
HAL Id: hal-02889802
https://hal.science/hal-02889802v2

Submitted on 31 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the excess of average squared error for data-driven
bandwidths in nonparametric trend estimation

Karim Benhenni, Didier A. Girard, Sana Louhichi

To cite this version:
Karim Benhenni, Didier A. Girard, Sana Louhichi. On the excess of average squared error for data-
driven bandwidths in nonparametric trend estimation. Advances in Pure and Applied Mathematics,
2021, 12 (N° Spécial ), pp.15-35. �10.21494/ISTE.OP.2021.0696�. �hal-02889802v2�

https://hal.science/hal-02889802v2
https://hal.archives-ouvertes.fr
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Karim Benhenni∗, Didier A. Girard†, Sana Louhichi‡
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Abstract

We consider the problem of the optimal selection of the smoothing parameter h in

kernel estimation of a trend in nonparametric regression models with strictly stationary

errors. We suppose that the errors are stochastic volatility sequences. Three types of

volatility sequences are studied: the log-normal volatility, the Gamma volatility and the

log-linear volatility with Bernoulli innovations. We take the weighted average squared

error (ASE) as the global measure of performance of the trend estimation using h and we

study two classical criteria for selecting h from the data, namely the adjusted generalized

cross validation and Mallows-type criteria. We establish the asymptotic distribution of

the gap between the ASE evaluated at one of these selectors and the smallest possible

ASE. A Monte-Carlo simulation for a log-normal stochastic volatility model illustrates

that this asymptotic approximation can be accurate even for small sample sizes.
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1 Introduction

Nonparametric trend estimation is a very popular field of research in Statistics and is used

in different domains of application. There are several nonparametric estimates of the trend

in time series models or the mean function of stochastic processes. Many of these estimates

are constructed from a kernel function that depends on a smoothing parameter h known, in

nonparametric statistical literature, as a bandwidth. The choice of this parameter is crucial

since it has an important impact on the performance of the kernel estimates. Some criteria are

available for choosing this parameter but there are mostly based on models with independent

errors; the plug-in method, see for instance Ruppert, Sheather and Wand (1995) and Fan,

Gijbels, Hu and Huang (1996), the cross-validation (CV) and the generalized cross-validation

(GCV), see for instance Rice (1984), Härdle, Hall and Marron (1988) and Girard (1998) among

others. However, in the case of dependent errors, there are very limited available results in the

literature concerning the selection methods of the smoothing parameter, see for instance the

review by Opsomer, Wang and Yang (2001). Hall, Lahiri and Polzehl (1995) develop bootstrap

and cross-validation methods to select the smoothing parameter under short and long range

dependance.

In Benhenni, Girard and Louhichi (2021), we considered dependent strictly stationary mar-

tingale difference errors with an application to ARCH(1) errors. Based on four criteria defining,

via minimization, two optimal and two data-driven smoothing parameters (or “two selectors”),

we showed that the minimizers of these four criteria are “first-order equivalent” in probability

(using now a classical terminology as specified in equation (9) below). Moreover, we gave a

normal asymptotic behavior of the difference between, in particular, the minimizer of the aver-

age squared error (ASE, in short, defined by equation (3) below) and that of the Mallows-type

criterion. In this paper, we are mainly interested in studying the excess of the ASE for such

selectors. Let us recall that the excess of the ASE (“ASE-excess” in short) associated with

any particular selector, is defined as the increase of ASE when one compares it with its lowest
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possible value when varying h for the available data. Early studies of the ASE-excess, Hall

and Marron (1987), and Mammen (1990), put an emphasis on the fact that the asymptotic

behavior of this excess is interpretable, more than the asymptotic behavior of the difference

between selectors.

In this paper we provide some extensions to the theoretical results of Benhenni, Girard and

Louhichi (2021) (abbreviated as BGL henceforth) in two directions. Firstly, we show, under the

same assumptions as in Theorem 3.1 of BGL, that the asymptotic behavior of the ASE-excess

which has been established by Härdle, Hall and Marron (1988) for independent and identically

distributed (i.i.d., in short) errors, still holds. Secondly, we show that the required assumptions

for the sequence of errors are fulfilled by three common time series volatility models. Volatility

has been one of the most active areas of research in time series econometrics and economic

forecasting. It may be modeled as an unobserved component following some latent stochastic

process, such as autoregression. The resulting models are called stochastic volatility (SV)

models and have been the focus of considerable attention, see for instance Taylor (1994),

Ghysels, Harvey and Renault (1996), Shephard (1996) and Billo and Sartore (2005). Here, we

concentrate on three stochastic volatility models (SV): the log-normal volatility, the Gamma

volatility and the log-linear volatility with Bernoulli innovations. The first two SV models

satisfy a strong mixing condition with a decreasing power bound whereas the Bernoulli SV

model does not satisfy any mixing condition.

In addition, an extensive Monte-Carlo simulation study for the log-normal stochastic volatil-

ity model with various model parameters is provided in section 4 and demonstrates that the

asymptotic behavior established here can be quite realistic for a moderate number of observa-

tions, n, over a large range of parameters.

The paper is organized as follows. Section 2 introduces the nonparametric model, defines the

different criteria for the selection of the smoothing parameter h, explains the main assumptions

and recalls previous results that are required for the present study. Section 3 states the main

results of this paper. Theorem 3.1 studies the asymptotic distribution of the ASE-excess for

optimal bandwidths. Proposition 3.1 is an application of Theorem 3.1 to the SV models.

Corollaries 3.1, 3.2 and 3.3 study, respectively, the log-normal SV, the Gamma SV and the log-

linear SV with Bernoulli innovations. Section 4 is the Monte Carlo simulation study mentioned

above. Finally, Section 5 is devoted to the proofs.

