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Abstract

Propensity score methods are widely used in observational studies
for evaluating marginal treatment effects. The generalized propensity
score (GPS) is an extension of the propensity score framework, histor-
ically developed in the case of binary exposures, for use with quantita-
tive or continuous exposures. In this paper, we proposed variance esti-
mators for treatment effect estimators on continuous outcomes. Dose-
response functions (DRF) were estimated through weighting on the
inverse of the GPS, or using stratification. Variance estimators were
evaluated using Monte Carlo simulations. Despite the use of stabilized
weights, the variability of the weighted estimator of the DRF was par-
ticularly high, and none of the variance estimators (a bootstrap-based
estimator, a closed-form estimator especially developped to take into
account the estimation step of the GPS, and a sandwich estimator)
were able to adequately capture this variability, resulting in coverages
below to the nominal value, particularly when the proportion of the
variation in the quantitative exposure explained by the covariates was
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large. The stratified estimator was more stable, and variance estima-
tors (a bootstrap-based estimator, a pooled linearized estimator, and
a pooled model-based estimator) more efficient at capturing the em-
pirical variability of the parameters of the DRF. The pooled variance
estimators tended to overestimate the variance, whereas the bootstrap
estimator, which intrinsically takes into account the estimation step of
the GPS, resulted in correct variance estimations and coverage rates.
These methods were applied to a real data set with the aim of assessing
the effect of maternal body mass index on newborn birth weight.

1 Introduction
In observational cohort studies, confounding may occur when the distri-
bution of baseline covariates differs between treated and control subjects.
The propensity score is one of the methods that helps in reducing or min-
imizing this confounding to get valid inferences on treatment effects. It
was first developed for binary or categorical exposures ([1]). In this set-
ting, the propensity score is defined as the probabiblity of being exposed
conditionally on baseline characteristics. Different propensity score meth-
ods have been proposed to estimate the treatment effects: covariate adjust-
ment using the propensity score ([2]), stratification on the propensity score
([3, 4]), propensity-score matching ([5, 6, 7]) and propensity score weighting
([8, 9, 10, 11]).

In many studies, the exposure of interest is continuous rather than binary.
For example, we may not only know whether an individual is a smoker or
not, but also the pack-years of cigarettes smoked, or the duration of smoking.
Another example is the body mass index, which may be more informative as
a continuous variable than if reduced to a dummy variable indicating obesity
([12, 13]). Considering this type of exposure variable, one may be interested
in estimating the dose-response function. If this term may evoke the dose
of a medication, we will use it regardless of the nature of the exposure as
long as it is quantitative. The propensity score has been generalized into a
propensity function for quantitative exposures which is known as the gener-
alized propensity score (GPS) ([14, 15, 16, 12, 13]). Similarly to the binary
case, different propensity score methods have been proposed to estimate the
treatment effects on outcomes using the GPS: covariate adjustment ([13]),
stratification ([12]) and inverse probability of treatment weighting (IPTW)
([12, 13]).

In the case of binary exposure, several authors have proposed valid closed-
form variance estimators adapted to each treatment effect estimators: adjust-
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ment ([17]), stratification ([18]), matching ([7]) and weighting ([4, 19, 20]).
Note that all these estimators take into account the fact that the theoretical
propensity score value of an individual is unknown, and is estimated from
the data in the first-stage of analysis. To our knowledge, variance estima-
tion for treatment effect estimated using the GPS framework has received
little attention. In this work, we develop and evaluate closed-form variance
estimators for stratified and weighted treatment effect estimators using the
influence function linearization technique ([21]). These variance estimators
are also compared to bootstrap-based variance estimators.

The paper is organized as follows. In Section 2.1, we introduce some
notations. In Section 2.2, we describe the weighted treatment effect estimator
based on the GPS. In Section 2.3, we describe the stratified treatment effect
estimator. In Section 3, we describe the variance estimators developed in
this study. In Section 4, the performances of the models are assessed on
a benchmark of simulated databases. They are applied in Section 5 on a
real example extracted from the PreCARE cohort study, with the aim of
assessing the effect of maternal Body Mass Index (BMI) on newborn birth
weight. Finally, we discuss in Section 6 the pros and cons of the different
estimation methods, and we describe areas for future research.

2 Treatment effect estimator using the gener-
alized propensity score

2.1 Notations and assumptions

Let T denote the level of a quantitative exposure which is a continuous vari-
able, and Z a set of p baseline measured covariates. Let Y (t), t ∈ Ψ, denote
a set of potential outcomes which is assumed to exist under Rubin’s frame-
work for causal inference. More precisely, we assume that T is a continuous
exposure (i.e., Ψ is a subset of R) and that Yi(t) is the outcome that would be
observed for subject i if he/she received (maybe contrary to the reality) the
level of exposure T = t. In practice, we only observe one level of exposure for
each subject i and the corresponding outcome. The observed data consists
of (Zi, Ti, Yi) for subjects i = 1, . . . , n.

We are interested in estimating the dose-response function

µ(t) = E[Yi(t)], (1)

which corresponds to the average response if all subjects were exposed to the
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level T = t.
In randomized studies, it can be assumed that Y (t) is independent of T ,

which is denoted as Y (t) ⊥⊥ T, ∀t ∈ Ψ. In this work, we only assume that
Y (t) is independent of T given Z, which is known as the weak unconfound-
edness assumption and denoted as

Y (t) ⊥⊥ T |Z, ∀t ∈ Ψ. (2)

This assumption means that any association between the actual exposure
and the potential outcomes is explained by a set of baseline covariates Z
([14, 12]). Note that this assumption cannot be checked from the data.

