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ABSTRACT This paper presents a novel synthesis for bandwidth switchable bandpass filters using
Semi-conductor Distributed Doped Areas (ScDDAs) as active elements. A co-design method is proposed
with a global and simultaneous conception for the active and the passive parts of the switchable filters. The
ScDDAs, integrated in the silicon substrate, are able to commute from half-wavelength open-ended stubs
to quarter-wavelength short-circuited ones. This co-design method offers a great flexibility and allows to
integrate the active elements directly in the substrate, therefore avoiding any soldering of components. The
synthesis is developed for the two-states of the active elements and applied, as a proof of concept, to a
four-pole bandwidth switchable bandpass filter. This filter operates at 5 GHz with a 50 % bandwidth in the
OFF-state (when the stubs are terminated by an open-circuit) and with a 70 % bandwidth in the ON-state
(when the stubs are short-circuited). For this filter, the synthesis is detailed in the two-states allowing to
choose the two desired bandwidths. A good fitting is obtained for these results proving the viability of such
an approach.

INDEX TERMS Bandpass filter (BPF), bandwidth tunability, co-design, discrete tuned, filter synthesis,
reconfigurable filter, ScDDA, tunable filter.

I. INTRODUCTION
The digital society is in perpetual evolution and thus needs to
deal with some major technological challenges that affect the
microwave devices performances which are widely used in
the telecommunications systems and for Internet-of-Things
applications. Switches, filters or antennas in the transmitter-
receivers have always to complete the same tradeoffs in
terms of size, cost, power handling and electrical and ther-
mal performances. Therefore, in the last few years more
and more studies led to new ways to design microwave
functions in a global approach instead of a component-
by-component approach. Some studies [1]–[3] present
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co-designs of filtering-antennas in order to reach the best
tradeoffs for a raise in frequency. Moreover, some switch-
able filtering-antennas use a reconfigurable bandwidth filter
[4], [5] to commute from ultra wideband to narrowband and
therefore modify the antenna selectivity. Taking into account
the environment ofmicrowave components is also a subject of
interest for the co-design of RF components, such as Radio
Frequency IDentification (RFID) antennas and its environ-
ment [6]. Furthermore, the technological challenges become
more prevalent when it comes to a global design with active
and passive components added to other components such as
a fully integrated Voltage Controlled Oscillator (VCO) [7],
or to a Single Pole Double Throw (SPDT) type switch asso-
ciated to a Low Noise Amplifier (LNA) to obtain an ultra-
low noise co-designed SPDT-LNA [8]. In this way, it is
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necessary to compute a global analysis such as with full wave
and time domain descriptions for microwave receivers and
converters for RFID [9], or with nonlinear analysis techniques
and electromagnetic simulations for a transmitter consisting
in an antenna and a doubly balanced Field Effect Transistor
(FET) mixer [10]. These entire co-design approaches aim
to optimize the whole system performances, homogenize
the technology, minimize the interconnection problems and
reduce the system size and therefore the cost. To go further,
a co-simulation tool allows to predict an accurate system
behavior simulated to minimize the return trips between the
research and the fabrication and, consequently, to reduce the
prototyping cost.

Thus, in order to succeed in moving towards efficient and
miniature communicating systems, it is necessary to make
several functionalities where different standards coexist on
the same chip. In the case of filters, many solutions exist to
do so: a first solution consists in multiplying the components,
such as filter banks [11], by the targeted standards number,
the performances of each device can be optimized but it is at
the detriment of the size and the cost. A second solution is to
address a switchable frequency band with RF switches such
as Micro-ElectroMechanical Systems (MEMS) [12]–[15],
PIN diodes [16]–[21] or FET transistors [22].

However, active components are getting smaller and
smaller when the microstrip transmission lines are still wider
than the Surface Mounted Devices (SMDs). Soldering these
components on the substrate leads to some parasitic effects,
caused by mismatches at the interconnections level and by
the size difference between the passive and the active parts.
These SMDs are widely used in bandpass filters with recon-
figurable bandwidths [23]–[27], however they limit the rise
in frequency in such reconfigurable applications. Moreover,
in microstrip technology, active components are linked to the
ground using metallized via-holes (to connect the DC and
RF grounds) to ensure biasing. These via-holes add addi-
tional losses and parasitic effects. Consequently, in a tunable
microwave function, a global design approach permits no
more to optimize the active component and the passive device
separately but the entire tunable function to focus on the final
performances.