2 Model, selection criteria and useful tools

Let (εi)i≥0 be a strictly stationary sequence of centered random variables with finite second

moment. Let σ2 = Var(ε1) and R be the correlation matrix of the vector (ε1, · · · , εn)t (where

vt denotes the transpose of the vector v). Consider the following regression model, defined for
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i = 1, · · · , n, by

Yi = r(xi) + εi, xi =
i

n
, (1)

where r is an unknown regression function with second order continuous derivative and the xi’s

are equally spaced fixed design. We are interested, here, in the Priestley-Chao estimator of r

defined, for x ∈ IR, by

r̂(x) =
n∑
i=1

li(x)Yi, with li(x) =
1

nh
K

(
x− xi
h

)
,

where K is a compactly supported, even kernel, with class C2([−1, 1]) and h is a positive

bandwidth smaller than 0.5. The above curve estimator can also be written in the following

matrix form:

r̂ = LY, (2)

with

r̂ = (r̂(x1), · · · , r̂(xn))t, Y = (Y1, · · · , Yn)t

and L = (lj(xi))1≤i,j≤n is known as the smoothing matrix or the hat matrix. Since the estimator

r̂ depends on a smoothing parameter h, some criteria are needed for choosing h. One first

criterion is the ASE, Tn(h), defined by

Tn(h) =
1

n

n∑
i=1

u(xi)(r̂(xi)− r(xi))2, (3)

where u = uε (for a fixed positive ε less than 0.5) is a known positive function of class C1 and

[ε, 1− ε]-compactly supported. This function is introduced in order to eliminate the boundary

effects of the compactly supported kernel K. We know from Lemma 2.1, in BGL, that if∑∞
k=1 k|Cov(ε0, εk)| < ∞ then the mean weighted average squared error, IE(Tn(h)), is very

close to the quantity Dn(h), defined by

Dn(h) =
h4

4

∫ 1

0

u(x)r′′
2
(x)dx

(∫ 1

−1
t2K(t)dt

)2

+
1

nh
(

∫ 1

0

u(x)dx)

∫ 1

−1
K2(y)dy

(
σ2 + 2

∞∑
k=1

Cov(ε0, εk)

)
. (4)

Let h∗n ∈ argminh>0Dn(h). We suppose in the sequel that
∫ 1

0
u(x)r′′2(x)dx 6= 0. Then clearly,

h∗n = cn−1/5, with c =

(
(
∫ 1

0
u(x)dx)

∫ 1

−1K
2(y)dy (σ2 + 2

∑∞
k=1 Cov(ε0, εk))∫ 1

0
u(x)r′′2(x)dx(

∫ 1

−1 t
2K(t)dt)2

)1/5

. (5)

Let Hn be a neighborhood of h∗n, i.e, Hn = [an−1/5, bn−1/5] for some fixed a < c < b. Define

also,

ĥn ∈ argminh∈Hn
Tn(h).
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Both those two criteria (Dn(h) and Tn(h)) depend, in particular, on the unknown function r,

so they cannot, of course, directly provide a data-driven selection of bandwidth. A well-known

criterion, which is an unbiased estimator (up to an additive constant) of the mean weighted

average squared error IE(Tn(h)), is the following variant of Mallows’ criterion introduced for

other purposes than ours and adapted to dependent errors with known covariance matrix σ2R:

CL(h) = n−1‖U1/2(I − L)Y ‖2 + 2σ2n−1tr(URL), (6)

where I is the identical matrix, U is the diagonal matrix defined by diag(u(x1), · · · , u(xn)),

Y = (Y1, · · · , Yn)t, L = (lj(xi))1≤i,j≤n as defined by (2), and tr(M) denotes the trace of a

square matrix M . We consider, according to our purpose, ĥM to be the minimizer of this

dependent version of the Mallows-type criterion:

ĥM ∈ argminh∈Hn
CL(h).

Finally, let GX(h) be the classical GCV-type criterion and ĥG be its minimizer:

ĥG ∈ argminh∈Hn
GX(h) with GX(h) = n−1‖U1/2(I − L)Y ‖2 × ΞX

(
tr(UL)

tr(U)

)
, (7)

where ΞX satisfies, for small values of |t|,

ΞX(t) = 1 + 2t+O(t2) with second derivative Ξ′′X bounded on a neighborhood of 0. (8)

This GCV-type criterionGX is well adapted to strictly stationary uncorrelated dependent errors.

The bandwidth h∗n has the advantage of being explicitly derived, but its drawback is that

it cannot be implemented in practice since it depends on unknown quantities such as σ2 and

r′′. The bandwidth ĥG has no explicit expression but on the other hand it can be implemented

in practice since it is obtained by minimizing an observable criterion. Because ĥn is recognized

as the ideal, albeit unobservable bandwidth, then a comparison of ĥG (or ĥM) with ĥn has been

an initial subject of interest for many authors.

Since we are interested in this study to move out of the basic framework where the errors

(εi)1≤i≤n form a sequence of i.i.d. random variables, a dependency condition should be assumed.

We consider here the rather general condition of “martingale difference sequences” (MDS,

see Conditions (A) below) since, on the one hand, there are many models satisfying this notion

(see the next section) and since, on the other hand, studying this framework of dependency

makes it possible to study the most general case of strictly stationary random variables as

is done by Peligrad, Utev and Wu (2007). Note also, that MDS are uncorrelated dependent

random variables, so that the above GCV-type criterion, GX, is well adapted. We also need, for

technical reasons, a higher moment condition on the distribution of ε1. All these assumptions

are summarized in the following Conditions (A).
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Conditions (A). Assume that the errors (εi)i≥0 form a strictly stationary MDS with respect

to some natural filtration (Fi)i≥1, i.e, for any i > 0, εi is Fi-measurable and IE(εi|Fi−1) = 0

almost surely (a.s., in short). Suppose also that IE(ε2p1 ) <∞ for some p > 8.

Under Conditions (A), the bandwidths h∗n, ĥn, ĥM and ĥG are first-order equivalent in prob-

ability (and then both the CL criterion and the GCV-type criterion enjoy the ”asymptotic

optimality” property), this means that

ĥn
h∗n
,
ĥM
h∗n

,
ĥG
h∗n

(9)

all converge in probability to 1 as n tends to infinity (see Proposition 3.1 in BGL).

Theorem 3.1 in BGL gives the rate at which ĥM − ĥn and ĥG − ĥn converge in distribution

to a centered normal law, and it needs an additional dependence condition, Condition (B) below,

Condition (B). There exists a positive decreasing function Φ defined on IR+ satisfying

∞∑
s=1

s4Φ(s) <∞,

and for any positive integer q ≤ 6, 1 ≤ i1 ≤ · · · ≤ ik < ik+1 ≤ · · · ≤ iq ≤ n such that

ik+1 − ik ≥ max1≤l≤q−1(il+1 − il),

|Cov(εi1 · · · εik , εik+1
· · · εiq)| ≤ Φ(ik+1 − ik), (10)

where εi1 · · · εik denotes the product
∏k

`=1 εi` (and likewise for εik+1
· · · εiq).

