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Abstract

With the ever increase of the complexity and the importance of industrial systems,

diagnosis techniques allowing to detect, locate and identify any abnormalities in the

system as early as possible, have attracted a lot of attention over the past years. In this

paper, we present a diagnosis method for nonlinear dynamical systems, called sparse

recovery diagnosis (SRD), based on a dynamical algorithm that estimates a sparse fault

vector from few system measurements. The term sparse means that many faults can

be considered but only few of them can occur simultaneously. In order to illustrate the

performances of this diagnosis method, we apply it to a gear power transmission. This

dynamical system is among the most important mechanical components in industrial

systems. The gear power transmission model considered in this paper is composed

by a two-stage gear for which we take into account the torsional e�ect of the gears.

Di�erent sensor and mechanical faults perturbing its operating mode will be modeled

and detected by the SRD method.

Keywords: Diagnostic, fault detection, sparse recovery diagnosis, gearbox system, gear
power transmission, mechanical faults, sensor faults.

1 Introduction

The diagnostic of industrial systems is one of the most important tasks that ensures the
continuity of the production, the safety and the economic aspects in the industries. For
these reasons, many diagnosis methods enabling early fault detection have been developed
in the literature (see for example, the following surveys [27], [17]). The presence of faults
is very often the cause of system performances degradation, and even the damage and the
collapse of the whole system. An unexpected fault can a�ect either the sensors leading to
measurement errors (in that case, the fault is called a sensor fault) or the components of
the system leading to a change of the system properties (in that case, the fault is called an
operating fault).

*corresponding author: syrine.derbel@ensea.fr
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The faults diagnosis consists in three important steps: fault detection, fault location and
fault identi�cation. The �rst step enables to detect the presence of a malfunction in the
system. Fault isolation consists on determining the location of faulty components, while
fault identi�cation allows to identify the type, shape and size of the appeared fault. In
general, diagnosis methods are based on the concept of redundancy (see , for example, [17],
[24]) which can be of two types: hardware or analytical redundancy. The key idea of the
hardware redundancy is to compare duplicated measurements using multiple hardware (for
instance, sensors) for the same components and input signals. This comparison allows to
take the best diagnostic decision by using di�erent methods such as majority voting, limit
checking, etc. The analytical redundancy uses speci�c information given by a mathematical
model or historic system data, or signals information. It includes the model-based methods,
the signals-based methods and the data-driven methods. Model-based methods such as
parity space techniques, observers' methods and parameters estimation have been the object
of many papers (see, e.g., the surveys, [22], [25], [28]). Signals-based methods are discussed
and applied in many works (see, e.g., [30], [2], [31] and [17]). They contain time domain,
frequency domain and time-frequency domain methods. Finally, data-driven techniques,
including neural networks and fuzzy logic methods, have been the aim of several research
works (see, e.g., [13], [17]).

In this paper, we present a diagnosis method (that we will call sparse recovery diagnosis,
or simply SRD method) for nonlinear dynamical systems. The SRD method is inspired from
sparse recovery methods ([5], [4]) which are well know in the �eld of signal processing (where
they are often applied for medical imaging and image processing, see, e.g., [9], [18]). From a
fault detection point of view, other methods based on similar theories (like compressing sens-
ing theory, sparse decomposition and impulse signal recovery) have been already developed
in the literature (e.g., [11], [38], [19], [23], [32]). They are based on the extraction of the fault
features through a sparse representation in a speci�c base (like Fourier, wavelet or cepstral
transforms, etc, for a spectral representation). In many works on fault diagnosis via sparse
recovery techniques, fault characteristics are directly extracted from a small number of ran-
dom projections without reconstructing the vibration signal completely and with prior fault
characteristic frequency knowledge required. On the contrary, the SRD method presented in
this paper is based on an analytical system modeling and allows to detect, locate and iden-
tify di�erent types of faults a�ecting the dynamical system. The analytic model contains
the healthy and the faulty operating of the system and is given by a nonlinear state-space
representation. Whereas the previous works on fault diagnosis via sparse recovery techniques
consider the static case only, the SRD method allows to take into account operating faults
that depend on time and/or state. This is one of its most important characteristics.

The sparsity concept is introduced by the fact that the number of faults considered in the
system modeling is much greater than the number of monitoring sensors as well as by the
simultaneous appearance of the faults. This means that only a restricted number among the
modeled faults can appear simultaneously. This number depends essentially on the number
of monitoring sensors. Indeed, the SRD method takes into account a very large number of
possible faults that may act on the system, but it can be applied under the assumption that
few of them can occur simultaneously in the system. This can be seen as a limitation of
the method but it can be overcome by increasing the number of monitoring sensors (thus by
adding new sensors) allowing to obtain more system information and, therefore, to diagnose
more defects.

Another important point is that the SRD is an on line diagnosis method (where by
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on line we mean that all algorithms are solved in a continuous process and with the same
computation step).

Since the SRD method is based on a state-space representation, it belongs to the class
of model-based diagnosis methods. In the literature, many works apply or develop model-
based techniques in order to diagnose di�erent faults (see , for instance, [29], [12], [44]).
Very often they are based on residuals generation for the state variables or/and the output
variables. The created residuals represent, in general, the di�erence between the estimated
healthy variables and the real ones. These methods allow to diagnose faults by checking the
consistency between this di�erence and a threshold that is �xed to distinguish the healthy
from the faulty operating of the system or by applying some temporal and/or frequency
analysis. However, in some complex systems, model-based methods require high amount of
measurements and computational e�orts due to the existence of a large number of variables.
Moreover, each fault should have its own diagnosis algorithm to be analyzed, detected and
isolated, in particular, when similarities between di�erent residuals occur. This may render
the system even more complex or may lead to dealing with big-data problems in the case of
many various faults. From this point of view, a main advantage of the SRD method is that it
allows to consider many di�erent faults in the system modeling and, moreover, their diagnosis
is carried out by an on line diagnosis algorithm with �nite-time convergence. Furthermore,
the SRD method allows to detect, locate and isolate faults using a single algorithm. This
is not always possible for others diagnosis methods (because of a di�cult localization step
that requires some speci�c knowledge of the system characteristics, due to the lack of the
algebraic relations between di�erent system variables).

To sum up, with the help of the SRD method, a complete diagnostic (detection, location
and identi�cation) can be obtained. To illustrate its performances, we apply it to diagnose
faults in a gearbox system.

The gear power transmission has a crucial role in mechanical transmission systems and
its diagnosis depends on how faults a�ect the system. Some faults (like misalignment, eccen-
tricity) may produce amplitude modulations. On the other hand, frequency modulations can
be caused by other types of faults (such as gears cracking or �aking). Therefore, sometimes
it may be di�cult to identify the nature of the defects.

The gearbox system considered in this paper is composed by a two-stage gear and is af-
fected by di�erent mechanical and sensor faults. With the help of the SRDmethod, detection,
identi�cation and localization of the system faults are carried out. The simulation results
show the accurate reconstruction of the mechanical faults and their diagnostic is carried out
by verifying the nature of the obtained defect signal and by using some frequential/temporal
characteristics of the gear elements.

The paper is organized as follows: the next section is devoted to the general presentation
of the SRD method. Then, in the third section, we present the healthy and faulty models of
the gear power transmission system and explain how the SRD method can be applied for this
particular dynamical systems. The fourth section shows simulations results implemented on
Matlab/Simulink and discusses the good performances of the SRD method. Finally, some
conclusions are presented.

3 / 32



2 Sparse recovery diagnosis method

3 Problem statement

Table 1: Principal notations

Name Description

x State vector
f(x) Nonlinear dynamics of the system
gj(x) Nonlinear dynamics of the faults
wj jth operating fault, 1 ≤ j ≤ p
yi Measurement output, 1 ≤ i ≤ m
hi(x) Function of the measurement output, 1 ≤ i ≤ m
si Fault of the ith sensor, 1 ≤ i ≤ m
n Dimension of the system state
m Number of monitoring sensors
p Number of system faults
q Total number of faults (q = p+m)
ρi Relative degree of the output yi
Φ Matrix information
χ Measurement vector
d(t) Fault vector
s Number of simultaneously occurring faults
λ Balancing parameter
α Exponential coe�cient
L`fhi `th-order Lie derivative of the function hi

along the vector �eld f

Consider the following nonlinear state-space representation describing the healthy oper-
ating mode of the system:{

ẋ = f(x)
yi = hi(x), 1 ≤ i ≤ m.