Let us denote by

r(t | z) ≡ fT |Z(t|z), (3)

the conditional density of exposure variable T given the covariates, which is
called the generalized propensity score (GPS) ([14]). We make the positivity
assumption, namely

r(t | z) > 0 for any t ∈ Ψ and for any z. (4)

This means that any level of exposure T = t is possible for any subject,
whatever his/her baseline characteristics. A violation of this assumption
may lead to biased estimators, or estimators with a large variability ([22]).
Note that this assumption may and should be checked from the data. In the
case of a binary exposure, assessing the positivity assumption may involve
examining the overlap between the distribution of the estimated propensity
score for the exposed and the exposed samples ([23]), or by examining the
distribution of the estimated weights used for inverse probability of treatment
weighting, looking for extreme values ([24]). In the context of the generalized
propensity score and to our knowledge, diagnostics for assessing the positivity
assumption have not yet received much attention, even though the estimation
of the proportion of the variation in the continuous exposure explained by
the covariates seems a promising approach ([13]).

We focus on two approaches for the estimation of the dose-response func-
tion: inverse probability of treatment weighting, and stratification. Both
approaches are presented in [12] and are briefly described in Sections 2.2 and
2.3.
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2.2 Weighted treatment effect estimator

The first estimator is obtained by fitting a generalized linear regression model
between the dose-response function and the exposure, used as the sole de-
pendent variable. Focusing on the case of a linear dose-response function,
our model is

µ(T ) = β0 + β1 T + ε, (5)

where β0 is the average response observed in case of null exposure (T = 0),
and β1 is the average response change if the level of exposure is increased
by one unit. Other dose-response functions (e.g. in case of non-linear rela-
tionship) and/or other link functions may be better suited for other types
of outcome (e.g., a binomial link function for a binary outcome), and may
therefore be alternatively used.

The parameter β = (β0, β1)> is estimated by weighted least squares,
which leads to

β̂w ≡ (β̂w0, β̂w1)> =

(
n∑
i=1

ŵiT̃iT̃
>
i

)−1( n∑
i=1

ŵiT̃iYi

)
(6)

where T̃i = (1, Ti)
>, and the weights ŵi that we use are presented thereafter.

This leads to the first estimator

µ̂w(t) = β̂w0 + β̂w1 t (7)

for the dose-response function.

The weights used in equation (6) are computed as follows. We first in-
troduce the theoretical Generalized Propensity Score (GPS) weights, defined
as

wi(γ) =
W (Ti|γ)

r(Ti|Zi, γ)
, (8)

where r(t|z, γ) is the conditional density of the exposure variable defined in
(3), and where W (·|γ) is a stabilization factor. As is currently done in the
literature, we use W (t|γ) ≡ fT (t|γ) the marginal density of the exposure
variable. Note that the weights depend on some unknown vector of parame-
ters γ, which needs to be estimated.
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We suppose that Ti follows a normal distribution, both conditionally on
Zi and non conditionally. We may therefore write

fT (t|γ) =
1√

2πσ2
T

exp

{
− 1

2σ2
T

(Ti − µT )2

}
, (9)

r(t|z, γ) =
1√

2πσ2
exp

{
− 1

2σ2

(
Ti − α>Z̃i

)2
}
, (10)

with Z̃>i = (1, Z>i ) and γ = (µT , σ
2
T , α

>, σ2)>. The parameters µT and σ2
T in

equation (9) are estimated by

µ̂T =
1

n

n∑
i=1

Ti and σ̂2
T =

1

n− 1

n∑
i=1

(Ti − µ̂T )2. (11)

By fitting a linear regression model between the exposure variable and the
covariates, namely

Ti = Z̃i
>
α + ηi, (12)

the parameters α and σ2 in equation (10) are estimated by

α̂ =

(
n∑
i=1

Z̃iZ̃
>
i

)−1( n∑
i=1

Z̃iTi

)
, (13)

σ̂2 =
1

n− p− 1

n∑
i=1

(Ti − α̂T Z̃i)2.

This leads to the estimator γ̂ = (µ̂T , σ̂
2
T , α̂

>, σ̂2)>. By plugging this estimator
in (8), we obtain the estimated weights ŵi ≡ wi(γ̂) used in equation (6). The
model (12) is called the propensity model in the remainder of this paper.

2.3 Stratified treatment effect estimator

The weighted estimator of the dose-response function considered in equation
(7) of Section 2.2 proceeds through a linear regression on the whole sample,
using weights to adjust for possible imbalance in the covariates.

An alternative approach consists in partitioning the sample into L strata,
in such a way that the units inside a given stratum are somewhat similar
with respect to the covariates. This may be done by fitting the propensity
model in (12), ordering the units in the sample with respect to the prediction
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Z>i α̂, and using the quantiles as cut-off points ([12]).

Inside any stratum l = 1, . . . , L, we fit the regression model

µ(T ) = βl0 + βl1 T + εl, (14)

and by estimating the parameter βl = (βl0, βl1)> by ordinary least squares,
we obtain

β̂l ≡ (β̂l0, β̂l1)> =

(∑
i∈Sl

T̃iT̃
>
i

)−1(∑
i∈Sl

T̃iYi

)
, (15)

with Sl the subset of sampled units which belong to the stratum l. The
stratified estimator of the parameter β in (5) is obtained by pooling these L
estimators, which leads to

β̂st ≡ (β̂st0, β̂st1)> =
L∑
l=1

nl
n
β̂l, (16)

with nl the number of sampled units in the stratum Sl. Note that if the
quantiles are used as cut-off points, we have (up to rounding) nl = n/L, and
β̂st is the simple mean of the estimators β̂l, l = 1, . . . , L.

This leads to the second estimator

µ̂st(t) = β̂st0 + β̂st1 t (17)

for the dose-response function. Again, ordinary least squares may be replaced
by a generalized linear model and appropriate link function to fit other types
of outcome.

3 Closed form variance estimators
In this Section, our objective is to develop closed-form variance estimators
for the estimators of the dose-response function presented in equations (7)
and (17). Without loss of generality, we focus on variance estimation for the
estimated coefficients of regression β̂w and β̂st.

We follow the influence function linearization technique developped by
Deville ([21]), see also [20]. For an estimator β̂, this technique consists in
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finding a so-called estimated linearized variable Îi, summarizing the variabil-
ity in the estimation of the parameter. Ideally, the linearized variable should
account for all the estimation steps which lead to the estimator β̂.