Condition (B) is known in the literature (see Doukhan and Louhichi (1999)). It allows, in

particular, to control the higher order moments of partial sums of dependent random sequences.

Now, if both Conditions (A) and (B) are satisfied, then it holds that, by Theorem 3.1 in

BGL,

n3/10(ĥM − ĥn) and n3/10(ĥG − ĥn) (11)

both converge in distribution to a centered normal law with variance Σ2 given by

Σ2 =
4σ6/5

52A8/5B2/5
(

∫
t2K(t)dt)2

∫ 1

0

u2(x)r′′2(x)dx

+
8σ6/5

52A3/5B7/5

∫ 1

0

u2(x)dx

∫
(K −G)2(u)du, (12)
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where σ2 = IE(ε21), G is the function defined for any x ∈ IR by G(x) = −xK ′(x) and

A =

∫ 1

0

u(x)r′′2(x)dx

(∫
t2K(t)dt

)2

, B =

∫ 1

0

u(x)dx

∫
K2(t)dt.

3 Main results with applications to stochastic volatility

models

We have thus studied sufficient conditions on the sequence of errors under which these four band-

widths (ĥM , ĥn, ĥG and ĥn) are asymptotically equivalent and their differences have asymptotic

normal distributions. Now, let us recall that selecting the bandwidth is only a means to an

end: minimising the error in the estimation of r. Since the measure of error that we consider

is the ASE, as it is often the case in supervised learning, it is now important to compare these

selectors via their corresponding ASEs rather than comparing them directly with each other.

Our purpose is thus to study the asymptotic behaviors of the gaps, called the ASE-excesses,

Tn(ĥM)−Tn(ĥn) and Tn(ĥG)−Tn(ĥn). That is, we are interested in the study of the deviations

of the error Tn(ĥM) (respectively Tn(ĥG)) from the minimal possible value of the ASE, which

is Tn(ĥn).

The following theorem gives, under Conditions (A) and (B), the rate at which these gaps tend

to 0, extending the results stated by Härdle, Hall and Marron (1988) for i.i.d. errors.

Theorem 3.1. Suppose that Conditions (A) and (B) are satisfied. Then both

n(Tn(ĥM)− Tn(ĥn)) and n(Tn(ĥG)− Tn(ĥn))

converge in distribution to a CX2(1) law, where X2(1) is the chi-square distribution with one

degree of freedom and C is the positive constant given by,

C =
2σ2

5A

((∫
t2K(t)dt

)2 ∫ 1

0

u2(x)r′′2(x)dx+
2A

B

∫ 1

0

u2(x)dx

∫
(K −G)2(t)dt

)
,

where σ2 = IE(ε21), G, A and B are defined as in (12).

Remark. As expected, the constant C in this asymptotic distribution is the same as in the

i.i.d. case established by Härdle, Hall and Marron (1988). If we choose the weight function u

to be proportional to u2, then it is easy to check that C gets so simplified that it no longer

depends on the function r. In this case and as an immediate consequence of Theorem 3.1, it is

possible to construct asymptotic prediction intervals for the excess error using the quantiles of

the chi-square distribution. See Section 4 for an example of such a simplified value of C, since,

in this simulation study, u is trivially proportional to u2.

We give, in the sequel, examples of strictly stationary MDS of errors satisfying the require-

ments of Theorem 3.1 (and also the asymptotic optimality (9) and the asymptotic normality
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(11)-(12). Both results (9) and (11)-(12) are proved in BGL but the class of examples below has

not been considered there. More precisely, BGL only studies standard ARCH(1) sequences. Let

us recall that an ARCH(1) sequence satisfies the Conditions (A) and (B) provided its so-called

“persistence” parameter stays lower than 2025027−1/8 ≈ 0.162796). The examples we consider

here belong to the class of stochastic volatility processes. Recall that a Stochastic Volatility

process (εi)i∈IN, SV in short, is defined as

εi = σiZi, i ∈ IN, (13)

where the volatility sequence (σi)i∈IN is a strictly stationary sequence of positive random vari-

ables which is independent of the i.i.d. centered noise sequence (Zi)i∈IN. We refer, for instance,

to Davis and Mikosh (2009) for the main properties of SV models.

The following proposition gives conditions under which the requirements of Theorem 3.1 are

satisfied for SV error processes.

Proposition 3.1. Let (εi)i∈IN be as defined in (13). Suppose that, there exists a positive de-

creasing function Φ̃ defined on IR+ satisfying

∞∑
s=1

s4Φ̃(s) <∞,

and for any positive integer q ≤ 6, 1 ≤ i1 ≤ · · · ≤ ik < ik+1 ≤ · · · ≤ iq ≤ n such that

ik+1 − ik ≥ max1≤l≤q−1(il+1 − il),

|Cov(σi1 · · ·σik , σik+1
· · ·σiq)| ≤ Φ̃(ik+1 − ik), and moreover |IE(Zi1 · · ·Ziq)| <∞. (14)

If IE(ε2p1 ) < ∞ for some p > 8 then the asymptotic optimality (9), the asymptotic normality

(11)-(12) and the conclusions of Theorem 3.1 hold.

The following corollaries give more explicit examples of SV models satisfying the assump-

tions of Proposition 3.1, so that Theorem 3.1 holds true in these cases.

3.1 Log-normal volatility sequences

The log-normal SV models are due to Taylor (1986). For these models, the volatility sequence

(σi)i∈IN is an exponential weight of a Gaussian moving average. They are a basic alternative to

ARCH-type processes, since unlike ARCH-type models, their variances always remain positive

without the need of further conditions.

Corollary 3.1 below proves in particular that for log-normal SV models the volatility sequence

(σi)i∈IN is a strictly stationary strong mixing sequence in the sense of Rosenblatt (1956). Recall

that (σi)i∈IN is a strongly mixing sequence if its strong mixing coefficient (αs)s≥0 defined by

αs = sup
k∈IN

α(σ(σi, i ≤ k), σ(σi, i ≥ k + s)),
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tends to 0 as s tends to infinity, where for two sigma-fields A and B,

α(A,B) = sup
A∈A,B∈B

|Cov(1IA, 1IB)|.