(1)

where x ∈ Rn is the state vector, f(x) is the nonlinear dynamics, y ∈ Rm is them-dimensional
measurement output (corresponding to the sensor outputs). The point denotes the deriva-
tive with respect to an independent variable which in general represents the time. The
functions hi, for 1 ≤ i ≤ m, are supposed independent.

The appearance of faults in physical systems is often an inevitable phenomenon that, in
general, modi�es their dynamical behavior. They are modeled by the following extension of
representation (1):{

ẋ = f(x) +
∑p

j=1 gj(x)wj(t),

yi = hi(x) + si, 1 ≤ i ≤ m.
(2)

where (w1(t), · · · , wp(t))T and (s1, · · · , sm)T are vectors of, respectively, the system operating
faults and the sensor faults. All gj(x), 1 ≤ j ≤ p, are known vector �elds related to the
dynamics faults. We suppose that f , gj and hi are su�ciently smooth. All sensor faults si
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are assumed piecewise-constant functions (explaining the lack of the t-argument in (2)) of
the form:

si =

{
0, if 0 ≤ t < ti,
ai, if t ≥ ti,

(3)

for 1 ≤ i ≤ m, with ai the fault magnitude and ti the appearance time of the fault.
The total number of faults q = p + m is supposed much greater than the number of

monitoring sensors (see Assumption 3.2). It is clear that if some faults are equal to zero
(i.e., wj = 0, for some 1 ≤ j ≤ p, or si = 0, for some 1 ≤ i ≤ m), then those faults do not
a�ect the system and thus they do not disrupt the operating of (2). The principal notations
used in this section are recalled in Table 1.

Example 3.1. In order to illustrate the di�erent notations required for the introduction of
the SRD method, we consider the following system:

ẋ1 = x2 + x3 + 2x3w1 + x2
3w2,

ẋ2 = 2x2
3 + x3x1 + x3w2 + x3w3 + x3w4,

ẋ3 = x1 + x4 + x3w2 + 2w4,
ẋ4 = x2 + x2

3 + x3w2,

(4)

with the measurements:
y1 = x1 + x2 + s1,
y2 = x2 + s2,
y3 = x4 + s3,

(5)

where x = (x1 x2 x3 x4)T ∈ R4 is the state vector, (w1 w2 w3 w4)T ∈ R4 is the vector of
operating faults, (s1 s2 s3)T ∈ R3 is the vector of sensor faults and

g1 =


2x3

0
0
0

 , g2 =


x2

3

x3

x3

x3

 , g3 =


0
x3

0
0

 , g4 =


0
x3

2
0


are the vector �elds showing how the operating faults wj act on the system. Notice that
they are state dependent. N

In order to apply the SRD method, it is important to work in coordinates in which each
output corresponds to one (and only one) state variable of the system. Hence, the following
change of coordinates may be required: introduce x̃ = ϕ(x) ∈ Rn , where ϕ(x) is a local
di�eomorphism whose m �rst components are given by ϕi(x) = hi(x) and the last n −m
are any original coordinates completing the functions hi, 1 ≤ i ≤ m, to a coordinate system.
Notice that the local di�eomorphism ϕ(x) always exists. In the new coordinates, system (2)
can be written as:{

˙̃x = f̃(x̃) +
∑p

j=1 g̃j(x̃)wj(t),

yi = x̃i + si, 1 ≤ i ≤ m,
(6)

with

f̃(x̃) =
∂ϕ

∂x
(x) · f(x) =

∂ϕ

∂x
(ϕ−1(x̃)) · f(ϕ−1(x̃)),
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and

g̃j(x̃) =
∂ϕ

∂x
(x) · gj(x) =

∂ϕ

∂x
(ϕ−1((x̃)) · gj(ϕ

−1(x̃)),

where ϕ−1 is the local inverse of ϕ(x). Observe that in the new x̃-coordinates, the measure-
ments are simply the m �rst states x̃i, 1 ≤ i ≤ m. Notice that for mechanical systems, this
is often the case since usually we measure the states of the system (displacements, rotational
speed, etc). In order to simplify the notation, from now on, we will drop the tildes.

We denote the total number of faults by q (that is, q = m + p) and de�ne the following
global fault vector including the defects a�ecting both the dynamics and the sensors:

d(t) =



s1
...
sm
w1(t)
...

wp(t)


∈ Rq. (7)

Example 3.1 (continuation). For system (4) together with measurements (5), the di�eo-
morphism ϕ(x) can be taken as:

x̃1 = x1 + x2,
x̃2 = x2,
x̃3 = x4,
x̃4 = x3,

(8)

with inverse
x1 = x̃1 − x̃2,
x2 = x̃2,
x3 = x̃4,
x4 = x̃3.

(9)

In the new x̃-coordinates we obtain:
˙̃x1 = x̃2 + x̃4 + 2x̃2

4 + (x̃1 − x̃2)x̃4 + 2x̃4w1 + (x̃2
4

+x̃4)w2 + x̃4w3 + x̃4w4,
˙̃x2 = 2x̃2

4 + x̃4(x̃1 − x̃2) + x̃4w2 + x̃4w3 + x̃4w4,
˙̃x3 = x̃1 − x̃2 + x̃3 + x̃4w2 + 2w4,
˙̃x4 = x̃2 + x̃2

4 + x̃4w2,

(10)

with the measurements (notice that each output hi corresponds to a new state variable x̃i)
y1 = x̃1 + s1,
y2 = x̃2 + s2,
y3 = x̃3 + s3.

(11)

The global fault vector of (10)-(11) is de�ned by d(t) = [s1 s2 s3 w1 w2 w3 w4]T ∈ R7. N
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De�nition 3.1 ((Relative degree with respect to the operating faults)). The relative degree
of the output component hi(x) = xi, 1 ≤ i ≤ m, is the positive integer ρi de�ned as follows:

{
LgjL

`
fhi = 0, for all 0 ≤ ` < ρi − 2, 1 ≤ j ≤ p,

LgjL
ρi−1
f hi 6= 0, for some 1 ≤ j ≤ p,

(12)

where L`fhi denotes the `th-order Lie derivative of the function hi along the vector �eld f
(see De�nition 3.2 below).

De�nition 3.2 ((Lie derivative)). The Lie derivative of the function hi, 1 ≤ i ≤ m, along
a vector �eld f can be computed by:

Lfhi(x) =
∂hi(x)

∂x
· f(x).

Recursively, we can de�ne, for ` ≥ 1, the `th-order Lie derivative by:

L`fhi(x) = Lf (L
`−1
f hi(x)) =

∂L`−1
f hi(x)

∂x
· f(x),

where L0
fhi(x) = hi(x).

Hence, the term LgjL
`
fhi of (12) means

LgjL
`
fhi(x) =

∂L`fhi(x)

∂x
· gj(x).

Based on De�nition 3.1, the relative degree ρi with respect to the operating faults can
be calculated for each hi. The integer ρi indicates the number of times that we have to
di�erentiate before the e�ect of the operating faults can be seen on the output components hi.
In other words, ρi is the order of the �rst derivative of hi that explicitly involves some of
the operating faults wj and provides information of wj that will be used to detect them.
Indeed, recall that yi = hi(x) + si = xi + si, for 1 ≤ i ≤ m (see (3)), where all si are
piecewise-constants thus, by De�nition 3.1, for 1 ≤ i ≤ m, we have:

y
(ρi)
i = Lρif hi(x) +

p∑
j=1

(LgjL
ρi−1
f hi(x))wj(t). (13)

In order to extract the sensor faults, we replace the states xi, for 1 ≤ i ≤ m, in (13) by their
measured values yi = xi + si (the real measurements a�ected by the faults)

y
(ρi)
i =Lρif hi(y, x̄) +

p∑
j=1

(LgjL
ρi−1
f hi(y, x̄))wj(t), (14)

where x̄ denotes the unmeasured states x̄ = (xm+1, . . . , xn).
Notice that expression (14) now involves explicitly si (via yi) and this dependence may

be nonlinear. In this paper, we treat only the case when the right-hand side of (14) is a�ne
with respect to si, 1 ≤ i ≤ m, (i.e., of form (15)). This assumption may seen restrictive, but
if (14) is nonlinear with respect to si, then a Taylor approximation of the �rst order can be
used (see [39]). With this assumption, (14) can be written as follows:
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y
(ρi)
i =Lρif hi(x) +

m∑
j=1

σij(x)sj +

p∑
j=1

(LgjL
ρi−1
f hi(x))wj(t). (15)

Example 3.1 (continuation). For system (10), we compute the Lie derivative of each hi,
for 1 ≤ i ≤ 3, along the vector �elds gj, for 1 ≤ j ≤ 4, and obtain ρi = 1, for 1 ≤ i ≤ 3.