The proposed variance estimator for the weighted estimator β̂w presented
in Section 2.2 is given in Section 3.1. The proposed variance estimator for
the stratified estimator β̂st presented in Section 2.3 is given in Section 3.2.

3.1 Weighted treatment effect estimator

The variance estimator for β̂w is obtained by observing that the coefficient
of regression is estimated in a two-step process, involving two estimating
equations. First, the unknown parameter γ used to compute the weights is
obtained by solving the system of estimating equations

Fn(γ) ≡ 1

n

n∑
i=1

Fi(γ) = 0, (18)

where

Fi(γ) =


Ti − µT
(Ti − µT )2 − n−1

n
σ2
T

(Ti − Z̃>i α)Z̃i
(Ti − Z̃>i α)2 − n−p−1

n
σ2

 . (19)

Then, the estimator β̂w is obtained as the solution of the estimating equation

Hn(γ̂, β) ≡ 1

n

n∑
i=1

wi(γ̂)Hi(β) = 0 with Hi(β) = T̃i(Yi − T̃>i β). (20)

After some algebra, this leads to the following linearized variable for β̂w:

Î1i = Â−1
{
wi(γ̂)Hi(β̂) + B̂Ĉ−1Fi(γ̂)

}
, (21)
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with

Â =
1

n

n∑
i=1

wi(γ̂)T̃iT̃
>
i ,

B̂ =
1

n

n∑
i=1

Hi(β̂)∇wi(γ̂)>, (22)

Ĉ =


1 0 01K 0
0 n−1

n
01K 0

0K1 0K1
1
n

∑n
i=1 Z̃iZ̃

>
i 0K1

0 0 0 n−p−1
n

 ,

and where 0•� stands for the null matrix with • rows and � columns. The
computation details are given in Appendix A.

The resulting variance estimator is

V̂lin(β̂w) =
1

n(n− 1)

n∑
i=1

(Î1i − Ī1)(Î1i − Ī1)> with Ī1 =
1

n

n∑
i=1

Î1i. (23)

3.2 Stratified treatment effect estimator

Inside each stratum ` = 1, . . . , L, the intermediary estimators β̂l are esti-
mated by solving the estimating equations

Φ(β`) ≡
1

n`

∑
i∈S`

Φ(Yi, Ti, β`) = 0, (24)

with

Φ(Yi, Ti; β`) =

(
Yi − T̃>i β`
Ti(Yi − T̃>i β`)

)
. (25)

After some algebra, the linearized variable of β̂l is

Î2l,i =
1

σ̂2
`,T

(
σ̂2
`,T + m̂2

`,T −m̂`,T

−m̂`,T 1

)
×
(
Yi − T̃>i β̂`
Ti(Yi − T̃>i β̂`)

)
, (26)

where

m̂`,T =
1

n`

∑
i∈S`

Ti and σ̂2
`,T =

1

n` − 1

∑
i∈S`

(Ti − m̂`,T )2. (27)
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The computation details are given in Appendix B. This leads to the pooled
variance estimator

V̂ (β̂st) =
L∑
`=1

(p`)
2

n`(n` − 1)

∑
i∈Sl

(Î2l,i − Ī2l)(Î2l,i − Ī2l)
> (28)

with Ī2l =
1

nl

∑
i∈Sl

Î2l,i.

Note that the strata are built by using the quantiles of the predicted Z̃>i α̂
given by the propensity model, and the strata boundaries are therefore esti-
mated rather than known. This is not accounted for in the variance estimator
proposed in equation (28). Taking this estimation into account could possi-
bly be performed by following the approach in [25], but this would require
fully specifying the joint distribution between the outcome, the exposure and
the covariates.

An advantage of the variance estimator given in (28) is its robustness to
the misspecification of the model linking the dose-response function and the
exposure. Alternatively, a model-based variance estimator could be derived.

4 Simulations

4.1 Data-generating process

We adapt the method described in [20]. First, we randomly generate p +
1 normally distributed covariates Z1, . . . , Zk . . . , ZK , ZU from the following
multivariate normal distribution:

[Z1, . . . , ZK , ZU ] ∼ N (0; Σ) with Σ =


1 0 . . . 0 σ1

0 1 . . . 0 σ2
...

... . . . ...
...

0 0 . . . 1 σK
σ1 σ2 . . . σK 1

 .

Thus, Z1, . . . , ZK are mutually independent following a standard nor-
mal distribution, but are each correlated to a standard normal variable ZU
through covariance parameters σk, k = 1, . . . , K.

A covariate U is then computed by applying the following transformation
to ZU : U = FZU

(u) = P(ZU < u) (i.e. U is the cumulative distribution func-
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tion of ZU). By construction, U follows a uniform distribution U(0, 1) which
is still correlated to other covariates Z1, . . . , ZL.

The treatment allocation T is drawn from a linear model where:

T = α0 +
K∑
k=1

αkZk + η, (29)

with η ∼ N (0, σ2). The parameter σ2 is linked to the coefficient of determi-
nation R2 which measures the proportion of the variance (of the exposure)
explained by the regression model, and is defined as:

R2 =
var(

∑K
k=1 αkZk)

var(Y )
(30)

=

∑K
k=1 α

2
k∑K

k=1 α
2
k + σ2

. (31)

R2 is bounded between 0 and 1. This simple parameter (classic in linear
regression) allows to easily control the degree of confounding in the simulated
samples ([13]). R2 close to 0 corresponds to weak confounding, R2 close to 1
corresponds to strong confounding.

The continuous outcome is then generated from U as

Y = β0 + β1T + σ2
YU, (32)

and therefore Y ∼ N (µ, σ2
Y ) where µ = β0 + β1T .