Corollary 3.1. Suppose that the volatility sequence (σi)i∈IN is defined for i ∈ IN, by σi =

β exp
(∑∞

j=0 γ
jηi−j

)
with |γ| < 1, β > 0 and (ηi)i∈ZZ is an i.i.d. centered sequence distributed

as a Gaussian law with finite variance. Suppose also that Z1 follows a standard Gaussian law.

Then the process (εi)i∈IN, as defined in (13), is a strictly stationary MDS, with finite all integer

moments, strongly mixing with αs = O(|γ| 23 s), and the asymptotic optimality (9), the asymptotic

normality (11)-(12) together with the conclusions of Theorem 3.1 hold.

We illustrate the conclusions of Corollary 3.1 in Section 4.

3.2 Gamma volatility sequences

We consider here the Gamma stochastic model as defined by (13), with (Zi)i∈IN being a sequence

of i.i.d. standard normal random variables and for i ∈ IN, σi =
√
hi where (hi)i∈IN is a positive

time-homogeneous strictly stationary Markov chain. We suppose that the marginal distribution

of (hi)i∈IN is a Gamma Γ(p, λ) distribution, i.e., denoting by π the invariant measure of this

Markov chain,

π(dx) = f(x)dx, f(x) =
λp

Γ(p)
xp−1e−λx1Ix≥0, p, λ > 0,

where Γ(p) =
∫∞
0
up−1e−udu. Suppose that this Markov chain is geometrically ergodic. This

means that there exists a positive constant c and a Borel positive function a(·) such that the

following inequality holds for any π-almost everywhere x ∈ IR: for any n ∈ IN \ {0}, and Borel

set B

|P n(x,B)− π(B)| ≤ a(x)e−cn, (15)

recall that the transition probability P is defined, for suitable set A and x, by

P (x,A) = IP (h1 ∈ A|h0 = x)

and for n ∈ IN \ {0}
P n(x,A) = IP (hn ∈ A|h0 = x) .

In this case, it is well-known that the Markov chain (hi)i∈IN is β-mixing with geometrically

decaying mixing coefficients (βn)n≥1 (cf. for instance Theorem 3.7 in Bradley (2005) and the

references therein). Recall that, for a sequence (Xn)n∈IN, the β-mixing coefficients (βn)n≥1 are

defined by (see for instance Doukhan (1994) (Sec 1.1))

βn = sup
m∈IN

IE

(
sup

B∈σ(Xi, i≥m+n)

|IP(B|σ(X0, · · · , Xm))− IP(B)|

)
.
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The Gamma AR(1) process, stated in the example below, is a Markov chain satisfying all

the above assumptions.

Example. Let h0 be distributed as Γ(p, λ) distribution. Define, for ρ ∈]0, 1[, hn recursively by,

hn = ρhn−1 + ξn,

where (ξn)n is an i.i.d. sequence of random variables with characteristic function IE
(
e−itξ1

)
=(

λ−it
λ−itρ

)−p
. The process (hn)n≥1 is then a strictly stationary Markov chain with Gamma Γ(p, λ)

univariate marginal distribution (see for instance Gaver and Lewis (1980)). This Markov chain

is also geometrically ergodic in the sense of (15) (see for instance Kesten (1974)).

The following corollary gives conditions under which the Gamma stochastic volatility models

satisfy the requirements of Proposition 3.1 and Theorem 3.1.

Corollary 3.2. Suppose that the volatility sequence (σi)i∈IN is defined for i ∈ IN, by σi =√
hi where (hi)i∈IN is a positive time-homogeneous strictly stationary and geometrically ergodic

Markov chain with marginal Gamma Γ(p, λ) distribution. Let (Zi)i∈IN be a sequence of i.i.d.

standard normal random variables. Then the process (εi)i∈IN, as defined by (13), is a strictly

stationary MDS, β-mixing with βn = O(e−ρn), for some ρ > 0, and with finite all integer mo-

ments. The asymptotic optimality (9), the asymptotic normality (11)-(12) and the conclusions

of Theorem 3.1 hold.

3.3 Log-linear volatility sequences with Bernoulli innovations

The following corollary studies another class of SV models, (εi)i∈IN as introduced in (13), for

which the conclusions of Theorem 3.1 still hold. In these models, we suppose that (log(σi))i∈IN
is a linear process with Bernoulli innovation having coefficients (2−k)k∈IN. Unlike the log-normal

SV, in this case the volatility sequence (σi)i∈IN is not strongly mixing (see Bradley (1986)) but

it is associated in the sense of Esary, Proschan and Walkup (1967). Recall that a sequence

(σi)i∈IN is said to be associated if for any non-decreasing and bounded functions f and g,

Cov(f(σ1, · · · , σn), g(σ1, · · · , σn)) ≥ 0. (16)

Corollary 3.3. Suppose that the volatility sequence (σi)i∈IN is defined for i ∈ IN, by σi =

exp
(∑∞

j=0 2−jηi−j

)
where (ηi)i∈ZZ is an i.i.d. centered sequence distributed as a Bernoulli

B(1/2) distribution. Suppose also that Z1 follows a standard normal law. Then the volatil-

ity sequence (σi)i∈IN is associated and the asymptotic optimality (9), the asymptotic normality

(11)-(12) together with the conclusions of Theorem 3.1 hold.
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4 A Monte-carlo simulation study for a “trend plus a

log-normal SV process”

The purpose of this section is to illustrate by simulations the asymptotic optimality (a.o, in

short) as stated in (9), and to check whether the asymptotic normality (11)-(12) and the

asymptotic scaled X2(1) distribution of the ASE-excess, as stated in Theorem 3.1, are realistic

(and thus useful) descriptions. Our experiments are similar to those in BGL, the main difference

being that the noise sequence is now a common log-normal SV sequence, as analysed in Corollary

3.1, instead of an ARCH(1). Precisely, we consider the smooth function r(x) = (4x(1 − x))3

as “deterministic trend”, an equispaced design and a noise level σ for which the noise-to-signal

ratio is “moderate” (see Figure 1 for n = 512) and finally K is taken as the well-known bi-

weight kernel. Notice that this trend offers a simple solution to the boundary effect issue: since

it is “smoothly periodic”, it allows us to consider a circular design, that is, as is explained in

Härdle, Hall and Marron (1988), the estimation of r near i = 1 is done by setting, for i ≤ 0,

yi := yn−i and similarly at the other end (such a “periodic padding” is used by many other

authors). We are then allowed to take u(·) equals to the characteristic function on [0, 1] as a

weight function. Moreover, an important appealing consequence of this periodicity assumption,

it that the main computation for any criterion discussed here can be reduced to fast Fourier

transforms and this makes very affordable extensive large-scale simulations. See BGL for more

details. To guard against possible local minimisers, the numerical minimisation of the ASE

(Tn(h)) or of the Mallows criterion CL(h) consists of a global search over a dense enough grid

(precisely, of size 401) of equispaced (on log-scale) values of h. We used Mathematica for these

simulations; in fact the code is very similar to the one published in the demo Girard (2013)

except for the noise generation, of course, since this demo is restricted to i.i.d. errors.

