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The expansion of functions of real variables in Taylor and Frobenius series (power series which are nonorthogonal, nonperiodic bases), in sinusoidal Fourier series (bases of orthogonal, periodic functions), in series of special functions (bases of orthogonal, nonperiodic functions) etc, is a commonly used method for solving a wide range of ordinary differential equations (ODEs) and partial differential equations (PDEs).

In this paper, based on an in-depth analysis of the properties of periodic sinusoidal Fourier series (SFS), we will be able to apply this procedure to a much broader category of ODEs (all linear, homogeneous and non-homogeneous equations with constant coefficients, a large category of linear and non-linear equations with variable coefficients, systems of ODEs, integro-differential equations, etc.). We will also extend this procedure and we use it to solve certain ODEs, on non-orthogonal periodic bases, represented by non sinusoidal periodic Fourier series (SFN).

Introduction

The ODE resolution methods proposed here use recently obtained results [1] in the field of functional analysis, concerning the expansion of real variable functions, defined over an interval [-L, L], in infinite series of periodic functions over the same interval, forming orthogonal, but also non-orthogonal bases). According to harmonic analysis (Fourier), any function f(x), periodic over the interval [-L, L], which satisfies the Dirichlet conditions, can be developed into an infinite sum, known in the literature under the name trigonometric series (for which, for reasons highlighted in article [1], we used the name sinusoidal series). This series is formed by the components of a complete biortagonal base, composed by the unit function 1, the fundamental harmonics sin(πx/L)-even and cos(πx/L)-odd, with the period 2L and the secondary harmonics sin(nπx/L) and cos(nπx/L), with the period 2L/n, for nN + . The coefficients of this expansion (Fourier coefficients) can be calculated using defined integrals (Euler formulas). This paper generalizes this statement by showing that the function f(x) can also be developed in non-sinusoidal periodic series (SFN), consisting of the infinite sum of the weighted components of a complete, non-orthogonal base: the unit function 1, the fundamental quasi-harmonics g(x)-even and h(x)-odd, periodic with the period 2L, with mean value zero over the definition interval and the secondary quasi-harmonics, defined on [-L, L], gn(x)=g(nx) and hn(x)=h(nx), with the period 2L/n, for nN + . The fundamental quasiharmonics g(x) and h(x) can be any real function, of real variable, which admits on the interval [-L, L] expansions in sinusoidal series. We obtain the coefficients An and Bn of the expansion in SFN of the function f(x), using the algebraic relationships between the Fourier coefficients of the expansions in SFS of the functions f(x), g(x) and h(x).Thus, any function f(x):[x1, x2]→R, T-periodic (T=x2-x1), of L 2 -space (that is, square-integrable), can be represented by the sum:

                  1 1 0 0 n n n n n n x h B g x g A f x f 
, where : From this general result, in the paper [1] are also described some particular situations:

    2 
              n n n g x g C f x f 0 0



, where g(x) has both components: even and odd 

           L n n L n n L x g B x g A f x f          
                 1 0 0 0 ~n n n n n x B x A f x f
where Φn(x) and Ψn(x) are orthogonal functions, generated by the Fourier-functions  

x g -g0 and   x h by an orthogonalisation process.

Properties of expansions in periodic Fourier series (the general case)

The expansion in SFN of a function f(x) is obtained from its expansion in SFS, by a redistribution and a grouping of the terms of expansion, so as to obtain the expansions in SFS of the periodic functions g(x), h(x) and corresponding quasi-harmonics gn(x), hn(x). Consequently, this expansion also benefits from the properties of convergence, differentiability and integrability, similar to those of SFS [1][2][3][4][5][6][7][8][9]. So:

 let f(x) be a 2L-periodic function, continuous in the interval [-L, L]. Its Fourier

expansion       x h B x g A f x f n n n n n n          1 1 0
, where g0=0, sinusoidal or not, convergent or not, can be integrated term by term, between all integration limits:

       dx x H B dx x G A x f C dx x f x F n n n n n n x             1 1 0 0 , ( 1.1) 
where G(x) and H(x) are the primitives of g(x), respectively h(x), and C is an integration constant which depends on the expansion coefficients. After the replacements

      1 n n n x G C x
(the functions x and G(x) are odd) and

    0 0 1 F H B C n n n      
, results an expansion in SFN of the primitive F(x), in a base, most often different from that of the function f(x).

 let f(x) be a 2L-periodic function, continuous in the interval [-L, L], with f(-L)=f(L) and with the derivative f'(x) smooth by pieces in this interval. The Fourier expansion, sinusoidal or not, of the function f'(x), can be obtained by deriving term by term the Fourier expansion of the function f(x). The series obtained converges punctually towards f'(x) in all the points of continuity and towards [f'(x)+ f' (-x)]/2 in those of discontinuity.

If       x h B x g A f x f n n n n n n          1 1 0 , so:       x h B x g A x f n n n n n n            1 1 ˆ (1.2)
In this case too, the basis of the non-sinusoidal expansion of the derivative differs from that of the function f(x).

The condition f(-L)=f(L) means that the number of problems in which formula (1.2) can be useful is quite small, but it can be avoided if the jump from point x=L (as well as any other jump of the odd component) is compensated by a jump in the opposite direction (by subtracting another odd function which makes an identical jump in the same point). In the following example, by this process, the odd component fo of the function f(x) is decomposed into a sum of the differentiable function fos (for which f(-L)=f(L)) and the odd ramp function fr=x•fo(L)/L→ fos=fo-fr. Therefore:

          L L f x f dx d x L L f x f dx d x f dx d o os o os o           ,
relation which allows us to find an expression for the expansion of the derivative f'(x) of the function f(x), for all the categories of the functions which satisfy the other conditions. The expansion in SFN of the function fos=fo-fr allows us to calculate the coefficients of the expansion in series of the derivative.

The general case, that of the expansion of functions in non-sinusoidal periodic bases, highlights the fact that the element I=1 of the base has a particular character. It is part of all periodic bases, it does not change while the other components of the base (with zero mean value over the definition interval) change after integration, or after derivation. Its coefficient is calculated by a definite integral and not by algebraic relations. I=1 is an even function, but for f0=0, it simultaneously receives an odd character too. The derivatives and primitives of all the even functions (including the function I•f0=f0) are odd functions and, conversely, those of the odd functions (including the function I•0=0) are even functions. By deriving any even function f0 we obtain the odd function 0 and vice versa, by integrating the odd function 0, we obtain any even function f0 (the integration constant).

Properties of expansions in sinusoidal Fourier series

As in the general case, in the case of expansions in SFS, over the interval [-L, L], for ωn=nω0=nπ/L, because

          1 1 sin 1 2 n n n n x x  
, we can write [9]:

For                   1 1 0 0 sin cos n n n n n n o e x b x a f f f f x f   , ( 1.3) 
we have:

    L f L f o o    ,     L f L f e e   ,       2 L f L f L f e    ,       2 L f L f L f o    ,        1 0 0 n n a f f ,                               1 1 0 0 sin cos 1 n n n n n n o e x x x x f    
, in which:

(1.4) Thus, we obtained a series of relations to calculate the mean values and the expansion coefficients of the derivative and primitive functions of the first rank, from the values of the expansion coefficients in SFS of the function f(x) and the values of the function in the limit points f(-L) and f(L). These relationships also allow us to compute, step by step, the expressions of derivatives and higher-order primitives, after having calculated the values of these functions at the limit of the interval, the mean values and the values of the coefficients of their expansion. The new relations can be used to solve differential and integrro-differential equations of higher rank, to calculate definite or indefinite integrals, etc. As an example, here is the derivation and integration of the expansion of the function f(x)=e x for the interval [-π, π] [8,9]: We can notice that for f0=0 and fo(L)=0 (without discontinuities of the odd component), both the integration and the derivation are made term by term:

      n n n n o b L L f  1 0 1 2 lim        ,                L L f b n o n n n n    1 2 , n n n a     ,          1 0 0 n n                               
                              1 2 2 sin 1 1 sinh 2 cos 1 1 sinh 2 sinh n n n x nx n n nx n e x f       .   sinh 0   ,       2 2 1 1 sinh 2 sinh 1 2 1 1 2 sinh n n n n n n n n n                            ,   2 1 1 sinh 2 n n n n         ,   1 sinh sinh 1 2 1 sinh 2 1 1 sinh 2 1 2 1 1 00                                  n n n n n n n n b F ,   sinh 0  F (1.7)                  2 1 1 sinh 2 1 n n n A n n   ,       2 2 1 1 sinh 2 sinh 1 2 1 1 sinh 2 1 n n n n B n n n n                         So:    
n n n b    , n n n a     , n n n b A  /  , n n n a B  /  
. If fo(x) has discontinuities at the ends of the interval [-L, L] (or inside), they will cause, during the derivation, the appearance of an average value Φ0≠0 and a modification as a consequence of the component Φe. During integration, the effect of discontinuities is transmitted to the odd component Fo. The derivatives of all the functions f(x)+C have the same expression, and the return to the initial function, by integration, is ensured by the

relation        1 0 0 n n A F F
, which for C=0 leads to F(0)=0.

On the real axis, the odd periodic function f(x), discontinuous at the ends of the interval [-L, L] (Fig. 1A), is the sum between the continuous function fc(x) (Fig. 1D) and the "scale" function fH(x) (a succession of negative Heaviside "steps") (Fig. 1E). The derivatives of these functions are the periodic functions f'

(x)=             n n def L x L x    2 2
(the Dirac comb, Fig. 1B), whose expansion in SFS is

    x n n n 0 1 cos 1 1        
[6], multiplied by the coefficient fo(L)/L (Fig. 1C) . The expansions in SFS of these two derivatives are therefore divergent, but their sum is convergent.

If the function f(x) is even, the derivation of jumps within the interval generates two Dirac combs of opposite sign, which cancel each other, and if f(x) has finite discontinuities in a finite number of points in the interval [-L, L], this is reflected in the position and amplitude of the corresponding Dirac pulses.

Fig.1. The derivation of the expansion in SFS of a periodic function with discontinuities

The Fourier series expansion of the product of any two periodic functions

Are known the relationships to determine the coefficients of the expansion in SFS of the product p(x)q(x) of any two periodic square-integrable functions, (which makes that their product is also a function of this type), defined on the interval [-L, L] [9]. The calculation of these coefficients is possible if the Fourier coefficients of the expansion in series of each of the two functions are known: one must calculate the defined integrals of the type

  L L e dx L x n p  cos and   L L o dx L x n p  sin
. If a certain approximation is allowed, the calculation can be done by numerical methods.

In the case of ODEs, one or both of the terms of the product p(x)q(x), can be even one of the functions y(x), y'(x), y''(x), ∫y(x)dx, etc., with unknown Fourier coefficients. The replacement of these products, when they appear in a differential equation, with their expansion in Fourier series, or with the Fourier sums SN who approximates them, leads to a system of 2N+1 (N→∞) of algebraic equations. Solving them, we can find the coefficients f0 , a1, ..., aN, b1, ..., bN of the Fourier series of the expansion of the function y(x). For

  L x n B L x n A y y y y x y n n n n o e   sin cos 1 1 0 0             and   L x n D L x n C p p p p x p n n n n o e   sin cos 1 1 0 0            
(where ye0=pe0=0), the coefficients of Fourier expansion of the product yp are: 

        L x n Q L x
0 0 0 0 0 0 0 0                       
where:

(1.8)                            1 1 0 0 0 0 0 2 1 2 1 2 1 2 1 l l l l l l L L o o L L e e L L SFS D B C A p y dx p y L dx p y L p y dx yp L P (1.9)                                                          L L m m l l L L m m l l L L e L L e L L o o e e e e n dx L x n L x m D L x l B L dx L x n L x m C L x l A L dx L x n y L p dx L x n p L y dx L x n p y p y y p p y L P          cos sin sin 1 cos cos cos 1 cos cos cos 1 1 1 1 1 0 0 0 0 →                        1 1 0 0 sgn 2 1 2 1 l l n l n l l l n l n l n n n D n l D B C C A A p C y P (1.10a) dx L x n L x m C L x l B L dx L x n L x m D L x l A L dx L x n y L p dx L x n p L y dx L x n p y p y y p p y L Q L L n m l l L L n m l l L L o L L o L L e o o e o o n          sin cos sin 1 sin sin cos 1 sin sin sin ) ( 1 1 1 1 1 0 0 0 0                                                        →                        1 1 0 0 2 1 sgn 2 1 l l n l n l l l n l n l n n n C C B D n l D A B p D y Q (1.10b)
In these relationships, we have considered: A0=B0=C0=D0=0 (fo l=n). The relations are the same as in [9], in which A0=2y0 and C0=2p0, but here we have chosen another method to achieve the result, using intermediate calculations such as:

                                                                                                                         1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 cos 2 cos 2 2 cos 2 cos cos cos 2 cos cos cos cos l n l n l l n l n l l l n l l n l l n l L L m m n m m m n m m l l L L m m l l L L m m l l C C A L C A C A C A L dx L x n m C L x n m C C L x n m C L x l A dx L x n m L x n m C L x l A dx L x n L x m C L x l A          
Obviously, the following formulas are also valid:

                       1 1 0 0 sgn 2 1 2 1 l l n l n l l l n l n l n n n B n l B D A A C C y A p P (1.11)                        1 1 0 0 2 1 sgn 2 1 l l n l n l l l n l n l n n n A A D B n l B C D y B p Q 1.