In this way, some previous studies show the possibility
to co-design simultaneously the two parts of a tunable
microwave device [28]–[30]. The passive part is designed on
a High-Resistivity Silicon (HR-Si) substrate to minimize the
losses and the active elements are based on Semi-conductor
Distributed Doped Areas (ScDDAs), so they are integrated
in the substrate. In this context, a three-state tunable res-
onator [31] shows the flexibility in co-designing two active
elements and the passive component in the same design flow.
The active elements are made with some N+PP+ junctions
with two different sizes, integrated in the substrate, and,
thanks to this approach, a unique DC source is needed to
commute the two active elements offering to the resonator
three working states.

Therefore, this approach offers a great flexibility, a low
switching voltage, a unique DC source to control different
junctions and a very simple manufacturing process (the same
as for the semiconductor components with only two masks).
In addition to that, interconnections and parasitic effects due
to size mismatches are no longer a problem for such devices.
To go further in this direction, a ScDDA has been designed in
a triangle shape as an active element for a tunable resonator
in order to achieve a continuous tuning and reach a 50 %
resonant frequency variation [32]. Moreover, the use of a
HR-Si substrate allows to design low-losses RF filters [33]
and presents some constant performances on a large temper-
ature range [34].

In that respect, the idea of this work is to take advantage
of the co-design flexibility with ScDDAs as active elements
to design switchable bandpass filters and to target in future
works a co-design of switchable filtering-antenna.

This paper is organized as follow. First, in Section II, the
synthesis of the filter is presented and the bandwidths range
is illustrated by examples of four-pole bandwidth switch-
able bandpass filters. Then, in Section III, the fabrication
process is described before explaining in Section IV the
co-simulation method between the electrical characteristics
of the active element and the propagating wave of the passive
parts. Finally, in Section V, a 5 GHz four-pole bandwidth
switchable bandpass filter is proposed as a demonstrator and
its characterization validates the method.

II. SYNTHESIS OF THE BANDWIDTH SWITCHABLE
BANDPASS FILTER
The idea of this paper is to develop a novel synthesis for
bandwidth switchable bandpass filters with two working
states and therefore two different bandwidths. The starting
points of the novel synthesis are the quarter-wavelength
short-circuited stubs synthesis with constant impedance
and the half-wavelength open-circuited stubs synthesis with
stepped-impedance [35], which are detailed in the first two
parts of this section. The simplified layout of these two filters
are presented in Fig. 1 (a) and (b).

Then, in this paper, the idea is to adapt these syntheses to
the novel one detailed in the last part of this section, allowing
to choose the two bandwidths of a bandwidth switchable
bandpass filter. The filter is designed with half-wavelength
open-circuited stubs, and some active elements are used for
the commutation from half-wavelength open-circuited stubs,
in the OFF-state, to quarter-wavelength short-circuited stubs
in the ON-state (Fig. 1 (c)).

A. QUARTER-WAVELENGTH SHORT-CIRCUITED STUBS
Fig. 2 shows the circuit design of a bandpass filter with
short-circuited terminations, using impedances determined
from Matthaei’s book [35].

First, the electrical length, θ1, and the inverter admittances
of the bandpass filter can be calculated using (1) to (5) with
ω1 the bandwidth, YA the characteristic admittance.
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FIGURE 1. Ideal layout of a N-pole bandpass filter (a) with quarter-
wavelength short-circuited stubs and constant impedance. (b) with
half-wavelength open-circuited stubs with stepped- impedance. (c) with
half-wavelength open-circuited stubs with stepped- impedance able to
commute to quarter-wavelength short-circuited stubs.

FIGURE 2. Design of an N-pole bandpass filter with short-circuited
terminations.

d is a constant parameter which can be chosen between
0 and 1 to have the best admittances for the filter, i.e. a
tradeoff between the impedances of the stubs, which have
lower parasitic effects if their values are not very different,
and most of all impedance values, which take into account the
manufactured constraints linked to the chosen technology.

The element values g0, g1, . . . , gn, gn+1 are the coefficient
of the low-pass prototype Tchebyscheff filter and the param-
eter ω′1 is the radian frequency of the pass-band edge, which
is set to 1. The bandwidth is calculated at the ripple.
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π

2
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2

)
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Then, the characteristics admittances of the short-circuited
stubs can be computed using (6) to (9). The characteristics
admittances of the inverters can be evaluated with (10).
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Using (11) to (13), the short-circuited quarter-wavelength
stubs characteristic admittances can be simplified using (14).

