x R4

r 1
= lim inf / / <|w|2 +FRj(x,v,m?)) e (dx, dv, dw)dt
) Jo JTixRixrd \ 2

J—+oo /.LGCT (mo

+ / gR; (7, v, m&) pr(de, dv, dw)
Tdx R4 x R4

T
1 .
= lim / / <]w\2+FRj(x,v,mtT)> wl (dx, dv, dw)dt
0 JTixRixrd \2

Jj—+oo

+ / gr, (T, v, mb) ,ugq(dat, dv, dw).
Tdx R4 x R4

We claim that { M{ } jen is tight. Indeed, the lower bound on F' and g, there exists a constant C' > 0 such
that

T .
(4.16) sup/ / |w|* p (dx, dv, dw)dt < C
j 0 Td xR x R4

and thus it is enough to prove that the moment with respect to v is also bounded. In order to prove this
bound, let ¢» € C>°(R?) with (0) = 0 and such that | Dy (p)| < 1. For ¢(t,z,v) = (T — )i (v), we
have, by the definition of a T'—closed measure in (4.8),

4.17)
T R
/ / (= () + (T — t)(Di(v), w)) i (de, dv, dw)dt = T / O(w) mo(dz, dv)
0 Td xR x R4 T

d RA

and by (4.16) and Cauchy-Schwarz inequality we get

T .
]/ / (T — 1) (D(v), w) s} (e, do, duw)dt| < TC'V2
0 JTdxRdxR
Thus, by (4.17) we obtain that
)/ ¥ (v) ,ug(d:v,dv,dw)dt‘ <C,
TdxRIx R4

for some new constant C'. If we choose 1), such that 1,,(v) increases in n and converges to |v|, we get
therefore

T .
/ / |v| wl (dzx, dv, dw)dt < C.
0 JTIxRIxRI
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This implies that {,ui }jen is tight and, up to a subsequence still denoted by ,ug , converges to some
fi € CT(myg). Then, we have that

inf / / ( lw|* + F(z,v,m] )) pt(dx, dv, dw)dt
neCT (mo) TdxRdx R4

+f 9(, v, mB) pr(de, do, du)
Tdx R4 xR4

T
1

S/ / <|w\2+F(x,v,m?)> ﬂt(d:c,dv,dw)dt
0 JTdxRixrd \ 2

+f 9(, v, mF) fir(de, do, du)
Tdx R4 xR4

T
1 :
< lim // “Jw? + Fr.(z,v,m]) ) wl(dx,dv, dw)dt
j=+00 Jo  JTixraxrd \ 2 !

+/ gR, (7, v, mk) ,u%(da:, dv, dw)
Td xR x R4

T
1
=liminf inf / / <]w|2+FRj(x,v,mtT)> pe(dx, dv, dw)dt
TdxRixRd \ 2

J—+o00 peCT(mo) Jo
+f g1, (@, 0, mE) i (da, dv, dw).
Tdx R4 xR4

This completes the proof of equality (4.10).

It remain to check the existence of a minimizer 7 € CT(myg) of the problem in the left-hand side
such that m! = 7fifi] . For this, let Y(x,v) denote the measurable selection of minimizers of u” (0, z,v)
in (4.7) as in Lemma 4.6 below and define the measure

Ia;‘,T = ((JZ, U) — (f)/(:r,v) (t)7 ;Y(:E,U) (t)7 D’UUT (t7 V(z,v) (t)7 ;}/(x,v) (t)))) ﬁmo

for any ¢ € [0, 7). Note that by [1, Lemma 3.5] ji! is well-defined since u(t, z, ) is differentiable along
the optimal trajectory 7, .,) with

;y(x,v) (t) = DUUT(t7 Y(z,v) (t)7 ﬁ/(ac,v) (t))a le [Oa T]

In particular, it is easy to see that i’ € C”(mg) and moreover, by [!, Proposition 4.2] we have that

mi = mipi since m{ = ((z,v) = (Yw,0) (), Y(z0)(t)))imo. By the representation formula of the

value function we have that

T
UT(Oaxv’U) :/O (§|7:cv)( )| +F( (a:v)(t)vﬁ/(:c,v)(t) )) dt+g(7(xv)( ) (mv)(T)am%)