The calculation of certain infinite numerical series

Each of the coefficients Pn and Qn of relations 1.9 and 1.10 contain the expressions of infinite numerical series, the sum of which can be determined (if the coefficients An , Bn , Cn, and Dn are known) by a volume, sometimes large, of calculations. Between each of these numerical series and the corresponding coefficient of the expansion in SFS of the product yp, there is a direct relationship, so that the sum of series can be determined by calculating the respective coefficient. Consequently, if the calculations to determine the Fourier coefficients of the product yp are less voluminous, this calculation method becomes a preferable solution for the calculation of this quantity. To illustrate this, we will compare these calculation volumes for the products between the function:

    L x n n L x L x n B L x n A y x y n n n n n n     sin 1 2 sin cos 1 1 1 1 0                
and the functions:

    L x n n L x L x n D L x n C p x p n n n n n n     sin 1 2 sin cos 1 1 1 . 1 1 . 1 0 . 1 1                 and                       1 2 2 2 2 2 1 . 2 1 . 2 0 . 2 2 cos 1 4 3 sin cos n n SFS n n n n L x n n L L x L x n D L x n C p x p     with the coefficients: y0=0, An=0, Bn=    n L n 1 1 2   ; p1.0=0, C1.n=0, D1.n=   n L n 1 1 2    ; p2.0= 3 2 L , C2.n=   2 2 2 1 4  n L n 
, D2.n=0. Result the coefficients of the products:

      L x n n L L x yp L x n Q L x n P P P n SFS SFS n n n n     cos 1 4 3 sin cos 2 2 2 2 2 1 1 . 1 1 . 1 0 . 1 1               ,       L x n n L n L x yp L x n Q L x n P P P n SFS SFS n n n n      sin 12 2 1 sin cos 3 3 3 3 1 3 2 1 . 2 1 . 2 0 . 2 2                     
We will keep the meanings previously assigned: A0=B0=C0=D0=0. Conform to 1.9-1.10:

        1 1 0 . 1 1 2 2 1 n n n n L B P  For y(x)=x: →     0 . 2 1 2 2 2 1 1 1 2 2 0 . 1 1 2 1 1 2 p n L n n L P n n n n                (1.12)                                                     n l l l l n n n l l l n l n l n n n l n lB n B L l n n l l n B L n L B P 1 2 2 1 1 1 1 2 . 1 2 1 2 1 sgn 1 2 2 2 1 2 2    (1.13) →         n n n n l l n n n C n L n n L n l L n L L P . 2 2 2 2 2 2 2 2 1 2 2 2 . 1 1 4 4 3 4 1 1 1 4 1                                                                              n l l l n l n l n n n l n n l l n A n A n y L Q 1 1 1 1 0 . 1 1 sgn 1 2 1 2  (1.14) →     0 1 2 2 1 2 1 2 2 1 1 0 . 1                         n l l l l n n n n l n A n n A n y L Q          1 2 2 2 2 0 0 . 2 1 2 3 n n n n A L L y P  For y(x)=x: → P2.0=0 (1.15)                                           n l l l n l n l n n n n l n l n A n A L L A n L y P 1 2 2 2 2 2 2 2 2 2 0 . 2 1 1 4 2 3 1 4   → Pn.2=0 (1.16)                                          n l l l n l n l n n n n l n l n B B n L B L Q 1 2 2 2 2 2 2 2 . 2 1 1 4 1 2 3  (1.17) →                                    n l l n l n n n n l n nl l L n L n L n L L Q 1 2 2 2 1 2 1 2 2 2 2 1 2 . 2 4 2 1 1 2 4 1 2 1 2 3                                         3 3 3 3 1 2 2 4 3 3 3 1 3 1 12 2 1 12 16 11 4 4 1 4 1 3 1 2      n L n L n n n n L n L n n n
To obtain these results, we collected data from the specialized literature [10]:

6 1 2 1 2      n n , 2 1 2 2 4 3 1 n n l n l l      
, and for

               3 4 11 4 1 1 2 2 2 1 2 2 2  n n n l n l l we started from:      , cos 4 4 2 1 1 2 2 3 4 0 2 2 2     a ec a a ctg a a a l l       
where a≠0, 1, 2,..., ∞. For nN, if a=n+ε→n, namely εR→0 and sin(aπ)=sin(nπ+επ)=sin(επ)→0. So,

                             2 2 4 1 2 2 2 0 2 2 2 1 1 4 1 1 1 1 a n a n an a a l a l n l l l           4 2 2 2 2 3 2 0 4 1 12 csc 4 cot 4 1 4 1 lim n n n n n n                    

The solution of an ODE, determined by calculating the coefficients of its expansion in sinusoidal Fourier series

To solve the linear differential equations with variable coefficients ai(x) when these coefficients are analytical functions at point x=x0, we can use the method of expansion in

Taylor series:     n n n x x a x y      1 0
, if x0 is an ordinary point, or the Frobenius method:

    r n n n x x a x y       1 0
, if x0 is a regular singular point [4,5]. The method, which makes it possible to find a valid solution on its convergence disk of radius R, is based on the term by term derivability property of these series and allows to find recurrence relations for the coefficients of the series. This is possible because the base on which the general solution is developed is the same as the base on which its derivatives are also developed. To find the particular solutions it is necessary to know the values of the function and its derivatives at a point of the interval (-R, R). By this method, solving differential equations is transformed into an algebra problem, which most often involves finding the recurrence formulas.

Since SFS and SFN also enjoy the property of term by term differentiation, a similar method to that previously described, can be applied using these new types of series expansions, in equations involving periodic square-integrable functions, defined on an interval [-L, L], if we know the corresponding boundary conditions.

The method of solving differential equations by determining the coefficients of the expansion in sinusoidal or non-sinusoidal series of the unknown functions is a particularly solid method, applicable to all types of differential and integrro-differential equations, linear and nonlinear, of partial differential equations, systems of such equations, whatever their order and whatever the complexity of the coefficients. The conditions required for the application of the method are not very restrictive and easy to fulfill, in particular for the situations encountered in physics and engineering. The method can be applied to large classes of such equations, and even more, the same equation can be solved using several types of expansion. The method can also be easily extended to functions of the complex domain C.

As for the power series expansion method, the derivation and integration operations performed on these series expansions are transformed into algebraic operations performed on the expansion coefficients. Therefore, the resolution of ODE is transformed into resolution of algebraic equations. Of all the bases used as support of expansion, the most advantageous are the sinusoids (1, cos(nx), sin(nx)), because of the ease with which the expansion coefficients can be calculated (Euler's formulas), due to the high convergence speed (which makes them ideal for numerical approximation methods) and the relative ease with which the resulting algebraic equations can be solved (the degree of difficulty is dictated by the order of equation and by the degree of non-linearity of the differential equation). Unlike the bases of positive integer powers which, through repeated derivations, "skate" along the elements of the base (leading to the generation of recurrent chains), the sinusoidal bases "oscillate" between the same elements, even and odd, of the base, leading to simpler algebraic equations.

Linear ODEs with constant coefficients

As we found in the previous section, on the interval [-L, L], for

  x B x A y y y y x y n n n n n n o e   sin cos 1 1 0 0             (2.1) →               L L y L y x A x L L y L y B x y n n n n n n n n n 2 sin cos 2 1 2 1 1                           (2.2) →           L L y x L L y B x L L y A y e n n o n n n n n e n n n                                 1 2 2 sin 1 2 cos 1 2      (2.3) As well,             L y L y b L L y n n n n o          2 / 1 1 2 lim 1  (2.1a)
Further on, by successive derivations (at each derivation, the expansion coefficients are corrected taking into account the existence of the discontinuity points) we find the expressions of series expansions for higher order derivatives, when are known their values at the points at the limit of the definition interval. Therefore, the particular solution y(x) of any ordinary linear differential equation with constant coefficients, homogeneous or inhomogeneous, whatever the order of the equation, if it is defined over any interval [-L, L], or equivalent, can be determined if y(x) is square-integrable, by calculating the coefficients of its expansion in sinusoidal series, if the values of the function and its derivatives are known at the points of the ends of the interval (boundary conditions). The solutions of the equations can be found for other types of boundary conditions too.

To illustrate this, we will apply the method in the case of homogeneous linear equations with constant coefficients, over the interval [-π, π], for some simple equations:

Exemple 2.1: y' = a, (2.4) with the boundary condition y(0)=C. For the chosen interval, we can write:

            a y y nx n A nx y y n B n n n n n                             2 sin cos 2 1 2 1 1 (2.5) → An=0,       n y y B n n 1 1 2 2         ,       a y y y o          2
For the average value y0, there is no conditioning, so it can take any value K. So: 

    K ax K nx n a x y n       sin 1 2 1 . For y=0 → y(0)=K=C.
      o n n n y A a n aA 1 2 2     →       o n n y a n a A 2 2 1 2    →       o n n y a n n B 2 2 1 2    
and so:

                   1 2 2 sin cos 1 2 1 2 n n o a n nx n nx a a y x y   (2.7)
We recognize here, for yo(π)=sinhaπ, the Fourier series expansion of the function y(x)=e ax , for which y(π)=e aπ , and for yo(π)=Ksinhaπ, the Fourier series expansion of the function y(x)=K•e ax (the general solution), for which y(π)=Ke aπ , et y(-π)=Ke -aπ . In conclusion, for y(π)=C → K=Ce -aπ , with the particular solution y(x)=Ce a(x-π) . During the resolution of the equation, the constraint n n nA aB   appeared. This means that An=0 imposes Bn=0 , so the solution cannot have a single component (it cannot be only even or odd). This fact is imposed even by the relation of equality (2.4). So fo(π)/π≠0, therefore, always y0≠0.

Exemple 2.3: y'' = a 2 y, with y(π)=K1 and y'(π)=K2. Because:

              o n o n n n n o e y nx y n B nx n A y y x y                        cos 1 2 sin 1 1 (2.8)                     e n o n n e n n y nx y n n B nx y n A y                                 1 2 2 sin 1 2 cos 1 2
(2.9)

and by equality with a 2 y we discover that: =e ax . But, because there are no constraints between the coefficients of the two components (even and odd), each of them can be a solution: y1=cosh(ax) and y2=sinh(ax) (for fo(π)=0, respectively f'e(π)=0). Therefore, the general solution of the equation is y(x)=C1cosh(ax)+C2sinh(ax). The particular solution results from: y(π)=C1cosh(aπ)+C2sinh(aπ)=K1 and y'(π)=aC1sinh(aπ)+aC2cosh(aπ)=K2 Exemple 2.4: y'' = -a 2 y Of the relationship (2.10), replacing a 2 with -a 2 , we have:

    2 0 a y y e   ,       e n n y a n A     2 2 1 2 et       o n n y a n n B 2 2 1 2     , so                          
                        nx y n nx y a n a y x y o e n e sin cos 1 2 2 2 2       ,
in which, for yo(π)=sin(aπ) and y'e(π)=-a•sin(aπ) we recognize, for aZ, the series expansion of the function:

                  nx a n nx a a a n a a ax ax x y n sin sin cos sin 1 2 sin sin cos 2 2 1      
Therefore, the general solution to this equation is y(x)=C1cos(ax)+C2sin(ax).

Exemple 2.5: y''+ay'+by=0

By replacing in the equation the unknown function and its derivatives by their expansions in SFS: . We will note

                    0 sin 1 2 cos 1 2 1 2 0 1 2 1 2                                      
       b ay y y o e     0 ,                       o e n n n ay y an an b n A B 1 2 2 ,       o n n n y a an b n B A 1 2 2      →                a y an b n an ay y an b n A A o n o e n n n 1 2 1 2 2 2 2                                 o e n n y b n a b n y b bn n a n A          2 2 2 2 2 2 4 2 1 2 2 →                                                                                    
2 2 4 2 1         a b a a  and 2 2     a                                        o e n o n n n ay y an an b n y a an b n B B 1 2 1 2 2 2 2               e o n n y an b a n y n b bn n a n B          2 2 2 2 2 2 4 1 2 2 →                      2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2                                                       n n y a b a n y n a n a n y a b a n y n B e o n e o n n For         1 1 1 1 . sinh 2 sinh C a C y o      and             1 . 1 1 1 1 1 . sinh o e y C y    :             1 1 1 1 . 1 1 . 1 1 . 1 1 . 1 1 1 . 0 sinh 2 4 2 2            C a b b y C b a a y C b ay C y C y o o o o                              2 1 2 1 1 1 2 2 2 2 1 2 2 1 2 1 1 1 1 . sinh 1 2 sinh 1 2                       n C n n a b n C A n n n             2 1 2 1 1 2 2 2 2 1 2 1 2 2 1 1 1 . sinh 1 2 sinh 1 2                     n n C n n a b a n n C B n n n , And for         2 2 2 2 . sinh 2 sinh C a C y o      et             2 . 2 2 2 2 2 . sinh o e y C y    :   2 2 2 2 . 0 sinh    C y  ,     2 2 2 2 2 2 2 . sinh 1 2         n C A n n ,     2 2 2 2 2 2 . sinh 1 2        n n C B n n
The two solutions are independent. Therefore, the general solution of the equation is:

-for b a 4 2  :                           x b a a C x b a a C x y 2 4 exp 2 4 exp 2 2 2 1 -for b a 4 2  :                                      x b a C x b a C x a x y 2 4 cos 2 4 sin 2 exp 2 2 2 1 -for b a 4 2  : 2 2 1 a      .           x a C x y 2 exp 1 1
is a solution to the equation. We can look for a second solution, in the form       



. By the method "reduction of order" [4] we find for  

L x n D L x n C u x u n n n n   sin cos 1 1 0          the condition:               0 sin 1 2 cos 1 2 1 2 2                                         e n o n n e n n u nx u n n D nx u n C u →   0     e u ,     0 1 2 2        e n n u n C → Cn=0,       n u D o n n 1 2   →   2 1 C x C x u  
We note that for all ODEs with constant coefficients, whatever the degree of the equation, the expansion coefficients of the unknown function are provided by an equation to determine the mean value and a pair of equations for each harmonic of the expansion.

Exemple 2.6: y'=x Even in the case of non-homogeneous ODEs with constant coefficients, there are no significantly more difficult equations to solve. For example, if in this equation, on the interval [-L, L], we make the replacements:

  nx B nx A y x y n n n n sin cos 1 1 0          et         1 1 sin 1 2 n n nx n x
, we have:

                                 1 1 1 1 sin 1 2 cos 1 2 sin n n o n o n n n n nx n y nx n y B n nx n A     → y0=K (arbitrary), yo(π)=0, →     0 1 2      n y B o n n → Bn=0 and An=   2 1 1 2 n n  
We recognize the expansion:

  nx n x n n cos 1 2 6 1 2 1 2 1 2        →   C x x y x y      2 6 1 2 2 2 0 Exemple 2.7: y'=x 2 .           nx n y nx y n B nx n A n n o n o n n n n cos 1 4 3 cos 1 2 sin 1 2 1 2 1 1                              → y0=K (arbitrary), →   3 3    o y , 0  n A ,              1 3 1 2 1 1 4 3 1 2 n n n n n n B  , →       C x nx n n y x y n n n                   3 cos 1 4 3 1 2 3 1 3 1 2 1 0  2.

Linear ODEs with variable coefficients

A linear differential equation of order m with variable, non-homogeneous coefficients, of the form fm(x)y (m) +...+f2(x)y''+ f1(x)y'+ f0(x)y=g(x) can be solved, on the interval [-L, L], if y (i) (x), fi(x) and g(x), i=0, 1, 2, ...,m, are the square-integrable functions, by determining the coefficients An and Bn , n=1, 2, ..., ∞, of the expansion in SFS of the unknown function:

  x B x A y x y n n n n n n            1 1 0 sin cos
if the values of the function and its derivatives are known at the points situated at the ends of the interval. If we know only their value at one of these extremes, the relation (2.1a) allows us to find the other. If L is taken as a parameter, estimation can be made, if L→∞, for all the values on the real axis for which the conditions of square-integrability are fulfilled. From the relations (2.1) -(2.3) of the previous subsection, by successive derivations, we will find the expressions of the series expansions for the higher order derivatives (if their values at the ends of the definition interval are known). By using relations similar to the relations (1.9) and (1.10) previously determined (relations for the coefficients of the product of the two functions), as well as relations deduced from the integration formula by parts one can obtain the expressions (dependent on An and Bn) for the coefficients Pn and Qn of the expansion in series for the terms of the form fi(x)y (i) , which are introduced into the basic equation, simultaneously with the expression of the expansion in series of the function g(x). By simplifying the resulting relation (grouping the terms which have one of the elements of the expansion base as a common factor, including here also the unitary function 1), we obtain the expression of the expansion in SFS of an identically zero function. Consequently, all the coefficients of this expansion (algebraic expressions in which the coefficients An and Bn appear) are zero and give rise to relations (algebraic equations) which allow the calculation of the unknowns An , Bn et f0 . The method is similar to that in which these terms are determined by replacing the function y(x) by its expansion in Taylor series.