In order to extract the sensor faults, we replace the states x̃1, x̃2 and x̃3 in (10) by their
measured values given by (11). We obtain the following equations represented in form (15):


ẏ1 = Lfh1(x̃) + x̃4s1 + (1− x̃4)s2 + 2x̃4w1 + (x̃2

4

+x̃4)w2 + x̃4w3 + x̃4w4,
ẏ2 = Lfh2(x̃) + x̃4s1 − x̃4s2 + x̃4w2 + x̃4w3 + x̃4w4,
ẏ3 = Lfh3(x̃) + s1 − s2 + s3 + x̃4w2 + 2w4,

(16)

where Lfhi, for 1 ≤ i ≤ 3 , is the healthy operating dynamics of the system expressed in
(10). N

Denote by χ the measurement vector:

χ =

 y
(ρ1)
1 − Lρ1f h1

...

y
(ρm)
m − Lρmf hm

 ∈ Rm. (17)

Physically, χ ∈ Rm represents the di�erence between the estimated time-derivatives of the
measurements yi and, the known dynamics of the healthy system. These derivatives can
always be estimated if the system is observable with respect to the outputs yi = hi(x), which
is guaranteed by the observability assumption below (see Assumption 3.1).

Observability is a measure of how well internal states of the system can be inferred
from knowledge of its external outputs [26]. A system is said to be observable if one can
determine the behavior of the entire system from its measurements and eventually from the
known inputs. More precisely, the current state values can be determined in �nite-time using
only the outputs (we send the reader to [26] for di�erent notions of observability and formal
de�nitions). If a system is not observable, this means that the current values of some of its
state variables cannot be determined through output sensors. So observability can been seen
as the ability to create enough smart sensors in order to recover all states of the system.
The de�nition of observability as well as the criteria for checking it uses the state-space
representation. To system (2), we associate the coditribution

O(x) = span{dLjfhi(x), 1 ≤ i ≤ m, j ≥ 0}.

System (2) is locally observable with respect to its outputs yi = hi(x), 1 ≤ i ≤ m, if locally

dimO(x) = n, (18)

where n is the state-space dimension. This condition is called observability rank condition.
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Assumption 3.1 ((Observability)). We assume that system (2) is observable with respect to
the outputs yi = hi(x), for 1 ≤ i ≤ m, that is, it veri�es the observability rank condition (18).

If the system is observable, dynamical equations can be designed to estimate the state of
the system from the outputs measurements. Such module is called a state observer or simply
an observer of the system. A state observer is typically computer-implemented and allows to
fully reconstruct the system state from its output measurements. If derivatives of the output
are required (as in our case, where we need yρi1 . . . yρmm ), then the term di�erentiator is used.

Since Assumption 3.1 is veri�ed, nonlinear di�erentiators can be applied in order to
estimate in �nite-time the derivatives (y

(ρ1)
1 , · · · , y(ρm)

m ), for more details, see [3], and thus to
compute χ which plays an important role in the reconstruction (based on the measurements
yi and their derivatives) of the fault vector d(t). Indeed, from relation (15), it follows that
the vectors χ and d(t) are related by an equation of the form:

χ = Φ(x)d(t), (19)

where Φ(x) is the (m× q)-matrix given by:

Φ(x) =

 σ11 . . .σ1m Lg1L
ρ1−1
f h1 . . . LgpL

ρ1−1
f h1

...
...

...
...

σm1. . .σmmLg1L
ρm−1
f hm. . . LgpL

ρm−1
f hm

 (20)

Example 3.1 (continuation). Based on (16), we deduce the measurement vector χ ∈ R3:

χ =

 ẏ1 − Lfh1(x̃)
ẏ2 − Lfh2(x̃)
ẏ3 − Lfh3(x̃)

 , (21)

and the matrix Φ(x) ∈ R3×7:

Φ(x) =

 x̃4 (1− x̃4) 0 2x̃4 (x̃2
4 + x̃4) x̃4 x̃4

x̃4 −x̃4 0 0 x̃4 x̃4 x̃4

1 −1 1 0 x̃4 0 2

 . (22)

N

Equation (19) will be used to recover the unknown faults from the measurements infor-
mation. Indeed, the goal of the fault detection problem is to solve the algebraic system of m
equations, given by (19), with q unknowns, i.e., the components of the fault vector d(t) ∈ Rq.
This problem is well known as a left invertibility problem (see, for instance, [37], [35], [36]).

The left invertibility problem has been widely studied and applied to many di�erent
problems (going from fault diagnosis [33] to cryptographic applications [40], etc). It consists
in determining the causal factors (i.e., the unknown inputs signals or, like in our context,
the fault vector) from the knowledge of a set of observations (i.e., the measurement outputs
and its derivatives). In the case when q ≤ m (i.e., the number of measurements is greater
or equal than the number of the unknown inputs corresponding to the faults), the inverse
problem can be solved either by inverting, if possible, directly the matrix Φ(x) (when m = q
and Φ(x) invertible) or by solving the system of equations based on the dimension reduction
(ifm > q). In the over complete matrix (whenm < q, which is usually the case in the context
of fault detection), the left invertibility problem either has no solution or has an in�nity of
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solutions. However, if the vector d is sparse, then, in the particular case when relation (19)
is static, that is, the matrix Φ and the fault vector d are constant (do not depend on time
or state) reconstruction strategies enabling to exactly reconstruct the unknown signal and
can be deployed (see, for example, [6], [41]).

In the context of fault detection, techniques based on sparse recovery methods have
already been developed (see for example, [38], [19]) with the particularity that the faults
are not introduced mathematically in the system and their features are recovered from the
frequency content in which the most coe�cients are sparse (for instance, using Fourier or
wavelet transforms). Therefore, the originality of our work is �rstly, to apply the SRD
method in the dynamical case (that is, when Φ(x) and d(t) depend on time or state) and
secondly, to consider a system modeling based on a state-space representation that describes
the healthy and the faulty behavior.

Another particularity of the SRD method is that all algorithms (corresponding to the
optimization problem given by (30) and to the observers equations, see, for instance [25],
[3], [15]) are solved in a continuous process (that is, in the same iteration loop) and with the
same computation step. In other words, with the help of a single simulation of all algorithms,
the diagnostic of numerous di�erent faults is obtained which is not always possible for other
diagnostic methods (that often require several analyzes to be able to diagnose di�erent
faults).

Remark 3.1. One of the di�culties when adapting the sparse recovery method to nonlinear
dynamical systems is the fact that the matrix Φ(x) is state dependent and moreover, its
choice is not always unique, as explained below. Indeed, very often, when modeling the
system, the vector d(t) includes as much information as possible related to the faults, that
is, the fault signatures wj (i.e., the quantity that is always zero when the operating system
is healthy, and is nonzero when the corresponding fault acts on the system) as well as for
each wj the common terms to all components of the vector gj through which the fault wj
acts on the system. But d(t) can also be de�ned with the help of the signatures wj only (like
in expression (7)). So for nonlinear dynamical systems, the choice of the fault vector d(t),
and, therefore, of the matrix Φ(x) is not unique. The choice of Φ(x) is crucial for the SRD
method. Indeed, Φ(x) has to satisfy some theoretical conditions (namely, the RIP condition
that will be de�ned below, see De�nition 3.4). If the matrix Φ(x) constructed in the classical
way, does not verify that condition, some constant or variable coe�cients can be transferred
from the vector d(t) to the matrix Φ(x) without loss of information on the fault vector (since
we always keep in d(t) the fault signatures as explained above).