T

+ g('Y(a:,v) (1), ;Y(z,v) (1), m%)

Integrating both side against the measure mg and using the definition of i”, we obtain that i7" satisfies
the equality in (4.10) and therefore is optimal. ([l

Lemma 4.6. Assume that F satisfies (F1°) and (F2°) and g satisfies (G1). For (z,v) € T x R? Jet
I'(z,v) C T'o(x,v) be the set of minimizers of problem (4.7) for t = 0. Then, the set-valued map

D" (T x BE[ ) = (0] o), (2,0) 5 T (2, 0)
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has a measurable selection v, ), i.e. (x,v) — V(a,w) I measurable and, for any (z,v) € T x R,
Y(w,v) € F*(x,v).

Proof. By using classical results from optimal control theory it is not difficult to see that I'* has a closed
graph, see for instance [33, Lemma 4.1]. Therefore, by [ 2, Proposition 9.5] the set-valued map (z,v) =

I'*(z,v) is measurable with closed values. This implies by [13, Theorem A 5.2] the existence of a
measurable selection 7,y € I (z,v). O

4.3. Convergence of the solution of the time dependent MFG system. We now investigate the limit
as the horizon T" — +o0 of the time-dependent MFG problem. The main result of this subsection is the
following proposition:

Proposition 4.7 (Convergence of MFG solution). Assume that F' satisfies (F1°), (F2’), (F3’) with
a = 2 and the monotonicity condition (2.8), that g satisfies (G1) and that the initial distribution my in
(2.6) belongs to Po(T¢ x R?Y). Let (u”,m") be a solution of the MFG system (2.6) and let (X, i) be the
solution of the ergodic MFG problem (4.1). Then

1

. L T Y
Tl—lg-loo T /deRdu (0, z,v) mo(dx,dv) = .

Throughout the section, we assume that the assumption of Proposition 4.7 are in force. The proof of
the proposition—given at the end of the subsection—is made at the level of the closed and T'—closed
measures. For this we first need to discuss how to manipulate them. The first lemma is a straightforward
application of the definition of T'—closed measures:

Lemma 4.8 (Concatenation of T-closed measure). Let T, T’ > 0, mg € Po(T? x R%), uy1 € CT(my)
and piz € CT' (my) with my = 781 (T). Then, the measure

o Ml(t), tG[O,T]
N et —T),  te (T, T+

belongs to CT+T" (my).
Next we explain how to link two measures by a T'—closed measure:

Lemma 4.9 (Linking two measures by a T-closed measure). Let mO and m3 belong to Po(T¢ x RY).

mo —>m0

Then, there exists W™0—™o € CT=Y(m}) such that m3 = mhu, and

(4.18) / / 5\w|2 +ep(1+ [0]2)) 107 (d, do, dw)dt < Co(1 + Ma(mb) + Ma(m2)),
Td xR2d

where Ma(m) = [ra, ga [v]2dm(z,v) (for m € Po(T? x R?)) and where Cs, depends only on o and cp.

Proof. Let (wg,v0) € spt(m}) and let (z,v) € spt(m2). Then, following the proof of Lemma 3.3, there
exists a curve O'(( wo) : [0,1] — T¢ such that o) )(0) = 20, 52 (0) = vp and o) (1) =y,

x0,00) (x0,v0 (xo0,v0) (xo0,v0)
déj(fgo)(l) = w with
(4.19) / (,‘ o UO \(t 2+ cr(1+ \a(w o )(t)|2))dt < Co(1+ |v]? + |vg)?).

Moreover, by construction, o depends continuously on (g, vg, z,v). Let A € II(md, m3) be a transport
plan between m{ and m2 (see (2.1)). We define the measure ,umé_””g € Cl(m}) by

/d dyTd o(z,v, w)/‘?é%mg (dx,dv, dw) = /( dxRd)2 sO(U((:gcﬁév?)m)(t)’ O'-((zt;vio)(t)’ 6-((;7)”1)10)(75)) A(dwo, dvo, dz, dv)
Td xR xR TdxR ’ ’ ’
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for any ¢ € O°(T? x R? x R?). Then, on easily checks that m2 = wﬁugné_)mg and that, by (4.19):
/ / |w\2+cF(1+ [v[%)) moﬁmo(dx dv, dw)dt
Td x R2d 2

<02/ / (1 + o] + [o0l?) 1"~ (dar, do, dw)dt = Ca(1 + Ma(m}) + Ma(m3)).
Td de

0

Proposition 4.10 (Energy estimate). Under the notation and assumption of Proposition 4.7, there exists
a constant C' > 0 (independent of T') such that

T T =) | 2d+2
F —F
(4.20) / sp  E@vim) = Flav mFT,  opy
0 (z,w)eTIxR4 (1 + |U‘ )

where m = wii, with w(x, v, w) = (x,v).

Proof. The proof consists in building from i and p” competitors in problems (4.1) and (4.10) respec-
tively. Let us recall that ;17 and fi are minimizers for these respective problems.

We start with problem (4.10). Fix T' > 2. We define the measure i’ by

(4 21) ~T /‘I’;no_)mv t € [07 1]
. He =4 _
L, te (1,7,

where ;™0™ is the measure defined by Lemma 4.9. We know by Lemma 4.8 that i’ belongs to
C*(mg). So we can use /i’ as a competitor in problem (4.10) to get

T
1
/0 /Td R R <2|w\2+F(x,v,mtT)> pl(dz, dv, dw)dt
X X

/ g(x,v,mb) ph(de, dv, dw)

TdxRd xRd

(4.22) / / ( \wlz + F(z,v,m; )) mo_’m(dx dv, dw)dt
TdxRdxRd

/ / < lw|? + F(z,v i )) f(dz, dv, dw)dt
Tdx R4 x R4

/ g(z,v,m%) f(dz, dv, dw).

TdxRdxRd

Next we build from ;7 a competitor for the minimization problem (4.1) for which i is a minimizer. In
view of [, Proposition 4.2] (see also [33, Theorem 6.3]) there exists a Borel measurable maps (z,v) —
Y(z,v) Such that, for each (z,v) € T x RY, Y(z,v) is @ minimizer for uT(0,z,v) in (4.10) and satisfies

(4.23)
/ / o(z,v,w) pl (dz, dv, dw)dt = / / Yzw) )s Va0) (1) Az () dtmo(dz, dv)
TdXRQd T xR

for any test function ¢ € CS(T X RQd). By Lemma 3.5 and Remark 3.6, for any A > 2, there exist
Borel measurable maps (x,v) — J(z,) and (x,v) — 7(,.,,y such that

(4.24) :Y(ac,v) (O) = :Y(m,'u) (T) =Z, ’;Y(:B,v) (0) = fLY(ac,v) (T) = v and :Y(x,v) = V(zw) O [O) T(z,v)]



32 PIERRE CARDALIAGUET AND CRISTIAN MENDICO

and

T
1 A pa —
(4.25) / (5w OF + ep(1+ e (O)1)dt < Cs(1+[0])*(A* + A7°T).

T(x,v)

Let us define i” by
(4.26)

T
/ oz, v, w) i (d, dv, dw) = T~ / / ot A (D)) (B): S (8)) dtmo (dez, dv)
Td xR2d TdxRd JO

for any test function p € C} (T¢ x R29). Note that, by (4.24), i” belongs to C. So using the closed
measure /17 as a competitor in problem (4.1) we deduce that

1
/Td i (2\w]2+F(ac,v,m)) a(dx, dv, dw)
(4.27) .

1
< [ (el 4 Pm) i e, o)
Td x R2d 2
Note that by the definition of i7" in (4.26) and by (4.24) and (4.25), we have

T/ (1\wl2 +F(w7v,m)> i (dz, dv, dw)
TdxR2d \ 2
g L 2 ~ K _
- (1) OF + F G (£), Y (), m))dt mo(dz, dv)
Tixrd Jo 2
T(zw) 1 . 9 ] -
S/ (/ (§|’7(z7v)(t)| +F(’Y(zm)(t),’7(z7v)(t)7m))dt
TdxRd \JO

T
+ / (5t (O + en L+ Fige (1))t mo(dr, do)

T(x,v)

T
L. . -
< [ (] Glan®F + FOwa®): i 0 m)i
TdxRd NJO

+O5(1+ )2(N2 + )\‘QT)) mo(da, dv).

Plugging this inequality into (4.27) and using the representation of 7 in (4.23) then gives

1
/ —|w|* 4+ F(z,v,m) | a(dz,dv,dw)
TdxRexRd \ 2

1
§/ <lw|2—|—F(x,v,m)> i (dzx, dv, dw)
TdxRr2d \ 2

r 1
< T_l/0 /Td o <2|w\2+F(z,U,m)) pd (dx, dv, dw)dt
X X

+ 203(1 + Mg(mo))(/\QT_l + )\_2),

(4.28)
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where My(mgy) = dede |v|2dmo(x,v). Putting together (4.22) and (4.28) (multiplied by 7') then
implies that

T 1 T 1
L L Gl + Pt ooy [ [ (Gl + Fam) ) e, do. do
0 Td xR2d 0 Td % R2d
! 1
< / / (|w!2 +F(1‘,v,mtT)> p° 7" (dx, dv, dw)dt
TdxR2d

/ /deRQd < wl* + F(w,0,m; )> fi(da, dv, dw)dt

s [ atemd) it dod) — [ v, mb) i, do, o)
TdxR2d Td % R2d
r 1
+ / / <w|2 + F(x,v,m)) M?(dx, dv, dw)dt
0 Td xR2d 2
+2C3(1 + Ma(mo))(A* + A°T).

Using (4.18) to bound the first term in the right-hand side (note that /m belongs to P, 2 (T x R? x RY)
with a = 2, so that m € Po(T¢ x R?)) we obtain therefore

T
L[ P omd) = Flowm) G (o, do,du) — p(da,do, dw)i
X

< Cy(1+ Ma(mo) + Ma(m)) + 2] glloc + 2C5(1 + Ma(mo)) (A + A~T).

We now use the strong monotonicity condition (2.8) and choose A = T''/* to get

T
/ / (F(z,v,ml) — F(x,v,m))*dzdvdt < CT?
Td xR2d

for a constant C' independent of 7T'. Recalling that F' satisfies (F3”), we obtain (4.20) by the interpolation
inequality Lemma B.1 in the Appendix. U

Proof of Proposition 4.7. Throughout the proof, C' denotes a constant independent of 7' and which may
change from line to line. Let 7 € C” (myg) be associated with a solution (u”', m”) of the MFG system
(2.6) as in Theorem 4.3. By Theorem 4.3 we have that

1
— u” (0, z,v) mo(dz, dv)
T Jraxpra

= / /Td i ( |w|* + F(x,v,m] )) pd (dz, dv, dw)dt
X

(4.29) / g(z,v,m¥E) uF(dz, dv dw)}
Td xR x R4

= inf / / ( lw|? + F(z,v,m] )) i (dx, dv, dw)dt
HeCT (mo) T4 x R4 x R4

+ / g(:v,v,m%) /.LT(dCL’,dU,d'LU)}-
TdxRIx R4



34 PIERRE CARDALIAGUET AND CRISTIAN MENDICO

We first claim that

limsup inf / / ( |w|* + F(z,v,m] )> we(dx, dv, dw)dt
T—+o00 peCT (mo) TdxRIx R4

(4.30) + / g(x,v,m%) pr(d, dv dw)}
Td xR x R4

1
< inf “lwl2+ F 1) | f(dz,dv, dw) b.
_}tléc{/qrdeded <2\w] N (x,v,m)) Alde, do, w)}

In order to prove the claim, we first note that, by Young’s inequality and Proposition 4.10, we have, for
any p € C*(myp),

4.31)

T
)/ / (F(z,v, ml) — F(z,v, m)) we(de, dv, dw)dt
TdxR4 x R4

F
/ / | (33 U ) My ) ( )| (]. + |U‘2)# Nt(dm)dvadw)dt
TdxRIXRY (2 U/)GTdXRd (1 =+ |UI| )T

/ “ |F(z,v,m]) — F(x,v,m)>*? i@t
1% 2\2d
0 (z,v)eT4¢xR? (1 + ‘U‘ )

<

2d—|—2

1

2d 1T 4@d+D) _2d

(2d+1) (1 + [v]?) @Dy (da, dv, dw)dt
2d + 2 0 TdXRdXRd

1 T
< crh 47T / / (1+ |0[2) pe(da, dv, duw)dt.
Tdx R4 x R4

As g is bounded, we have therefore, for any 1 € C* (mq),

1 [r 1
T{/o /’[rd o <2|w\2+F(x,v,m?)> pe(dz, dv, dw)dt
X X

+ / g(az,v,mg‘ﬁ) }LT(dIE,d’U,dU})}
TdxRd xR

1 g Lo _
< *{ S|lwl* 4+ F(x,v,m) | pe(de,dv, dw)dt
T \Jo Jrixrixmrd \ 2

L T
+T‘4<2d+1>/ / (1+1v?) ut(dm,dv,dw)dt} +CT ™5 + T gl|oo-
TdxRI xR

(4.32)

Given fi € C, we know from Lemma 4.9 that there exists 0™ such that
1
1 i _
433) / /d (Gl + e (U o), do, du)dt < Co(1+ Mo(mo) + Ma(mt)
0 JTIxR

Let us then define 47 by
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By Lemma 4.9, i belongs to C* (mg) and we have, in view of (4.33),

r 1
Tl/0 /Td - <2|w\2 + F(x,v,m)) il (de, dv, dw)dt
X X

< CaT™ (14 Ma(mo) + Mot + 77T - 1) [

1
TdxRd Rd<|u424—FYx,vﬂﬁ)> fi(dz, dv, dw)
X X

2

while
T
I/ (14 [ol?) B (d, do, dw)dt < Ca(1+ Ma(mo) + Ma(wt)) + (T — 1) My(tfi).
0 T4 xRd xR

Therefore, coming back to (4.32) and using the ji” built as above from the ji € C as competitors, we
have

1o (T 1
inf = —|wP+ F :C,v,mT> dx, dv, dw)dt
peCT (mo) T{/O [H‘dedXRd <2| ’ ( ! ) Iut( )

+ / g(z, v,m?) pr(dz, dv,dw)}
TdxRd xRd

1
< inf{/ <|w|2 + F(x,v,ﬁ%)) i(dz, dv, dw)
el Td x R4 x R4 2

1
+ OT™ 350 (14 My (mo) + Ma(wt)) b + CT % + T |g] .

(4.34)

Since, by assumption (F2’),

/ F(z,v,m) g(dz,dv,dw) > c;}Mﬂﬂjg) — cp,
TdxRdxRd

one easily checks that the limit of the right-hand side of (4.34) as T" — +o0 is

1
inf{/ (\w[2+F(x,v,m)> ﬂ(dw,dv,dw)}.
pnec Td x R4 x R4 2

This proves our claim (4.30).

Next we claim that there exists a closed measure i € C such that

1 T 1 2 T T
im inf — - F dz, dv, dw)dt
ggliggT{/o /deRded<2lw\ + F(x, v, m; )) pi (dz, dv, dw)

(4.35) + o(xv.m) pf (e, dv, du) }
TdxRdxRd

1
> / <|w|2 + F(:E,v,m)> f(dz, dv, dw).
TdxRixRd \ 2
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For the proof of (4.35), we work with a subsequence of 1" — +oo (still denoted by 1") along which the
lower limit in the left-hand side is achieved. Coming back to (4.31), we have

Lo [T 1
T{/o /Td i <2w|2 —|—F(x,v,m?)) pd (dx, dv, dw)dt
X X

+ [ gl mb) (i, du,du)
TdxR4 xR

1 T 1
2 {/ / *|1,U‘2 + F(ZL‘,U,TT’L) M;(dl’, dU,d’LU)dt
T )y Jraxpdxrd \ 2

T
7w [ Mg de} - €T~ gl
0

By the coercivity of F' in assumption (F2’), we can absorb the second term in the right-hand side into
the first one and obtain:

1 (" 1
T{/o /er i <2|w2+F(x,v,mtT)> pd (dx, dv, dw)dt
X X

+ g(,v,mB) (e, dv, du) }
(4.36) Td xR xR
1 PPN B L _ T
> —(1—C T D) —|w|* + F(z,v,m) | u; (dz,dv,dw)dt
T 0 JTixrixrd \2

1

— T 1@ — CT 7 — ||g||lee T

As in the proof of Proposition 4.10 (see (4.28)), for any A > 1, we can find a closed measure ﬂT eC
such that

1
/W paa <2”w|2+F(3:,v,m)> AT (de, dv, du)
X

T
1
< T_l/ / <|w\2+F(x,v,m)> pl (de, dv, dw)dt
0 JTdxRIxRE \ 2
+ 2C5(1 + My (mo)) (V2T + 172).
Plugging this inequality into (4.36) we find therefore

1o /T 1
{/ / <|w\2 + F(z,v, m?)) pd (da, dv, dw)dt
T U)o Jraxrixra \2
+ g(x.v.mB) i (de, dv, du) }
TdxR4 xR

-1 1
Z (1 —C_IT 4(2;+1))/ <|w2+F($,U,m)> [LT(dl', dU,dw)
TdxR2d \ 2
— 2051+ Ma(mp))(NT ™! + A~%) — CT ™ 50470,

By assumption (F2”), the functional in the right-hand side of the inequality is coercive for 7" large enough.
So i7" weakly-* converges (up to a subsequence) to a closed measure /1. Taking the lower-limit in the
last inequality then implies (4.35).

Putting together (4.30) and (4.35), we find that i is a minimizer in the right-hand side of (4.30) and
that the semi-limits and the inequalities in (4.30) and (4.35) are in fact limits and equalities. So coming
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back to (4.29) we find that

1 1
lim / ul (0, z,v) mo(dz, dv) = inf{/ —|w|? + F(z,v,m) [L(dﬂ:,dv,dw)}.
T—+oo T Td xRd nec Td x R4 x R4 2

The right-hand side of this equality is nothing than but ) since (), /i) is a solution to the the ergodic MFG
problem with m = wfj: this completes the proof of the proposition. U
To complete the proof of Theorem 2.5, we need estimates on the oscillation of u”'. This comes next:

Lemma 4.11. For any R > 1 and (z,v), (2',v") € T% x Bg, we have
1uT(0,z,v) —ul (0,2, 0")| < C’RQT%,
where C'is independent of T and R.
Proof. Let v € T'(w,v) be optimal for u” (0, z, v) in (4.7). We define ¥ € T'(z',v') by

o(t)  iftelo,1]

() = { vt —1) iftel,T].

where ¢ is as in Lemma 3.3 with o(0) = 2/, 6(0) = v/, 0(1) =z, 6(1) = v and

/1 <1|&(1t)|2 + F(o(t),o(t), mtT))dt < 204R?.
o \2

Note that, as the problem for u” depends on time through (m] ), the cost associated with 7 could be quite

far from the cost associated with . To overcome this issue, we use in a crucial way Proposition 4.10.
Indeed, applying (4.20) in Proposition 4.10, we have

T
/0 [F(y(8),4(8), mF) — F(y(t), 3(t), )| dt

T T B

F _F

< / (1+ |;y(t)‘2)dil sup |F'(y,z,mi ) Y, 2, m)|dt
0 (y,2)ETxRY (1+ |v2)@T

2d+1 1
T 2d+2 T F n_F — \12d+2 2d+2
s(/ (1+w(t)|2)2511dt> / wp P zme) gyédz,m)] Y
0 0 (y,2) %)

€T xR? (1+ v

2d+1

1 T 2d+2
<orm ([T popa)

We have by assumption (F2’) and Lemma 3.1 that

T
(4.37) / (a3 = cp)dt < ul'(0,2,v) < cpT(1+ |v]?).
0
Therefore
T 4d-+3 2d+1
(4.38) / [E(v(1),4(t),mi) — F(y(t),4(t),m))| < OT T (1 + R?)2av2,
0

For the very same reason we also have

2d+1

T 4d+3
(4.39) / [B(y(t = 1), 4(t — 1),mT) — F(y(t — 1),4(t — 1),m))| < CTHED (1 + R2) 352
1
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because we only used the optimality of v only in the estimate (4.37). So, by (4.38) and (4.39) we obtain
T
1 < ~ P
W0.0,0) < [ (GHOF + PG, m))
0

! T-1
= [ (P + Fo@.o.md)a [ (3D 4 FGE 140 1))

T .
1 _4d+3_
<200k + [ (GHOF + FO@.50.m) )+ CTH (14 2 H

T
1 _4d+3_
<20R2+ [ (GHOF +POOA0mD)dt+ 20T 1+ R

2d+1

T 2 pos 2
<wu' (0,z,v) + 209R* + 2CT 3@+ (1 4+ R*)2d+2,
from which the result derives easily. O

Proof of Theorem 2.5. Proposition 4.1 states the existence of a solution for the ergodic MFG system and
its uniqueness under assumption (2.8). From Proposition 4.7 we know that

1 _
lim — T(o dx,dv) = \.
T—1>1—T|—100 T /’]I‘dx]Rd u ( ,l‘,U)mo( €Ly U)

It remains to prove the local uniform convergence of u’ to \. Fix R > 0 and ¢ > 0. We have by
Lemma 3.1 that

(4.40) 0 < ul(0,z,v) < cpT(1+ |v]?).
As mg € Po(T? x R?), there exists R’ > R such that

(4.41) / (1 + |v*)mo(dz, dv) < €.
Tdx (RI\By/)

Then, for any (xo,vg) € T x Bp, we have, by Lemma 4.11, (4.40) and (4.41),

1 < 1 -
| =T (0, zg,v0) — | < / ul (0, z,v)mo(dz, dv) — )\’
T T Td x RA
1
+ 5 ’uT(va’U) *UT((),JZO,Uo)‘Tno(dI',dU)
T Jrixp,,
1
+ 5 ([u” (0, 2,v)| + |u" (0,20, v0) )mo(dz, dv)
T Jrix(Rd\Bp)
1 T 3 —1( P2 Iy 2
<= u (0, z,v)mg(dz,dv) — A\ + CT*(R)*T 4+ 4 cpe(2 + R?),
T Td xRA
from which the local uniform convergence of u” (0, -, -)/T to A can be obtained easily. g

APPENDIX A. VON NEUMANN MINMAX THEOREM

Let A, B be convex sets of some vector spaces and let us suppose that B is endowed with some
Hausdorff topology. Let £ : A x B — R be a saddle function satisfying

(1) a — L(a,b) is concave in A for every b € B,
(2) b+ L(a,b) is convex in B for every a € A.

It is always true that

inf sup £(a, b) > sup inf L(a, b).
L LD 2 e



ERGODIC BEHAVIOR OF CONTROL AND MFG DEPENDING ON ACCELERETION 39

Theorem A.1 ([35]). Assume that there exists a* € A and ¢* > sup,¢c, infyep L(a,b) such that
B*:={beB:L(a",b) <"}

is not empty and compact in B, and that b — L(a,b) is lower semicontinuous in B* for every a € A.
Then
minsup L(a,b) = sup inf L(a,b).
beB aeg (a.b) aegbEIB (a,0)

APPENDIX B. AN INTERPOLATION INEQUALITY

Lemma B.1. Assume that f : T% x R¢ — R is locally Lipschitz continuous with
(B.1) |f(z,0)| + | Dz f(x,v)| + | Dy f(z,v)] < co(l+|v]Y) fora.e. (x,v) € T¢ x R?

for some constants co > 0 and o € (1,2]. There exists a constants Cyq > 0 (depending on dimension
only) such that

2d+-2
wp @)

< C’dCQd/ f(z,v)|*dzdv.
(zw)eTdxrd (1 + [v]*)% 0 deRd| (=, 0)]

Proof. Let (z9,v9) € T? x R? be such that f(xg,v9) # 0 and let R = %. Note that, by our
assumption on |f| in (B.1), R is less than 1. Then, for any (x,v) € Br(xo,v0), we have by assumption

(B.1) that
Do f(m,0)] + | Dy f(2,0)] < co(1+ (14 [0o])*) < co(1 4 2% 4+ 227 Hug|*) < o(3 + 2[wol*),

(where we used the fact that R < 1 and that (a + b)® < 2%~1(a® + b%) in the first inequality and the fact
that o < 2 in the second one). Therefore

[Fl)| 2 [F o, )] - cof8 + 2ol = LN,
Taking the square and integrating over Bg(xo, vg) gives
2 24 |f (z0, v0)|? |f (0, vo) [*9+2
z,v)|“drdv > |B1|R**————— = ,
[ ) P 2 3 BT i
which implies the result. O
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