The coefficients of order N, PN and QN, of product fi(x)y (i) expansions are numerical series which can also contain infinite quantities of decreasing or alternating decreasing terms. When these sums can be calculated (they can be reduced to a finite sum of terms), we obtain exact equations, and by solving them, we obtain exact values for the expansion coefficients of the unknown function y(x). For this, it is necessary that the expansion coefficients in SFS of the functions fi(x) can be calculated with exactness (the Euler integrals that correspond to them can be calculated with a finite number of terms). On the contrary, we can limit the number of terms in these series to the first N. Thus, 2N+1 approximate equations will be obtained, with 2N+1 unknown variables, by the resolution of which are obtained approximate values for y0, An et Bn. For the function y(x) we obtain a value approximated by the Fourier sum SN. The higher the number N of terms is, the better the approximation.

In some cases, the solutions of the equations for some of the coefficients can be deduced by comparing the terms of the equations with the terms of the series expansions of certain known functions, which facilitates the search for the global solution.

A frequent situation is that of equations with polynomial coefficients. If the boundary conditions are given (the values of the unknown function y and its derivatives at the ends of the interval considered), they are sufficient to write the equations which determine the coefficients An și Bn . If y(x), y (m) (x), fi(x) and g(x) are square-integrables on the interval [-L,L], the relations (1.12) -(1.17) and those which can be derived from it, provide relations of calculation for all the coefficients of the expansion in SFS of the terms of these equations . Here, for example, are the relations calculated for the terms of the first and second order equations, having first and second degree polynomial coefficients. If

  L x n B L x n A y x y n n n n   sin cos 1 1 0         
, then:

            L x n l n A n n A n y L L x n l n lB n B L B n L yx n l l l l n n n n l l l n l n n n n SFS      sin 1 1 2 2 1 2 cos 2 1 2 1 1 2 2 1 1 0 1 2 2 1 1                                                                                               L x n l n l n A n n A n y L n A y L yx n l l l n l n n n n n SFS     cos 1 4 6 3 2 1 4 1 2 3 1 2 2 2 2 2 2 2 2 2 0 2 2 1 2 2 0 2 2       L x n l n lB n n n B L n l l l l n n    sin 1 8 6 3 2 1 2 2 2 2 2 2 2 2                             L x n l n lB n B L x n l n A l A A x y n l l l l n n n l l l n l n n n n SFS   sin 1 1 2 2 cos 2 1 2 1 1 2 2 1 1 2 2 2 1                                                                              L x n l n A l n n n A L L x n l n l n L L y l n l n l B L L n n n B L n n L y n L y n B L L L y x y n n l l l l n n n n l l o l l n n o n n o n n o SFS           sin 1 8 6 3 2 cos 2 1 1 4 6 3 2 6 30 4 1 2 1 2 3 1 1 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2                                                                                                     L x n l n L y L l n l A n L n A n L y L x n L L y L lB l n l L L y L n B L L y B L n x y n n l l e l l n n e n n n l l o l l n o n n n o n n SFS          sin 1 2 1 1 2 2 1 3 cos 2 2 1 1 1 2 2 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 1 1                                                                                                                                   L x n n l l L L y nL n l B l n L y nB n n L x n l n l n L L y L l n l n l A n A n n L L L y A L L y x y n n l l l o n l l l n l o n n n n l l e l l n n e n l l l e SFS           sin 1 16 1 8 1 2 6 3 2 cos 8 4 1 1 6 3 2 6 15 2 1 2 1 2 1 1 2 2 2 2 1 2 2 2 3 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2                                                                                         
For example, a non homogeneous Euler type equation

  x g by x y a x y       2
, after having used these relations and after the expansion in SFS of the function

  L x n Q L x n P g x g n n n n   sin cos 1 1 0         
, leads to the following algebraic equations:

                   1 0 0 1 1 1 2 n n n n n n e g by A a A L L y →                      n n n e A a L L y g b y 1 0 0 1 2 1 ,
then, for each nN + :

                        n n n l l l n l n n l l e l l n n e n P bA l n A l a A a l n l n L L y L l n l n l A n A n n L L L y                                      1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 1 2 8 4 1 1 6 3 2 6 15 2 1 2                           n n n l l l l n n n l l l o n l l l n l o n n Q bB l n lB an B a n l l L L y nL n l B l n L y nB n n                                       1 2 2 1 1 2 2 2 2 1 2 2 2 3 2 2 1 1 2 2 1 16 1 8 1 2 6 3 2    

Nonlinear ODEs

The determination of the solution by calculating the coefficients of its expansion in sinusoidal Fourier series can also be successfully applied to non-linear ODEs, with polynomial non-linearities, equations whose terms contain only natural powers of the unknown, its derivatives and their products. The coefficients of these terms can be constant, or variable. From expansion

  L x n B L x n A y x y n n n n   sin cos 1 1 0          , the relations of type (2.2) -(2.
3), deduced for calculation the Fourier coefficients of the derivatives of any order and of the type (1.9-(1.10), for calculation the Fourier coefficients of the product of two certain functions, are sufficient to convert the given equation to a system of 2N+1 algebraic equations(N→∞), with 2N+1 unknowns: y0, A1, A2, ..., AN, B1, B2, ..., BN . For exemple:

                L x n A A B B n l B A B y L x n B n l B B A A A A y B A y y l l n l n l l l n l n l n l l n l n l l l n l n l n l l l SFS   sin 2 1 sgn 2 1 2 cos sgn 2 1 2 1 2 2 1 1 1 0 1 1 0 1 2 2 2 0 2                                                                        L x n B B B A n l A A B L L y A y L x n A n l A B L L y B B A L x n A y L L y y y y n l l n l n l n l n l l l n l n l n l n l n o n n n l l n l n l n l n l o n l l n l n l n l n l n o SFS             sin 2 1 sgn 2 1 cos sgn 1 4 2 1 cos 2 1 1 1 0 1 1 0 0                                                                                                          L x n B B A A n l A L L y B A y L x n A n l A A L L y B B L L y B L x n L L y B y L L y L L y B B A L L y y n l n l n l n l n l l l n l n l n l n l o l l l n n n l l n l n l n l n l l o l n l n l n l n l n o l l l n o n n n l o o l n l l l l o SFS                    sin sgn 1 2 2 1 2 cos sgn 1 4 1 2 2 1 cos 1 2 2 4 1 4 2 1 1 1 0 1 1 1 0 1 2 2 2 2 2 2 2 2 2                                                                                                            
It can be seen that to obtain the values of the Fourier coefficients of the unknown y(x), it is necessary to solve some algebraic equations of the second order or more, if the degree of nonlinearity increases. It can also be noticed that if, in one of the types of equations analyzed, the substitutions made to solve the equation are made using the partial sums SN (with 2N+1 terms) instead of the whole expansion (with a infinite number of terms), an approximate ODE is obtained. The larger is N, the better is the approximation. To solve it, a system of 2N+1 algebraic equations must be solved, a problem for which there are many electronic calculation programs. Therefore, it is possible to develop a simple, universal and accurate algorithm to solve these types of ODS.

Methods for solving differential equations

The examples discussed in the previous section highlighted that by replacing certain ODE terms with their SFS / SFN expansions, the initial equation remains, or may become, linear. In the general case, the unknown function y(x) is replaced by an infinite sum:

    x R C y x y n n n        1 ˆ0 , sau                 1 1 0 1 ˆn n n n n n x Q B x P A y x y
which can be written as well:

          n n x y y x y 0 , respectively                1 1 0 n on n en x y x y y x y
If all the terms of the given equation can be replaced by combinations of the functions Rn(x), respectively Pn(x) and Qn(x), an superposition of independent equations is obtained which, due to the linearity of the equation, is reduced to a system of algebraic equations (the functions yn(x), respectively yen(x) and yon(x) are perfectly determined by determining the coefficients Cn , respectively An and Bn).

The examples analyzed (2.1-2.7) also highlighted the fact that this method makes it possible to determine, in many cases, an exact solution, expressed in a closed form. In many other situations (for example, for variable coefficient ODEs), exact solutions are obtained, expressed in the form of infinite sums of terms. To be useful in practice, these forms can be approximated by neglecting the least significant terms: the approximation of the solution. The approximate solution is determined at all points in the interval, without interpolation, as in many other common approximate methods.

In many other situations, to solve the equation, the approximation of the expansion in series must be done before arriving at the exact solution: the impossibility of solving the system of algebraic equations wiht infinite dimensions, resulted by the ODE processing, the impossibility of determining by analytical calculations the Fourier coefficients, etc. We can consider that we used an approximation of the method. In these situations, we also obtain a solution expressed in a closed form (a finite sum of the first 2N+1 harmonics). In this case too, the values of the solution are perfectly determined over the entire definition interval.

There are also situations in which the replacement of certain terms of ODEs is done by other expressions which approximate them, on the basis of empirical, methodological or other criteria. These are methods of approximating the equation. In most cases, this approximation is made in a finite number of points, the value of the solution at the intermediate points being determined by interpolation.

Solutions of ODEs, determined by calculating the coefficients of its expansion in non-sinusoidal Fourier series

In the paper [1], we proposed a generalization of the expansion in SFS of the periodic functions defined on an interval [-L, L], generalization by which we replaced the periodic sinusoidal base (the usual name is trigonometric base) with a non-sinusoidal basis, comprising the following functions: the unit function 1, the fundamental periodic quasi-harmonics g(x)even and h(x)-odd, with the period 2L, with null mean values over the interval of definition and the secondary quasi-harmonics, defined on [-L, L], gn(x)=g(nx) and hn(x)=h(nx), with the period 2L/n, for nZ + . The fundamental quasi-harmonics g(x) and h(x), defined over the interval [-L, L], can be any function admitting expansions in sinusoidal series, extended on the real axis by successive translations: for all R x R  we define the function

K(xR)=E[(xR -x1)/2L], such that for each R x R  and each   L L x ,  
, there are the relations xR=x+KT and The coefficients An and Bn of the expansion in SFN of the function f(x) are obtained by means of the algebraic relationships between the Fourier coefficients of the expansions in SFS of the functions f(x), g(x) and h(x).

g(xR)=g(xR-KT)=g(x). E(x)=   x =k,
Article [1] highlighted a wide range of possible applications for this new type of series expansion, highlighting the diversity of possible solutions for each of them, illustrated by the different ways of approximating the functions. Concerning the resolution of differential equations, in the previous section, we analyzed a new methods, replacing the unknown function with its expansion in SFS and solving the resulting algebraic equations. The method is also applicable to expansions in SFN, provided that through the derivation/ integration operations any item of another base appears (therefore, only for the bases composed of circular, hyperbolic, exponential functions) . By using this method, the advantages offered by the possibility of using orthogonalized bases can also be capitalized, although this implies additional computational volume.

Methods of solving differential equations by approximating the solution

In some ODEs, it is not necessary to replace all the terms of the differential equation by their expansions in sinusoidal/non-sinusoidal Fourier series. The equation that results by replacing only certain terms, even when it is not linear, can lead to an equation easier to solve than the initial equation, using classical integration/derivation procedures (the method is frequently applied in current practice by techniques of linearization of nonlinear equations). We will illustrate these statements by solving a very simple inhomogeneous equation: y'=x (4.1) whith the condition y(0)=y0 We will initially select a series of Fourier series expansions [1], which will be useful:

              1 1 sin 1 2 n n L x n n L L x L X x   (4.2)                  1 2 1 2 2 2 2 2 2 cos 1 4 3 n n e SFS L x n n L L L x L X x   (4.3)                    1 1 2 sin 1 2 1 4 1 0 1 1 n SFS o L x n n L L J   (4.4)                             1 2 2 1 2 cos 1 2 1 4 2 0 2 n e SFS tr L x n n L L L x L x L X x   (4.5)
From the first two relations, we can write the expansions in non-sinusoidal series:

    n n n n n n n n L L L L L J L J J L L x L X x 2 1 1 1 2 1 0 1 2 2 1 2 1 0 1 2 2 1 2 ˆ2                                        (4.6)       n n n n n n n n e n e e SFN L x L x L L L x L x L L L X L X L L L x L X x n 2 1 1 2 1 2 1 2 2 2 2 2 1 2 2 0 2 2 2 1 4 2 0 2 3 4 3                                                (4.7) 
For the interval [-L, L] the inhomogeneous term of equation (4.1) can be developed in a sinusoidal series, or in a non-sinusoidal series (for the last variant the possibilities being multiple), so that using the reduced notation, we can write:

    n n n SFS n L L x n n L n L y                 1 1 sin 1 2   , respectively (4.8)                             1 2 2 1 0 1 2 2 1 2 1 0 1 2 n n n n SFN n L L L L L L y (4.9)
By integration:

    6 2 3 2 1 cos 1 2 2 2 2 2 2 1 2 1 2 2 L x L L x L X n L L x n n L n L C y e n n n                                   ,                           1 2 2 0 2 2 1 2 0 2 n n n n n L x x L L L x x L L C y                                                        1 2 2 2 2 0 2 2 2 4 1 2 2 2 0 2 2 2 n n n n n n n L L L x L x L L L L L x L x L L   2 6 6 2 3 1 1 4 3 2 1 2 4 1 2 2 4 1 2 1 2 2 2 2 2 2 2 1 1 2 1 x L L x L L x L L L X X n n n e n e n                                            
In both variants, the particular solution is y-y0=x 2 /2. Note that the derivative of the even function ye(x) is an odd function which can be developed in a series of odd functions, with zero mean value, with the base h(x):

    x h A x y n n n e      1
The integration of this relation leads to a relation for the expansion of the even function ye(x), in a base g(x) of even functions, for which the mean value g0 can be non-null:

          1 0 0 n n n e g g A y x y
, where

    1 0 0 n n A g y (4.10)
We also note that in the interval [-L, L], each of equations (4.8) and (4.9) is obtained by the linear superposition of the following subequations:

  L x n n L y n n   sin 1 2 1     , respectively 1 0 2 J L y   and n n n J L y 2 2 1 2   , for n=1, 2, ...,∞
By solving these partial equations and adding the solutions, we get the same results as those obtained by integrating the whole equation. In the present case, the derivatives y'n(x) of the partial solutions yn(x) are even the harmonics (or quasi-harmonics) of the expansion in a known series of the function y'.

Consequently, the method can be applied to all equations in which the expansion in series of one term leads to a linear equation represented as an infinite superposition of partial equations for which the solution can be found by classical solving methods.