Example 3.1 (continuation). Consider now the global fault vector d(t)=[s1 s2 s3 w1 w2 x̃4w3

w4]T ∈ R7 (notice that its 6th component contains the signature w3 of the fault as well as
the term x̃4 which is common to all g̃3 components, see (10)). Its associated matrix Φ(x) is
given by:

Φ =

 x̃4 (1− x̃4) 0 2x̃4 (x̃2
4 + x̃4) 1 x̃4

x̃4 −x̃4 0 0 x̃4 1 x̃4

1 −1 1 0 x̃4 0 2

 . (23)

N

The goal of the SRD method is to reconstruct a sparse fault vector d(t) based on the
measurement outputs yi, 1 ≤ i ≤ m, and their derivatives. The term sparse means that the
dimension q of d(t) may be very large (i.e., there are many possible faults that are taken into
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account in the model), but only a few number of components may be non zero (i.e., only
few faults act simultaneously on the system). In other words, the objective of this method
is to reconstruct the most parsimonious solution of the fault vector d(t) with the help of the
measurements vector χ and the matrix Φ(x) (i.e., where by most parsimonious, we mean the
solution with the lowest number of non-zero components of d(t)). This can be reformulated
as the following optimization problem ([5], [7], [4]):

min
d∈Rq
‖d‖0, under the constraint χ = Φ(x)d(t), (24)

where ‖d‖0 is a pseudo-norm and corresponds to the number of non-zero values of d(t).
An equivalent description of problem (24) is to minimize a cost function constructed by

leveraging the observation error χ−Φ(x)d(t) by respecting the parsimony constraint on d(t)
via a balancing parameter λ (see, for example, [7]):

min
d∈Rq
{1

2
‖χ−Φ(x)d(t)‖2

2 + λ‖d(t)‖0}. (25)

The optimization problem (25) is N.P-complete, thus di�cult to solve (since the pseudo-
norm zero is non-di�erentiable). But if the matrix Φ(x) satis�es the Restricted Isometry
Property (RIP) recalled below, then problem (25) can be transformed into an equivalent one
where the pseudo-norm ‖.‖0 is replaced by the norm ‖.‖1. Before giving the RIP de�nition,
we need the notion of s-sparsity.

De�nition 3.3 (sparsity). The fault vector d(t) is s-sparse if at most s non-zero faults can
appear simultaneously. The non-zero faults are called active faults or active nodes.

Notice that d(t) is s-sparse means that among the q = m+pmodeled faults only s of them
may act on the system. Recall that the number q of the total faults is much greater than s
which in turn is smaller than m. For the SRD method, we need the following assumption:

Assumption 3.2 (s-sparsity of the fault vector). We assume that d(t) is s-sparse and,
moreover that s veri�es the following condition:

2s+ 1 ≤ m. (26)

De�nition 3.4 (s-order RIP condition). A matrix Φ(x) is said to satisfy the s-order RIP
condition, if for any s-sparse signal d(t), the following condition is veri�ed:

(1− δs)‖d‖2
2 ≤ ‖Φ(x)d(t)‖2

2 ≤ (1 + δs)‖d‖2
2, (27)

where δs ∈ (0, 1) is a constant parameter. This property will be called the s-order RIP
condition.

In order to check if a matrix Φ(x) satis�es the s-order RIP condition, let Γ denote any set
of s indices among 1 to q (where q is the total number of faults), i.e., Γ is any s-combination
of the set {1, 2, . . . , q}. Notice that Γ is not unique and there are q!

s!(q−s)! of them. Denote

by ΦΓ(x) the sub-matrix of Φ(x) formed by the columns of Φ(x) indexed by the elements
of the set Γ (i.e., corresponding to the active nodes s) and by ΦT

Γ(x) its transposed matrix.
The s-order RIP condition for a matrix Φ(x) is equivalent to the fact that all eigenvalues of
the matrix product ΦT

Γ(x)ΦΓ(x), for all possible s-combinations Γ, must be strictly between
0 and 2, that is:

1− δs ≤ eig(ΦT
Γ(x)ΦΓ(x)) ≤ 1 + δs (28)

for δs ∈ (0, 1).
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Remark 3.2. Recall that the matrix Φ(x) associated to system (2) and to fault vector
(7) is not unique and its expression depends on the de�nition of d(t), see Remark 3.1. If
no matrix Φ(x) (constructed using the procedure of Remark 3.1) veri�es the s-order RIP
condition, we choose one of them and try to transform it in such a way that this property
is satis�ed for the transformed matrix. We explain next how to do it. First, notice that if
the RIP condition is satis�ed then all sub-matrices ΦΓ(x) are of full rank. Thus we have to
eliminate the columns of the original matrix Φ(x) that are identical or proportional. In this
case, their corresponding faults act in the same way on the system and they can be emerged
by adding them and eliminating one of the columns.

For instance, if the �rst column Φ1 of Φ(x) (corresponding to d1(t)) and the second one Φ2

(corresponding to d2(t)) are like above (i.e., Φ1 = Φ2 or Φ1 = aΦ2 where a is a constant
or a functional parameter), we will keep only one of them (say the �rst one) and its new
associated fault becomes d1(t) + d2(t) if Φ1 = Φ2, respectively, d1(t) + ad2(t), if Φ1 = aΦ2.
Remark that by regrouping the faults, the dimension of the global fault vector d(t) decreases
from q to q − 1. After this procedure the dimensions of Φ(x) change as well (the number of
columns decreases, but the number of lines remains unchanged) and the new matrix Φ(x)
no longer contains identical or proportional columns (this does not mean that Φ(x) is of full
rank, in fact, Φ(x) may possess columns that are linear combinations of at least two other
columns. If the transformed matrix Φ(x) still does not verify the RIP condition, we start to
eliminate those collinear columns and apply the same principle to regroup the corresponding
faults (for instance, if Φ1 = aΦ2 + bΦ3, where a and b are constant or functional parameters,
we keep Φ2 and Φ3, but eliminate Φ1, the new faults corresponding to Φ2 and Φ3 being
d2(t) + ad1(t) and d3(t) + bd1(t)). After each such column removal, we check if the new
matrix Φ(x) verify the s-order RIP condition.

In order to check the s-order RIP condition, it may also be helpful to normalize each
column of the matrix Φ(x) with respect to the norm ‖ · ‖2 (after normalization, we should
have ‖Φk(x)‖2 =

√∑m
i=1 |Φik(x)|2 = 1, 1 ≤ k ≤ q, where Φk denotes the kth column of

Φ). As a consequence of this normalization, each component of the fault vector has to be
multiplied by the norm of its corresponding column in Φ(x). In some cases, the normalization
of the matrix Φ(x) is not necessary to verify the s-order RIP condition (there are matrices
verifying this condition whose columns are not normalized).

In the sequel, we continue to denote the transformed matrix by Φ(x), the new fault vector
by d(t) and its number components by q. Suppose that:

Assumption 3.3. (s-order RIP) The transformed matrix Φ(x) is assumed to satisfy the
s-order RIP condition.

Under Assumption 3.3, the parsimony problem (25) for the transformed matrix Φ(x) and
the new fault vector d(t) becomes:

min
d∈Rq
{1

2
‖χ−Φ(x)d(t)‖2

2 + λ‖d(t)‖1}, (29)

and its solution exists and is unique [42].
Recall that m < q (i.e., the number of monitoring sensors is signi�cantly smaller than

the number of faults) and in general, even after transforming the original matrix Φ(x), when
necessary, we still have m < q, where q denotes now the dimension of the new regrouped
fault vector, thus, Φ(x) cannot be invertible (since the matrix is not square) and, the left
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invertibility cannot be applied. Nevertheless, under Assumptions 3.2 and 3.3, the fault
vector d(t) can be detected and reconstructed as a solution of (29). To that end, the following
dynamical algorithm based on sliding mode techniques [21] is proposed reminding very much
that of [42] with the di�erence that the matrix Φ and the vector d are no longer constant
(see also [1] for the linear case):{

τ u̇(t) = −du(t) + (ΦT (x)Φ(x)− Id)d̂(t)−ΦT (x)χcα,
d̂(t) = ϕλ(u(t)),

(30)

where d.cα = |.|αsign(.), u(t) ∈ Rq is the internal state vector, ϕλ(u(t)) = max(|u| −
λ, 0)sign(u) is the continuous soft thresholding function, λ ∈ Rq is a vector of constant
positive parameters that has to be suitably chosen in function of the noise and the minimum
possible absolute values of the faults, the vector d̂(t) represents the estimation of the sparse
signal d(t), τ is a (q× q)-diagonal matrix with constant parameters τi, 1 ≤ i ≤ q, determined
by the physical properties of the implementing system, Id is the identity (q× q)-matrix and
the exponential coe�cient α is such that α ∈ [0, 1]. In [42], it has been proven, in the case
when the matrix Φ(x) and the vector d(t) are constant, that under Assumptions 3.2 and 3.3
and for α ∈ [0, 1), the state u converges, in �nite-time, to its equilibrium point and thus
the estimated fault vector d̂(t) converges in �nite-time to d(t). For α = 1, only asymptotic
convergence is ensured. If Φ(x) and d(t) depend explicitly on time or/and states, when
adapting the proof of [42] to this dynamical case, the derivatives of Φ(x) and d(t) appear
and have to be crushed with a suitable choice of λ. In this case, a practical stability can be
guaranteed (see [8] for more details).