100 200 300 400 500

-2

-1

1

2

3

100 200 300 400 500

-2

-1

1

2

3

Figure 1 : n = 29. Each of these 2 panels displays one data set Y and the “smooth” deterministic

trend r(·) when the noise is a log-normal SV sequence. In the 2 panels τ = 0.75, and they only differ

by γ = 0.01 (left) and γ = 0.98 (right); see (17) for the definition of these two parameters.
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As parameters, in order to define the noise process, in addition to σ and γ (the serial

correlation introduced in Corollary 3.1), we introduce

τ :=
√

Var(η1)/(1− γ2). (17)

Let us remark that, to generate a noise process with variance σ2, it is easy to check that

the parameter β (used in Corollary 3.1) has to be set to σ exp (−τ 2) . The advantage of using

(σ, τ 2, γ) instead of (β,Var(η1), γ) is deduced from the fact that τ is the unique shape-parameter

for the marginal density of the sequence of conditional variances σ2
i ’s. Such a parameterization

is common (see e.g. Taylor (1994)).

We consider three values for τ , and three values for the serial-correlation parameter γ,

precisely

τ ∈ {0.2, 0.4, 0.75}, γ ∈ {0.01, 0.9, 0.98},

with a common value σ = 0.32. Note that the intermediate value 0.4 for τ is representative

of values often obtained by fitting such a log-normal SV model to real econometric series; see

Taylor (1994) (especially its Section 3.4, where τ is denoted by β) for an interesting review.

Any large value of τ (say, greater than 1) implies a very fat tail for the marginal density of

the amplitude of the noise |εi| which may cause a large instability of the classical kernel curve-

estimate (a “robust” version kernel smoothing would be much more appropriate in such case).

On the other hand, recall that a value very close to 0 for τ would imply that the density of

the conditional variance σ2
i is concentrated around 1 and thus the serial correlation would have

virtually no impact on the dependence between the εi’s (which is then a “quasi-i.i.d.-normal”

sequence). Thus we restrict the present study to the range [0.2, 0.75] for τ .

The a.o. property. As is well-known, a result like (9) generally stems from a uniform relative

accuracy result which states that CL(h)−n−1‖U1/2(Y −r)‖2 uniformly approximates Tn(h) (or

its expectation, say MASE(h)) with a small (in probability and in sup norm over the domain

of candidate h’s) error, “small” being defined relatively to MASE(h).

We illustrate in Figure 2 that a uniform relative accuracy is well observed for all the consid-

ered values of τ and γ. Note that the results for γ = 0.01 and τ ∈ {0.2, 0.4, 0.75} have produced

plots very similar to the plot for γ = 0.9, τ = 0.2 (top-left panel in Figure 2) so they are not

included in Figure 2. Only a slight deterioration is observed for (τ, γ) = (0.75, 0.98). Notice

that this in contrast with the Monte Carlo study for ARCH(1) noise sequences in BGL where

a large sample a.o. was no longer observed when the chosen persistence parameter (denoted,

there, by α) was not small enough; indeed, even for n = 215 it was required that α < 0.75

(precisely, a reasonable “uniform relative accuracy” was not observed for α ∈ {0.75, 0.9, 0.98};
we refer to that paper for a discussion of this).
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Figure 2 : n = 215. These 6 panels only differ by (τ, γ) varying in {0.2, 0.4, 0.75}×{0.9, 0.98}. In each

panel, the dashed blue curve is the “empirical MASE”, precisely the average (over the 3000 replicates)

of the Tn(h) curves. Each of the 21 boxplots (located at 21 fixed discrete values for h) are built from

the first 100 replicates of CL(h)− n−1‖U1/2(Y − r)‖2.

Asymptotic normal distribution. This Section aims to assess the usefulness of the theo-

retical asymptotic normal approximation stated in (11)-(12) for reasonable dataset sizes n. We

are going to demonstrate that both τ and γ have an impact on the speed of convergence (with

respect to n) toward this approximation.
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Figure 3 : τ = 0.2. . These 6 panels only differ by n (= 29 in the top row and 215 in the bottom

row) and by γ varying in {0.01, 0.9, 0.98}. In each panel, the displayed normalized histogram is that

of the 3000 replicates of ĥM − ĥn. The superposed blue curve is the normal distribution of ĥM − ĥn
as predicted by the asymptotic theory.

Let us first consider τ = 0.2. By inspecting Figure 3, we clearly see, in the three top

panels, that the asymptotic approximation fits rather well already for n = 29 and for any

γ ∈ {0.01, 0.9, 0.98}. For n = 215 the three bottom panels illustrate that the asymptotic theory

provides a very accurate prediction of the finite sample “truth”. Notice that, as expected the

accuracy for n = 212 (not displayed here) is observed to be intermediary between the one for

n = 29 and that for n = 215, and is thus also quite good.

Notice that, again as expected, the range of the abscissae (h-differences) increases by moving

from n = 215 (bottom) to n = 29 (top).

It is good news that the approximation given by (11) and (12) is very useful for n as small

as 512.
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Figure 4 : τ = 0.4. These 9 panels only differ by n (= 29 in the top row, 212 (middle) and 215 in the

bottom row) and by γ varying in {001, 0.9, 0.98}. In each panel, the displayed normalized histogram

is that of the 3000 replicates of ĥM − ĥn. The superposed blue curve is the normal distribution of

ĥM − ĥn as predicted by the asymptotic theory.