Linearization of the differential equation of the simple gravity pendulum, by introducing an infinite sum of ramp functions

We will apply the method of linearization of nonlinear equations to the equation of the simple gravity pendulum:

0 sin 2 0 2 2      dt d ,      ,   (4.11) 
In a classical approach [13], the equation is solved by the method of approximation of the equation, replacing sinθ≈θ, acceptable for

  1 1 ,     , if θ1≈0.
Here, we will try to find an exact solution, valid for the whole interval. For this, we will use the non-sinusoidal series expansion of the term sinθ, the basis of the expansion being the followingodd function:

g1(θ)=Xo[-π<-θ-π >-π/2<θ >π/2<-θ+π >π].
The Fourier series expansion of the function g1 (θ) leads us to:

              1 2 1 1 1 2 1 2 sin 1 4 ) ( n n n n g   
whose coefficients are: d1=4/π, d2=0, d3=-4/9π, d4=0, d5=4/25π, d6=0, d7=-4/49π, d8=0, d9=4/81π, d10=0, d11=-4/121π, d12=0, ... For the function f(θ)=sinθ, we can write:

         1 ŝin n n n g B f    , in which: 4 1   B , 0 2  B , 36 3   B , 0 4  B , 100 5    B , 0 6  B , 196 7   B , 0 8  B , 0 9  B , ...     2 1 2 1 2 1 4      n B n n  , 0 2  n B , but 0 2  n B
, for n= 2, 3, .., ∞. We get the linear equation:

  0 1 2 0 2 2      n n n g B dt d    which, for     1 n n  
, is the linear superposition of partial equations:

  0 2 0 2 2   n n n n g B dt d    , où n=1, 2, 3, ...,∞ (4.12)
If θ(0)=θ0, and v0=0, these initial conditions are valid for all the partial equations:

  0 4 1 2 0 2 1 2       g dt d θn(0)=θ0, et v0n=0.
If v0≠0, the given problem is replaced by an equivalent problem: we consider the initial angular speed v0 imposed on the pendulum, as coming from the transformation into kinetic energy Ec=1/2•mv 2 of the part Ep=mg(he -h0) of the potential energy of the pendulum of length l, located at an equivalent height he (which corresponds to an equivalent angle θe). Thus, the initial problem is replaced by that in which the initial angular speed v0 is zero and the initial position is:

           g lv k e 2 cos arccos 2 2 0 0    (4.13)
Values k≠0 appear when he >2l. For these cases, we can calculate vπ, the speed at which the pendulum crosses the position h=±π. If θe and θ0 belong to the interval (-π, π), the equivalent partial solutions θn(t) will all have the initial conditions:

θn(0) = θe and 0 0   t n dt d
, and for he >2l: θn(0) = π and

  v dt d t n  0 (4.14)
The resolution of these n partial equations leads us to find the n partial responses of the system to these n periodic forces acting on the pendulum. The sum of these responses is the solution to the equation for the equivalent problem. This solution-trajectory θ(t)=Σθn(t) passes through the position θ0 at time te. The initial condition for the initial problem becomes θ0=θ(t-te)=Σθn(t-te). The positions θn(te) and the speeds θn'(te) of the particular trajectories are achieved by the equivalent pendulum when it passes through the position θ0. In this way, the equivalent potential energy of the pendulum (corresponding to the initial speed v0) is distributed over the partial components of the total force system and transformed by each equivalent pendulum according to its own specificity, into kinetic energy, resulting in an initial angular speed equivalent for each partial equation.

Because of the laws of conservation of energy, the trajectory of the pendulum, for each partial system of forces Fn, is symmetrical compared to the equilibrium position θmn (θ0) (for n=1). It passes through the positions θm -θi with the same speeds vi with which it passes through the positions θm+θi and reaches the maximum position -θe also at zero speed. If θe>π, the equivalent speed vπ that corresponds to the position θ=π is equal to that of the position θ=-π. For the same reasons, the partial trajectories with initial velocities θe negative are symmetrical with respect to the axis θ=0 with those whose initial velocity θe is positive.

From (4.12), for n=1, we obtain the partial equation

, where

g1(θ)=Xo[-π<-θ-π >-π/2<θ >π/2<-θ+π >π],
which is resolved successively, for each subinterval in which the force exerted on the pendulum has a certain law of variation. For -π/2<θe<π/2, on the subinterval [-π/2 , π/2] the force increases uniformly from a negative value to a positive value, the equation is harmonic and the solution is :

    t t e 0 1 4 / cos      (4.
15) For -π<θe<-π/2, the partial equation takes different forms for different subintervals. On the subinterval [θe , -π/2] the equation takes the form: 

  0 4 1 2 0 2 1 2          dt d , ( 4 
                t ch t e 0 1 4 / (4.17)       t sh t v e 0 0 1 4 / 4 /          (4.
18) The equations (4.16) and (4.18) allow us to find the moment t1.1 of switching of the force field, i.e. the moment when θ1=-π/2, then the angular velocity of the pendulum from this moment:

      1 0 0 1 1 1 . 1 4 / 4 / t sh t v v e          
. These values become the initial conditions of the harmonic equation in the subinterval [-π/2 , π/2], available for t>t1.1. The solution is:

              1 . 1 0 0 1 . 1 1 . 1 0 1 . 1 1 4 / sin 4 / / 4 / cos 2 / t t v t t t t               (4.
19) Now, from θ1(t)=0, we can calculate the time t1.2 of the passage through the equilibrium point.

Further on, the evolution of the pendulum is symmetrical with respect to this point. The pendulum reaches the position θ1(t)=-θe after the time 2t1.2 and will continue with a symmetrical trajectory compared to the axis t=2t1.2, to arrive after a total time tt=4t1.2 again in the position θ1(t)=θe and to continue a periodic trajectory with the period T=4t1.2. , where

g3(θ) =Xo[-π/3<3(-θ-π/3)>-π/6<3θ>π/6<3(-θ+π/3)>π/3]3=Xo[-π<-3θ-3π>-5π/6<3θ+2π> >-π/2<-3θ-π>-π/6<3θ>π/6<-3θ+π>π/2<3θ-2π>5π/6<-3θ+3π>π]
The initial conditions of the equation are given by (4.14).

For v0=0, if -π/6<θ0< π/6 →g3(θ)=3θ, and the solution is:

    t t 0 0 3 12 / cos      , For v0≠0, if   6 / 12 / / 2 0 0 2 0         v e , so                                          12 / 12 cos 12 sin 12 / 12 cos 0 0 0 0 0 0 0 0 0 3               v arctg t t v t t e
For the other subintervals in which θe can be located, the partial solution is:

    m m e t t                  0 3 12 cos , or     m m e t ch t                  0 3 12
, as the slope of the function g3(θ) is positive, respectively negative. Here, θm is the midpoint of this subinterval and it always has the same sign as θe .

Consequently, the cosine θ3(t) (as well as those of higher order) is an oscillating movement with respect to the point θm, with the amplitude θe-θm (it never arrives at the point of equilibrium θ=0 nor in θ0, if it is outside the subinterval). The hyperbolic cosine θ3(t) (as well as the higher-order quasi-cosine) describes a divergent movement, moving away from θm (which is an unstable equilibrium point). Figure 2.c presents some of these partial solutions, for different negative values of θe (v0=0).

For n = 5, the partial equation is

  0 25 1 4 5 2 0 2 5 2       g dt d
, where

g5(θ) =Xo[-π/5<5(-θ-π)>-π/10<5θ>π/10<5(-θ+π)>π/5]5
It is solved in the same way as the previous equations. It should be noted that due to the negative coefficient of this quasi-harmonic, the position θ=0 is an unstable equilibrium. For -π/10< θe<π/10, the trajectory of the pendulum is divergent.

The general solution of the equivalent equation is the sum of all the partial solutions: θ (t) = Σθn (t). It is also the exact solution of the given equation, expressed as an infinite sum of partial solutions, each of these solutions having different expressions on different subintervals. For this solution to be practically useful, we will only retain the first N partial solutions (the approximation of the solution). The same result is achieved by approximating the method, if from the expansion in SFN of the function sinθ we retain the first N terms.

For a certain value t=te, the sum θ(t)=Σθn(t) is zero: Σθn(te)=0. As shown in Fig. 3 (for simplicity we have chosen the case θ0=0), at this time, each partial solution has a value θn(te)= θn0 and a speed vn(te)=vn0. These are the initial conditions for the components of the initial equation. 

Linearization of the differential equation of the gravitational pendulum, by introducing an infinite sum of rectangular functions

The expansion in non-sinusoidal Fourier series that we chose for the linearization of equation (4.11) is the closest to the traditional approach, but it is only one of the many possibilities offered by the method that we propose. Another interesting solution is the replacement in the equation of the function sinθ with its expansion in infinite series of periodic rectangular pulses: As in the previous approach, the initial conditions of the equivalent problem are:

  0 1 2 0 2 2       n n n B dt d    , ( 4 
θ0 =θ(0) = θe and 0 0 0    t dt d v  , (4.21)
where θe is the equivalent angle, corresponding to the equivalent height he.

Let be Bn the expansion coefficients of

          1 ŝin n n n B f    Because          1 1 1 2 1 2 sin 4 n n n  
, the expansion coefficients of the function sinθ are:

4 1   B , 0 2  B , 12 
3    B , 0 4  B , 20 5    B , 0 6  B , 28 7    B , 0 8  B , 0 9  B , 0 10  B , ... , 0 2  n B , but 0 2  n B
, for n= 2, 3, .., ∞ All the coefficients, with the exception of that of the fundamental quasi-harmonics, are negative. The linear equation (4.20) is the superposition of an infinite number of equations of the type:

     n n n B dt d    2 0 2 2
, où n=1, 2, 3, ...,∞, with the initial conditions (4.21). The solutions of these equations, for all subintervals [tk , tk+1] in which Πn(θ)=ct are: θn(t)= -ω0 2 BnsgnΠnk(t-tk) 2 /2+v0k(t-tk)+θ0k , for k= 0, 1, 2, 3, ..,n, ... (4.22) where sgnΠnk is the sign of the functions Πn(θ) for the subinterval [θk , θk+1], tk are the moments of the commutations of the function Πn(θ), θ0k and v0k are the initial conditions for the available equation on this subinterval (the final values of the previous subinterval). The pendulum speed for each system of forces is uniformly accelerated:

      k k n n n v t t B t v 0 2 0 sgn      
For n=1, the point θ=0 is a point of stable equilibrium. Whatever the initial position of the pendulum, it tends to reach a stable equilibrium position and oscillates around this position, describing a quasi-sinusoid built on the basis of a polynomial of the second degree. This curve will have the inflection points located on the axis θ=0. The oscillations will have the amplitude θe and the period of oscillation , we have:

θ1(t) =X1 2 =X 2 [0 *(θe-At 2 )*T*(-θe + A(t-T) 2 ) *3T*(θe-A(t-3T) 2 ) *4T]1 (4.
23) If the initial conditions change: θ0=θe and v1(0)≠0, the solution of the equation changes its period, its amplitude and its initial phase shift. The partial solution of order n of equation ( 4.20) at the initial conditions (4.21) is also a quasisinusoidal polynomial of second degree:

(4.24) θn(t) =Xn 2 =X 2 [0 *(-θn+At 2 /n)*Tn 1/2 *(θn -A(t-T/n) 2 ) *3 n 1/2 *(-θn+A(t-3T/n) 2 ) *4T n 1/2 ]n, 1 2 1 4 1 2      n B n 
where θn = θe-θm. This curve has all the inflection points located on the axis θ=θm . The oscillation has amplitude θe-θm and the oscillation period The general solution of the equivalent equation is the sum of all the partial solutions: θ(t)=Σθn(t). An approximation of the solution is obtained by adding the first N partial solutions, where N must be large enough to obtain a satisfactory error. For a value t=te, the sum is zero: Σθn(te)=0. As shown in Figure 4b, for the moment te, each partial solution provides a value θn(te)=θn0 and a speed vn(te)=vn0. These are the initial conditions of the components of the original equation. The solution of the equation is θ(t)=Σθn(t-te).

With the notations of ( 

Conclusions

We have tried here, using a few simple examples, to prove that the method of solving differential equations by determining the coefficients of expansion in sinusoidal or nonsinusoidal series of the unknown function is a particularly solid method, applicable to all types of differential and integro-differential equations, linear and nonlinear, partial differential equations, systems of such equations, whatever their order and whatever the complexity of the coefficients. Résumé: Le développement des fonctions de variables réelles en séries de Taylor et de Frobenius (séries entières lesquels sont constituées dans des bases nonorthogonales, nonpériodiques), en séries de Fourier sinusoïdales (des bases des fonctions orthogonales, périodiques), en séries de fonctions spéciales (des bases des fonctions orthogonales, nonpériodiques), etc est une procédé couramment utilisé pour résoudre une large gamme d'équations différentielles ordinaires (ODEs) et d'équations aux dérivées partielles (PDEs). Dans cet article, basé sur une analyse approfondie des propriétés des séries de Fourier périodiques sinusoïdales (SFS), nous serons en mesure d'appliquer cette procédure à une catégorie beaucoup élargie d'ODEs (toutes les équations linéaires, homogènes et non homogènes à coefficients constants, une large catégorie d'équations linéaires et non linéaires à coefficients variables, systèmes d'ODEs, équations intégro-différentielles, etc.). Nous allons également étendre cette procédure et l'utiliser pour résoudre certains ODEs, sur des bases périodiques non orthogonales, représentées par des séries de Fourier périodiques non sinusoïdales (SFN).

LE DÉVELOPPEMENT EN SÉRIES PÉRIODIQUES, METHODE DE RESOLUTION D'EQUATIONS DIFFERENTIELLES

Mots clefs: séries de Fourier sinusoïdales, séries de Fourier non sinusoïdales, bases orthogonales, équations différentielles, approximation des solutions, le pendule gravitationnel

Introduction

Les méthodes de résolution des ODE, proposées ici, utilisent des résultats récemment obtenus [1] dans le domaine de l'analyse fonctionnelle, concernant le développement de fonctions variables réelles, définies sur un intervalle [-L, L], en séries infinies de fonctions périodiques sur le même intervalle, formant des bases orthogonales, mais aussi non orthogonales). Selon l'analyse harmonique (Fourier), toute fonction f(x), périodique sur l'intervalle [-L, L], qui satisfait aux conditions de Dirichlet, peut être développée en une somme infinie, connue dans la littérature sous le nom de série trigonométrique (pour laquelle, pour des raisons mises en évidence dans l'article [1], nous avons utilisé le nom de série sinusoïdale). Cette série est formée par les composantes d'une base biortogonale complète, composée par la fonction unité 1, les harmoniques fondamentales sin(πx/L)-paire et cos(πx/L)impaire, avec la période 2L et les harmoniques secondaires sin(nπx/L) et cos(nπx/L), avec la période 2L/n, pour nN + . Les coefficients de cette développement (coefficients de Fourier) peuvent être calculés à l'aide d'intégrales définies (formules d'Euler). Ce papier généralise cette affirmation en montrant que la fonction f(x) peut également être développée en séries périodiques non sinusoïdales (SFN), consistant en la somme infinie des composantes pondérées d'une base complète, non orthogonale: la fonction unitaire 1, les quasi-harmoniques fondamentales g(x)-paire et h(x)-impaire, périodiques avec la période 2L, avec valeur moyenne nulle sur l'intervalle de définition et les quasi-harmoniques secondaires, définies sur [-L, L], gn(x)=g(nx) et hn(x)=h(nx), avec la période 2L/n, pour nN + . Les quasi-harmoniques fondamentales g(x) et h(x) peuvent être toute fonction réelle, de variable réelle, qui admette sur l'intervalle [-L, L] des développements en série sinusoïdale. On obtient les coefficients An et Bn du développement en SFN de la fonction f(x), à l'aide des relations algébriques entre les coefficients de Fourier des développements en SFS des fonctions f(x), g(x) et h(x).