Remark 3.3. In the case when di�erent faults are regrouped, the estimated fault vector
d̂(t) converges to the new fault vector d(t) (with regrouped faults). If one of the component
of d̂(t) corresponding to some regrouped original faults (say d1(t) + d2(t)) is non zero, this
means that d1(t) or d2(t) or both of them are activated. If only one fault among d1(t)
and d2(t) is activated, in general, the faults diagnosis is possible either by verifying the order
of magnitude of the defect or by the type of the obtained fault signal. However, if the
two added faults are activated simultaneously, the estimated fault vector given by the SRD
method contains the sum of these two faults and we may not be able to identify or to localize
them. These situations will be discussed in our case study in the next section.

Remark 3.4. In some cases, the dynamics f and/or vector �elds gj can depend explicitly
on time (i.e., we have f = f(t, x(t)) and/or gj = gj(t, x(t)), for some 1 ≤ j ≤ p). Thus
the system is a time-variant one. A classic way to transform it into a time-invariant system
(that is, of form (2)) is to introduce an additional state (which is simply the time-variable)
described by the equation:

ẋn+1(t) = 1. (31)

The associated extended system is time-invariant and contains n+1 states variables

(
x

xn+1

)
∈

Rn+1. The new dynamics is

(
f(x, xn+1)

1

)
and the vector �elds associated to the faults

are

(
gj(x, xn+1)

0

)
, for 1 ≤ j ≤ p. Moreover t is, in general, also an output (or, at least, a

known state) of the system.

13 / 32



4 Case Study

Table 2: Nomenclature of the two-stage gear system

Name Description Unit

θi Angular position of the ith gear [rad]
Ri Bases radius of the ith gear [m]
Ii Inertia moment of the ith gear [kg ×m2]
Is Inertia moment of the shaft [kg ×m2]
ke(t) Time dependent gear-mesh sti�ness [N/m]
ks Torsional sti�ness of the shaft [N×m/rad]
q Vector of degrees of freedom [rad]
F External torques vector [N×m]
F1ec Eccentricity fault vector [N×m]
Fc Crack fault vector [N×m]

In this section, we will apply the SRD method to diagnose mechanical faults in a gear
power transmission system. The considered system is a reduced model of two-stage gear that
takes into account only four degrees of freedom (see Figure 1). The principal notations used
in the system modeling are recalled in Table 2.

4.1 Healthy model

The healthy system (see Figure 1) is composed of two pinions and two wheels supported
by three shafts, one for the input shaft (the motor), the second for the intermediate shaft
(which connects both stages of the gearbox system) and the third for the output shaft (the
load). The model is obtained by developing the Lagrange equations of the kinetic and
potential energies corresponding to the two-stage gear (see also [20] and [14] for a single
stage modelisation).

The Lagrange formalism leads to the set of di�erential equations governing the system
motion:

Mq̈ +Cq̇ +K(t)q = F, (32)

where q is the vector of degrees of freedom q = [θ1 θ2 θ3 θ4]t, M is the mass matrix expressed
by:

M =


I1 0 0 0
0 I2 + Is 0 0
0 0 I3 + Is 0
0 0 0 I4

 , (33)

with Ii the inertia moment of the ith gear, 1 ≤ i ≤ 4, and Is the inertia moment of the
intermediate shaft, C the damping, F the applied forces vector F = [Cm 0 0 Cr]

T , where
Cr and Cm are, respectively, the load and the motor torques of the system and K(t) presents
the time-varying sti�ness matrix containing the gear-mesh sti�ness matrix Ke(t) and the
constant shaft torsional sti�ness matrix Ks:

K(t) = Ke(t) +Ks. (34)
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The gear-mesh sti�ness matrix Ke(t) is de�ned by :

Ke(t) =

 k1(t)c2R2
1 k1(t)c2R1R2 0 0

k1(t)c2R1R2 k1(t)c2R2
2 0 0

0 0 k2(t)c2R2
3 k2(t)c2R3R4

0 0 k2(t)c2R4R3 k2(t)c2R2
4

, (35)

where Ri, 1 ≤ i ≤ 4, represents the base radius of the ith gear and kj(t), j = 1, 2, is the
time-varying sti�ness for the jth stage de�ned as a square wave depending on time. The
constant c simply denotes c = cos(β), with β the helix angle of the gears.

The shaft torsional sti�ness matrix Ks is expressed as:

Ks =


0 0 0 0
0 ks −ks 0
0 −ks ks 0
0 0 0 0

 , (36)

where ks is the constant torsional sti�ness of the shaft.
Developing (32), we obtain the following state-space representation of the two-stage gear-

box model:

θ̇1 = Ω1,

θ̇2 = Ω2,

θ̇3 = Ω3,

θ̇4 = Ω4,

Ω̇1 = 1
I1

[−K11θ1 −K12θ2 − C11Ω1 − C12Ω2 + Cm],

Ω̇2 = 1
I2+Is

[−K21θ1 −K22θ2 −K23θ3 − C21Ω1

−C22Ω2 − C23Ω3],

Ω̇3 = 1
I3+Is

[−K32θ2 −K33θ3 −K34θ4 − C32Ω2

−C33Ω3 − C34Ω4],

Ω̇4 = 1
I4

[−K43θ3 −K44θ4 − C43Ω3 − C44Ω4 + Cr],

(37)

where Kij and Cij, for 1 ≤ i, j ≤ 4, are respectively, the coe�cients of the sti�ness ma-
trix K(t) and damping matrix C, [θ Ω]T ∈ R8 is the state vector whose components are the
degrees of freedom of the system.

For (37), we have the following measurements:

y1 = θ1,
y2 = θ2,
y3 = θ3,
y4 = θ4.

(38)

4.2 Faulty model

In this paper, we suppose that mechanical faults and sensor faults can a�ect the gearbox
system. We model two types of mechanical faults: eccentricity and crack defects. The faulty
model is given by the following equation of motion

Mq̈ + Cq̇ + K(t)q = F + Fec + Fc, (39)
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Figure 1: Torsional model of a two-stage gear

where Fec and Fc, correspond, respectively, to the eccentricity and the crack defects.

The eccentricity fault is de�ned as the gap between the geometrical and the rotational
axes of the gear. It is composed by two components: the �rst one F1ec is related to a
modi�cation in the kinetic energy and the second one F2ec is due to the change in potential
energy:

Fec = F1ec + F2ec. (40)

We have:

- F1ec = [0 I2ω̇2 0 I4ω̇4]T , where ωi is the angular velocity of the ith gear given by
ωi = −Ri−1

Ri
ωi−1 + ėi

Ri cos(β)
, with ei = cos(β)[sin(ωi−1t− φi−1)εi−1 − sin(ωit− φi)εi], the

deviation due to the eccentricity defect of the gear, φi the initial eccentricity phases
and εi the eccentricity magnitude, i ∈ {2, 4},

- F2ec = [k1(t)δeR1 cos(β) k1(t)δeR2 cos(β) k2(t)δe R3 cos(β) k2(t)δeR4 cos(β)]T , with
δe the initial deviation due to the eccentricity.