The simulation results for τ = 0.4 are described in Figure 4. Here we add the three panels

corresponding to n = 212. The analog figure for τ = 0.75 is Figure 5. Now one clearly sees

that, for γ = 0.01 (first column in these two 3 × 3 arrays of histograms) the smallest value

of n (= 29) is always sufficient for the usefulness of the asymptotic normal approximation

- although there is a slight deterioration for τ = 0.75 (precisely the histogram in the top-

left panel in Figure 5 exhibits a non-negligible proportion of “too large” negative values for

ĥM − ĥn which almost always are associated with too-small ĥM ’s). One observes that the latter

deterioration is softened if n is increased to 212 (middle panel of first column of Figure 5). Next,

an inspection of the second column (thus γ = 0.9) of both these two arrays shows that n = 29

is ”just sufficient” only for the smaller τ = 0.4 and provided one accepts a slight inaccuracy of

the same type as the one mentioned above. But n = 212 is clearly required for τ = 0.75. Notice

that, because of the observed jump in the observed accuracy by going from (τ, γ) = (0.75, 0.01)

to (0.75, 0.9), we also repeated the same simulations for the case (τ, γ) = (0.75, 0.5) : they

produced a histogram rather close to the one for (0.75, 0.01); this demonstrates that it is only

for “large” γ (that is, near 0.9 or above) that the asymptotic approximation is not accurate for

n = 29.
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Next, the third columns (that is, for γ = 0.98) shows that n = 212 is required for τ = 0.4,

and n = 215 is required for τ = 0.75.
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Figure 5 : τ = 0.75. n = 29 (top), n = 212 (middle) and n = 215 (bottom). These 9 panels only differ

by n and by γ varying in {001, 0.9, 0.98}. In each panel, the displayed normalized histogram is that

of the 3000 replicates of ĥM − ĥn. The superposed blue curve is the normal distribution of ĥM − ĥn
as predicted by the asymptotic theory.

All these experiments are thus well in agreement with (11)-(12). But for certain settings,

which are not un-common in practice (see Taylor (1994)), this normal approximation is accurate

only for quite large n (for example, n larger than 212 is required for (τ, γ) = (0.4, 0.98)). And

this so-required value for n is shown to be an increasing function of both τ and γ.

Asymptotic scaled X2(1) distribution of the ASE-excess. Now let us look at the use-

fulness of the asymptotic approximation stated in Theorem 3.1 for the excess of ASE. The

constants in this approximation can be quite simplified in the context of this Monte Carlo

study. Indeed, because we have taken u ≡ 1, by a simple algebra and using the fact that for

the bi-weight kernel we have
∫

(K −G)2 =
∫
G2 =

∫
K2 (see the proof of Lemma 3.1 in Girard

(2010) for the first equality, and Table 1 there, for the second), we can check that the constant
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C in Theorem 3.1 has the simplified expression C = (6/5)σ2. As a side remark, the fact that

the asymptotic approximation is thus not a function of r when u ≡ 1, is quite appealing in

practice: the distribution of the possible excesses of ASE can then be predicted for n “large

enough”, requiring only the value of σ (recall that this distribution could also be estimated in

much more general contexts via the simulation of randomized choices; cf Girard (2010) for the

large-n theoretical justification of this approach in the i.i.d. case).
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Figure 6 : Assessment of the simplified 6
5nσ

2X2(1) approximation of the ASE-excess. In each panel,

the displayed normalized histogram is that of the 3000 replicates of Tn(ĥM )−Tn(ĥn). The superposed

blue curve is the 6
5nσ

2X2(1) density as suggested by the asymptotic theory. (A): n = 29 and (τ, γ) =

(0.75, 0.98). (B): n = 212 and (τ, γ) = (0.75, 0.98). (C): n = 29 and (τ, γ) = (0.75, 0.9). (D): n = 29

and (τ, γ) = (0.4, 0.98).

A natural question for a practitioner is thus the meaning of “large enough” in the above

discussion. We summarize in Figure 6 the simulation results for 4 settings: the “worst” set-

ting, precisely n = 512 and (τ, γ) = (0.75, 0.98) in panel A, and three other settings, where

“worst” means that the goodness of the approximation of the observed histogram by the

asymptotic scaled chi-square law of Theorem 3.1 is the worst in the 9 configurations of (τ, γ)-

values. This goodness can be of course improved (in agreement with the theoretical result)

17



when n is increased: Panel B, compared to A, demonstrates that n = 4096 is sufficient for

(τ, γ) = (0.75, 0.98), while n = 512 is not. But we also observed two facts: 1) such a good-

ness is also restored by decreasing γ. Panel C demonstrates that γ = 0.9 is sufficient even

for n = 512; and we always observed this behavior for lower γ. 2) the shape parameter τ has

the same impact. Indeed Panel D, where, again, γ = 0.98, demonstrates that for τ = 0.4 the

asymptotic scaled X2(1) approximation is quite good even for n = 512. For the configurations

(τ, γ) ∈ {(0.75, 0.01), (0.4, 0.01), (0.4, 0.9), (0.2, 0.01), (0.2, 0.9), (0.2, 0.98)}, the results are not

displayed, for sake of place, because the figures would be quasi-identical to those in either Panel

B, C or D.

By comparing with the experimental results for the normal approximation of the differences

of bandwidths, this latter configuration (τ, γ) = (0.4, 0.98) is one of many where the scaled

X2(1) approximation for the excess of ASE does not require very large n, while it was not the

case for the bandwidths’ differences.

5 Proofs

In all the proofs, we denote by cst a positive constant that may be different from line to line.

5.1 Proof of Theorem 3.1

Let ĥ be either ĥM or ĥG. We know, using T ′n(ĥn) = 0, that there exists h∗ between ĥ and ĥn
for which,

n(Tn(ĥ)− Tn(ĥn)) = n(ĥ− ĥn)T ′n(ĥn) +
n

2
(ĥ− ĥn)2T

′′

n (h∗) =
n

2
(ĥ− ĥn)2T

′′

n (h∗)

=
n

2
(ĥ− ĥn)2IE(T

′′

n (h∗n)) +
n

2
(ĥ− ĥn)2

(
T
′′

n (h∗)− IE(T
′′

n (h∗n))
)
, (18)

where h∗n is as defined in (5) and is the minimizer of Dn(h) (defined in (4)). Let us control the

two terms of the right hand side of (18).