Ainsi, toute fonction f(x):[x1, x2]→R T-périodique (T=x2-x1

), de l'espace L 2 (c'est-à-dire, de carré intégrable), peut être représentée par la somme:

                  1 1 0 0 n n n n n n x h B g x g A f x f  , où :     2 1 1 0 x x dx x f T f et     2 1 1 0 x x dx x g T g sont les valeurs moyennes sur l'intervalle [x1, x2],   x g n et   x h n (n=1, 2, 3, ..

., ∞) sont des Fourier-fonctions (des fonctions continues, justement les développements en SFS des fonctions g(nx) et h(nx), definits sur [-T/n, T/n].

À partir de ce résultat général, dans le travail [1] sont décrits aussi quelques situations particulières:

              n n n g x g C f x f 0 0  , où g(x)
a tous les deux composants: le pair et l'impaire 

           L n n L n n L x g B x g A f x f          
                 1 0 0 0 ~n n n n n x B x A f x f
où Φn(x) et Ψn(x) sont des fonctions orthogonales, générées par les Fourier-fonctions  

x g -g0 et   x h , par un procédé d'orthogonalisation.

Propriétés des développements en séries de Fourier périodiques (le cas général)

Le développement en SFN d'une fonction f(x) est obtenu de son développement en SFS, par une redistribution et un regroupement des termes du développement, de manière à obtenir les développements en SFS des fonctions périodiques g(x), h(x) et des quasi-harmoniques gn(x), hn(x) correspondants. Par conséquent, ce développement bénéficie également des propriétés de convergence, de dérivabilité et d'intégrabilité, similaires à celles de SFS [1][2][3][4][5][6][7][8][9]. Donc:

 soit f(x) une fonction 2L-périodique, continue dans l'intervalle [-L, L]. Son développement de Fourier       x h B x g A f x f n n n n n n          1 1 0
, où g0=0, sinusoïdal ou non, convergent ou non, peut être intégré terme par terme, entre toutes limites d'intégration: 

       dx x H B dx x G A x f C dx x f x F n n n n n n x             1 1 0 0 , ( 1 

  

   1 n n n x G C x (les fonctions x et G(x) sont impaires) et     0 0 1 F H B C n n n      
, résulte un développement en SFN de la primitive F(x), en une base, le plus souvent différente de celle de la fonction f(x).

 soit f(x) une fonction 2L-périodique, continue dans l'intervalle [-L, L], avec f(-L)=f(L) et avec la dérivée f'(x) lisse par portions dans cet intervalle. Le développement de Fourier, sinusoïdal ou non, de la fonction f'(x), peut être obtenu en dérivant terme par terme le développement de Fourier de la fonction f(x). La série obtenue converge ponctuellement vers f'(x) en tous les points de continuité et vers [f'(x)+ f'(-x)]/2 en ceux de discontinuité.

Si       x h B x g A f x f n n n n n n          1 1 0 , alors:       x h B x g A x f n n n n n n            1 1 ˆ (1.2)
Dans ce cas aussi, la base du développement en série non sinusoïdal de la dérivée diffère de celle de la fonction f(x). La condition f(-L)=f(L) fait que le nombre des problèmes dans lesquels la formule (1.2) peut être utile est assez petit, mais elle peut être évitée si le saut à partir du point x=L (ainsi que tout autre saut du composant impair) est compensé par un saut dans la direction opposée (obtenu en soustrayant une autre fonction impaire qui fait un saut identique dans le même point). Dans l'exemple suivant, par ce procédé, la composante impaire fo de la fonction f(x) est décomposée en une somme de la fonction différenciable fos (pour laquelle f(-L)=f(L)) et la fonction de rampe fr=x•fo(L)/L→ fos=fo-fr. Par conséquent:

          L L f x f dx d x L L f x f dx d x f dx d o os o os o           ,
relation qui nous permet de trouver une expression pour le développement de la dérivée f'(x) de la fonction f(x), pour toutes les catégories des fonctions qui satisfont les autres conditions. Le développement en SFN de la fonction fos=fo-fr nous permet le calcul des coefficients du développement en série de la dérivée.

Le cas général, celui du développement des fonctions dans des bases périodiques non sinusoïdales, met en évidence le fait que l'élément I=1 de la base a un caractère particulier. Il fait partie de toutes les bases périodiques, il ne change pas lorsque les autres composantes de la base (de valeur moyenne nulle sur l'intervalle de définition) changent après l'intégration, ou après la dérivation. Son coefficient est calculé par une intégrale définie et non par des relations algébriques. I=1 est une fonction paire, mais pour f0=0, il reçoit simultanément un caractère impair aussi. Les dérivées et les primitives de toutes les fonctions paires (y compris la fonction I•f0=f0) sont des fonctions impaires et, inversement, celles des fonctions impaires (y compris la fonction I•0=0) sont des fonctions paires. En dérivant toute fonction paire f0 on obtient la fonction impaire 0 et vice versa, en intégrant la fonction impaire 0, on obtient toute fonction paire f0 (la constante d'intégration)

Propriétés des développements en séries de Fourier sinusoïdales

Comme dans le cas général, dans le cas des développements en SFS, sur l'intervalle

[-L, L], pour ωn=nω0=nπ/L, parce que           1 1 sin 1 2 n n n n x x  
, nous pouvons écrire [9]:

Pour                   1 1 0 0 sin cos n n n n n n o e x b x a f f f f x f   , (1.3) on a:     L f L f o o    ,     L f L f e e   ,       2 L f L f L f e    ,       2 L f L f L f o    ,        1 0 0 n n a f f ,                               1 1 0 0 sin cos 1 n n n n n n o e x x x x f     , dans lequel: (1.4)       n n n n o b L L f  1 0 1 2 lim        ,                L L f b n o n n n n    1 2 , n n n a     ,          1 0 0 n n                                1 1 00 00 0 sin cos 1 0 n n n n n n o e SFS x x B x A F F F F F x F dx x f  
, dans lequel:

    1 00 n n n b F  , n n n b A    ,     L L f a B n n n n n 0 1 1 2       ,   00 0 1 0 0 F F A F F n n        (1.5) Également sont valables les relations:               1 0 n n o x a L L f x x f ,   L L F f o  0 et                   1 0 0 cos cos sin sin n n n n n n n b a n a b b a b a a b f dx x f      (1.6)
Ainsi, nous avons obtenu une série de relations pour calculer les valeurs moyennes et les coefficients des développement des fonctions dérivées et primitives du premier rang, à partir des valeurs des coefficients du développement en SFS de la fonction f(x) et des valeurs de la fonction dans les points limites f(-L) et f(L). Ces relations nous permettent également de calculer, pas à pas, les expressions des dérivées et desprimitives de rang supérieur, après avoir calculé les valeurs de ces fonctions à la limite de l'intervalle, les valeurs moyennes et les valeurs des coefficients de leurs développements. Les nouvelles relations peuvent être utilisées pour résoudre les équations différentielles et intégro-différentielles de rang supérieur, pour calculer des intégrales définies ou indéfinies, etc. A titre d'exemple, voici la dérivation et l'intégration du développement de la fonction f(x)=e x pour l'intervalle [-π, π] [8, 9]:

                              1 2 2 sin 1 1 sinh 2 cos 1 1 sinh 2 sinh n n n x nx n n nx n e x f       .   sinh 0   ,       2 2 1 1 sinh 2 sinh 1 2 1 1 2 sinh n n n n n n n n n                            ,   2 1 1 sinh 2 n n n n         ,   1 sinh sinh 1 2 1 sinh 2 1 1 sinh 2 1 2 1 1 00                                  n n n n n n n n b F ,   sinh 0  F (1.7)                  2 1 1 sinh 2 1 n n n A n n   ,       2 2 1 1 sinh 2 sinh 1 2 1 1 sinh 2 1 n n n n B n n n n                         Donc:     x SFS x e e x           et       x SFS x x e F dx e x F     0 0 Pour obtenir (1.7), on start de                  1 2 1 1 2 1 sinh 1 0 n n n f   →                1 sinh 2 1 1 1 1 2   n n n
On peut le remarquer que pour f0=0 et fo(L)=0 (sans discontinuités de la composante impaire), à la fois l'intégration et la dérivation se font terme par terme:

n n n b    , n n n a     , n n n b A  /  , n n n a B  /  
. Si fo(x) a des discontinuités aux extrémités de l'intervalle [-L, L] (ou à l'intérieur), elles provoqueront, lors de la dérivation, l'apparition d'une valeur moyenne Φ0≠0 et une modification en conséquence du composant Φe. Lors de l'intégration, l'effet des discontinuités est transmis au composant impair Fo. Les dérivés de toutes les fonctions f(x)+C ont la même expression, et le retour à la fonction initiale, par l'intégration, est assuré par la

relation        1 0 0 n n A F F , lequel pour C=0 conduit à F(0)=0.
Sur l'axe réel, la fonction périodique impaire f(x), discontinue aux extrémités de l'intervalle [-L, L] (Fig. 1A), est la somme entre la fonction continue fc(x) (Fig. 1D) et la fonction «échelle» fH(x) (une succession des « échelons» Heaviside négatifs) (Fig. 1E). Les dérivés de ces fonctions sont les fonctions périodiques f'

(x)=             n n def L x L x   
(peigne de Dirac, Fig. 1B), dont le développement en SFS est

    x n n n 0 1 cos 1 1         [6],
multiplié par le coefficient fo(L)/L (Fig. 1C). Les développements en SFS de ces deux dérivées sont donc divergents, mais leur somme est convergente. Si la fonction f(x) est paire, la dérivation des sauts à l'intérieur de l'intervalle génère deux peigne de Dirac de signe opposé, qui s'annulent réciproquement, et si f(x) a des discontinuités finies dans un nombre fini des points dans l'intervalle [-L, L], cela se reflète dans la position et l'amplitude des impulsions Dirac correspondantes.

Fig.1. La dérivation du développement en SFS d'une fonction périodique avec des discontinuités

Le développement en série de Fourier du produit de deux quelconques fonctions périodiques

Sont connus les relations de calcul pour déterminer les coefficients du développement en SFS du produit p(x)q(x) de deux quelconques fonctions périodiques, de carré integrable (qui fait que leur produit est aussi une fonction de ce type), définis sur l'intervalle [-L, L] Dans le cas des ODEs, un ou tous les deux termes du produit p(x)q(x), peuvent être même l'une des fonctions y(x), y'(x), y''(x), ∫y(x)dx, etc, avec des coefficients de Fourier inconnus. Le remplacement de ces produits, lorsqu'ils apparaissent dans une équation différentielle, avec leur développement en série de Fourier, ou avec les sommes de Fourier SN qui les rapproche, conduit à un système de 2N+1 (N→∞) d'équations algébriques. On les résolvant, peuvent être trouvées les coefficients f0 , a1, ..., aN, b1, ..., bN de la série de Fourier du développement de la fonction y(x). Pour

  L x n B L x n A y y y y x y n n n n o e   sin cos 1 1 0 0             et   L x n D L x n C p p p p x p n n n n o e   sin cos 1 1 0 0            
(où ye0=pe0=0), les coefficients de développement en série du produit yp sont: (1.9)

        L x n Q L
0 0 0 0 0 0 0                        où: (1.8)                            1 1 0 0 0 0 0 2 1 2 1 2
                                                         L L m m l l L L m m l l L L e L L e L L o o e e e e n dx L x n L x m D L x l B L dx L x n L x m C L x l A L dx L x n y L p dx L x n p L y dx L x n p y p y y p p y L P          cos sin sin 1 cos cos cos 1 cos cos cos 1 1 1 1 1 0 0 0 0 →                        1 1 0 0 sgn 2 1 2 1 l l n l n l l l n l n l n n n D n l D B C C A A p C y P (1.10a) dx L x n L x m C L x l B L dx L x n L x m D L x l A L dx L x n y L p dx L x n p L y dx L x n p y p y y p p y L Q L L n m l l L L n m l l L L o L L o L L e o o e o o n          sin cos sin 1 sin sin cos 1 sin sin sin ) ( 1 1 1 1 1 0 0 0 0                                                        →                        1 1 0 0 2 1 sgn 2 1 l l n l n l l l n l n l n n n C C B D n l D A B p D y Q (1.10b)
Dans ces relations, nous avons considéré: A0=B0=C0=D0=0 (pour l=n). Les relations sont les mêmes que dans [9], dans lequel A0=2y0 et C0=2p0, mais ici, nous avons choisi une autre méthode pour atteindre le résultat, en utilisant des calculs intermédiaires tels que: 

                                                                                                                         1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 cos 2
C C A L C A C A C A L dx L x n m C L x n m C C L x n m C L x l A dx L x n m L x n m C L x l A dx L x n L x m C L x l A          
De toute évidence, les formules suivantes sont également valables:

                       1 1 0 0 sgn 2 1 2 1 l l n l n l l l n l n l n n n B n l B D A A C C y A p P (1.11)                        1 1 0 0 2 1 sgn 2 1 l l n l n l l l n l n l n n n A A D B n l B C D y B p Q 1.

Le calcul de certaines séries numériques infinies

Les coefficients Pn et Qn des relations 1.9 et 1.10 contiennent, chacun, les expressions des séries numériques infinies, dont la somme peut être déterminée (si les coefficients An , Bn , Cn, et Dn sont connus) par un volume, parfois important, de calculs. Entre chaque de ces séries infinies et le coefficient correspondant du développement en SFS du produit yp, il y a une relation directe, de sorte que la somme de série peut être déterminée en calculant le coefficient respectif. Par conséquent, si les calculs pour déterminer les coefficients de Fourier du produit yp sont moins volumineux, cette méthode de calcul devient une solution préférable pour le calcul de cette quantité. Pour illustrer cela, nous comparerons ces volumes de calcul pour les produits entre la fonction:

    L x n n L x L x n B L x n A y x y n n n n n n     sin 1 2 sin cos 1 1 1 1 0                 et les fonctions:     L x n n L x L x n D L x n C p x p n n n n n n     sin 1 2 sin cos 1 1 1 . 1 1 . 1 0 . 1 1                 et                       1 2 2 2 2 2 1 . 2 1 . 2 0 . 2 2 cos 1 4 3 sin cos n n SFS n n n n L x n n L L x L x n D L x n C p x p     avec les coefficients: y0=0, An=0, Bn=    n L n 1 1 2   ; p1.0=0, C1.n=0, D1.n=   n L n 1 1 2    ; p2.0= 3 2 L , C2.n=   2 2 2 1 4  n L n 
, D2.n=0. On découle les coefficients des produits:

      L x n n L L x yp L x n Q L x n P P P n SFS SFS n n n n     cos 1 4 3 sin cos 2 2 2 2 2 1 1 . 1 1 . 1 0 . 1 1               ,       L x n n L n L x yp L x n Q L x n P P P n SFS SFS n n n n      sin 12 2 1 sin cos 3 3 3 3 1 3 2 1 . 2 1 . 2 0 . 2 2                     
Nous allons garder les significations précédemment attribuées: A0=B0=C0=D0=0. Conform avec 1.9-1.10: , si x0 est un point singulier régulier [4,5]. La méthode, qui permet de trouver une solution valide sur son disque de convergence de rayon R, est basée sur la propriété de dérivabilité terme par terme de ces séries et permet de trouver des relations de récurrence pour les coefficients de la série. C'est possible parce que la base sur laquelle la fonction-solution générale est développée est la même que la base sur laquelle sont développées ses dérivés aussi. Pour trouver les solutions particulières il faut savoir les valeurs de la fonction et de ses dérivées à un point de l'intervalle (-R, R). Par cette méthode, la résolution d'équations différentielles est transformée en un problème d'algèbre, qui implique le plus souvent de trouver des formules de récurrence.