In our case, without loss of generality, the eccentricity e�ect due to the potential energy
F2ec is neglected, since the eccentricity fault a�ects the gear system on the inertia of the
system (so, in our model, its impact is already taken into account in the expressions of ω̇i
and we keep the term due to the kinetic energy F1ec only).

The crack defect Fc is given by Fc = [R1 cos(β)∆k1p(t) R2 cos(β)∆k1w(t) R3 cos(β)
∆k2p(t) R4 cos(β)∆k2w(t)]T . The term ∆kjp(t) (respectively, ∆kjw(t)) characterizes the vari-
ation of the time-varying gear-mesh sti�ness kj(t) associated to the pinion (respectively to
the wheel) of the jth stage of the gearbox system (in our application, j ∈ {1, 2}). These
quantities are indeed the product between the time-varying gear-mesh variation and the
deviation due to the crack. The fault vector Fc will be indicated through the drop of the
time-varying sti�ness of the gears kj(t), j ∈ {1, 2}. In the healthy functioning case of the
gear (without faults), the global time-varying sti�ness is a square wave function that nor-
mally evolves, for a spur gear, between a maximum value that corresponds to the maximum
number of segments in contact (two pairs of teeth) and a minimum value corresponding to
the minimum number of segments in contact (one pair of teeth in contact), see Figure 2a,
where tm1 is the meshing gear period for the �rst stage of the gearbox system. The descent
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in the curves (see Figure 2a) de�nes the progressive exit of a tooth pair from the meshing
zone and the rise corresponds to the gradual entry of a new pair of teeth in contact. In the
presence of defects, the disturbances appear on the temporal evolution of the global time-
varying sti�ness k1(t) (see Figure 2b, for the �rst stage) at the moments of the passage of
the defective tooth (here, Z1 = 18) in the zone of contact (see, e.g., [10], [43]).

In the faults modeling, we also take into account constant sensor faults ∆θ1, ∆θ2, ∆θ3 and
∆θ4 (corresponding, for instance, to o�set faults), related to the two gear displacements. The
faulty model considering the crack, eccentricity and sensor faults is given by the following
system (compare it to (37), the healthy model):

θ̇1 = Ω1,

θ̇2 = Ω2,

θ̇3 = Ω3,

θ̇4 = Ω4,

Ω̇1 = 1
I1

[−K11θ1 −K12θ2 − C11Ω1 − C12Ω2 + Cm
+R1 cos(β)∆k1p(t)],

Ω̇2 = 1
I2+Is

[−K21θ1 −K22θ2 −K23θ3 − C21Ω1

−C22Ω2 − C23Ω3 +R2 cos(β)∆k1w(t) + I2ω̇2],

Ω̇3 = 1
I3+Is

[−K32θ2 −K33θ3 −K34θ4 − C32Ω2

−C33Ω3 − C34Ω4 +R3 cos(β)∆k2p(t)],

Ω̇4 = 1
I4

[−K43θ3 −K44θ4 − C43Ω3 − C44Ω4 + Cr
+R4 cos(β)∆k2w(t) + I4ω̇4],

(41)

with the measurements:

y1 = θ1 + ∆θ1,
y2 = θ2 + ∆θ2,
y3 = θ3 + ∆θ3,
y4 = θ4 + ∆θ4.

(42)

The appearance of these faults in the gearbox system modify directly the dynamical
behavior of the system. It must be noted that the faulty system (41) is a non-autonomous
system that depends explicitly on time (i.e., the drift and the vector �elds associated to
the faults involve explicitly the t-variable through the terms Kij, 1 ≤ i, j ≤ 4, ∆kjp(t) and
∆kjw(t), for j ∈ {1, 2}). In order to transform it into form (6), the state extension explained
in Remark 3.4 is applied, that is, we add to system (41) the following equation ṫ = 1. From
now on, when we say system (41), we will actually refer to the extended system associated
to (41). Moreover, notice that in system (37), the measurements correspond indeed to states
of the system yi = θi, for 1 ≤ i ≤ 4. Thus, we do not need to make the change of coordinates
explained in the second section since system (41) is already in form (6). We will denote the
faulty dynamics of (41), i.e., the right-hand side of (41), by F (θ,Ω).

The total number of possible faults is much larger than 4 (the number of the monitoring
sensors, see (38)). Therefore, the SRD method can be applied. In the next part, we will
apply it in order to detect, identify and locate possible faults.
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Figure 2: Time-varying sti�ness evolution divided by the meshing gear period tm1

4.3 Application of the sparse recovery method

We de�ne the global fault vector d(t) that contains, not only the faults signatures but as
mush information as possible (see Remark 3.1):

d(t) =



∆θ1

∆θ2

∆θ3

∆θ4

R1 cos(β)∆k1p(t)

R2 cos(β)∆k1w(t)

R3 cos(β)∆k2p(t)

R4 cos(β)∆k2w(t)

I2ω̇2

I4ω̇4


∈ R10. (43)

In order to get relation (19) between the measurement vector χ and the fault vector
d(t), we �rst compute the relative degrees of the outputs y1 = θ1 + ∆θ1, y2 = θ2 + ∆θ2,
y3 = θ3 + ∆θ3 and y4 = θ4 + ∆θ4 as presented in (13) (recall that the sensor faults are
supposed piecewise-constant). For instance, consider y1 (the same calculation has to be
done for y2, y3 and y4):

y1 = θ1 + ∆θ1,

ẏ1 = θ̇1 = Ω1,

ÿ1 = Ω̇1 = F5(θ1, θ2,Ω1,Ω2),

(44)

where F5 = 1
I1

[−K11θ1−K12θ2−C11Ω1−C12Ω2 +Cm+R1 cos(β)∆k1p(t)] describes the faulty
dynamics of Ω1, see (41).

In order to extract the sensor faults, we replace the states θ1 and θ2 in F5(θ1, θ2,Ω1,Ω2)
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by their measured values θ1 + ∆θ1 and θ2 + ∆θ2 (i.e., with the presence of the sensor faults):

ÿ1 = F5(θ1 + ∆θ1, θ2 + ∆θ2,Ω1,Ω2), (45)

=
1

I1

[−K11(θ1 + ∆θ1)−K12(θ2 + ∆θ2)− C11Ω1

− C12Ω2 + Cm +R1 cos(β)∆k1p(t)]. (46)

Applying the same principle for the remaining outputs, we obtain:

ÿ2 = F6(θ1 + ∆θ1, θ2 + ∆θ2, θ3 + ∆θ3,Ω1,Ω2,Ω3), (47)

ÿ3 = F7(θ2 + ∆θ2, θ3 + ∆θ3, θ4 + ∆θ4,Ω2,Ω3,Ω4), (48)

ÿ4 = F8(θ3 + ∆θ3, θ4 + ∆θ4,Ω3,Ω4), (49)

where F6, F7 and F8 describe, respectively, the faulty dynamics of Ω2, Ω3 and Ω4, see (41)
for their expressions. When developing, (46)-(49) become:

ÿ1 = L2
fh1 −

K11

I1

∆θ1 −
K12

I1

∆θ2 +
R1 cos(β)∆k1p(t)

I1

, (50)

ÿ2 = L2
fh2 −

K21

I2 + Is
∆θ1 −

K22

I2 + Is
∆θ2 −

K23

I2 + Is
∆θ3

+
R2 cos(β)∆k1w(t)

I2 + Is
+

I2ω̇2

I2 + Is
, (51)

ÿ3 = L2
fh3 −

K32

I3 + Is
∆θ2 −

K33

I3 + Is
∆θ3 −

K34

I3 + Is
∆θ4

+
R3 cos(β)∆k2p(t)

I3 + Is
, (52)

ÿ4 = L2
fh4 −

K43

I4

∆θ3 −
K44

I4

∆θ4 +
R4 cos(β)∆k2w(t)

I4

+ ω̇4. (53)

Notice that the above relations are a�ne with respect to the sensor faults ∆θi and they
are of form (15).