α1= g0ω
′

1 (1− d) g1tanθ1 +
(
N12 −

J12
YA

)
(11)

αk
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k=2 to n−1=
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1(gngn+1−dg0g1)tanθ1+
(
Nn−1,n−

Jn−1,n
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)
(13)

Yk
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k=1 to n =YAαk (14)

B. HALF-WAVELENGTH OPEN-CIRCUITED STUBS WITH
STEPPED-IMPEDANCE
This filter can be synthesis using half-wavelength stepped-
impedance open-circuited stubs. First of all, one should
note that the characteristic admittances of the inverters are
calculated using the same equation as the previous ones.
Then, inner quarter wavelength portion can be determined
using (15).

Y ′k
∣∣
k=1 to n = Yk

(
aktan2θ1 − 1
tan2θ1 (ak + 1)

)
(15)

Next, the second portion of the stubs can be calculated
with (16).

Y ′′k
∣∣
k=1 to n = akY

′

k (16)

where the parameter ak, the ratio of the transmission zero by
the resonant frequency, is defined by (17).

ak = cot2
(
πω∞

2ω0

)∣∣∣∣
(ω∞/ω0)<(ω1/ω0)

(17)

C. HALF-WAVELENGTH OPEN-CIRCUITED STUBS WITH
STEPPED-IMPEDANCE SWITCHABLE TO
QUARTER-WAVELENGTH SHORT-CIRCUITED STUBS
Thanks to the two previous syntheses given in [35], new
equations unifying the two syntheses are given in this part
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offering the possibility to choose the two bandwidths of the
reconfigurable filter; ak is now used as a flexibility parameter
in the bandwidths calculation instead of being the ratio of
the transmission zero frequency and the resonant frequency.
Based on the synthesis of quarter-wavelength short-circuited
stubs, the first bandwidth is ω1.
Then, the idea is to short-circuit the stepped-impedance

stubs at the end of the inner quarter-wavelength portion,
i.e. at the stepped-impedance transition, therefore, the first
inner characteristic impedance can be determined by (18)
using (14).

Y ′k
∣∣
k=1 to n = Yk (18)

Then, using the synthesis of half-wavelength open-
circuited stubs the bandwidth is ω2 and the equation (1) is
replaced by (19) and allows to calculate α

′

k with θ2 in the
equations from (6) to (9).

θ2 =
π

2

(
1−

ω2

2

)
(19)

This leads to determine ak in (16) with (20) for the second
portion of the stubs.

ak
∣∣
k=1 to n =

(
tan2θ2αk + α

′

k

tan2θ2
(
α
′

k − αk
)) (20)

Finally, the synthesis ends to the calculation of the stub
impedances of each filter transmission line, and this using
(21) to (23), with Zi the inverter impedance, Zp the first part of
the stubs and Zs the second part of the stubs. Fig. 3 (a) and (b)
present the ideal designs of an N-pole switchable bandpass
filter in the OFF-state and the ON-state, respectively.

Zik,k+1
∣∣
k=1 to n−1 =

1

Yik,k+1
∣∣
k=1 to n−1

(21)

FIGURE 3. Ideal designs of an N-pole switchable bandpass filter. (a) in
the OFF-state. (b) in the ON-state.

Zpk
∣∣
k=1 to n =

1

Y
′

k

∣∣
k=1 to n−1

(22)

Zsk
∣∣
k=1 to n =

1

Y′′k
∣∣
k=1 to n−1

(23)

Therefore, ω2 is the chosen bandwidth for the OFF-state
when the resonators are open-circuited and ω1 is the cho-
sen bandwidth for the ON-state when the resonators are
short-circuited at the stepped-impedance position.

D. SWITCHABLE EXAMPLES
Using the ideal designs of Fig. 3, with the element values
for a Tchebyscheff filter and the two chosen bandwidths,
the synthesis allows to calculate the impedances of each
transmission line, and each length depends on the chosen
center frequency.

As examples, four-pole bandpass filters have been simu-
lated with ADS
 from Keysight Technologies in microstrip
technology thanks to the synthesis to give an overview of
the bandwidth couples. The element values for a four-pole
Tchebyscheff filter are listed in Table 1.

TABLE 1. Element values for a Tchebyscheff filter for a 0.01 db ripple.