Control of n
2
(ĥ− ĥn)2IE(T

′′
n (h∗n)). Clearly,

n

2
(ĥ− ĥn)2IE(T

′′

n (h∗n)) =
(

Σ−1n3/10(ĥ− ĥn)
)2 Σ2

2
n2/5IE(T

′′

n (h∗n), (19)

where Σ is as defined in (12). We know from (11) and (12) that

Σ−1n3/10(ĥ− ĥn) =⇒ N (0, 1),

in distribution, as n tends to infinity and then(
Σ−1n3/10(ĥ− ĥn)

)2
=⇒ X2(1), (20)

18



in distribution, as n tends to infinity. We get (using the same arguments as for the proof of

Lemma 2.1 in BGL), for any h sufficiently small and for any n sufficiently large,

IE(T
′′

n (h)) = 3h2
∫ 1

0

u(x)r
′′2(x)dx

(∫ 1

−1
t2K(t)dt

)2

+
2σ2

nh3
(

∫ 1

0

u(x)dx)

∫ 1

−1
K2(y)dy

+o(h2) +O(
1

n2h4
) + o(

1

nh3
).

We deduce (recall that h∗n = cn−1/5),

n2/5IE(T
′′

n (h∗n)) = 3c2
∫ 1

0

u(x)r
′′2(x)dx

(∫ 1

−1
t2K(t)dt

)2

+
2σ2

c3
(

∫ 1

0

u(x)dx)

∫ 1

−1
K2(y)dy + o(1).

Hence,

lim
n→∞

n2/5IE(T
′′

n (h∗n)) = 5σ4/5B2/5A3/5,

and

lim
n→∞

Σ2

2
n2/5IE(T

′′

n (h∗n)) = C, (21)

with

C =
2σ2

5A

((∫
t2K(t)dt

)2 ∫ 1

0

u2(x)r′′2(x)dx+
2A

B

∫ 1

0

u2(x)dx

∫
(K −G)2(t)dt

)
.

We obtain collecting (19), (20) and (21),

n

2
(ĥ− ĥn)2IE(T

′′

n (h∗n)) =⇒ CX2(1), (22)

in distribution, as n tends to infinity.

Control of n
2
(ĥ− ĥn)2

(
T
′′
n (h∗)− IE(T

′′
n (h∗n))

)
. Clearly,

n

2
(ĥ− ĥn)2

(
T
′′

n (h∗)− IE(T
′′

n (h∗n))
)

=
(
n3/10(ĥ− ĥn)

)2 n2/5

2

(
T
′′

n (h∗)− IE(T
′′

n (h∗n))
)
. (23)

We have,

n2/5
∣∣∣T ′′n (h∗)− IE(T

′′

n (h∗n))
∣∣∣ (24)

≤ n2/5

∣∣∣∣T ′′n (h∗)

Dn(h∗)
− 1

∣∣∣∣ ∣∣∣D′′n(h∗)
∣∣∣+ n2/5

∣∣∣D′′n(h∗)− IE(T
′′

n (h∗n))
∣∣∣ ,

and

n2/5

∣∣∣∣T ′′n (h∗)

D′′n(h∗)
− 1

∣∣∣∣ ∣∣∣D′′n(h∗)
∣∣∣ ≤ sup

h∈Hn

∣∣∣∣T ′′n (h)

D′′n(h)
− 1

∣∣∣∣ (n2/5 sup
h∈Hn

∣∣∣D′′n(h)
∣∣∣) . (25)

We need the following lemma proved in BGL,
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Lemma 5.1. It holds, under the previous notations,

lim sup
n→∞

(
n2/5 sup

h∈Hn

∣∣∣IE(T
′′

n (h))
∣∣∣) <∞, lim sup

n→∞

(
n2/5 sup

h∈Hn

∣∣∣D′′n(h)
∣∣∣) <∞

lim
n→∞

sup
h∈Hn

∣∣∣∣ D
′′
n(h)

IE(T ′′n (h))
− 1

∣∣∣∣ = 0

lim
n→∞

sup
h∈Hn

∣∣∣∣T ′′n (h)

D′′n(h)
− 1

∣∣∣∣ = 0, in probability.

We deduce, using Lemma 5.1 and (25),

lim
n→∞

n2/5

∣∣∣∣T ′′n (h∗)

D′′n(h∗)
− 1

∣∣∣∣ ∣∣∣D′′n(h∗)
∣∣∣ = 0, in probability. (26)

Now,

n2/5
∣∣∣D′′n(h∗)− IE(T

′′

n (h∗n))
∣∣∣

≤ n2/5
∣∣∣D′′n(h∗)−D′′n(h∗n)

∣∣∣+ n2/5
∣∣∣IE(T

′′

n (h∗n))
∣∣∣ ∣∣∣∣ D

′′
n(h∗n)

IE(T ′′n (h∗n))
− 1

∣∣∣∣
≤ cst

∣∣∣∣h∗h∗n − 1

∣∣∣∣+

(
n2/5 sup

h∈Hn

∣∣∣IE(T
′′

n (h))
∣∣∣) sup

h∈Hn

∣∣∣∣ D
′′
n(h)

IE(T ′′n (h))
− 1

∣∣∣∣
≤ cst

∣∣∣∣∣ ĥh∗n − 1

∣∣∣∣∣+ cst

∣∣∣∣∣ ĥGĥM − 1

∣∣∣∣∣+

(
n2/5 sup

h∈Hn

∣∣∣IE(T
′′

n (h))
∣∣∣) sup

h∈Hn

∣∣∣∣ D
′′
n(h)

IE(T ′′n (h))
− 1

∣∣∣∣ . (27)

The asymptotic optimality property (9) allows to deduce that
∣∣∣ ĥh∗n − 1

∣∣∣ +
∣∣∣ ĥG
ĥM
− 1
∣∣∣ converges,

in probability, to 0 as n tends to infinity. Consequently, the bound (27) together with Lemma

5.1, give

lim
n→∞

n2/5
∣∣∣D′′n(h∗)− IE(T

′′

n (h∗n))
∣∣∣ = 0, in probability. (28)

We deduce, collecting (24), (26) and (28),

lim
n→∞

n2/5
∣∣∣T ′′n (h∗)− IE(T

′′

n (h∗n))
∣∣∣ = 0, in probability. (29)

Consequently, we deduce thanks to (23) and (20),

lim
n→∞

n

2
(ĥ− ĥn)2

(
T
′′

n (h∗)− IE(T
′′

n (h∗n))
)

= 0, in probability. (30)

The proof of Theorem 3.1 is complete by collecting (18), (22) and (30). �
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5.2 Proof of Proposition 3.1

The sequence (εi)i∈IN, as defined in (13), is strictly stationary. This property follows from the

strictly stationary property of the sequence (σi)i∈IN. Define, now, the sequence of filtration

(Fi)i≥0 by, for i ∈ IN, Fi = σ(Z0, · · · , Zi, σi, σi+1). Then εi is Fi-measurable. Since σi is

Fi−1-measurable, Zi is independent of Fi−1 and IE(Zi) = 0, we have

IE (εi|Fi−1) = σiIE (Zi|Fi−1) = 0,

almost surely. This sequence (εi)i∈IN is then a strictly stationary MDS. We have, by the require-

ments of Proposition 3.1, that IE(ε2p1 ) < ∞ for some p > 8. Conditions (A) are then satisfied.