Following (17), we deduce the measurement vector χ containing the available information
about the system (recall that χ denotes the di�erence between the derivatives of the outputs
and the healthy operating dynamics of the system):

χ =


ÿ1 − 1

I1
[−K11θ1 −K12θ2 − C11Ω1 − C12Ω2 + Cm]

ÿ2 − 1
I2+Is

[−K21θ1 −K22θ2 −K23θ3 − C21Ω1

−C22Ω2 − C23Ω3]
ÿ3 − 1

I3+Is
[−K32θ2 −K33θ3 −K34θ4 − C32Ω2

−C33Ω3 − C34Ω4]
ÿ4 − 1

I4
[−K43θ3 −K44θ4 − C43Ω3 − C44Ω4 + Cr]

, (54)
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where ÿ1, ÿ2, ÿ3 and ÿ4 are estimated using di�erentiators (see [15] where a sliding mode
di�erentiator is applied to a single stage of gears). It must be noted that di�erentiators
can be implemented since system (41) veri�es the observability property explained in As-
sumption 3.1. Algorithms very similar to those of [15] are used for the two-stage gear (in
particular, the di�erentiators parameters that have to be suitably chosen in order to ensure
rapid and accurate convergence between the real and the estimated system states, have the
same order of magnitude as those of [15]) and we do not present them here.

From this and de�nition (43) of d(t), we determine the matrix Φ(x) linking χ and d(t)
as in (19):

Φ =


−K11
I1

−K12
I1

0 0 1
I1

0 0 0 0 0
−K21
I2+Is

−K22
I2+Is

−K23
I2+Is

0 0 1
I2+Is

0 0 1 0

0 −K32
I3+Is

−K33
I3+Is

−K34
I3+Is

0 0 1
I3+Is

0 0 0

0 0 −K43
I4

−K44
I4

0 0 0 1
I4

0 1
I4

 . (55)

An important observation is that in our application, the matrix Φ(x) depends explicitly on
time through the K-coe�cients.

Recall that the SRD method guarantees that at most s faults can be accurately detected
and according to Assumption 3.2, the integer s should verify 2s + 1 ≤ m, where m is the
number of the monitoring sensors (here, we have m = 4). Thus, the SRD method guarantees
that at most one fault can be accurately detected for the gearbox model (however, we will
see in the next section that, in general, we are able to accurately detect more than one fault).
This point can be seen as a limitation of the method but it is justi�ed by the fact that in the
industries (and in particular for mechanical systems), the presence of several simultaneous
faults is not commun because they generate large disturbances in the system and leads to
the extreme case when the machine stops.

One of the most important conditions of the SRD method is that Φ(x) has to satisfy the
s-order RIP property (here, with s = 1), see De�nition 3.4. From (55), it can be noticed
that some columns are proportional (i.e., the faults corresponding to these columns, here,
the sixth and the ninth columns of Φ(x), respectively, the eighth and the tenth columns
of Φ(x), act in the same way on the system). Therefore, we deduce immediately that Φ(x),
given by (55), does not verify the s-order RIP condition. Moreover, even if we de�ne the
global fault vector d(t) with the help of the faults signatures only (that is, in (43), the terms
Ri cos(β), for 1 ≤ i ≤ 4, I2 and I4 are absent), its associate matrix Φ(x) would not satisfy
the s-order RIP property either. Finally, observe that not all columns of the matrix Φ(x)
are normalized with respect to the 2-norm. Thus, we have to modify the fault vector d(t),
as explained in Remark 3.2, by multiplying the faults associated to the non normalized
components of Φ(x) by their corresponding norm and regrouping the defects which generate
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the collinearity of the columns:

d(t) =



n1∆θ1

n2∆θ2

n3∆θ3

n4∆θ4
R1 cos(β)∆k1p(t)

I1
R2 cos(β)∆k1w(t)

I2+Is
+ I2ω̇2

I2+Is
R3 cos(β)∆k2p(t)

I3+Is
R4 cos(β)∆k2w(t)

I4
+ ω̇4


∈ R8, (56)

with n1 = ‖Φ1(x)‖2, n2 = ‖Φ2(x)‖2, n3 = ‖Φ3(x)‖2 and n4 = ‖Φ4(x)‖2, where Φi(x)
denotes the ith column of (55) and ni is its 2-norm.

In this case, the normalization of the matrix Φ(x) is required since it contains di�erent
orders of magnitude. By normalizing Φ(x), we do not lose the fault vector information and
the new matrix (after regrouping the faults and normalization) becomes:

Φ =


−K11
I1

−K12
I1n2

0 0 1 0 0 0

−K21
(I2+Is)n1

−K22
(I2+Is)n2

−K23
(I2+Is)n3

0 0 1 0 0

0 −K32
(I3+Is)n2

−K33
(I3+Is)n3

−K34
(I3+Is)n4

0 0 1 0

0 0 −K43
I4n3

−K44
I4n4

0 0 0 1

 . (57)

It must be noted that with the new representation, we remain in the over complete matrix
case (i.e., the number of monitoring sensors is smaller than the number of faults, m = 4, q =
8). The next section presents the simulations results obtained for di�erent activated faults
as well as for di�erent cases of s. We will �rst see that, in accordance with the theoretical
results, when only one fault acts on the system, that fault is always correctly diagnosed by
the SRD method. Second, we will see that the SRD method works also in many cases when
two faults are activated.

5 Simulations and results

In order to evaluate the performances of the SRD method, simulations are carried on Mat-
lab/Simulink. The system parameters are given in Table 3. The designed system was im-
plemented with an ode1 Euler (we choose this solver because system (30) is not C1-smooth),
and with the exponential coe�cient α of (30) being α = 0.5 (assuring a convergence in �nite-
time). Notice that the considered faults have very di�erent order of magnitude and we have
to take this into account when choosing the algorithm parameters λ and τ : λi = 10−2, τi =
104 for 1 ≤ i ≤ 4 (associated to sensor faults) and λi = 107, τi = 10−10 for 5 ≤ i ≤ 8 (associ-
ated to operating faults). This choice of parameters is due to in the system modeling, that
is, we consider di�erent types of faults with di�erent orders of magnitude. Notice that if all
faults have the same order of magnitude, the same parameters λ and τ can be used for all
of them, see [39]).

Simulations results show the good performances of the SRD method to diagnose several
mechanical faults in the gearbox system developed in the previous section. Scenario 1 presents
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Table 3: Gear parameters

The �rst stage parameters Values
Module 2.5 mm

Tooth number of the pinion Z1 18
Tooth number of the wheel Z2 26

Face width 20mm
Pressure angle 20 deg

Helix angle β (spur gear) 0 deg
Base radius of the pinion R1 21 mm
Base radius of the wheel R2 30 mm

Rotational speed N1 1674 rpm
Rotational speed N2 1159 rpm

The second stage parameters Values
Module 2 mm

Tooth number of the pinion Z3 20
Tooth number of the wheel Z4 35

Face width 38mm
Pressure angle 20 deg

Helix angle β (spur gear) 0 deg
Base radius of the pinion R3 18 mm
Base radius of the wheel R4 32 mm

Rotational speed N3 1159 rpm
Rotational speed N4 662 rpm

the case when only one sensor fault occurs, i.e., s = 1, (recall that, according to Assump-
tion 3, we can accurately detect one fault among the eight possible). Scenario 2 explains the
case when crack faults occur. Scenario 3 considers two merged faults (crack and eccentricity)
that are activated (notice that we are still in the case s = 1, since for the modi�ed fault
vector, the two original faults are merged into a single one). Scenario 4 illustrates several
examples when two di�erent faults occur simultaneously (i.e., s = 2). Scenario 5 shows the
application of the SRD method when the measurements of the system are a�ected by a ran-
dom noise. The non activated faults are set to zero and for all scenarios the corresponding
estimates converge to zero. The last scenario (scenario 6) shows the application of SRD
method with non-stationary operating conditions.

For each scenario, the �gures show all real defects di(t), 1 ≤ i ≤ 8, and the estimated ones
d̂i(t), 1 ≤ i ≤ 8. Presenting all curves on the same �gure allows us to highlight the sparsity
of the fault vector as well as the fact that (after a short transient time) the estimates of the
non-activated faults (those that are identically zero and do not act on the system) converge
indeed to zero. Zoomed regions of the estimated faults are carried out in all scenarios in
order to show the transient parts. We notice that at the beginning of the algorithm, all
estimated faults d̂i(t), 1 ≤ i ≤ 8, varies in time, then the non-activated ones converge to
zero. The bold dotted signals represents the activated faults while the bold-solid line signal
correspond to their estimation given by the SRD method.
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Figure 3: Scenario 1: Sensor faults

5.1 Scenario 1 (s = 1, an activated sensor fault)

This scenario illustrates the case when one fault among the eight possible faults given by (56)
is activated. The SRD method is applied four times to extract each of the following faults
(for each case of Figure 4a-3d only one of them is activated and the others are set to zero):

s1 = ∆θ1 =

{
0, 0 ≤ t < 0.01s,
10−2, t ≥ 0.01s,

(58)

s2 = ∆θ2 =

{
0, 0 ≤ t < 0.01s,
210−2, t ≥ 0.01s,

(59)

that a�ect the system at t = 0.01,

s3 = ∆θ3 =

{
0, 0 ≤ t < 0.02s,
510−3, t ≥ 0.02s,

(60)

that a�ects the system at t = 0.02s and

s4 = ∆θ4 =

{
0, 0 ≤ t < 0.015s,
10−3, t ≥ 0.015s,

(61)
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that a�ects the system at t = 0.015s.
Figure 4a-3d show that the activated fault is always accurately recovered in �nite-time

by the SRD method, while the estimated values of the non activated faults converge to zero.
Indeed, from each sub-�gure, it is clear that the fault signal d̂i related to the sensor fault of
θi, 1 ≤ i ≤ 4, converges to its non zero value, while the remaining d̂i converge to zero. This
con�rms the good performances of the SRD method to diagnose sensor faults.

5.2 Scenario 2 (s = 1, an activated operating fault)
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Figure 4: Scenario 2: Crack faults

This scenario presents the case when either the �fth or the seventh fault of d(t) is ac-
tivated. Both of them are operating faults (corresponding to the presence of the crack in
the �rst or in the second pinion of the gearbox system). It is clear from Figure ?? that
the estimated fault d̂5 recovered by the SRD method converges in �nite-time to the acti-
vated fault and the non activated ones converge to zero. The signal d̂5 is characterized by a
time-varying sti�ness variation that occurs at each contact of the defective gear and its iden-
ti�cation is guaranteed by the signal type (square wave that corresponds to a time-varying
sti�ness form). Its localization is obtained by the distance between two successive peaks of
the time-varying sti�ness variation that corresponds to the teeth number of the defective
gear. Here, this distance equals to Z1 = 18 in Figure ?? and Z3 = 20 in Figure 4b. The
teeth numbers of the defective pinion i, for i ∈ {1, 3} are characteristics of the system which
are given in Table 3.

5.3 Scenario 3 (s = 1, an activated merged fault corresponding to
eccentricity and crack defects)

This scenario corresponds to the case when either the defect d6 or d8, regrouping the original
crack and the eccentricity faults of the gear, a�ect the system. We present two cases (for
the �rst one d6 is activated and d8 = 0, while for the second one d6 = 0 and d8 is activated).
From Figure 5, it is clear that we detect the presence of these faults by the convergence of the
estimated defects values to their real values. The distinction between crack and eccentricity
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(c) Crack fault in the second wheel: second stage
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Figure 5: Scenario 3: Merged faults

faults is always possible and due to the type of the obtained signals. As explained earlier,
the presence of the crack fault is characterized by a square wave signal (here, Z2 = 26 in
Figure 5a and Z4 = 35 in Figure 5c, see Table 3) while the appearance of the eccentricity
fault is modeled by a sinusoidal form signal (see Figure 5b and 5d). The localization of the
eccentricity fault is determined from the rotational speed of the defective gear. For instance,
in Figure 5b, the rotational speed of the obtained signal is w = 2πf = 2π

T
= 2π

0.1165−0.0807
=

175.5 rad/s which corresponds to the rotational speed of the �rst pinion (see Table 3).
In this scenario, a complete localization has been carried out: �rstly, we are able to detect

the presence of the merged crack and eccentricity faults, secondly, to identify and distinguish
them from the obtained signals given by the SRD method, and, �nally, to localize them with
the help of some characteristics of the mechanical system presented in the obtained signals
(e.g., the teeth number, the rotational speed of wheel/pinion).
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5.4 Scenario 4 (s = 2, two faults occur simultaneously)
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Figure 6: Scenario 4: Two activated faults s = 2

Recall the e�ciency of the SRD method is guaranteed for 2s + 1 ≤ m (in the case of
the gearbox application, when only a single fault is activated). A natural question is what
happens when at least two faults occur simultaneously. While the previous scenarios present
the SRD method results for one active fault, Scenario 4 treats the case when two di�erent
operating faults appear simultaneously (see Figure 6)). Figure 6a illustrates the presence,
at the same time, of the crack defect in the �rst pinion and in the �rst wheel. The SRD
method gives a good convergence of the estimated faults to their real values and a complete
diagnostic can be carried out. The fault distinction is always possible by the tooth number
of the defective gear.

Figure 6b displays the case when two sensor faults related to the displacements θ1 and θ2

are activated. We can notice that these activated faults are also accurately recovered in �nite-
time via the SRD method while the estimated quantities of the non activated faults converge
to zero. Thus, we are able to detect the presence of two di�erent faults simultaneously
and conclude that the condition 2s + 1 ≤ m given in Assumption 3.2 is su�cient but not
necessary for an accurate reconstruction of the faults using the SRD method.
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Figure 6c presents the case when a crack in the �rst pinion and a sensor fault are activated.
It is clear that these faults are not recovered by the SRD method and their diagnostic is not
possible. This is due to the fact that the faults have di�erent orders of magnitude. It should
be however noted to that our diagnosis method always allows the detection of an anomaly
in the system by the non-zero signals given by the SRD method.

Obviously it is possible to diagnose more defects by increasing the number of sensors and
therefore, providing more information about the system, and allowing to take into account
more possible faults. However, the simultaneous presence of several defects in industrial
systems leads to a fast decrease of the equipment life and to a large perturbation or even the
stop of the operating system.

5.5 Scenario 5 (s = 1, an activated fault in the presence of noises)
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Figure 7: Scenario 5: Presence of noise

Usually, the collected sensors signals are polluted by random noises due to the presence of
many source of vibration. Scenario 5 considers the case when the measurements are a�ected
by a white random noises. Figure 7a shows the presence of a sensor fault, which is ∆θ1, while
in Figure 7b a crack fault in the �rst pinion occurs. For both cases, the estimated faults
given by the SRD method converge in �nite-time to their real values. The diagnostic of
these faults is always possible by analyzing the nature of the obtained signals (as explained
in the previous scenarios). Thus, this diagnosis method is still able to identify mechanical
and sensor faults by including random measurement noises in the dynamical state-space
representation.

5.6 Scenario 6 (non-stationary operating conditions)

The last scenario illustrates the case of non-stationary operating conditions of the gearbox
system which is subject to a variable resistant torque. We have considered a load �uctuating
in a saw-tooth shape (see Figure 41)).

Figure 9 shows the time evolution of the acceleration of the �rst stage gear by applying
a variable load torque. We notice the presence of peaks that correspond to the peaks of the
applied variable load.
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Figure 9: Time evolution of acceleration signal
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Figure 10: Presence of sensor fault

A sensor fault on the �rst pinion is activated at t = 0, 01s. Figure 10 illustrates the good
performances of the SRD method in non-stationary conditions.
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6 Conclusions

In this paper, a diagnosis method, called sparse recovery diagnosis (SRD), for nonlinear
dynamical systems is presented. Then it is applied to the mechanical system of a two-
stage gear model. A healthy and faulty modeling of the considered system are presented
and implemented via Matlab/Simulink. The SRD is applied in order to diagnose several
mechanical faults. Eccentricity, crack and sensor faults are modeled and recovered in �nite-
time by this diagnosis method. The diagnosis method introduced in this paper is an e�ective
diagnosis method but it is not always able to detect and distinguish all types of defects.
For this reason, combining di�erent diagnosis methods is suggested to obtain an optimized
and a perfect diagnostic for mechatronic systems. Our future work will be focused on the
comparison between other diagnosis techniques and the SRD algorithm as well as on the
theoretical generalization of the SRD method for a class of mechanical systems with the
presence of di�erent possible faults.
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