Fig. 4 presents two simulated results of bandpass filters
which operate at 5 GHz, with a 15 % relative bandwidth
in the OFF-state and a 45 % relative bandwidth in the
ON-state (Fig. 4 (a)) and with a 61 % relative bandwidth
in the OFF-state and a 94 % relative bandwidth in the
ON-state (Fig. 4 (b)). In the OFF-state, the resonators are
open-circuited whereas in the ON-state the resonators are
short-circuited at the stepped-impedance position. These sim-
ulated results are just some illustrations of the bandwidth
choice flexibility offered by the synthesis, but, of course,
some limitations appear with the technology in the impedance
values despite the freedom degree, d , in the synthesis.
Therefore, Table 2 gives impedance characteristic range
examples depending on the bandwidths couples chosen.

TABLE 2. Impedances range given by the synthesis depending on the
bandwidths choice and the freedom degree d.

To have a minimum characteristic impedance of 25 � and
a maximum one of 140 �, the lowest bandwidth is around
10 % for ω2 and the highest is around 95 % for ω1.
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FIGURE 4. Examples of bandwidth switchable bandpass filter. (a) A 15 %
relative bandwidth in OFF-state and a 45 % bandwidth in the ON-state.
(b) A 61 % relative bandwidth in OFF-state and a 94 % bandwidth in the
ON-state.

III. MANUFACTURING PROCESS
Therefore, the idea is to design switchable bandpass filters
on a HR-Si substrate. It is doped with Boron (a P-Type
substrate) with a resistivity of ρ = 2500�.cm and a thickness
of 675 µm. The tunability can be reached with integrated
N+PP+ junctions in the substrate, using ScDDAs from the
middle to the end of each stub allowing the stubs commuta-
tion from open-ended to short-ended, i.e from the OFF-state
to the ON-state.

As described in Fig. 5, the fabrication process is based on
classical steps of semiconductor components manufacturing.
First, the wafer is oxidized on the two faces, then, the oxide
on bottom face is removed in order to dope the wafer with
boron atoms by ion implantation technique to obtain a surface
concentration of a little bit over 1019 atoms/cm3 with around
a 3 µm depth. The doping allows to improve the ohmic
contact between the silicon and the aluminum.

Next, on the top face, a photosensitive resin is deposited
and then insolated through a chrome mask to allow the oxide
etching followed by the resin removal. A silicon area is no
longer protected and can therefore be doped with phosphorus
atoms by solgel deposition (in order to reach a little bit over

FIGURE 5. Fabrication process of the tunable filter based on ScDDAs.
a) Oxidation of the P-type wafer on both faces. b) SiO2 etching on the
bottom face. c) Bottom face P+ implantation. d) Photoresist deposition
and patterning on the top face. e) N+ doping by solgel deposition and
patterning. f) Aluminum and then photoresist deposition and patterning.
g) Top face aluminum etching. h) Bottom face aluminum deposition.

1019 atoms/cm3 of doping concentrations at the surface) to
target doped areas with around a 3µmdepth. Then, the solgel
is removed and after the doping steps, there is an aluminum
deposition and a photolithography step before etching the
aluminum on the top face. To finish the process, the resin is
removed and the aluminum is deposited on the whole bottom
face. Therefore, only twomasks are necessary to manufacture
the devices, the first one is for the top-face doping steps and
the second one for the top-face metallization steps.

IV. MODELLING
The filter is switchable by using ScDDAs which are some
integrated PIN diodes. They can be modeled by resistor in
series with a capacitor when the junction is not biased or by
a low resistor when the junction is forward biased (Fig. 6).
In order to predict accurately the tunable devices behavior,
the proposed simulation method takes place in three steps:

Firstly, the junctions manufacturing steps (time and tem-
perature oxidation, implantation, diffusion, etching. . . ) are
simulated with Athena from Silvaco
.

FIGURE 6. (a) PIN diode. (b) Equivalent electrical circuit without bias
voltage. (c) Equivalent electrical circuit with a direct bias voltage.
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This permits to calibrate the process in order to obtain
the desired junctions (i.e. the atoms concentrations at the
surface, the oxide and metallization thicknesses, the junction
depths. . . ).

Fig. 7 shows the Athena results of an N+PP+ junction, and
this with an N+ doped area width of 500 µm and a simulated
area width of 1 mm. Fig. 8 illustrates the doping quantity
(a) N+ at the top face and (b) P+ at the bottom face. A DC
ground is connected to the backside of the junction (at the P+ /
aluminum contact) and the other electrode is connected to the
top side (at the aluminum / N+ contact) in order to simulate
the electrical behavior of the junction.