Our task now is to check Condition (B), i.e., the inequality in (10). We have, by the definition

of SV model, (denoting by P the distribution of Z1), for i1 ≤ · · · ≤ ik < ik+1 ≤ · · · ≤ iq,

Cov(εi1 · · · εik , εik+1
· · · εiq)

= Cov(σi1Zi1 · · ·σikZik , σik+1
Zik+1

· · ·σiqZiq)

=

∫ ∫
zi1 · · · ziqCov(σi1 · · ·σik , σik+1

· · ·σiq)dP (zi1) · · · dP (ziq)

= IE(Zi1 · · ·Ziq)Cov(σi1 · · ·σik , σik+1
· · ·σiq).

Consequently,∣∣Cov(εi1 · · · εik , εik+1
· · · εiq)

∣∣ = |IE(Zi1 · · ·Ziq)||Cov(σi1 · · ·σik , σik+1
· · ·σiq)|

≤ cst |Cov(σi1 · · ·σik , σik+1
· · ·σiq)|. (31)

Condition (10) is then satisfied from the last inequality together with Condition (14). Condition

(B) holds. The proof of Proposition 3.1 is complete since all the requirements of Theorem 3.1

are satisfied (the asymptotic optimality (9), the asymptotic normality (11)-(12) are already

proven in BGL.) �

5.3 Proof of Corollary 3.1

All the higher moments of σ1 and ε1 are finite, we refer for instance to Cox, Hinkley and

Barndorff-Nielsen (1996) (page 22). We have now to check that (εi)i∈IN is strongly mixing

and that Condition (14) is satisfied. Since the density of η0 is in IL1, the linear process(∑∞
j=0 γ

jηi−j

)
i

is strongly mixing (see Pham and Tran (1985)) with,

αs ≤ K
∑
j≥s

(∑
k≥j

|γ|k
)2/3

= O(|γ|
2
3
s),

for some constant K. Similarly, the sequence (σi)i≥0 is still strongly mixing with the same

mixing coefficients (αs)s. We deduce, from (31), that (εi)i≥0 is also strongly mixing with
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mixing coefficient of order O(|γ| 23 s). We have, for 1 ≤ i1 ≤ · · · ≤ ik < ik+1 ≤ · · · ≤ iq ≤ n such

that, defining j = ik+1 − ik, j ≥ max1≤l≤q−1(il+1 − il), and for s, l, r strictly positive reals for

which 1/s+ 1/l + 1/r = 1,

|Cov(σi1 · · · σik , σik+1
· · ·σiq)| ≤ 8α

1/r
j ‖σi1 · · ·σik‖s‖σik+1

· · · σiq‖l (32)

≤ cst α
1/r
j ≤ cst |γ|

2j
3r ,

(see Davydov (1968)). Condition (14) is then satisfied since
∑

j≥1 j
4|γ| 2j3r < ∞ (recall that in

this model all the moments of σ1 are finite).

Therefore the requirements of Proposition 3.1 are satisfied so that the asymptotic optimality

(9), the asymptotic normality (11)-(12) and the conclusions of Theorem 3.1 hold. �

5.4 Proof of Corollary 3.2

This sequence (εn)n≥1 has finite moments at any order. In particular, for r ∈ IN,

IE(ε2r1 ) = (2r − 1)(2r − 3) · · · 3× 1
Γ(p+ r)

Γ(p)
λ−r,

(see for instance Abraham, Balakrishna and Sivakumar (2007) and the references therein).

Now the sequence (σi)i is also β-mixing (since, by definition, it’s the square root of a β-mixing

positive sequence (hi)i≥1) so it is also strongly mixing with

αn ≤ βn ≤ a1e
−ρn,

for some positive real numbers a1 and ρ. This bound together with (32) prove that, for 1 ≤
i1 ≤ · · · ≤ ik < ik+1 ≤ · · · ≤ iq ≤ n such that, letting s = ik+1 − ik, s ≥ max1≤l≤q−1(il+1 − il),

|Cov(σi1 · · ·σik , σik+1
· · ·σiq)| ≤ cst α1/r

s ≤ cst e−ρ
s
r , (33)

for some fixe r > 1. Clearly, ∑
s≥1

s4e−ρ
s
r <∞. (34)

Condition (14) is then satisfied from (33) and (34). As in the proof of Corollary 3.1, we deduce

that all the requirements of Proposition 3.1 are satisfied. Therefore the asymptotic optimality

(9), the asymptotic normality (11)-(12) and the conclusions of Theorem 3.1 hold. �

5.5 Proof of Corollary 3.3

The sequence (σi)i∈IN is associated since it is a non-decreasing function of independent random

variables (see Esary, Proschan and Walkup (1967)). The random variable σi is bounded, |σi| ≤
e2 and, by (see Birkel (1988)),

0 ≤ Cov(σi, σl) ≤ e2
∞∑
j=0

2−j
∞∑
k=0

2−kCov(ηi−j, ηl−k) ≤ cst 2−|i−l|.
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For 1 ≤ i1 ≤ · · · ≤ ik < ik+1 ≤ · · · ≤ iq ≤ n such that, letting s = ik+1 − ik, s ≥
max1≤l≤q−1(il+1 − il), we have using Birkel (1988), and the above bound,

|Cov(σi1 · · · σik , σik+1
· · ·σiq)| ≤ e2(q−2)

ik∑
i=i1

iq∑
l=ik+1

Cov(σi, σl) ≤ cst 2−s.

Condition (14) is then satisfied, since
∑∞

s=1 s
42−s <∞. Now, we have since σ1 is bounded and

Z1 is normally distributed IE(ε2p1 ) <∞ for any p ∈ IN.

All the requirements of Proposition 3.1 are satisfied and therefore the asymptotic optimality

(9), the asymptotic normality (11)-(12) and the conclusions of Theorem 3.1 hold. �
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