        1 1 0 . 1 1 2 2 1 n n n n L B P  Pour y(x)=x: →     0 . 2 1 2 2 2 1 1 1 2 2 0 . 1 1 2 1 1 2 p n L n n L P n n n n                (1.12)                                                     n l l l l n n n l l l n l n l n n n l n lB n B L l n n l l n B L n L B P 1 2 2 1 1 1 1 2 . 1 2 1 2 1 sgn 1 2 2 2 1 2 2    (1.13) →         n n n n l l n n n C n L n n L n l L n L L P . 2 2 2 2 2 2 2 2 1 2 2 2 . 1 1 4 4 3 4 1 1 1 4 1                                                                              n l l l n l n l n n n l n n l l n A n A n y L Q 1 1 1 1 0 . 1 1 sgn 1 2 1 2  (1.14) →     0 1 2 2 1 2 1 2 2 1 1 0 . 1                         n l l l l n n n n l n A n n A n y L Q          1 2 2 2 2 0 0 . 2 1 2 3 n n n n A L L y P  Pour y(x)=x: → P2.0=0 (1.15)                                           n l l l n l n l n n n n l n l n A n A L L A n L y P 1 2 2 2 2 2 2 2 2 2 0 . 2 1 1 4 2 3 1 4   → Pn.2=0 (1.16)                                          n l l l n l n l n n n n l n l n B B n L B L Q 1 2 2 2 2 2 2 2 . 2 1 1 4 1 2 3  (1.17) →                                    n l l n l n n n n l n nl l L n L n L n L L Q 1 2 2 2 1 2 1 2 2 2 2 1 2 . 2 4 2 1 1 2 4 1 2 1 2 3                                         3 3
                             2 2 4 1 2 2 2 0 2 2 2 1 1 4 1 1 1 1 a n a n an a a l a l n l l l          
Étant donné que les SFS et les SFN aussi, jouissent de la propriété de la dérivabilité terme par terme, une méthode similaire à la méthode décrite peut être appliquée en utilisant ces nouveaux types de développements en série, dans les équations impliquant des fonctions périodiques de carré intégrable, définies sur un intervalle [-L, L], si nous connaissons les conditions aux limites correspondantes.

La méthode de résolution des équations différentielles en déterminant les coefficients du développement en séries sinusoïdales ou non sinusoïdales de la fonction inconnue est une méthode particulièrement solide, applicable à tous les types d'équations différentielles et intégro-différentielles, linéaires et non linéaires, d'équations aux dérivées partielles, des systèmes de telles équations, quels que soient leur ordre et quels que soient la complexité des coefficients. Les conditions requises pour l'application de la méthode sont peu contraignantes et faciles à remplir, notamment pour les situations rencontrées en physique et en génie. La méthode peut être appliquée à des larges classes de telles équations, et encore plus, la même équation peut être résolue en utilisant plusieurs types de développement. La méthode peut également être facilement étendue aux fonctions du domaine complexe C.

Comme pour la méthode de développement en série entière, les opérations de dérivation et d'intégration effectuées sur ces développements en série sont transformées en opérations algébriques effectuées sur les coefficients du développement. Par conséquent, la résolution d'ODE se transforme en résolution d'équations algébriques. De toutes les bases utilisées comme support des développements, les plus avantageuses sont les sinusoïdes (1, cos(nx), sin(nx)), en raison de la facilité avec laquelle les coefficients du développement peuvent être calculés (les formules d'Euler), en raison de la vitesse de convergence élevée (ce qui les rend idéales pour les méthodes d'approximation numérique) et la relative facilité avec laquelle les équations algébriques résultantes peuvent être résolues (le degré de difficulté est dicté par l'ordre de l'équation et par le degré de non-linéarité de l'équation différentielle). Contrairement aux bases des puissances entières positives qui, par des dérivations répétées, "patinent" le long des éléments de la base (conduisant à la génération des chaînes récurrentes), les bases sinusoïdales "oscillent" entre les mêmes éléments, pairs et impairs, de la base, conduisant à des équations algébriques plus simples.

ODEs linéaires à coefficients constants

Comme nous l'avons trouvé dans la section précédente, sur l'intervalle [-L, L], pour

  x B x A y y y y x y n n n n n n o e   sin cos 1 1 0 0             (2.1) →               L L y L y x A x L L y L y B x y n n n n n n n n n 2 sin cos 2 1 2 1 1                           (2.2) →           L L y x L L y B x L L y A y e n n o n n n n n e n n n                                 1 2 2 sin 1 2 cos 1 2      (2.3) Aussi,             L y L y b L L y n n n n o          2 / 1 1 2 lim 1  (2.1a)
Plus loin, par des dérivations successives (à chaque dérivation, les coefficients de développement sont corrigés en tenant compte de l'existence des points de discontinuité) on retrouve les expressions des développements en série pour les dérivées d'ordre supérieur, lorsque sont connues leurs valeurs aux points à la limite de l'intervalle de définition. Par conséquent, la solution particulière y(x) de toute équation différentielle ordinaire linéaire avec des coefficients constants, homogène ou inhomogène, quel que soit l'ordre de l'équation, si elle est définie sur n'importe quel intervalle [-L, L], ou équivalent, peut être déterminée si y(x) est de carré intégrable, en calculant les coefficients de son développement en série sinusoïdale, si les valeurs de la fonction et de ses dérivées sont connues aux points des extrémités de l'intervalle (conditions aux limites). Les solutions des équations peuvent être trouvées pour d'autres types de conditions aux limites aussi. Pour illustrer cela, nous appliquerons la méthode dans le cas d'équations linéaires homogènes à coefficients constants, sur l'intervalle [-π, π], pour quelques équations simples: Exemple 2.1: y' = a, (2.4) avec la condition à la limite y(0)=C. Pour l'intervalle choisi, on peut écrire:

            a y y nx n A nx y y n B n n n n n                             2 sin cos 2 1 2 1 1 (2.5) → An=0,       n y y B n n 1 1 2 2         ,       a y y y o          2
Pour la valeur moyenne y0, il n'y a aucun conditionnement, donc ça peut prendre n'importe quelle valeur K. Donc:

    K ax K nx n a x y n       sin 1 2 1 . Pour y=0 → y(0)=K=C.

Pour a=0 → y(x)=K Exemple 2.2: y' = ay,

(2.6) avec la condition à la limite y(π)=C. A partir des relations (2.2) et (2.6), on obtient:

    o y ay  0 , n n nA aB   → a nA B n n /   , pour n=1, 2, 3, ...∞ et       o n n n y A a n aA 1 2 2     →       o n n y a n a A 2 2 1 2    →       o n n y a n n B 2 2 1 2     et donc:                    1 2 2 sin cos 1 2 1 2 n n o a n nx n nx a a y x y   (2.7)
On reconnait ici, pour yo(π)=sinhaπ, le développement en série de Fourier de la fonction y(x)=e ax , pour lequel y(π)=e aπ , et pour yo(π)=Ksinhaπ, le développement en série de Fourier de la fonction y(x)=K•e ax (la solution générale), pour lequel y(π)=Ke aπ , et y(-π)=Ke -aπ . En conclusion, pour y(π)=C → K=Ce -aπ , la solution particulière étant y(x)=Ce a(x-π) .

Pendant la résolution de l'équation, est apparue la contrainte 

              o n o n n n n o e y nx y n B nx n A y y x y                        cos 1 2 sin 1 1 (2.8)                     e n o n n e n n y nx y n n B nx y n A y                                 1 2 2 sin 1 2 cos 1 2
(2.9) et par l'égalité avec a 2 y on découvre que: =e ax . Mais, parce qu'il n'y a pas des contraintes entre les coefficients des deux composants (pairs et impairs), chacun d'eux peut être une solution: y1=cosh(ax) et y2=sinh(ax) (pour fo(π)=0, respectivement f'e(π)=0). Par conséquent, la solution générale de l'équation est y(x)=C1cosh(ax)+C2sinh(ax). La solution particulière résulte de: y(π)=C1cosh(aπ)+C2sinh(aπ)=K1 et y'(π)=aC1sinh(aπ)+aC2cosh(aπ)=K2 Exemple 2.4: y'' = -a 2 y De la relation (2.10), en remplaçant a 2 avec -a 2 , on a: 

    2 0 a y y e   ,       e n n y a n A     2 2 1 2 et       o n n y a n n B 2 2 1 2     , donc                          
                        nx y n nx
                  nx a n nx a a a n a a ax ax x y n sin sin cos sin 1 2 sin sin cos 2 2 1      
Par conséquent, la solution générale de cette équation est y(x)=C1cos(ax)+C2sin(ax).

Exemple 2.5: y''+ay'+by=0

En remplaçant dans l'équation la fonction inconnue et ses dérivées par leurs développements en SFS: 

                    0 sin 1 2 cos 1 2 1 2 0 1 2 1 2                                      
       b ay y y o e     0 ,                       o e n n n ay y an an b n A B 1 2 2 ,       o n n n y a an b n B A 1 2 2      →                a y an b n an ay y an b n A A o n o e n n n 1 2 1 2 2 2 2                                 o e n n y b n a b n y b bn n a n A          2 2 2 2 2 2 4 2 1 2 2 →                                                                                    
        a b a a  et 2 2     a                                        o e n o n n n ay y an an b n y a an b n B B 1 2 1 2 2 2 2               e o n n y an b a n y n b bn n a n B          2 2 2 2 2 2 4 1 2 2 →                      2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2                                                       n n y a b a n y n a n a n y a b a n y n B e o n e o n n Pour         1 1 1 1 . sinh 2 sinh C a C y o      et             1 . 1 1 1 1 1 . sinh o e y C y    :             1 1 1 1 . 1 1 . 1 1 . 1 1 . 1 1 1 . 0 sinh 2 4 2 2            C a b b y C b a a y C b ay C y C y o o o o                              2 1 2 1 1 1 2 2 2 2 1 2 2 1 2 1 1 1 1 . sinh 1 2 sinh 1 2                       n C n n a b n C A n n n             2 1 2 1 1 2 2 2 2 1 2 1 2 2 1 1 1 . sinh 1 2 sinh 1 2                     n n C n n a b a n n C B n n n , Et pour         2 2 2 2 . sinh 2 sinh C a C y o      et             2 . 2 2 2 2 2 . sinh o e y C y    :   2 2 2 2 . 0 sinh    C y  ,     2 2 2 2 2 2 2 . sinh 1 2         n C A n n ,     2 2 2 2 2 2 . sinh 1 2        n n C B n n
Les deux solutions sont indépendantes. Par conséquent, la solution générale de l'équation est:

-pour b a 4 2  :                           x b a a C x b a a C x y 2 4 exp 2 4 exp 2 2 2 1 -pour b a 4 2  :                                      x b a C x b a C x a x y 2 4 cos 2 4 sin 2 exp 2 2 2 1 -pour b a 4 2  : 2 2 1 a      .           x a C x y 2 exp 1 1
est une solution de l'équation. On peut chercher une deuxième solution, sous la forme

      x y x u x y 1 2



. Par la méthode de "la réduction de l'ordre" [4] on trouve pour  

L x n D L x n C u x u n n n n   sin cos 1 1 0          la condition:               0 sin 1 2 cos 1 2 1 2 2                                         e n o n n e n n u nx u n n D nx u n C u →   0     e u ,     0 1 2 2        e n n u n C → Cn=0,       n u D o n n 1 2   →   2 1 C x C x u  
On note que pour tous les ODE à coefficients constants, quel que soit le degré de l'équation, les coefficients de développement de la fonction inconnue sont fournis par une équation pour déterminer la valeur moyenne et une paire d'équations pour chaque harmonique du développement. 

  nx B nx A y x y n n n n sin cos 1 1 0          et         1 1 sin 1 2 n n nx n x
, on a:

                                 1 1 1 1 sin 1 2 cos 1 2 sin n n o n o n n n n nx n y nx n y B n nx n A     → y0=K (arbitraire), yo(π)=0, →     0 1 2      n y B o n n → Bn=0 et An=   2 1 1 2 n n   On reconnait le développement:   nx n x n n cos 1 2 6 1 2 1 2 1 2        →   C x x y x y      2 6 1 2 2 2 0 Exemple 2.7: y'=x 2 .           nx n y nx y n B nx n A n n o n o n n n n cos 1 4 3 cos 1 2 sin 1 2 1 2 1 1                              → y0=K (arbitraire), →   3 3    o y , 0  n A ,              1 3 1 2 1 1 4 3 1 2 n n n n n n B  , →       C x nx n n y x y n n n                   3 cos 1 4 3 1 2 3 1 3 1 2 1 0 

ODE linéaires à coefficients variables

Une équation différentielle linéaire d'ordre m avec des coefficients variables, non homogènes, de la forme fm(x)y (m) +...+f2(x)y''+ f1(x)y'+ f0(x)y=g(x) peut être résolu, sur l'intervalle [-L, L], si y (i) (x), fi(x) et g(x), i=0, 1, 2, ...,m, sont des fonctions de carré intégrable, en déterminant les coefficients An et Bn , n=1, 2, ..., ∞, du développement en SFS de la fonction inconnu y(x):

  x B x A y x y n n n n n n            1 1 0
sin cos si les valeurs de la fonction et de ses dérivées sont connues aux points situés aux extrémités de l'intervalle. Si nous ne connaissons pas leur valeur qu'à l'une de ces extrémités, la relation (2.1a) nous permet également de trouver l'autre. Si L est pris comme paramètre, des estimations peuvent être faites, si L→∞, pour toutes les valeurs sur l'axe réel pour lesquelles les conditions d'intégrabilité au carré sont remplies. À partir des relations (2.1)-(2.3) de la sous-section précédente, par dérivations successives, nous trouverons les expressions des développements en série pour les dérivées d'ordre supérieur (si leurs valeurs aux extrémités de l'intervalle de définition sont connues). En utilisant des relations similaires aux relations (1.9) et (1.10) antérieurement déterminées (relations pour les coefficients du produit des deux fonctions), ainsi que des relations déduites de la formule d'intégration par parties on peut obtenir des expressions (dépendantes de An et Bn) pour les coefficients Pn et Qn du développement en série pour les termes de la forme fi(x)y (i) , lesquelles sont introduits dans l'équation de base, simultanément avec l'expression du développement en série de la fonction g(x). En simplifiant la relation résultante (regroupant les termes qui ont comme facteur commun l'un des éléments de la base du développement, y compris ici aussi la fonction unitaire 1), on obtient l'expression du développement en SFS d'une fonction de valeur identiquement nulle. Par conséquent, tous les coefficients de ce développement (expressions algébriques dans lesquelles apparaît les coefficients An et Bn) sont nuls et donnent naissance à des relations (équations algébriques) qui permettent le calcul des inconnues An , Bn et f0 . La méthode est similaire à celle dans laquelle ces termes sont déterminés en remplaçant la fonction y(x) par son développement en série de Taylor. Les coefficients d'ordre N, PN et QN, des développements des produits fi(x)y (i) sont des séries numériques qui peuvent également contenir des quantités infinies de termes décroissants ou alternants décroissants. Lorsque ces sommes peuvent être calculées (elles peuvent être réduites à une somme finie de termes), on obtienes des équations exactes, et en les résolvant, on obtienes des valeurs exactes pour les coefficients du développement de la fonction inconnue y(x). Pour cela, il est nécessaire que les coefficients du développement en SFS des fonctions fi(x) puissent être calculés avec exactitude (les intégrales d'Euler que leur correspond puissent être calculées avec un nombre fini de termes). Au contraire, on peut limiter au premier N, le nombre de termes de ces séries. Ainsi, 2N+1 équations approximatives seront obtenues, avec 2N+1 variables inconnues, par la résolution desquelles sont obtenues des valeurs approximatives pour y0, An et Bn. Pour la fonction y(x) on obtienne une valeur approximée par la somme de Fourier SN. Plus élevé est le nombre N de termes, meilleure est l'approximation. Dans certains cas, les solutions des équations pour certains des coefficients peuvent être déduites en comparant les termes des équations avec les termes des développements en série de certaines fonctions connues, ce qui facilite la recherche de la solution globale. Une situation fréquent est celle des équations à coefficients polynomiaux. Si les conditions aux limites sont données (les valeurs de la fonction inconnue y et de ses dérivées aux extrémités de l'intervalle considérée), elles sont suffisantes pour écrire les équations qui déterminent les coefficients An și Bn . Si y(x), y (m) (x), fi(x) et g(x) sont des carré intégrable sur l'intervalle [-L, L], les relations (1.12)-(1.17) et ceux qui peuvent en être dérivés, fournissent des relations de calcul pour tous les coefficients du développement en SFS des termes de ces équations. Voilà, par exemple, les relations calculées pour les termes des équations du premier et du second ordre, ayant des coefficients polynomiaux du premier et du deuxième degré. Si