FIGURE 7. Doping quantity resulting from an Athena simulation of an
N+PP+ junction.

FIGURE 8. Athena simulation results of N+PP+ junction. (a) Top face
doping quantity profile. (b) Bottom face doping quantity profile.

Secondly, the electrical junction characteristics are ana-
lyzed depending on the bias voltagewithAtlas fromSilvaco
,
and the resistivity profiles of the junction (in the substrate
thickness) are extracted depending on the voltage. Due to the
N+PP+ junction used, the bias voltage has to be a negative
one to forward bias the PIN diode.

With a bias voltage of 0 V, the resistivity is approximately
equal to the substrate resistivity. The more the bias voltage
decreases, the more the resistivity decreases. Table 3 sum-
marizes the approximated resistivity values depending on the
bias voltages when the junction is forward biased.

TABLE 3. Correspondence between the bias voltages and the resistivity
values in the junction.

Thirdly, when the N+PP+ junction is electrically simu-
lated, the resistivity profiles are imported on the microwave
design in the full wave HFSSTM software to simulate its elec-
tromagnetic behavior. In this software, the main characteris-
tics which define the materials properties are the permittivity
and the conductivity for a conductive material or the loss
tangent for a dielectric material.

In the case of the silicon (i.e. semiconductor material, with
εr = 11.9), there are two possibilities: the first one is to con-
sider that the conductivity is σ = 0 S/m and the loss tangent
is evaluated at each frequency point using (24), where for
both cases (ON- and OFF-states), the substrate resistivity ρ
is equal to 2500 �.cm. In the ON-state, the resistivity in the
junction (in the whole substrate height) is a low resistivity
extracted from Atlas when it is forward biased.

tanδ =
1

ρωε0εr
+ 0.0018 (24)

The second possibility is to include the resistivity values
in the conductivity definition using (25) and to define the
loss tangent as a constant using (26). The devices have been
simulated with the loss tangent calculated at each frequency
point (i.e. the first solution).

σ =
100
ρ

(S/m) (25)

tanδ = 0.0018 (26)

V. FOUR-POLE BANDWIDTH SWITCHABLE BANDPASS
FILTER
To validate the co-design method permitting a switchable
bandpass filter conception, a four-pole bandpass filter is ana-
lyzed. Thanks to the previous synthesis, this part details the
design method, the simulated and the measured results. This
demonstrator operates at 5 GHz and the bandwidths ω2 and
ω1 are chosen equal to 0.5 and 0.7 in the OFF- and ON-states,
respectively.

A. SIMULATIONS
Therefore, using the element values for a Tchebyscheff filter
and the constant d fixed at 0.711 (chosen to have the best
tradeoff between all the impedance values), the impedance
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TABLE 4. Results of the impedance values.

values for each inverter and each resonator are calculated and
summed up in Table 4.

Fig. 9 illustrates the four-pole filter designed with ideal
transmission lines (a) with half-wavelength stubs terminated
by open-circuits (OFF-state) and (b) with quarter-wavelength
stubs terminated by short-circuits (ON-state).

FIGURE 9. Ideal design of the four-pole switchable filter. (a) With
half-wavelength open-circuited stubs (OFF-state). (b) With
quarter-wavelength short-circuited stubs (ON-state).

The simulated results in the two-states obtained on ADS


from Keysight Technologies are presented in Fig. 10. The
relative bandwidth switches from 50 %, i.e. a bandpass
of 2.5 GHz from 3.75 GHz to 6.25 GHz, in the OFF-state,
to 70 %, i.e. a bandpass of 3.5 GHZ from 3.25 GHz to
6.75 GHz, in the ON-state, and this with a constant central
frequency equal to 5 GHz. These simulations validate the
synthesis.

Then, to predict accurately the filter behavior in the
two-states, this demonstrator (Fig. 11) is simulated using
HFSSTM. The ScDDAs are approximated as parallelepiped
rectangles with the same surfaces as the doped areas,
with the same resistivity as the substrate in the OFF-state
(i.e. 2500 �.cm) and a low resistivity in the ON-state
(i.e. 0.5�.cm), and this in the whole substrate thickness. The
ON-state resistivity is an average value that can be achieved
with the characteristics of this junction.

FIGURE 10. Ideal simulated results of the four-pole bandwidth
switchable bandpass filter in the ON- and OFF- states.