The key mechanism by which this algorithm generates confounding in the
estimation of the dose response function is the way in which the exposure
T and the outcome Y depend both on U . Figure 1 represent the directed
acyclic graph corresponding to this data-generating process. Confounding is
due to U being a common ancestor of T and Y . Z1, . . . , ZK are sufficient
to adjust for confounding, because T is independent of U given Z1, . . . , ZK
([26]). Thus, unlike Austin (2018, equation 2, page 1877), the association
between the confounding factors and the outcome is not induced by including
these covariates with the exposure T in a conditional equation. By directly
setting the vector of parameters β of the marginal dose-response function at
desired theoretical value, our data generating algorithm allows to evaluate
and compare the performance of different analytical methods by their ability
to estimate β and the variability of this estimation.
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4.2 Simulation parameters

We fixed K = 10, and the true parameters αk and σk were set to values
presented in Table 1 inspired from [13]. Coefficients α0 and β0 are fixed to 0
in all scenarios.

Several scenarios were considered, defined by:

1. the sample size: n ∈ {500, 1000, 2000};

2. the degree of confounding tuned by the coefficient of determination
R2 ∈ {0.2, 0.4, 0.6, 0.8}

3. the residual variance in the outcome model σ2
Y ∈ {0.25, 0.5}

4. the treatment effect: β1 ∈ {0, 1, 2}.

A total of B = 1000 datasets were generated for each scenario.

[Table 1 about here.]

4.3 Estimation of the parameters of the dose-response
function and their variance

All statistical methods estimating the dose-response function described in
Section 2 were applied to each simulated dataset, and compared to the naive
(unweighted) maximum likelihood estimator.

Three different variance estimators were associated with the weighted
estimator of the dose-response function. First, we evaluated the sandwich
variance estimator previously used in [12]. This estimator takes into account
the lack of independence in the weighted sample (e.i. the ’duplication’ of
subjects in the analysis generated by the weights), but not the fact that the
GPS used to derive the weights was estimated rather than known with cer-
tainty ([27]). The linearized variance estimator proposed in Section 3.1 was
also applied. Finally, a bootstrap variance estimator based on Nboot = 200
bootstrap samples was also used. The weights defined in Equation 8 and the
parameters of the dose-response function (β̂0b and β̂1b, b ∈ 1, . . . , Nboot) were
reestimated in each bootstrap sample. The bootstrap variance estimator was
computed as the empirical variance of the estimated regression coefficients
associated with dose-response function across the Nboot bootstrap samples.

The stratified estimator of the dose-response function was used with
strata defined according to the deciles of the linear predictors of the propen-
sity model. We also considered three variance estimators: the pooled lin-
earized variance estimator given in equation (28), the pooled variance esti-
mator using model-based variance estimator from the maximum likelihood
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estimator in each stratum, and the boostrap-based variance estimator based
on Nboot = 200 bootstrap samples. Again, the propensity model and the
parameters of the dose-response function were reestimated within each boot-
strap samples.

The evaluated methods are summarized in table 2.

[Table 2 about here.]

4.4 Performance criteria

Results were assessed in terms of the following criteria:

1. Bias of the treatment effect estimation: 1
B

∑B
b=1(β̂b − β);

2. Root mean square error (RMSE):
√

1
B

∑B
b=1(β̂b − β)2;

3. Variability ratio of the treatment effect, defined as:
1
B

∑B
b=1 ŜE(β̂b)√

1
B′−1

∑B′
b′=1(β̂b′−

¯̂
β)2

,

where ŜE(β̂) is the estimated standard error of treatment effect β̂. It
allows evaluating the performance of the variance estimators: a ratio
> 1 (or < 1) suggests that standard errors overestimate (respectively,
underestimate) the variability of the estimate of treatment effect. The
denominator is the empirical Monte-Carlo standard deviation of the
treatment effect, estimated over B′ = 10000 random samples indepen-
dent from the samples used in the numerator.

4. Finally, the coverage evaluates if the procedure for constructing the
95% confidence interval achieves the advertised nominal level. Ninety-
five percent confidence intervals were constructed by as β̂ ± 1.96ŜE(β̂)

(where ŜE(β̂) depends on the variance estimation method used). Cov-
erage is defined by the proportion of times β is included in the 95%
confidence interval of β estimated from the model.

4.5 Software

All simulations involved the use of R 3.5.[28] Sandwich variance estimation
were computed with the svyglm function from the survey package ([29]).
The boot package was used for boostrap sampling ([30]). Graphics were
generated using the ggplot2 package ([31]).
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4.6 Results

For each of the two parameters of the dose-response function (β0 and β1),
Figure 2 displays the bias of the estimates for different values of R2 and
σ2
Y . In this figure, the theoretical values of β0 (the intercept coefficient of the

dose-response function) and β1 (the slope coefficient) are 0 and 1 respectively.
Boxplots were plotted to allow the graphical assessment of the variability of
the estimates. For the estimation of β1 (lower panel), the performance of
all methods was highly influenced by the value of R2, with a (negative) bias
which increased with increasing R2. This may be explained by the fact that
the more R2 increases, the less the positivity assumption is respected. Also,
the bias increases with the value of σ2

Y . Overall, the stratification method
gave the smallest bias, while the naive method gave the largest bias. The
weighted method gave acceptable bias only for value of R2 ≤ 0.4. All meth-
ods seemed to give approximately unbiased estimates of β0 (upper panel),
but the graphical evaluation of the bias is made difficult by the very high
variability of the estimates. In fact, the same trends as previously reported
for β1 were observed for β0 estimates, except that the bias was positive in-
stead of negative. The variability of the estimates increased for all methods
as R2 and σ2

Y increased. The variability associated with the weighted esti-
mator seemed much larger than with the stratified or the naive estimator,
particularly for the estimation of β1. The combination of a significant bias
and a very high variability for large R2 values led to the highest RMSE val-
ues being observed for the weighted method (Figure 3). On the contrary,
the stratification method was associated with the lowest RMSE, regardless
of the R2 and σ2

Y values for the estimation of both β0 and β1.
Figure 4 displays the boxplots of the standard errors of the dose-response

function parameters (β0 in the upper panel, β1 in the lower panel) estimated
with all methods listed in Table 2. The empirical Monte-Carlo standard
deviation associated with each dose-response function parameter estimator
in each evaluated scenario was indicated by a red horizontal line. In all
scenarios, the highest empirical standard deviation were observed with the
weighted estimator of the dose-response function parameters, especially for
large values of R2. The empirical standard deviation estimates associated
with the stratified estimator of the dose-response function were higher than
those associated with the naive estimator, especially for an R2 value of 0.8.
The value of σ2

Y had less effect than R2 on empirical standard deviations.
For the weighted estimator of the dose-response function, the standard er-
rors estimated with boostrap, linearized and sandwich methods underesti-
mated the empirical standard deviation. The variability of these standard
error estimates was also very large, and this phenomenon increased with R2.
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Among variance estimation methods associated with the stratified estimator
of the dose-response function, the bootstrap (which take into account the
GPS estimation step) produced the closest estimation of the empirical stan-
dard deviation of β̂1 coefficient. The two other estimators (pooled linearized
and pooled model-based estimators) overestimated the standard deviation of
the β̂1 coefficient. All variance methods associated with the stratified esti-
mator produced reasonably good estimates of the variance of β̂0. Finally, the
model-based variance estimator of the naive dose-response function estimator
had good performance in all scenarios.

The patterns of over or underestimation of the empirical standard devia-
tion are more precisely observable in Figure 5, which illustrates the ratio of
the average standard error and empirical standard deviation of the intercept
(upper panel) and the slope (lower panel) estimated coefficients for different
values of parameters R2 and σ2

Y . Overall, sandwich, bootstrap and linearized
variance estimators of the weighted estimator of dose-response function re-
sulted in similar values of variability ratio and were negatively biased, except
for the sandwich variance estimator of β1 with R2 = 0.2. This underesti-
mation of the empirical standard deviation increased with R2, for the two
coefficients of the dose-response function. Overall, the variance estimators
of the stratified estimator performed well for the intercept parameter of the
dose-response function, and tended to overestimate the empirical variance
for the slope parameter. The pooled linearized variance method gave slightly
lower variability ratios than the pooled model-based variance method. The
boostrap variance method gave ratio values very close to 1 for the slope coef-
ficient, whereas the two others estimators clearly led to an overestimation of
the empirical variance. The performance of the three variance estimator of
the stratified estimator stayed stable as the R2 increased. Finally, the value
of σ2

Y did not affect substantially the previous description of the results for
all estimators.

Finally, coverage rates for dose-response function estimates are reported
on Figure 6 for different values of parameters R2 and σ2

Y . Overall, results were
consistent with those described previously. For the intercept coefficient of the
dose-response function (upper panel), confidence intervals based on weighted
estimator of the dose-response function were the most unconservative. Their
coverage rate decreased as the R2 increased, whereas the performance of other
estimators performed well in all scenarios. Pooled model-based and pooled
linearized variance estimator of the stratified estimator of the dose-response
function were too conservative for the estimation of β1, while boostrap-based
method gave approximately correct coverage rates. Again, the performance
of the weighted estimators was greatly influenced by R2 values, with coverage
rates deteriorating while R2 increased.
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Supplementary simulations showed that these different results were not
affected by a change in the theoretical value of β1 (see Supplementary mate-
rials, Section 1). The effect of the sample size n had also been studied and
showed that the bias and variability associated with the different estimators
increased as the sample size decreased (see Supplementary materials, Section
2).

Finally, we also studied the effect of different number of strata for the
stratified method on the different estimations (see Supplementary materials,
Section 3). The different estimations of β0 were better for a few number of
strata, while the different estimations for β1 were better for a large number
of strata. The variance estimation of β̂0 and β̂1 were better for a few number
of strata.

5 Real data application
The different dose-response function estimation methods and associated vari-
ance estimation methods have been applied on a real cohort extracted from
the PreCARE study. PreCARE is a prospective multicenter cohort study of
pregnant women aiming to examine the association between socioeconomic
exposure and adverse maternal or neonatal outcomes ([32]). It included all
consecutive women registered to deliver or who delivered in 4 public teaching
hospitals in northern Paris (France) between October 2010 and May 2012.
Women were included at the beginning of their pregnancy during their first
visit at 1 of the 4 facilities and were followed until hospital discharge after
delivery. Overall, 10,419 women and their newborns were included. The ob-
jective of this analysis was to study the relationship between pre-pregnancy
maternal body mass index (BMI) on newborn birth weight. This analy-
sis was based on the 8,775 women for whom information about BMI, birth
weight and confounding factors included in the propensity score model was
available. The list of co-variables included in the propensity score model was
maternal age, parity, history of pre-eclampsia, history of preterm delivery (ie,
before 37 weeks’ gestational age), the presence of a social deprivation (social
deprivation index ≥ 1) ([33]), and maternal birth place (France vs other).
The R2 value associated with the propensity model was 0.05.

All the statistical methods described in Section 4.3 were applied. The
estimated parameters of the dose-response function are reported in Table 3.
In this Table, β̂0 represents the estimated mean birth weights (in grams)
when maternal BMI is equal to 10, and β̂1 represents the increment of the
estimated mean birth weight when maternal BMI increases of 1 unit. All

16



β̂1 values had qualitatively similar values indicating the positive association
between maternal BMI and birth weight. Of note, the graphical inspection
of the relationship between maternal BMI and birth weight may suggest a
’plateau’ effect for the highest (and rarest) BMI values ([34]). For the sake
of simplicity, this eventual deviation from the linearity hypothesis of the
relationship between maternal BMI and birth weight has been neglected.

As in the simulation study, standard errors associated with the weighted
dose-response function estimation method were higher than those associated
with the stratified estimation method, indicating a higher variability of ma-
ternal BMI effect estimate. Among variance estimation methods associated
with the weighted estimator, the methods which take into account the GPS
estimation step (linearized and bootstrap) produce lower standard errors
than the sandwich method. The same was observed among the variance esti-
mation methods associated with the stratified estimator: bootstrap standard
error was lower than the standard errors estimated with the two other meth-
ods which do not take into account the GPS estimation step. Overall, these
results were consistent with the results observed in the simulation study.

[Table 3 about here.]

6 Conclusions and perspectives
GPS-based methods have been proposed as a generalization of the propensity
score framework for assessing the marginal effect of a quantitative exposure
on an outcome of interest, through the estimation of a dose-response function.
This research focuses on the variance estimation of the dose-response function
parameters, in the case of continuous outcome. We have considered different
dose-response function estimation methods and different variance estimation
for each methods.

Experimental tests on simulated databases show that the stratification
method gives the best estimation of the parameters of the dose-response
function, and the boostrap method gives the best estimation of the associ-
ated variance. The pooled variance estimators (using linearized or maximum
likelihood model-based estimator) of the stratified estimator overestimate
the variance, resulting in estimated 95% confidence intervals whose empir-
ical coverage rates are substantially higher than the nominal level. This
phenomenon is related to what was already reported in the case of binary
exposure: the use of a variance estimator that does not account for the fact
that the propensity score is estimated rather than known with certainty leads
to an overestimation of the variability of the estimate of treatment effect.
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At the beginning of this research project, our main objective was to de-
velop of a closed-form estimator of the variance of the coefficients of the
dose-response function estimated using GPS-weighting, taking into account
the weights estimation step. But after the evaluation of the performance of
GPS-weighting and of the proposed variance estimator, as well as the perfor-
mance of the bootstrap estimator (already used in [12]), we had to admit that
our enthusiasm about GPS-weighting was dampened. This study shows that
GPS-weighting adds up three important issues: a greater bias than the strat-
ified method as the R2 increases, a high variability of the estimates, and the
failure of different variance estimators to correctly capture this variability,
even though similar approaches have been successfully used in the context of
propensity score weighting for binary exposure ([18, 27, 20]). Even if the bias
observed in simulations was relatively limited and became really significant
for large values of R2, the high variability of estimates led to RMSE values
equal to or greater than those observed without any adjustment. Moreover,
the underestimation of the variance with all variance estimators led to cov-
erage rates well below the nominal level. These shortcomings lead us to not
recommend the use of GPS-weighting for assessing the effect of a quantita-
tive exposure in observational studies, and to prefer more efficient alternative
methods like the stratification method that was also evaluated in this study,
or covariate adjustment using the GPS which also seems to provide more ac-
curate estimates than GPS-weighting, as shown by [13] for a binary outcome.

Given the performance of the stratified estimator combined with boot-
strap variance estimation, a future research may focus on the development
of a closed-form variance estimator which takes into account the fact that
strata boundaries are estimated rather than known. This could be par-
ticularly useful for the analysis of very large datasets (such as healthcare-
administrative databases), for which the repeated calculations required for
the bootstrap methods could be an issue (see Supplementary materials, Fig-
ure 16, for a comparison of execution times recorded with each variance
estimation method). Another topic of research could seek to improve the
performance of the weighted estimator. As suggested by Austin, ’large value
of R2 results in some subjects having large weights, resulting in estimates
with high variability’ ([13]). The use of the marginal density of the quan-
titative exposure to stabilize the estimated weights was already shown to
significantly improve the performance of GPS-weighting compared to the use
of unstabilized weights ([35]). Nevertheless, our study shows that this sta-
bilization fails to make the method competitive with the simple alternative
that is stratification. Perhaps a different choice for the numerator of the
GPS-weights could help to reduce even more the unstability and improve the
overall performance. Another research perspective would be to study more
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complex dose-response functions. Indeed, our research was deliberately lim-
ited to the study of simple linear response models with only two parameters
(the intercept and the slope), because the main objective of our study was
not to compare different approaches for estimating a complex function, but
to study the ability of various variance estimators to capture the variability
of the estimates. While the inclusion of polynomial terms in the weighted
model does not raise any particular difficulty, studying more complex mod-
els, including smooth coefficients or non-parametric modelization of the dose
response function ([35]) would be interesting in order to get closer to real
clinical situations in whom dose-response functions are not always linear.
But the development and evaluation of variance estimators (including the
comparison to the empirical variance estimation) adapted to these situations
is not simple, and was beyond the scope of this work.
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A Variance estimator for the weighted dose-
response function estimator

We write

Hn(γ̂, β̂)−Hn(γ, β) =
1

n

n∑
i=1

wi(γ̂){Hi(β̂)−Hi(β)} (33)

+
1

n

n∑
i=1

{wi(γ̂)− wi(γ)}Hi(β).

We first consider the first term in the right-hand side of (33), denoted as ∆1.
Making use of a first-order Taylor expansion, we obtain

∆1 =
1

n

n∑
i=1

wi(γ̂){∇Hi(β)>(β̂ − β) + op(n
−0.5)}

=

(
1

n

n∑
i=1

wi(γ)∇Hi(β)

)
(β̂ − β) + op(n

−0.5)

= −A(β̂ − β) + op(n
−0.5), (34)

where

A = E[−wi(γ)∇Hi(β)].

In view of the system of estimating equations (20), we have

∇Hi(β) = −T̃iT̃>i ,

which leads to

A = E[wi(γ)T̃iT̃
>
i ]. (35)

We now consider the second term in the right-hand side of (33), denoted
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as ∆2. Making use of a first-order Taylor expansion, we obtain

∆2 =
1

n

n∑
i=1

{
∇wi(γ))>(γ̂ − γ) + op(n

−0.5)
}
Hi(β)

=

(
1

n

n∑
i=1

Hi(β)∇wi(γ)>

)
(γ̂ − γ) + op(n

−0.5)

= B(γ̂ − γ) + op(n
−0.5), (36)

where

B = E[Hi(β)∇wi(γ)>]. (37)

Making use of equation (8), we obtain after some algebra

∇wi(γ) = wi(γ)


Ti−µT
σ2
T

1
2σ2

T

{
(Ti−µT )2

σ2
T
− 1
}

−Z̃i (Ti−Z̃>i α)

σ2

− 1
2σ2

{
(Ti−Z̃>i α)2

σ2 − 1
}

 . (38)

Since γ is estimated by solving the estimating equation (18), we also have

Fn(γ̂)− Fn(γ) = ∇Fn(γ)> {γ̂ − γ}+ op(n
−0.5),

and since Fn(γ̂) = 0, this leads to

γ̂ − γ = −{∇Fn(γ)}−1 × Fn(γ) + op(n
−0.5)

= C−1 × Fn(γ) + op(n
−0.5) (39)

where

C = E[−∇Fn(γ)].

From the definition of Fn given in equation (18), we obtain after some algebra

C =


1 0 01K 0
0 n−1

n
01K 0

0K1 0K1 E(Z̃iZ̃
>
i ) 0K1

0 0 0 n−p−1
n

 .

22



By gathering equations (33), (34), (36) and (37), and since Hn(β̂) = 0,
we obtain

−Hn(γ, β) = −A(β̂ − β) +BC−1Fn(γ) + op(n
−0.5),

which finally gives

β̂ − β =
1

n

n∑
i=1

I1i + op(n
−0.5), (40)

where I1i = A−1
{
wi(γ)Hi(β) +BC−1Fi(γ)

}
. (41)

The variable I1i is the theoretical linearized variable of β̂. It involves unknown
parameters, which need to be estimated for variance estimation. This leads
to the estimated linearized variable Î1i given in equation (21).
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B Variance estimator for the stratified dose-
response function estimator

Recall that the intermediary estimator β̂`, ` = 1, . . . , L, is obtained by solving
the estimating equation (24). We have

Φ(β̂`)− Φ(β`) = −Φ(β`)

' E {∇Φ(β`)} × {β̂` − β`}. (42)

This leads to

β̂` − β` ' −E {∇Φ(β`)}−1 × Φ(β`)

=
1

σ2
`,T

(
σ2
`,T +m2

`,T −m`,T

−m`,T 1

)
× 1

n`

∑
i∈S`

(
Yi − T̃>i β`
Ti(Yi − T̃>i β`)

)
=

1

n`

∑
i∈S`

I2l,i (43)

with

I2l,i =
1

σ2
`,T

(
σ2
`,T +m2

`,T −m`,T

−m`,T 1

)
×
(
Yi − T̃>i β`
Ti(Yi − T̃>i β`)

)
, (44)

and where m`,T = E
{
Ti1{i∈S`}

}
and σ2

`,T = V
{
Ti1{i∈S`}

}
.

The variable I2l,i is the theoretical linearized variable of β̂`. Replacing the
unknown parameters by suitable estimators leads to the estimated linearized
variable Î2l,i given in (26).
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C R code for the different variance estimators

######################################################################
# This code is provided for illustrative purposes only and comes with
# absolutely NO WARRANTY.
######################################################################
library(survey)
library(boot)

######################################################################
# Weight estimation
######################################################################

# Fit the propensity model. Trt is the exposure, Z1 to Z10 are the covariates
modT <- lm(Trt ~ Z1 + Z2 + Z3 + Z4 + Z5 + Z6 + Z7 + Z8 + Z9 + Z10, data = data)

# Linear predictor
data$m <- m <- modT$fitted

# Computation of the estimated weights
n <- nrow(data)
s <- sqrt(sum(modT$residuals^2)/(n-length(modT$coef)))
wd <- dnorm(data$Trt, m, s)
mu <- mean(data$Trt)
su <- sd(data$Trt)
wn <- dnorm(data$Trt, mu, su)

data$w <- w <- wn/wd

######################################################################
# Weighted estimator - sandwich standard error
######################################################################

mod <- svyglm(Y ~ Trt, design = svydesign(id = ~1, weights = ~ w, data = data),
family = gaussian)

summary(mod)

######################################################################
# Weighted estimator - linearized standard error
######################################################################
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coefs.ipw <- mod$coefficients

variables <- names(data)[grep("^Z", names(data))]
Z <- as.matrix(data[, variables])
Ztilde <- cbind(1, Z)
dw <- w*cbind(

(data$Trt - mu)/(su^2),
(((data$Trt - mu)/su)^2 - 1)/(2*su^2),
-as.vector((data$Trt - data$m)/(s^2))*Ztilde,
-(((data$Trt - data$m)/s)^2 - 1)/(2*s^2)

)

Ttilde <- cbind(1, data$Trt)
tmp <- cbind(Ttilde, data$Trt, data$Trt^2)
A <- matrix(colMeans(tmp * w), 2, 2)
sA <- solve(A)

H <- Ttilde*as.vector((data$Y - mod$fitted.values))

F <- cbind(
data$Trt - mu,
(data$Trt - mu)^2 - ((n-1)/n)*(su^2),
as.vector((data$Trt - data$m))*Ztilde,
((data$Trt - data$m)^2) - ((n-length(modT$coef))/n)*(s^2)

)

B <- crossprod(H, dw)/n

mZZ <- crossprod(Ztilde, Ztilde)/n
C <- diag(length(variables) + 1 + 3)
C[2, 2] <- (n-1)/n
C[3:(length(variables)+3), 3:(length(variables)+3)] <- mZZ
C[nrow(C), ncol(C)] <- ((n-length(modT$coef))/n)
sC <- solve(C)

I <- t(sA%*%t((w*H + t(B %*% sC%*%t(F)))))

sds.ipw.lin <- sqrt(apply(I, 2, var)/n)
names(sds.ipw.lin) <- names(coefs.ipw)
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print(coefs.ipw)
print(sds.ipw.lin)

######################################################################
# Weighted estimator - bootstrap standard error
######################################################################
f.boot.ipw <- function(data, i) {

df <- data[i, ]
modT <- lm(Trt ~ Z1 + Z2 + Z3 + Z4 + Z5 + Z6 + Z7 + Z8 + Z9 + Z10, data = df)
m <- modT$fitted

n <- nrow(df)
s <- sqrt(sum(modT$residuals^2)/(n-length(modT$coef)))
wd <- dnorm(df$Trt, m, s)
mu <- mean(df$Trt)
su <- sd(df$Trt)
wn <- dnorm(df$Trt, mu, su)

df$w <- wn/wd

lm.wfit(cbind(rep(1, nrow(df)), df$Trt), df$Y, df$w)$coef
}

rcoefs <- boot(data, f.boot.ipw, R = 200)$t
sds.ipw.boot <- apply(rcoefs, 2, sd)
names(sds.ipw.boot) <- names(coefs.ipw)
print(sds.ipw.boot)

######################################################################
# Stratified estimator - Pooled model-based standard error
######################################################################
cl <- 10 # number of strata
data$Tcl <- cut(data$m, breaks = quantile(data$m, probs = seq(0, 1, 1/cl)),

include.lowest = TRUE)
W1 <- apply(data.frame(levels(data$Tcl)), MARGIN = 1, function(x) {

data2 <- subset(data, data$Tcl == x)
nk <- nrow(data2)
pk <- nk/n
mod <- glm(Y ~ Trt, data = data2, family = gaussian)
coefs <- mod$coef
sds <- (summary(mod)$coefficients[,2])^2
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return(c(pk*coefs, pk^2*sds))
})
coefs.strat <- apply(W1[1:2,], MARGIN = 1, sum)
sds.strat.pool1 = sqrt(apply(W1[3:4,],MARGIN = 1, sum))
print(coefs.strat)
print(sds.strat.pool1)

######################################################################
# Stratified estimator - Pooled linearized standard error
######################################################################
W2 <- apply(data.frame(levels(data$Tcl)), MARGIN = 1, function(x) {

data2 <- subset(data,data$Tcl == x)
nk <- dim(data2)[1]
pk <- nk/n

mod <- glm(Y ~ Trt, data = data2, family = gaussian)
coefs <- mod$coef
mhat <- mean(data2$Trt)
shat <- var(data2$Trt)
uhat <- rep((1/shat), nk)*as.vector(rep(shat+mhat^2,nk) -

mhat*data2$Trt)*as.vector(data2$Y-coefs[1]-coefs[2]*data2$Trt)
uhat2 <- rep((1/shat), nk)*as.vector(data2$Trt-mhat)

*as.vector(data2$Y-coefs[1]-coefs[2]*data2$Trt)
ubar <- mean(uhat)
ubar2 <- mean(uhat2)
sds1 <- 1/(nk*(nk-1))*sum((uhat-ubar)^2)
sds2 <- 1/(nk*(nk-1))*sum((uhat2-ubar2)^2)
return(c(pk*coefs, pk^2*sds1, pk^2*sds2))

})
sds.strat.pool2 = sqrt(apply(W2[3:4,], MARGIN = 1, sum))
print(sds.strat.pool2)

######################################################################
# Stratified estimator - Bootstrap standard error
######################################################################
f.boot.strat <- function(data, i) {

df <- data[i, ]
modT <- lm(Trt ~ Z1 + Z2 + Z3 + Z4 + Z5 + Z6 + Z7 + Z8 + Z9 + Z10, data = df)
df$m <- modT$fitted
df$Tcl <- cut(df$m, breaks = quantile(df$m, probs = seq(0, 1, 1/cl)),

include.lowest = TRUE)
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W <- apply(data.frame(levels(df$Tcl)), MARGIN = 1, function(x) {
df2 <- subset(df, df$Tcl == x)
nk <- nrow(df2)
pk <- nk/n
coefs <- lm.fit(cbind(rep(1, nrow(df)), df$Trt), df$Y)$coef
return(c(pk*coefs))

})
apply(W[1:2,], MARGIN = 1, sum)

}

rcoefs <- boot(data, f.boot.strat, R = 200)$t
sds.strat.boot <- apply(rcoefs, 2, sd)
names(sds.strat.boot) <- names(coefs.strat)
print(sds.strat.boot)
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Y ∈ {0.25, 0.5}, β0 = 0, β1 = 1 and n = 1000.
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Figure 3: Root mean square error (RMSE) of β̂ for different values of R2 ∈
{0.2, 0.4, 0.6, 0.8} and σ2
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Figure 4: Boxplots of the standard deviation estimates of β̂ for different
values of R2 ∈ {0.2, 0.4, 0.6, 0.8} and σ2

Y ∈ {0.25, 0.5}, β0 = 0, β1 = 1 and
n = 1000. The red line corresponds to the Monte Carlo standard deviation
estimate.
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Figure 5: Variability ratio for different values of R2 ∈ {0.2, 0.4, 0.6, 0.8} and
σ2
Y ∈ {0.25, 0.5}, β0 = 0, β1 = 1 and n = 1000.
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Figure 6: Coverage rate for different values of R2 ∈ {0.2, 0.4, 0.6, 0.8} and
σ2
Y ∈ {0.25, 0.5}, β0 = 0, β1 = 1 and n = 1000.
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Table 1: Parameters used in the data-generating process.
Parameter Value Parameter Value

α1 1 σ1 0.2
α2 1.5 σ2 0.3
α3 2 σ3 −0.4
α4 3 σ4 −0.3
α5 −2 σ5 −0.2
α6 −2 σ6 0.15
α7 1 σ7 0.2
α8 1.5 σ8 −0.2
α9 2 σ9 −0.2
α10 3 σ9 0.2
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Table 2: Methods for dose-response function and variance estimation
Dose-response function Variance GPS estimation

estimator estimator taken into account
in the variance estimator ?

Naive Model-based
Weighted Sandwich
Weighted Linearized X
Weighted Bootstrap X
Stratified Pooled model-based
Stratified Pooled linearized
Stratified Bootstrap X
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Table 3: Estimated dose-response function in the case study.
β̂0 β̂1

Method (ŜE(β̂0)) (ŜE(β̂1))
Naive 3065.41 12.78

Model-based standard error (20.62) (1.42)
Weighted 3116.06 8.98

Sandwich standard error (32.02) (2.31)
Linearized standard error (29.18) (2.10)
Bootstrap standard error (31.17) (2.25)

Stratified 3081.81 11.61
Pooled model-based standard error (20.09) (1.33)
Pooled linearized standard error (21.17) (1.45)
Bootstrap standard error (17.32) (1.13)

ŜE(β̂p): estimated standard error
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