  L x n B L x n A y x y n n n n   sin cos 1 1 0         
, alors: 

            L x n l n A n n A n y L L x n l n lB n B L B n L yx n l l l l n n n n l l l n l n n n n SFS      sin 1 1 2 2 1 2 cos 2 1 2 1 1 2 2 1 1 0 1 2 2 1 1                                                                                               L x n l n l n A n n A n y L n A y L yx n l l l n l n n n n n SFS     cos 1 4 6 3 2 1 4 1 2 3 1 2 2 2 2 2 2 2 2 2 0 2 2 1 2 2 0 2 2       L x n l n lB n n n B L n l l l l n n    sin 1 8 6 3 2 1 2 2 2 2 2 2 2 2                             L x n l n lB n B L x n l n A l A A x y n l l l l n n n l l l n l n n n n SFS   sin 1 1 2 2 cos 2 1 2 1 1 2 2 1 1 2 2 2 1                                                                              L x n l n A l n n n A L L x n l n l n L L y l n l n l B L L n n n B L n n L y n L y n B L L L y x y n n l l l l n n n n l l o l l n n o n n o n n o SFS           sin 1 8 6                                                                                                     L x n l n L y L l n l A n L n A n L y L x n L L y L lB l n l L L y L n B L L y B L n x y n n l l e l l n n e n n n l l o l l n o n n n o n n SFS          sin 1 2 1 1 2 2 1 3 cos 2 2 1 1 1 2 2 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 1 1                                                                                                                                   L x n
                                                                                        
Par exemple, une équation de type Euler, non homogène  

x g by x y a x y       2
, après avoir utilisé ces relations et après le développément en SFS de la fonction

  L x n Q L x n P g x g n n n n   sin cos 1 1 0         
, conduit aux équations algébriques suivantes:

                   1 0 0 1 1 1 2 n n n n n n e g by A a A L L y →                      n n n e A a L L y g b y 1 0 0 1 2 1 ,
puis, pour chaque nN + :

                        n n n l l l n l n n l l e l l n n e n P bA l n A l a A a l n l n L L y L l n l n l A n A n n L L L y                                      1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 1 2 8 4 1 1 6 3 2 6 15 2 1 2                           n n n l l l l n n n l l l o n l l l n l o n n Q bB l n lB an B a n l l L L y nL n l B l n L y nB n n                                       1 2 2 1 1 2 2 2 2 1 2 2 2 3 2 2 1 1 2 2 1 16 1 8 1 2 6 3 2    

ODEs non linéaires

La détermination de la solution en calculant les coefficients de son développement en série de Fourier sinusoïdale peut être aussi appliquée avec succès aux ODEs non linéaires, avec des non-linéarités polynomiales, des équations dont les termes ne contiennent pas que des puissances naturelles de l'inconnu, ses dérivés et leurs produits. Les coefficients de ces termes peuvent être constants, ou variables. À partir du développement 
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On peut voir que pour obtenir les valeurs des coefficients de Fourier de l'inconnu y(x), il est nécessaire de résoudre certaines équations algébriques du second ordre ou plus, si le degré de non-linéarité augmente. On peut également remarquer que si, dans l'un des types d'équations analysés, les substitutions opérées pour résoudre l'équation sont faites en utilisant les sommes partiels SN (avec 2N+1 termes) au lieu du développement entier (avec un nombre infini de termes), on obtienne une ODE approximative, l'approximation étant d'autant meilleure que le N est plus grand. Pour le résoudre, il faut résoudre un système de 2N+1 équations algébriques, problème pour lequel il existe des nombreux programmes de calcul électronique. Par conséquent, il est possible de développer un algorithme simple, universel et précis pour résoudre ces types d'ODEs.

Méthodes de résolution d'équations différentielles

Les exemples examinés dans la section précédente ont souligné qu'en remplaçant certains termes des ODE par leurs développements en SFS/SFN, l'équation initiale reste, ou peut devenir, linéaire. Dans le cas général, la fonction inconnue y(x) est remplacée par une somme infinie:
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Si tous les termes de l'équation donnée peuvent être remplacés par des combinaisons des fonctions Rn(x), respectivement Pn(x) et Qn(x), une superposition d'équations indépendantes est obtenue qui, en raison de la linéarité de l'équation, est réduite à un système d'équations algébriques (les fonctions yn(x), respectivement yen(x) et yon(x) sont parfaitement déterminées en déterminant les coefficients Cn , respectivement An și Bn).

Les exemples analysés (2.1-2.7) ont également mis en évidence le fait que cette méthode permet de déterminer, dans de nombreux cas, une solution exacte, exprimée sous une forme fermée. Dans des nombreuses autres situations (par exemple, pour les ODEs à coefficients variables), on obtienne des solutions exactes, exprimées sous une forme des sommes infinies de termes. Pour être utiles en pratique, ces formes peuvent être approximées en négligeant les termes les moins significatifs: l'approximation de la solution. La solution approximative est déterminée à tous les points de l'intervalle, sans interpolation requise, comme dans des nombreuses autres méthodes approximatives courantes.

Dans de nombreuses autres situations, pour résoudre l'équation, l'approximation du développement en série doit se faire en avant d'arriver à la solution exacte: l'impossibilité de résoudre le système d'équations algébriques de dimensions infinies, résulté par le traitement d'ODE, l'impossibilité de déterminer par des calculs analytiques les coefficients de Fourier, etc. On peut considérer que nous avons eu recours à une approximation de la méthode. Dans ces situations, on obtienne aussi une solution exprimée sous une forme fermée (une somme finie des premières 2N+1 harmoniques). Dans ce cas aussi, les valeurs de la solution sont parfaitement déterminées sur toute l'intervalle de définition.

Il existe également des situations dans lesquelles le remplacement des certains termes d'ODEs se fait par d'autres expressions qui les rapprochent, sur la base des critères empiriques, méthodologiques ou autres. Ce sont des méthodes d'approximation de l'équation. Dans la plupart des cas, cette approximation est faite en un nombre fini de points, la valeur de la solution aux points intermédiaires étant déterminée par interpolation.

Solutions des ODEs, déterminées en calculant les coefficients de son développement en séries de Fourier non sinusoïdales

Dans l'article [1], nous avons proposé une généralisation du développement en SFS des fonctions périodiques définies sur un intervalle [-L, L], généralisation par laquelle nous avons remplacé la base sinusoïdale périodique (le nom usuel est base trigonométrique) avec une base non sinusoïdale, comprenant les fonctions suivantes: la fonction unité 1, les quasiharmoniques fondamentales g(x)-paire et h(x)-impaire, périodiques, avec la période 2L, avec des valeurs moyenne nulles sur l'intervalle de définition et les quasi-harmoniques secondaires, définis sur [-L, L], gn(x)=g(nx) et hn(x)=h(nx), avec la période 2L/n, pour nZ + . Les quasi-harmoniques fondamentales g(x) et h(x), définies sur l'intervalle [-L, L], peuvent être toutes fonctions admettant des développements en série sinusoïdale, étendus sur l'axe réel, par des translations successives: pour L'article [1] mis en évidence un large éventail d'applications possibles de ce nouveau type de développement en série, en soulignant la diversité des solutions possibles pour chacun d'entre eux, illustrée par les différentes façons d'approximer les fonctions. Concernant la résolution des équations différentielles, dans la section précédente, nous avons analysé une nouvelle méthode de résolution, en remplaçant la fonction inconnue par son développement en SFS et en résolvant les équations algébriques résultantes. La méthode est également applicable aux développements en SFN, à condition qu'à travers les opérations de dérivation/ intégration aucun élément d'une autre base de développement n'apparaisse (donc, seulement pour les bases composées des fonctions circulaires, hyperboliques, exponentielles). En utilisant cette méthode, peuvent également être capitalisés les avantages offerts par la possibilité d'utiliser des bases orthogonalisées, bien que cela implique un volume de calcul supplémentaire.

tout R x R  , on définit la fonction K(xR)=E[(xR -x1)/2L], tel que pour chaque R x R  et chaque   L L x ,   ,

Méthodes de résolution d'équations différentielles par l'approximation de la solution

Dans certains ODEs, il n'est pas nécessaire de remplacer tous les termes de l'équation différentielle par leurs développements en séries de Fourier sinusoïdales/non sinusoïdales. L'équation qui résulte par le remplacement seulement des certains termes, même lorsqu'elle n'est pas linéaire, peut conduire à une équation plus facile à résoudre que l'équation initiale, en utilisant des procédures classiques d'intégration/dérivation (la méthode est fréquemment appliquée dans la pratique actuelle par des techniques de linéarisation d'équations non linéaires). Nous illustrerons ces énoncés en résolvant une équation inhomogène très simple: y'=x (4.1) avec la condition y(0)=y0 Nous sélectionnerons pour commencement une série des développements en série de Fourier [1], qui seront utiles:
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A partir des deux premières relations, nous pouvons écrire les développements en séries non sinusoïdales:
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Pour l'intervalle [-L, L] le terme inhomogène de l'équation (4.1) peut être développé dans une série sinusoïdale, ou dans une série non sinusoïdale (pour la dernière variante les possibilités étant multiples), ce qui fait qu'en utilisant la notation réduite, on peut écrire:
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Par intégration:
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Dans tout les deux variantes, la solution particulière est y-y0=x 2 /2. On remarque que la dérivée de la fonction paire ye(x) est une fonction impaire qui peut être développée en série de fonctions impaires, avec la valeur moyenne nulle, avec la base h(x): Elle est résolu de la même manière que les équations précédentes. Il convient de noter qu'en raison du coefficient négatif de cette quasi-harmonique, la position θ=0 est une d'équilibre instable. Pour -π/10< θe<π/10, la trajectoire du pendule est divergente. La solution générale de l'équation équivalente est la somme de toutes les solutions partielles: θ(t)=Σθn(t). C'est aussi la solution exacte de l'équation donnée, exprimée comme une somme infinie de solutions partielles, chacune de ces solutions ayant des expressions différentes sur des sous-intervalles différents. Pour que cette solution soit pratiquement utile, nous ne retiendrons que les N premières solutions partielles (l'approximation de la solution). Le même résultat est atteint en approximant la méthode, si à partir du développement en SFN de la fonction sinθ on retient les premiers N termes. 

   

Conclusions

Nous avons essayé ici, à l'aide de quelques exemples simples, de prouver que la méthode de résolution des équations différentielles en déterminant les coefficients du développement en séries sinusoïdales ou non sinusoïdales de la fonction inconnue est une méthode particulièrement solide, applicable à tous les types d'équations différentielles et intégrodifférentielles, linéaires et non linéaires, d'équations aux dérivées partielles, des systèmes de telles équations, quels que soient leur ordre et quels que soient la complexité des coefficients.

  values over the interval [x1, x2], 2, 3, ..., ∞) are Fourier-functions (continuous functions, precisely the expansions in SFS of the functions g(nx) and h(nx), defined on [-T/n, T/n].



  where the function g(x) is a function of L 2 defined on the interval [0, L/2], S[g(x)]L and C[g(x+L/2)]L are the functions called quasi-sinusoids, derived from it

  For yo(π)=sinh(aπ) and y'e(π)=a•sinh(aπ), we recognize the series expansion of the function:



  All the coefficients of this expansion are zero:

  is the floor function (k is the nearest integer less than or equal to x, namely E(x)≤ x<E(x)+1. The secondary quasi-harmonics are obtained by the dilation of these fundamentals: gn(x)=gn[x-2L•E[(x+L)n/2L]. The function gn(x) receives on the interval [2L(2k-1)/n, 2L(2k+1)/n], the same values with those that g(x) receives on the interval [-L, L]. We have introduced the simplified notation for this function: gn(x)=G[-L/n<g(nx)>L/n]n , où nN + .



  .16) with the initial conditions: θ1.0=θ1(0) = θe and 0 and with the solution:

Figure 2 .

 2 a. graphically shows the solutions for the first harmonic in the case of zero initial velocities, for initial positions greater than and less than -π/2, and Figure2.b., for nonzero initial velocities.

Fig. 2 .

 2 Fig.2. a: first order partial solutions for v0=0, -π/2< θ01, θ02<0 and -π< θ11, θ12<-π/2. b: for v0≠0 c: third order partial solutions for v0=0 și θe<0

Fig. 3 .

 3 Fig.3. The general solution and the partial solutions of order 1, 3 and 5 for v0≠0

  .20) where the variable θ can have values in the interval [-π, π], Π1(θ)= Π[-π(-1)0(1)π], et Πn(θ)= Π[-π/n(-1)0(1)π/n]n .

  θe). A pendulum that starts from the position θ01=θe with the speed v01=0, arrives after the time t=T1/4 in the position θ1=0 (where the force which acts on it changes direction) with the speed the inertia, the pendulum continues to move towards the position θ1=-θe , where it arrives after the temp t=T1/4, with the speed v1=0. Under the action of the same system of forces, the pendulum continues its movement in the opposite direction and after another quarter of period, it finds the position θ1=0, this time with new change in direction of the force, after another quarter of a period, the pendulum returns to its position θ1=θe, with the speed v1=0. The oscillations continue with the T1 period. With the notations A=πω 2

  a, we have represented, for the fundamental harmonic, three of these partial solutions, for different values of the equivalent initial position θe: two for θe[-π,π] (red line) and one for θe[-π, π] (dotted black line); with a dotted green line, we have represented the fictitious continuation of the quasi-sinusoid outside the interval [-π, π]).