FIGURE 11. Design of the four-pole bandwidth switchable bandpass filter.

The lengths and the widths of each access lines, stubs and
inverters are calculated thanks to the characteristic impedance
values from the synthesis. The theoretical values are a little bit
modified to take into account the technology (substrate and
radiating effects). The dimensions of the four-pole switchable
bandpass filter are listed in Table 5.

TABLE 5. Dimensions of the four-pole switchable bandpass filter.
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FIGURE 12. Simulated results of the four-pole bandwidth switchable
bandpass filter in the ON- and OFF-states.

Fig. 12 shows the simulated results of the switchable
bandpass filter in the two-states. The relative bandwidth
switches from a 50 % bandwidth in the OFF-state with a
central frequency equal to 5 GHz to a 70 % bandwidth in
the ON-state with the same central frequency. The resistivity
is of 2500 �.cm and 0.5 �.cm in the OFF- and ON-states
respectively and the insertion losses are lower than 1.1 dB
and 1.7 dB.

B. MEASUREMENTS
Fig. 13 shows the fabricated filter photograph and its envi-
ronment. The filter has been measured with a 3680V Anritsu
measuring cell and the results have been obtained using an
R&S R© ZVA 67 Vector Network Analyzer (VNA) connected
to this cell. Then, a Short Open Load Through (SOLT) cal-
ibration has been performed in order to remove the cables
losses. The DC ground is connected to the RF ground via
the VNA, and the negative bias voltage (to forward bias the
junctions) is applied with the RF signal.

FIGURE 13. Photograph of the four-pole switchable bandpass filter and
its environment.

The measured results are presented in Fig. 14. The filter
switches from a 5 GHz bandpass filter with a 50% bandwidth
(without bias voltage) to a 5 GHz bandpass filter with a 70 %

FIGURE 14. Measured results of the four-pole switchable filter in the ON-
and OFF-states.

bandwidth (with a−1.65 V bias voltage), as predicted by the
simulations. The insertion losses are lower than 3.7 dB and
1.6 dB in the ON- and OFF-state, respectively.

Fig. 15 and Fig. 16 compare the simulated results to the
measured ones in the OFF- and ON-state. A good fit is
obtained, despite an insertion loss level slightly higher than
expected in the ON-state, this is due to the resistivity reached
which is a little bit higher than 0.5 �.cm.

FIGURE 15. Comparison between the simulated and the measured results
in the OFF-state.

Table 6 compares the proposed bandwidth switchable
bandpass filter with some previous works related to a similar
center frequency. The proposed filter offers similar perfor-
mances, however, in previous works the parasitic effects of
the p-i-n diodes, mounted on the substrate, limit the frequency
rise. Thanks to the flexibility in the dimensioning and posi-
tioning of the ScDDAs, the dimensions and the absence of
packaging will not bring parasitic effects with a frequency
rise.

In the two states, the performances of our demonstra-
tor could be improved with higher resistivity substrates.
In the ON-state, a higher doping concentration or a reduced
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TABLE 6. Comparison with previous work.

FIGURE 16. Comparison between the simulated and the measured results
in the ON-state.

thickness under the doped areas will improve the filter quality
factor.

VI. CONCLUSION
In this paper, a bandwidth switchable bandpass filter has
been characterized from the synthesis to the measurement.
It validates the co-design approach which allows the use
of ScDDAs as integrated active elements to commute the
resonators from half wavelength open-ended stubs to quarter
wavelength short-circuited ones and therefore to switch the
filter bandwidth. With this co-design approach, the mounted
active components are no more needed, and their parasitic
effects do no longer impact the filter performance and do no
longer limit the frequency rise possibility. Moreover, the pro-
posed synthesis permits to choose the two bandwidths in a
large range, which has been validated by a demonstrator.
The proposed filter is a 5 GHz four-pole bandpass filter
with a bandwidth switching from 50 % in the OFF-state to
70 % in the ON-state. The simulated results fit well with the
measurement results and even though the resistivity could be
decreased in the ON-state to reduce the losses, the proposed
co-design offers a great flexibility. If the substrate resistivity
was of 10 k�.cm instead of 2.5 k�.cm, the insertion losses
would be of 0.6 dB in the OFF-state. In the ON-state, with this

substrate resistivity, if the resistivity in the junctions reached
0.1 �.cm (thanks to higher doping quantity), the insertion
losses would decrease to 0.9 dB.
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