Fig. 4 .

 4 Fig.4. a: Partial solutions for θe <π: order 1 (red line), order 3 (black line).For θe> π: order 1 (dotted line), rang 3 (blu line) b: solution générale



  où la fonction g(x) est une fonction de L 2 définie sur l'intervalle [0, L/2], S[g(x)]L et C[g(x+L/2)]L sont les fonctions dénommées quasi-sinusoïdes, dérivés d'elle

  [9]. Le calcul de ces coefficients est possible si les coefficients de Fourier du développement en série de chacune des deux fonctions sont connus: on doit calculerles les intégrales définies du type  certaine approximation est permis, le calcul peut être effectué par des méthodes numériques.

  Pour obtenir ces résultats, nous avons collecté des données de la littérature spécialisée [101, 2,..., ∞. Pour nN, si a=n+ε→n, c'est-à dire εR→0 et sin(aπ)=sin(nπ+επ)=sin(επ)→0. Alors,

2 .

 2 La solution d'une ODE, déterminée en calculant les coefficients de son développement en série de Fourier sinusoïdalePour résoudre les équations différentielles linéaires avec des coefficients ai(x) variables, lorsque ces coefficients sont des fonctions analytiques au point x=x0, on peut utiliser la méthode du développement en série de Taylor: x0 est un point ordinaire, ou la méthode de Frobenius:

  que An=0 impose Bn=0 , donc la solution ne peut pas avoir une seule composante (elle ne peut pas être seulement paire ou impaire). Ce fait est imposé même par la relation d'égalité (2.4). Donc fo(π)/π≠0, par conséquent, toujours y0≠0. Exemple 2.3: y'' = a 2 y, avec y(π)=K1 et y'(π)=K2. Parce que:

  Pour yo(π)=sinh(aπ) et y'e(π)=a•sinh(aπ), on reconnait le développement en série de la fonction:

  pour yo(π)=sin(aπ) et y'e(π)=-a•sin(aπ) nous reconnaissons, pour aZ, le développement en série de la fonction:



  Tous les coefficients de cette development sont nuls:

Exemple 2 . 6 :

 26 y'=x Même dans le cas d'ODEs non homogènes à coefficients constants, il n'y a pas d'équations significativement plus difficiles à résoudre. Par exemple, si dans cette équation, sur l'intervalle [-L, L], nous faisons les remplacements:

1 L 10 )

 110 'intégration de cette relation de dérivation conduit à une relation pour le développement de la fonction paire ye(x), dans une base g(x) des fonctions paires, pour laquelle la valeur moyenne g0 peut être non nulle: On remarque également que dans l'intervalle [-L, L], chacune des équations (4.8) et (4.9) est obtenu par la superposition linéaire des sous-équations suivantes: n=1, 2, ...,∞ En résolvant ces équations partielles et en additionnant les solutions, nous obtenons les mêmes résultats que ceux obtenus en intégrant toute l'équation. Dans le cas présent, les dérivées y'n(x) des solutions partielles yn(x) sont même les harmoniques (ou quasiharmoniques) du développement en une série connue de la fonction y'.Par conséquent, la méthode peut être appliquée à toutes les équations dans lesquelles le développement en série d'un terme conduit à une équation linéaire représentée comme une superposition infinie d'équations partielles pour lesquelles la solution peut être trouvée par des méthodes de résolution classiques. n=1, 2, 3, ...,∞ (4.12)Si θ(0)=θ0, et v0=0, ces conditions initiales sont valables pour toutes les équations partielles: θn(0)=θ0, et v0n=0. Si v0≠0, le problème donné est remplacé par un problème équivalent: nous considérons la vitesse angulaire initiale v0 imposé au pendule, comme provenant de la transformation en énergie cinétique Ec=1/2•mv 2 de la partie Ep=mg(he -h0) de l'énergie potentielle du pendule de longueur l, située à une hauteur équivalente he (ce qui correspond à un angle équivalent θe). Ainsi, le problème initial est remplacé par celui dans lequel la vitesse angulaire initiale v0 est nulle et la position initiale est:Des valeurs k≠0 apparaissent quand he >2l. Pour ces cas, nous pouvons calculer vπ, la vitesse à laquelle le pendule traverse la position h=±π. Si θe et θ0 appartiennent à l'intervalle (-π, π), les solutions partielles équivalentes θn(t) ont tous, les conditions initiales:θn(0) = θe et 0 0   t n dt d, et pour he >2l: θ n(0) = π et La résolution de ces n équations partielles nous amène à trouver les n réponses partielles du système aux ces n forces périodiques agissant sur le pendule. La somme de ces réponses est la solution de l'équation pour le problème équivalent. Cette trajectoire-solution θ(t)=Σθn(t) passe par la position θ0 à l'instant te. La condition initiale au problème initial devient θ0=θ(t-te)=Σθn(t-te). Les positions θn(te) et les vitesses θn'(te) des trajectoires particulières sont enregistrées lorsque le pendule équivalent passe par la position θ0. De cette façon, l'énergie potentielle équivalente du pendule (correspondant à la vitesse initiale v0) est distribuée sur les composants partiels du système de forces total et transformée par chaque pendule équivalent selon sa propre spécificité, en énergie cinétique, résultant une vitesse angulaire initiale équivalente pour chaque équation partielle En raison des lois de conservation de l'énergie, la trajectoire du pendule, pour chaque système partiel de forces Fn , est symétrique par rapport à une position d'équilibre θmn (θ0) (pour n=1). Elle passe par les positions θm -θi avec les mêmes vitesses vi avec lequel il passe à travers les positions θm+θi , et atteint la position maximale -θe également à vitesse nulle. Si θe>π, la vitesse équivalente vπ que correspond à la position θ=π est égal à celui de la position θ=-π. Pour les mêmes raisons, les trajectoires partielles avec des vitesses initiales θe negative sont symétriques par rapport à l'axe θ=0 avec ceux dont la vitesse initiale θe est positive.De (4.12), pour n=1, on obtient l'équation partielle , où g1(θ)=Xo[-π<-θ-π >-π/2<θ >π/2<-θ+π >π], qui se résout successivement, pour chaque sous-intervalle dans lequel la force exercée sur le pendule a une certaine loi de variation. Pour -π/2<θe<π/2, sur le sous-intervalle [-π/2 , π/2] la force augmente uniformément d'une valeur négative à une valeur positive, l'équation est harmonique et la solution est: Pour -π<θe<-π/2, l'équation partielle prend des formes différentes pour des sous-intervalles différents. Sur le sous-intervalle [θe , -π/2] l'équation prend la forme: Les équations (4.16) et (4.18) permettent de trouver le moment t1.1 de commutation de la champ des forces, c'est-à-dire le moment où θ1=-π/2, puis la vitesse angulaire du pendule à partir de ce moment:
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 212 Fig.2. a: des solutions partielles de premier ordre pour v0=0, -π/2< θ01, θ02<0 et -π< θ11, θ12<-π/2. b: pour v0≠0 c: des solutions partielles de troisième ordre pour v0=0 și θe<0 Pour n=3 on a l'équation
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 2 où n=1, 2, 3, ...,∞, avec les conditions initiales (4.21). Les solutions de ces équations, pour tout les sous-intervalles [tk , tk+1] dans lequel Πn(θ)=ct sont: θn(t)= -ω0 2 BnsgnΠnk(t-tk)2 /2+v0k(t-tk)+θ0k , pour k= 0, 1, 2, 3, ..,n, ... (4.22) où sgnΠnk est le signe des fonctions Πn(θ) pour le sous-intervalle [θk , θk+1], tk sont les moments des commutations de la fonction Πn(θ), θ0k et v0k sont les conditions initiales pour l'équation valable sur ce sous-intervalle (les valeurs finales du sous-intervalle précédent). La vitesse du pendule pour chaque système des forces est uniformément accélérée: Pour n=1,le point θ=0 c'est un point d'équilibre stable. Quelle que soit la position initiale du pendule, il tend à atteindre une position d'équilibre stable et oscille autour de cette position, décrivant une quasi-sinusoïde construite sur la base d'un polynôme du deuxième degré. Cette courbe aura les points d'inflexion situés sur l'axe θ=0. Les oscillations auront l'amplitude θe et la période dθe). Un pendule que départs de la position θ01=θe avec la vitesse v01=0, arrive après le temps t=T1/4 en la position θ1=0 (où la force qui agit sur lui change de sens) avec la vitesse 2 de l'inertie, le pendule continue de se déplacer vers la position θ1=-θe , où il arrive après le temp t=T1/4, avec la vitesse v1=0. Sous l'action du même système de forces, le pendule continue son mouvement dans la direction opposée et après un autre quart de période, il retrouve la position θ1=0, cette fois avec la vitesse 2 Après un nouveau changement de direction de la force, après un autre quart de période, le pendule retrouve sa position θ1=θe, avec la vitesse v1=0. Les oscillations continuent avec la période T1. ) =X1 2 =X 2 [0 *(θe-At 2 )*T*(-θe + A(t-T) 2 ) *3T*(θe-A(t-3T) 2 ) *4T]1 (4.23) Si les conditions initiales changent: θ0=θe et v1(0)≠0, la solution de l'équation change sa période, son amplitude et son déphasage initial. La solution partielle d'ordre n de l'équation (4.20) aux conditions initiales (4.21) est également un polynôme quasi-sinusoïdal de deuxième degré:(4.24) θn(t) =Xn 2 =X 2 [0 *(-θn+At 2 /n)*Tn 1/2 *(θn -A(t-T/n) 2 ) *3 n 1/2 *(-θn+A(t-3T/n) 2 ) *4T n 1/2 ]n, où θn = θe-θm . Cette courbe a tous les points d'inflexion situés sur l'axe θ=θm . L'oscillation a l'amplitude θe-θm et la période d'4.a, nous avons représenté, pour l'harmonique fondamentale, trois de ces solutions partielles, pour différentes valeurs de la position initiale équivalente θe: deux pour θe[-π,π] (ligne rouge) et un pour θe[-π, π] (ligne noire en pointillés); avec une ligne verte en pointillés, nous avons représenté la continuation fictive de la quasi-sinusoïde en dehors de l'intervalle[-π, π]
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 4 Fig.4. a: Des solutions partielles pour θe <π: rang 1 (ligne rouge), rang 3 (ligne noire). Pour θe> π: rang 1 (ligne pointillée), rang 3 (ligne bleue) b: solution générale
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  Dans la littérature anglaise, on utilise le nom de floor function). Les quasi-harmoniques secondaires sont obtenues par la dilatation de ces fondamentales: gn(x)=gn[x-2L•E[(x+L)n/2L]. La fonction gn(x) reçoit sur l'intervalle [2L(2k-1)/n, 2L(2k+1)/n], les mêmes valeurs que celles qu'il reçoit g(x) sur l'intervalle [-L, L]. Nous avons introduit pour cette fonction la notation simplifiée: gn(x)=G[-L/n<g(nx)>L/n]n , où nN + .Les coefficients An et Bn du développement en SFN de la fonction f(x) sont obtenus au moyen des relations algébriques entre les coefficients de Fourier des développements en SFS des fonctions f(x), g(x) et h(x).

il y a les relations xR=x+KT et

g(xR)=g(xR-KT)=g(x). E(x)=  

x =k, est la fonction partie entière (k est l'entier le plus proche inférieur ou égal à x, c'est à dire E(x)≤ x<E(x)+1.

  Ces valeurs deviennent les conditions initiales de l'équation harmonique dans le sous-intervalle [-π/2 , π/2], valable pour t>t1.1. La solution est: =0, on peut calculer l'instant t1.2 du passage par le point d'équilibre. Plus loin, l'évolution du pendule est symétrique par rapport à ce point. Le pendule atteint la position θ1(t)=-θe après le temp 2t1.2 et continuera avec une trajectoire symétrique par rapport à l'axe t=2t1.2, pour arriver après un temps total tt=4t1.2 de nouveau en position θ1(t)=θe et pour continuer une trajectoire périodique avec la période T=4t1.2. La figure 2.a. montre graphiquement les solutions pour la première harmonique dans le cas des vitesses initiales nulles, pour des positions initiales supérieures et inférieures à -π/2, et la figure 2.b., pour des vitesses initiales non nulles.
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	Maintenant, de θ1(t)			

  ). La solution générale de l'équation équivalente est la somme de toutes les solutions partielles: θ(t)=Σθn(t). Une approximation de la solution est obtenue en additionnant les N premières solutions partielles, où N doit être suffisamment grand pour obtenir une erreur satisfaisante. Pour une valeur t=te, la somme est nulle: Σθn(te)=0. Comme le montre la figure4b, pour le moment te, chaque solution partielle fournit une valeur θn(te)=θn0 et une vitesse vn(te)=vn0. Ce

sont les conditions initiales des composantes de l'équation d'origine. La solution de l'équation est θ(t)=Σθn(t-te). Avec les notations de (4.23) et (4.24) nous pouvons avancer une nouvelle expression pour le mouvement du pendule: θ(t)=ΣXn 2 , pour t > te .

La linéarisation de l'équation différentielle du pendule gravitationnel, en introduisant une somme infinie de fonctions rampe

Nous appliquerons la méthode de linéarisation des équations non linéaires à l'équation du pendule gravitationnel:

Dans une approche classique [13], l'équation est résolue par la méthode d'approximation de l'équation, en remplaçant sinθ≈θ, acceptable pour   

dont les coefficients sont: d1=4/π, d2=0, d3=-4/9π, d4=0, d5=4/25π, d6=0, d7=-4/49π, d8=0, d9=4/81π, d10=0, d11=-4/121π, d12=0, ... Pour la fonction f(θ)=sinθ, nous pouvons écrire:

, pour n= 2, 3, .., ∞. On obtient l'équation linéaire:

Pour une certaine valeur t=te, la somme θ(t)=Σθn(t) est nulle: Σθn(te)=0. Comme le montre la Fig. 3 (pour simplifier nous avons choisi le cas θ0=0), à ce stade, chaque solution partielle a une valeur θn(te)= θn0 et une vitesse vn(te)=vn0. Ce sont les conditions initiales pour les composantes de l'équation initiale.

Fig.3. La solution générale et les solutions partielles d'ordre 1, 3 et 5 pour v0≠0

La linéarisation de l'équation différentielle du pendule gravitationnel, en introduisant une somme infinie de fonctions rectangulaires

Le développement en séries de Fourier non sinusoïdal que nous avons choisi pour la linéarisation de l'équation (4.11) est le plus proche de l'approche traditionnelle, mais ce n'est qu'une des nombreuses possibilités offertes par la méthode que nous proposons. Une autre solution intéressante est le remplacement dans l'équation de la fonction sinθ avec son développement en série infinie d'impulsions rectangulaires périodiques:

où la variable θ peut avoir des valeurs dans l'intervalle [-π, π],

Comme dans l'approche précédente, les conditions initiales du problème équivalent sont:

où θe est l'angle équivalent, correspondant à la hauteur équivalente he.

Soit Bn les coefficients du développement

, les coefficients du développement de la fonction sinθ sont:

, pour n= 2, 3, .., ∞ Tous les coefficients, à l'exception de ce de la quasi-harmoniques fondamentales, sont négatifs. L'équation linéaire (4.20) est la superposition d'un nombre infini d'équations du type: