
HAL Id: hal-02889708
https://hal.science/hal-02889708v1

Submitted on 15 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detection of zero-day attacks: An unsupervised
port-based approach

Agathe Blaise, Mathieu Bouet, Vania Conan, Stefano Secci

To cite this version:
Agathe Blaise, Mathieu Bouet, Vania Conan, Stefano Secci. Detection of zero-day at-
tacks: An unsupervised port-based approach. Computer Networks, 2020, 180, pp.107391.
�10.1016/j.comnet.2020.107391�. �hal-02889708�

https://hal.science/hal-02889708v1
https://hal.archives-ouvertes.fr

Detection of zero-day attacks: an unsupervised port-based approachI

Agathe Blaisea,b, Mathieu Boueta, Vania Conana, Stefano Seccic

aThales, Gennevillers, France
bSorbonne Université, CNRS LIP6, Paris, France

cCnam, Cedric, 75003 Paris, France

Abstract

Last years have witnessed more and more DDoS attacks towards high-profile websites, as the Mirai botnet attack on
September 2016, or more recently the memcached attack on March 2018, this time with no botnet required. These two
outbreaks were not detected nor mitigated during their spreading, but only at the time they happened. Such attacks
are generally preceded by several stages, including infection of hosts or device fingerprinting; being able to capture this
activity would allow their early detection. In this paper, we propose a technique for the early detection of emerging
botnets and newly exploited vulnerabilities, which consists in (i) splitting the detection process over different network
segments and retaining only distributed anomalies, (ii) monitoring at the port-level, with a simple yet efficient change-
detection algorithm based on a modified Z-score measure. We argue how our technique, named Split-and-Merge, can
ensure the detection of large-scale attacks and drastically reduce false positives. We apply the method on two datasets:
the MAWI dataset, which provides daily traffic traces of a transpacific backbone link, and the UCSD Network Telescope
dataset which contains unsolicited traffic mainly coming from botnet scans. The assumption of a normal distribution –
for which the Z-score computation makes sense – is verified through empirical measures. We also show how the solution
generates very few alerts; an extensive evaluation on the last three years allows identifying major attacks (including
Mirai and memcached) that current Intrusion Detection Systems (IDSs) have not seen. Finally, we classify detected
known and unknown anomalies to give additional insights about them.

1. Introduction

Back in September 2016, the Mirai botnet [2] struck
the internet with a massive distributed denial of service
(DDoS) attack. During several months, it spread slowly
and reunited nearby 50,000 bots distributed over various
parts of the internet, without being noticed. More recently,
a record-breaking DDoS attack hit Github on February
2018 with a new amplification attack vector: UDP-based
memcached traffic [1]. The caching system is supposed
to be used internally, but sometimes runs on servers ex-
posed without any authentication protection; several days
later, most memcached servers have been patched, making
the attack not efficient anymore [50]. Actually, malwares
targeting Internet-of-Things (IoT) devices and misconfig-
ured servers are responsible for many Distributed Denial-
of-Service (DDoS) attacks [53]. Detecting these botnets
and exploited vulnerabilities during their spreading could
avoid many harms. There is thus an urgent need to de-
tect this kind of threats as soon as possible, and current
anomaly detection tools appear deficient in this respect.

IA preliminary version of this paper has been presented at
IFIP/IEEE IM 2019 [7].

Email addresses: agathe.blaise@lip6.fr (Agathe Blaise),
mathieu.bouet@thalesgroup.com (Mathieu Bouet),
vania.conan@thalesgroup.com (Vania Conan),
stefano.secci@cnam.fr (Stefano Secci)

Ensuring cyber-security in networks, Intrusion Detec-
tion Systems (IDSs) monitor network traffic for malicious
activities and related threats. However, as a matter of
fact most botnets go under the radars for three reasons:
(i) Current IDSs work at different traffic granularities, e.g.,
flow, host or packet. However, they miss global changes on
application ports that are involved during the propagation
of botnets. Ports can be scanned to fingerprint the target
machine, to exploit known vulnerabilities, or to communi-
cate with a Command-and-Control (C&C) server [6]. The
sole common denominator for a botnet coming from very
distinct sources and targeting lots of hosts is the port it
scans. However, an IDS working on IP addresses would be
unable to notice the anomalous port. (ii) Most IDSs work
on small variations of traffic, generally using time-sliding
windows of several seconds. Therefore, they cannot build
long-term profiles per port and detect major changes in
their usage. (iii) IDSs are usually deployed at a single
point in the network, while ISP-scale attacks are only vis-
ible by looking at a holistic view of a wide area network.

In this paper, we propose an anomaly detection tech-
nique that spots main changes in the usage of a single port
to identify botnets. Intuitively, the most obvious way to
identify it is to observe a sudden rise in traffic towards
a port. However, this may not be sufficient as it can be
a well-known vulnerable port, already massively scanned.
For example, before the Mirai attack, many TCP SYN

Preprint submitted to Elsevier July 15, 2020

scans targeted the Telnet port whose vulnerabilities were
already known and exploited. Then, when the Mirai attack
was actually hitting, one could not observe an increase in
the number of scans targeting this port. Our goal is to
detect early stealthy changes in the scans behavior, as an
increase in the number of distinct attackers (i.e., source
IP addresses) or an increase in port spoofing, to then spot
them as unknown botnets or newly exploited vulnerabili-
ties, even on ports already scanned before.

In our method, we use features representing particular
port usages; large packets batches picked at a frequency
of several days enable to profile the evolution of features
over time, then statistical measures can spot anomalies
in the features time-series. A port-based approach may
generate a large number of alarms, as for instance each
ephemeral port used in a arbitrary manner would produce
an anomaly. Therefore, we adopt a collaborative scheme
to ensure that changes in one port are distributed and are
not due to random or localized traffic variations. In our
approach, called Split-and-Merge, local detection modules,
geographically split in the network, collect traffic and send
anomalies to a central controller in charge of aggregating
them, like a Collaborative IDS (CIDS) [45] would do (Fig-
ure 1b). The number of false positives can so be signifi-
cantly reduced as only anomalies detected in several places
are taken into consideration. Our contributions differ from
existing botnet’s detection approaches given the following
reasons. First, it targets long-term anomaly detection en-
abling to detect major changes in the use of ports, and
thus underlying botnets. As a matter of fact, current ap-
proaches for botnets’ detection [3, 9, 12, 15, 19, 22, 24, 26,
38, 44–46, 48, 54] focus on real-time intrusions and may
miss stealthy changes visible at a several days scale. Sec-
ond, it focuses on destination ports, compared to other
approaches [3, 9, 12, 15, 19, 22, 24, 44–46, 48, 54] aggre-
gating packets per flow or IP address, which thus are not
able to detect scans coming from very distinct source IP
addresses and targeting a large variety of destination IP
addresses. Third, it leverages on several detection modules
geographically split in the network, in order to reduce the
number of false positives. While most IDSs are localized at
a single vantage point [9, 15, 20, 22, 24, 26, 38, 46, 48, 54],
we explore a collaborative IDS approach only marginally
adopted at the state of the art [3, 12, 19, 44, 45]. Finally,
its features are computed over diversity indices, packet
size and TCP flags, using a change-point detection system,
which is not done in [3, 9, 12, 15, 19, 20, 22, 24, 26, 38, 44–
46, 54]..

For our evaluation, we use the MAWI dataset [31] which
provides daily traces of a transpacific backbone link. The
dataset is restricted to a single Internet Service Provider
(ISP), hence corresponds to what could be used at the
ISP-level. Differently than the common approach that
uses real traces to generate background traffic, we use
the MAWI traces as they are, with the aim at detecting
real attacks from it, providing a better knowledge of the
dataset at the same time. We also use the UCSD Network

Telescope dataset which consists of a globally routed, but
lightly utilized /8 network prefix. Inbound traffic to non-
existent machines is unsolicited and results from a wide
range of events, including misconfiguration, scanning of
address space by attackers or malware looking for vul-
nerable targets and backscatter from randomly spoofed
denial-of-service attacks. This way, we are able to compare
the anomalies found in both datasets. We present the in-
trusion detection results against known attacks arisen the
last three years, not detected by the MAWILab detection
algorithm [18], and we show that we can detect some un-
known anomalies as well; in order to classify anomalies, we
observe the simultaneous evolutions of features. We ex-
perimentally show that our algorithm greatly reduces the
number of false positives compared to a single IDS run-
ning on the whole dataset. For the sake of reproducibility
and further research, our source code is publicly available
at [21].

This paper is organized as follows. Section 2 surveys
the related work. Section 3 presents our solution detecting
distributed changes in port usages, along with the analy-
sis of its complexity. In Section 4, we present results from
numerical evaluation, highlighting the benefits Split-and-
Merge can grant in terms of false detection rate and de-
tection accuracy, and also proposing a classification of the
noticed anomalies. Finally, Section 6 concludes the paper.

2. Related work

In this section, we present intrusion detection method-
ologies and review related work.

2.1. Intrusion detection methodologies
Many algorithms are proposed in the literature for net-

work intrusion detection [5]. We can classify them in two
main families: knowledge-based and anomaly-based tech-
niques.

Knowledge-based (or signature-based) solutions such
as Snort [13] and Bro [39] rely on a signature database to
find attacks that match given patterns, such as malicious
byte sequences or known malware signatures. Up to now,
most companies rely on signature-based IDSs as they are
expressive and understandable by network administrators.
Nevertheless, they are not able to detect zero-day attacks,
i.e., attacks exploiting unknown vulnerabilities, for which
no patch is available [28]

Anomaly-based approaches attempt to detect zero-day
attacks, in addition to known ones. They model the nor-
mal network traffic and qualify an anomaly as a significant
deviation from it, with statistical or machine learning tech-
niques. In such a case, we talk about anomalies rather
than attacks. BotSniffer [22] utilizes statistical methods
to detect C&C botnets, by observing coincident behaviors
among hosts, like messages to servers, network scan or
spam. The authors in [27] observe changes in feature dis-
tributions to identify anomalies. Entropy and/or volume
are such metrics used for this purpose.

2

(a) Local collection and central detection.

(b) Centralized CIDS: local collection and detection, and
central correlation.

Figure 1: Two possible approaches for large-scale IDS.

Machine learning techniques can be classified in three
families:

1. Supervised ones learn from a labelled dataset what
constitutes either normal traffic or attacks – there
exists different techniques such as SVM-based classi-
fiers, rule-based classifiers and ensemble-learning de-
tectors [46].

2. Unsupervised approaches learn by themselves what
is normal or abnormal – among them, MAWILab [20]
finds anomalies by combining detectors that operate
at different traffic granularities (the results against
the MAWI dataset are in [20]); numerous works com-
pare themselves to MAWILab, as for instance change-
detection techniques [9, 48] (defining an anomaly as a
sudden change compared to a model), and ORUNADA
[15] (relying on a discrete time-sliding window to
continuously update the feature space and cluster
events).

3. Hybrid approaches benefit from only a small part of
labelled traffic, meant to be enough to learn from, as
proposed in [29].

2.2. Large-scale intrusion detection
Coordinated attacks arise in multiple networks simul-

taneously and include large-scale stealthy scans, worm out-
breaks and DDoS attacks [57]. Traditional IDSs tend to
fail at detecting these attacks as they commonly monitor
only a limited portion of network. Large-scale IDSs, in-
stead, have a global view over the network, and can better

scale by distributing the computational load between sev-
eral detection agents. Two large-scale IDS approaches can
be identified.

The first IDS approach consists in distributing flow col-
lectors in different subnetworks and in running a central
detection engine against aggregated data, as shown in Fig-
ure 1a. Raw packets are transmitted from the flow collec-
tors to the detection engine [44]. Solutions exist to avoid
the collection traffic overhead, as done by Jaal [3], which
creates and sends concise packets summaries to the detec-
tor - with Jaal, one reaches a 35 % bandwidth overhead to
get an acceptable true positive rate, which is still impor-
tant.

The second IDS approach consists in the already men-
tioned CIDS, that is a two-level anomaly detection system
where monitors are physically split in the network to per-
form local detection. They generate low-level alerts then
aggregated to produce a high-level intrusion report. Three
types of CIDSs exist depending on the communication ar-
chitecture:

1. Centralized CIDSs are composed of several monitors
that transmit the alerts to a central correlation en-
gine, as illustrated in Figure 1b.

2. Hierarchical CIDSs use a multistage structure of mon-
itors to achieve an increasingly higher alert aggrega-
tion until the alerts reach the top correlation engine.

3. Distributed CIDSs share the detection and correla-
tion tasks between all monitors. This approach can
be set up by a peer-to-peer network.

For instance, [45] presents a centralized CIDS frame-
work composed of IDS clusters implementing both the de-
tection and the correlation; Snort signatures are therein
used to detect known attacks, while an unsupervised learn-
ing algorithm detects unknown attacks. [19] proposes a
sort of distributed CIDS, composed of Intrusion Preven-
tion Systems forming rings around the hosts to protect,
in order to collaborate and forward the traffic adaptively
depending on their findings.

Inherent in the CIDSs, alert correlation algorithms can
be divided into three categories [32]: (i) similarity-based
algorithms, which compute the similarity between an alert
and a cluster of alerts, and based on the result either merge
it with the cluster or create a new one; (ii) knowledge-
based algorithms, which rely on a database of attacks def-
initions; (iii) probabilistic algorithms, which use similar
statistical attributes to correlate attacks.

2.3. Botnet detection
In the past years, several novel algorithms for bot-

net detection have been proposed, which can be classified
into packet/flow-based ones and graph-based ones. Among
them, [24] compares the performances of four different ap-
proaches: Snort, BotHunter and two data-mining based
system ones, either based on the packet header/payload
or on flows. They run their algorithm on public datasets,

3

including the Conficker dataset from CAIDA, the ISOT-
UVic dataset, and Zeus botnet datasets from Snort, NE-
TRESEC and NIMS. As a result, they get detection rates
approaching up to 100%. BotMark [54] exploits both sta-
tistical flow-based traffic features and graph-based features
to build their detection model, then considers similarity
and stability between flows as measurements in the detec-
tion. They test their algorithm by simulating five newly
propagated botnets, including Mirai, Black energy, Zeus,
Athena and Ares, and achieve 99.94% in terms of detection
accuracy. In [12], the authors create a complete characteri-
zation of the behavior of legitimate hosts that can be used
to discover previously unseen botnet traffic. They em-
ploy the ISCX botnet dataset, a publicly available dataset
composed of various IRC, P2P and HTTP based botnets.
They find that their framework can detect bots in a net-
work with 1.00 TPR and 0.082 FPR.

It is worth noting that the aforementioned algorithms
perform their analysis at network-level, on traffic gener-
ated by botnets. Their objective is to distinguish between
benign hosts and bots, to then draw a confusion matrix
and evaluate their classifier. Contrary to these algorithms,
our analysis runs at an Internet carrier link level (or on
data collected into a darknet for the UCSD dataset). It
focuses on analyzing the current trends in Internet traffic
over several years, including trends in terms of botnets.
It also enables to spot vulnerabilities exploited following
their disclosure and targeted attacks not part of a bot-
net. Therefore, (i) we do not benefit from labelled flows
and ground-truth, (ii) we do not limit our goal to botnet
detection, (iii) we cover a three-year period compared to
those algorithms that are limited to several hours only.
For these reasons it would not be consistent to directly
compare Split-and-Merge to those algorithms.

2.4. Our contribution
Let us position our contribution with respect to the

described related work. To detect port-based anomalies,
we benefit from an unsupervised anomaly detection algo-
rithm, that does not require labeled data. We leverage on
the CIDS principles to build our system, and in particular
centralized CIDS characteristics. In terms of alert corre-
lation, we attempt at simplifying the search space using
application ports, and more precisely destination ports.
Up to our knowledge, our direction of using centralized
CIDS scheme with port-centric detection is novel. Aggre-
gating alerts based on destination ports as we propose can
strongly ease the aggregation challenge, avoiding too com-
plex algorithms for that purpose.

A few works specifically focus on port-based detection
but they do not apply to CIDS. In [6], the authors pro-
pose a survey of the current methods to detect port scans.
[38] aims to show the correlation between port scans and
attacks. [26] examines the period during the release of
a zero-day attack and its patching. Also, [26, 38] ana-
lyze port-usage but they do not use destination ports as
primary key. Actually, this last setting generates a high

number of false positives, which can be mitigated by CIDS
as we are doing.

About our feature choice, we leverage on diversity in-
dices, defined as the proportion of unique elements in a set.
In the literature, the number of unique source IP addresses
and unique active /24 blocks are used to detect Internet
outages [23] and large-scale spoofing [14]. Compared to
these works, we compute the proportion (instead of the
count) of unique source IP addresses, but also of unique
destination IP addresses (to identify large-scale scan tech-
niques used by attackers) and unique source port numbers
(to detect spoofed ports), each of them computed on a
per destination port basis. In addition, we use features
computed from TCP flags and packet size, and we inte-
grate them into a change-point detection system, i.e., a
system that identifies when the probability distribution of
a feature time series changes.

We describe the detection of new vulnerabilities and
emerging botnets, using a port-based change detection al-
gorithm in a preliminary conference paper [7]. In this pa-
per, we extend the original article in regards to several as-
pects. First, we perform a more extensive evaluation (over
three years instead of 6 months in the first version) and we
include an additional dataset, the UCSD Telescope one, to
compare the anomalies that we found from both datasets.
For this purpose, we draw a retrospective analysis of ma-
jor botnets and attacks arisen these last years. We also
validate our hypothesis regarding the normal distribution,
through empirical measures on the MAWI dataset, and
analyze the detection accuracy looking at how the param-
eters and the features impact the results. We provide a
more detailed characterization of the attacks by analyzing
conjointly the features evolution, raising 8 different kinds
of anomalies. Finally, we include a complexity analysis of
our algorithm in terms of space and time complexity, and
evaluate the time required to run the detection process.

3. Split-and-Merge Port-centric Network Anomaly
Detection

We present our anomaly detection proposal, detailing
the reference CIDS architecture and the features design.

3.1. Rationale
We already anticipated some of our key modeling choices:

we aggregate traces based on destination ports, in a dis-
tributed CIDS setting, and target to design features min-
imizing the degree of arbitrarity in their choice and in-
terpretation. Our objective is to model the usage of each
port, by computing features each time the same day at
the same daytime slot. The features characterize the port
usage, e.g., if it is mainly targeted by port scan or not, if
the hosts are numerous or not, etc. We work on a limited
time window over a day, which we assume to represent
port usages this day.

In our reference distributed CIDS setting, several de-
tection module agents run on different subnetworks so that

4

they can capture subnetwork peculiarities and cover the
CIDS network context completely. Based on the time evo-
lution of the features of a port, the detection modules
detect anomalies and report them to a correlation mod-
ule. Hereafter we detail the different steps of our detection
module logic, as well as the anomaly aggregation logic of
the correlation module. At each daytime slot, every detec-
tion module performs several tasks in a row (each task is
then further detailed in the following subsections).

3.1.1. Data collection
First, the detection module collects packets in its scope

in a single group of Nbatch elements, and stores packet at-
tributes in lightweight Collection Tables (CTs). For each
incoming packet, it identifies the destination port and up-
dates four key-value CTs and a counter for the given port:

• CT1: unique source IP addresses;

• CT2: unique destination IP addresses;

• CT3: unique source ports;

• CT4: unique size of packets;

• Counter: number of SYN packets.

Each entry in one CT (e.g., a source IP address in CT1)
is associated with a counter of occurrences.

3.1.2. Features computation
After data collection, a filter is applied on CTs so that

only the ports with at least Nmin packets stored are kept
to be analyzed. For every remaining destination port, the
detection module computes some features based on CTs
and updates the Features Table (FT) with new values.
The FT constantly contains Ndays entries (we use one day
per week in our tests) so that for every new capture, the
former value is deleted and the new one added.

3.1.3. Anomaly detection
Lastly, the local detection module analyzes the port-

specific features time-series over Ndays in order to detect
an anomaly with a change-detection algorithm. When an
anomaly is spotted, based on a warning threshold Ti on a
given feature i, an alert is created and transmitted to the
central correlation module. The collection and detection
parameters resumed in Table 1 are to be customized. At
the end of the detection process, the correlation module
aggregates the alerts received from all detection modules.
It is then able to deduce and qualify an attack by noticing
the distributed alerts.

3.2. Features design
To observe an anomaly on a port, looking at the num-

ber of packets over time is not sufficient. Indeed, subtle
changes in the nature of packets can happen on a port
already massively scanned. Therefore, we need to design
significant features.

Notation Definition
Nbatch Number of packets collected per day
Nmin Minimum number of packets per port
Ndays Number of days in the sliding window

Ti Threshold to spot an anomaly for feature i

Table 1: Parameter notations.

Our features choice is resumed in Table 2. nbPack-
ets represents the number of packets stored for this port
and enables to see if a port is suddenly massively used.
srcDivIndex and destDivIndex highlight significant varia-
tions in the proportion of unique source and destination
IP addresses. An increase in srcDivIndex may be an at-
tack perpetrated by bots, while its decrease can indicate
an attack led by only a few actors. A rise in destDivIndex
may represent a large number of victims, as a botnet scan-
ning random IP addresses or the whole IPv4 range would
cause. portDivIndex reflects the diversity in source ports,
its diminution may represent the usage of a spoofed port.
A variation in the meanSize feature suggests a change in
packets nature, like crafted packets sent by bots. A vari-
ation in the stdSize feature can be caused by a change in
packets nature as well, and in addition is not easy to fool
for an attacker: if it increases, the diversity among packets
is higher, so probably there are suddenly both crafted and
regular packets; if it decreases, the diversity among pack-
ets is lower, hence the traffic more specific. This can be
caused by a malicious software that kills other processes
bound to the same port. Finally, a variation in perSYN
implies an increase or decrease in port scan. Therefore
each port p at a given day is characterized by the set of
features computed from CTs, shown in Table 2.

Feature Computed
from

Description

srcDivIndex CT1 % of unique source IP ad-
dresses

destDivIndex CT2 % of unique destination IP
addresses

portDivIndex CT3 % of unique source ports
meanSize CT4 Mean packets size
stdSize CT4 Standard deviation of packets

sizes
perSYN Counter % of SYN packets
nbPackets Any CT Number of packets

Table 2: Features definition.

We denote the time-series of feature i containing N
days (i.e., Ndays) for port p as f pi,N = (xp

i,1, ..., x
p
i, j , ..., x

p
i,N),

with xp
i, j being the value of feature i for port p on day j.

Features are computed at a given frequency, set to once
every week in the following simulations (in particular the
same day at the same daytime slot, in order not to be
influenced by weekly or daily variations).

Algorithm 1 below shows how to update the FT {ports∗
f eatures ∗ Ndays } by computing features by port from

5

packet attributes found in CTs.

Algorithm 1 updateFT(CTs, FT, Nmin)

1: Delete first column of FT and shift others
2: for all port p ∈ ports do
3: // Check condition on the number of packets
4: if length(CT1[p]) > Nmin then
5: for all att ∈ attributes do
6: feature f ← relativeMetric(att) // 1 or 2

features per attribute (e.g., mean and std for packet
size)

7: FT[p][f][currentDay] = CT f [p].apply(f)
8: return FT

3.3. Local anomaly detection
Assuming a feature is more or less likely to vary (stan-

dard deviation) depending on its type, and usually around
the same (mean) value, the normal distribution logically
quite fits as its distribution. The validity of this assump-
tion is assessed later in Section 4.2. We model the time-
series f pi,N = (xp

i,1, ..., x
p
i,N) over N days as a normal distri-

bution N (µp ,σp2
) of mean µp and standard deviation σp

such that:

µp =

N∑
j=1

xp
i, j and σp =

√√√
1
N

N∑
j=1

(xp
i, j − µ

p)2. (1)

The Z-score is a well-known simple statistical-based al-
gorithm, commonly used to automatically detect a change
in time-series. More precisely, it is the measure of how
many standard deviations below or above the mean a data
point is. Basically, a Z-score equal to zero means that
the data point is equal to the mean and the larger the
Z-score, the more unusual the value. For the given time-
series f pi,N = (xp

i,1, ..., x
p
i,N) approximated by a normal dis-

tribution N (µp ,σp2
), the Z-score of the new value xp

i,N+1
of feature i at time N + 1 is computed as follows:

Z p
i,N+1 =

xp
i,N+1 − µ

p

σp
. (2)

However, the Z-score is computed from the mean, a
metric influenced by outliers and especially extreme val-
ues. Alternatively, the modified Z-score uses the median
and the median absolute deviation (MAD) from the me-
dian, instead of the classical mean and standard deviation
respectively, which makes it outlier-resistant [25].

Given the time-series median f̃ pi,N , the modified Z-score
M p

i,N+1 of the new value xp
i,N+1 of feature i at time N + 1

is computed as:

M p
i,N+1 =

0.6745 · (xp
i,N+1 − f̃ pi,N)

median(|xp
i,N+1 − f̃ pi,N |)

(3)

An anomaly is detected if the absolute value of the
modified Z-score exceeds a threshold Ti . For all i, we
adopt a threshold value of 3.5 as recommended in [25]. Al-
gorithm 2 presents the anomaly detection process taking
place in each local detection module, to detect anomalies
from features time-series found in FT.

Algorithm 2 runDetection(FT, Ndays)

1: median ← 0
2: mad ← 0 // median absolute deviation
3: mZ ← 0 // modified Z-score
4: list anomalies
5: for all port p ∈ FT.ports do
6: for all feature f ∈ FT.features do
7: series ← FT[p][f]
8: orderedSeries ← quickSort(series)

9: median ← orderedSeries[Ndays+1
2]

10: sum ← 0
11: for all value ∈ series do
12: sum ← sum + |value - median|
13: mad ← sum

Ndays

14: mZ ←
0.6745 · (ser ies[currentDay] −median)

mad

15: if mZ > 3.5 then anomalies.add({p, f })
16: return anomalies

The modified Z-score is used to identify anomalies on
all features, except for nbPackets: it is only used to spot
emerging ports, i.e., ports that were not in use before.
That is, an anomaly is spotted if at least a given number
of packets Nmin is collected on one port for the first time in
Ndays , so that xp

i,N+1 ≥ Nmin and xp
i, j < Nmin for each jε [1,N].

Once all features of all ports are analyzed, the detection
module sends the content of the anomalies to the correla-
tion module as alerts. For each alert, the module specifies
its ID m, the anomalous port p, the involved feature i, the
time-series f pi,N and the new anomalous value xp

i,N+1. An
alert is so defined by a 5-tuple {p,m, i, f pi,N , x

p
i,N+1}. For

example, in Figure 2, the detection module B notices an
anomaly on port 89 for feature srcDivIndex. It also pro-
vides the time-series of feature f pi,N and xp

i,N+1, though not
written on the Figure.

3.4. Central correlation
The correlation module receives the low-level alerts

from all detection modules. The distinction between lo-
calized (noticed in one subnet) and distributed (noticed in
several subnets) alerts is made here. As we are searching
for distributed attacks, the correlation module groups the
low-level alerts to keep only the ones reported by at least
k subnets; we set k = 2 in this work. In the example of
Figure 2, several detection modules send alerts to the cor-
relation module; among them, two subnetworks report a
change in the portDivIndex feature on port 23. Hence the

6

Figure 2: Architecture example. Local modules run at different
points in the network and send alerts to the central correlation mod-
ule. The controller will then be able to keep only distributed ones.
Here it spots an anomaly on port 23 for feature portDivIndex, coming
from two different places.

correlation module induces an anomaly on this port. It is
even better if similar anomalies have been noticed on the
same port for several features.

We define the Anomaly Score (AS) as the number of
anomalies noticed for one port by all monitors and for all
features; e.g., if for one port a monitor detects anomalies
on two features and another on six features, the AS is 8.
The correlation module is able to compute the AS after
having received alerts from all monitors during the same
time slot. When it identifies top-level anomalies, it warns
all detection modules about the anomalous ports. Thus
they are able to analyze these ports as a priority next
time. Ad-hoc actions can also be taken, as a function of
the programmability of the local network, such as port
blocking, mirroring, deep-packet-inspection, for the sake
of reporting in a possible further detailed analysis.

4. Evaluation

In this section, we evaluate the performance of the
Split-and-Merge detection process using real traffic traces.
First, we aim to validate our assumption that the feature
data is normally distributed around its median. We also
analyze the results to adequately determine the features
and parameters. Finally, we look at the anomalies dur-
ing the last three years and aim to classify them. The
source code used for the detection and evaluation is avail-
able in [21].

4.1. Network traffic datasets
TheWIDE project provides researchers with daily traces

of a transpacific link, named the MAWI archive [31]. Traces
are collected between their network and the upstream ISP.
Each file contains 15 minutes of traffic flows, captured be-
tween 14:00:00 and 14:15:00 local time. This represents
usually between 4 and 10 GB of traffic for one file. Before
being released, traces are anonymized so that no personal
information can be extracted. Specifically, the application
data is removed and IP addresses are scrambled with a
modified version of tcpdpriv following two principles: 1)
it is collision-free so that there is a one-to-one mapping
between IP addresses before and after anonymization; 2)
it is prefix-preserving so that if two IP addresses share
k bits before anonymization, the two anonymized IP ad-
dresses will also share k bits. This enables to retrieve the
subnetworks after anonymization.

In addition, the Center for Applied Internet Data Anal-
ysis (CAIDA) provides the UCSD Network Telescope dataset [8].
It consists of a globally routed, but lightly utilized /8 net-
work prefix, that is, 1/256th of the whole IPv4 address
space. It contains a few legitimate hosts; inbound traffic
to non-existent machines - so called Internet Background
Radiation (IBR) - is unsolicited and results from a wide
range of events, including misconfiguration, scanning of
address space by attackers or malware looking for vulner-
able targets, backscatter from randomly spoofed denial-
of-service attacks, and the automated spread of malware.
CAIDA continuously captures this anomalous traffic dis-
carding the legitimate traffic packets destined to the few
reachable IP addresses in this prefix. They provide two
types of files: raw data stored into pcap files for the on-
going month, and hourly FlowTuple files for the last 13
years – that we used. Note that this dataset does not con-
tain several subnetworks as the MAWI one does. Thus the
number of false positives (i.e., detecting an attack target-
ing only this subnetwork but not the whole Internet) may
be higher. The objective in using this second dataset is to
evaluate the efficiency of our method as of detected bot-
nets and, most of all, to compare the anomalies found in
each of the datasets and to study the common ones.

Note that by default, we refer to the MAWI dataset
when we do not specify which one we use. As the UCSD
dataset only contains one vantage point, we do not use it
for all experiments, instead we use it to cross-check the
anomalies found in the MAWI dataset since there is no
ground truth.

4.2. Normal distribution fitting
It is important to empirically assess the validity of a

key Split-and-Merge assumption, that is that the features
data is expected to be normally distributed around the
median. Indeed, we use the modified Z-score to support
the detection logic.

It is well known from the state of the art that Internet
traffic exhibits a power-law behavior [30] for the packet

7

(a) Normal distribution based
on mean.

(b) Normal distribution based
on median.

(c) Log-normal distribution
based on mean.

(d) Log-normal distribution based
on median.

Figure 3: Empirical CDF of the MSE between the true distribution and the regression.

counts. Among Split and Merge features, we consider the
nbPackets feature only to characterize ports behaviour (for
the ports with sufficient traffic). Moreover, other features
represent diversity indices, attributes means and standard
deviations.

To assess the assumption that normal distribution is a
well fit for the nbPackets feature, and that it is better than
the power-law distribution, we compute the mean square
error (MSE) between the measured and synthetically gen-
erated histogram [10], for each tuple of port and feature
so that

MSE =
1

Nbins

Nbins∑
b=1

[H p
i,N (b) −EH p

i,N (b)]2 (4)

where H p
i,N denotes the normalized histogram of the

N days time-series f pi,N of feature i and port p, EH p
i,N is

the histogram with matching mean and standard devia-
tion, and Nbins is the number of bins in the histograms.
The latter is chosen according to Sturges’ rule stating
that the number of bins K should be equal to K = 1 +
3.322(log10(N)) with N the number of samples. Using this
method, we used 4 bins for 10 samples.

Given the several thousands of ports to analyze each
day for each feature, the Cumulative Distribution Func-
tion (CDF) represents the cumulative probability for one
feature to reach a given MSE by taking into account all
ports. We plot the empirical CDF of the MSE by con-
sidering four different regressions: a normal distribution
with matching mean and standard deviation in Figure 3a,
a normal distribution with matching median and median
absolute deviation in Figure 3b, a log-normal distribution
with matching mean and standard deviation in Figure 3c,
and a log-normal distribution with matching median and
median absolute deviation in Figure 3d. The reported re-
sults are those for 2016 traffic (we observe similar results
in 2017 and 2018).

We observe that: (i) the regression using the log-normal
distribution gives far worse results than the normal dis-
tribution, (ii) for the normal distribution, the regression
using the median and the median absolute deviation gives
a better approximation than the one with the mean and
the standard deviation, (iii) for the normal distribution,

all features produce more or less the same MSE.
By using a normal distribution, we found out that the

MSE is very low for all features, which is an empirical
validation of this assumption.

4.3. Local anomaly detection
This section gives the outcome of several local detec-

tion modules running simultaneously, each of them being
situated in a MAWI subnetwork. We pick each Thursday
from March 31 to Oct. 20, 2016. Thresholds Ti for an
anomaly are all set to 3.5. The minimum number of pack-
ets Nmin is set to 20. The number of days we chose is
Ndays = 10. We will tune these two last values later in
Section 4.7.2.

Figure 4 gives an example of the modified Z-score evo-
lution for the srcDivIndex feature on port TCP/3389. On
Sept. 29, the absolute value of the modified Z-score is over
the threshold for four detection modules situated in differ-
ent subnetworks, resulting in an anomaly. The subnetwork
F contains only a few points because most of the time,
there is little (less packets than Nmin) or no traffic on port
3389 in this subnetwork. The same explanation applies to
subnetworks that do not appear at all in the legend.

Figure 4: Evolution of the modified Z-score in 5 subnetworks for
feature srcDivIndex on port 3389 over time (2016).

4.4. Comparison between aggregated and split views
In this experiment, we compute the number of alarms

for each feature considering two approaches: (i) an aggre-

8

Figure 5: Number of anomalies for feature srcDivIndex. In aggre-
gated view, the score is 1 if there is an anomaly on the whole traffic,
else 0. In split view, it is the number of anomalous subnetworks.

gated view where an anomaly is observed considering the
traffic from all subnetworks aggregated, (ii) a split view
where only distributed anomalies (i.e., seen in at least two
subnetworks) are conserved. The results are presented in
Table 3 for 2016, while similar findings have been observed
in 2017 and 2018. We observe that the number of anoma-
lies – thus the number of false positives – is significantly
lower with the split view.

Feature Aggregated view Split view
srcDivIndex 11,376 101
destDivIndex 11,409 96
portDivIndex 11,375 102
meanSize 10,978 91
stdSize 10,549 67
perSYN 851 98

Table 3: Number of anomalies for both approaches (2016).

The example of feature srcDivIndex is shown in Figure
5, with the number of anomalies expressed in logarithmic
scale. With a split view, we observe that considering only
distributed alerts considerably diminishes the number of
anomalies to deal with. Indeed, the number of anoma-
lies for a single variation (score of 1) is 100 times higher
than for a distributed variation (score of 2), decreasing the
number of alerts from 3918 to 66.

4.5. Last years panorama
In this subsection, we launch the anomaly detection

process on a large period to examine the type of anomalies
we can detect. We describe hereafter the main anomalies
arisen these last three years, in the MAWI dataset and the
UCSD dataset.

4.5.1. In the MAWI dataset
Figures 6a (2016), 6b (2017) and 6c (2018) show the

number of ports with a given anomaly score each day, high-

lighting the main anomalies arisen these last years. In all
cases, we observe very few alarms each day, which is quite
convenient for the network administrator, as too numer-
ous alerts is considered as one reason why IDS are un-
derused. Furthermore, none of these anomalies have been
detected by MAWILab. Also, we tag events observed in
both datasets with a red frame in Figure 6. Note also
that lots of ports score 5 anomalies, as a significant varia-
tion on one port in one subnetwork generates simultaneous
alerts for all features (except for the feature SYN that gives
poor results as shown later in Section 4.7.1), i.e., 5 alerts.
We therefore describe the main anomalies, whose anomaly
score is the highest, and we also indicate if we retrieved
these anomalies in the UCSD dataset.

2016 period. Eight noticeable scores appear in Figure
6a depicting this first period.

i) The 19-score on Feb. 19 is a scan prior to the DROWN
attack [36], exploiting a vulnerability in Secure Sockets
Layer version 2.0 (SSLv2) (CVE-2016-0800).

ii) The 17-score on May 19 corresponds to an exploit
on port 6379 Redis, an in-memory key-value store used as
a database or a cache. This day, numerous IP addresses
with different source port numbers targeted this port. It
could be a botnet or numerous different persons scanning
for vulnerable devices. Indeed, Redis servers do not require
authentication by default and therefore are easy victim of
this type of scan. Also, this happens only a few days af-
ter buffer overflow vulnerabilities were discovered, leading
to arbitrary code execution (CVE-2016-8339, CVE-2016-
10517).

iii) Once again, the 20-score on June 30 corresponds
to an exploit on port 6379. This day, a large SYN scan
is observed coming from the same source IP address and
targeting numerous hosts in several ASes of MAWI. This is
either a large scan targeting the whole IPv4 space, through
a tool like ZMap [55] that performs Internet-wide network
scan in under 45 minutes, or someone trying to penetrate
the MAWI network. This anomaly has been detected with
a score of 4 in the UCSD dataset.

iv) The IoT Mirai botnet [2] is a major attack arisen in
2016. First, Mirai infected hosts send TCP SYN packets to
random IP addresses on Telnet ports 23 and 2323, except
those on a blacklist. Hosts whose Telnet port is open send
back a SYN/ACK packet. Then, infected hosts try to es-
tablish a Telnet connection to them using a hard-coded list
of credentials, and send the credentials to another server if
it is successful. From there, a separate program executes
architecture-specific malware. The victim is now infected
and listens for attack commands from the C&C server,
then starts scanning to infect other hosts. This is how
Mirai spread into connected objects and form a worldwide
army of bots. Indeed, the 26-score on Aug. 4 corresponds
to the Mirai scan on port 23 and the 28-score on Sept. 15
relates to port 2323. Numerous Mirai variants exploit vul-
nerabilities on other ports later in 2016, as evidenced by
the 29-score on Dec. 8 on port 7547, the 20-score on Dec. 22
on port 23231 and the 20-score on Dec. 29 on port 6789.

9

(a) In 2016.

(b) In 2017.

(c) In 2018.

Figure 6: Anomaly scores for the MAWI dataset (number of anomalies for one port, taking into account all features and all monitors). In
the coloured squares are given the numbers of ports with this anomaly score this day. Events detected in both datasets are tagged with a red
frame.

The attack has been detected in the UCSD dataset with
a score of 4 for port 2222, of 5 for ports 23 and 7547, and
of 6 for ports 2323 and 6789.

2017 period. Nine noticeable scores appear in Figure
6b showing anomaly detection results in 2017.

i) A 19-score on Jan. 5 highlights a scan on port 8291,
carried out by Hajime bots. Hajime [16] is an IoT worm
revealed only a few days after the release of the source code
for Mirai. The botnet is continuously evolving, taking ad-
vantage of newly released vulnerabilities. At the beginning
of 2017, the efficient SYN scanner implementation scans
for open ports 5358 (WSDAPI) [47]. The same way Mi-

rai did on port 23, the extension module tries to exploit
the victim using brute-force shell login. This anomaly has
been detected with a score of 6 in the UCSD dataset.

ii) The 17-score on March 16 corresponds to a massive
scan on port 993 which deals with secure IMAP (IMAPS).
This day, a massive scan coming from the same IP address
from port 993 as well has been observed. It may be a
ZMap scan, or an attacker trying to infiltrate the MAWI
network specifically. Indeed, IMAPS belongs to the list of
ports scanned by default by Nmap [37] and is permanently
stuck with the vulnerabilities in SSL 3.0.

iii) The June 1 a 19-score is observed, corresponding

10

to a new IoT botnet spreading and exploiting vulnera-
bility in security cameras [33], several days after the re-
searcher Pierre Kim released a vulnerability analysis re-
port on GoAhead and other OEM cameras. This anomaly
has been detected with a score of 6 in the UCSD dataset.

iv) The 30-score, 26-score and 24-score, respectively on
Aug. 3, Aug. 10 and Aug. 17 correspond to a sensible drop
in the scan perpetrated by Mirai on port 23. This may
be due to the Internet of Things (IoT) Cybersecurity Im-
provement Act of 2017 [52], adopted on Aug. 1, 2017. The
latter seeks to improve the security of internet-connected
devices, so that devices do not contain any known secu-
rity vulnerabilities and are conceived using standard pro-
tocols. It also claims that the eventual patches should
be applied even retroactively, which can explain the scan
drops. These changes have also been noticed in the UCSD
dataset, producing anomalies with scores of 4 and 5.

v) The 27-score on Dec. 21, and 15-score and 16-score
on Dec. 28 involve ports 37215 and 52869, that received
numerous scans from the newest version of Satori (a Mirai
variant) [34]. These anomalies have been detected in the
UCSD dataset with scores of 4 and 5.

2018 period. Nine noticeable scores appear in Fig-
ure 6c depicting the 2018 year. Compared to previous
years, large scores are much rarer this time. Indeed, the
maximum AS is up to 19, compared to 29 and 30 respec-
tively in 2016 and 2017. We can still identify several main
anomalies.

i) On Feb. 8 and March 8, exploits on port 81 are no-
ticed. These days, almost the same IP address launched
TCP SYN scans from the same source port number, tar-
geting numerous MAWI subnetworks. This may be once
again an Internet-wide network scan (e.g., by ZMap) or an
attacker that targets the MAWI dataset specifically.

ii) The 16-score on Feb. 15 is actually a scan on port
5555. It comes from the ADB.Miner botnet, which iden-
tifies Android devices with Android Debug Bridge turned
on, to control them and make them execute commands [35].
Hence, this day, numerous IP addresses sent SYN pack-
ets to various hosts in the MAWI network using different
source port numbers, as seen for the Mirai botnet in 2016.
This anomaly has been detected in the UCSD dataset with
a score of 4.

iii) The 12-score on March 1 corresponds to the mem-
cached attack on port 11211. Prior to the huge DDoS
attack towards Github, large TCP SYN scans across the
world targeted port 11211 in order to identify memcached
servers exposed without any authentication protection (CVE-
2018-1000115). The anomaly observed this day is a mark
of this large scan. These changes have also been noticed
in the UCSD dataset, producing anomalies with scores of
4 and 5.

iv) The 18-score on Apr. 5 corresponds to a large scan
on port 2000 coming from various source IP addresses with
different source port numbers, and targeting many IP ad-
dresses from several ASes in the MAWI dataset. Cisco
Skinny Call Control Protocol (SCCP) is often bound to

this port, allowing terminal control for voice over IP. This
scan is symptomatic of an IoT botnet, willing to exploit
the few vulnerabilities disclosed last years for this protocol,
and maybe IoTroop [11].

v) The 19-score on Apr. 5 highlights a scan on port
8291, carried out by Hajime bots. On May 2018, it ex-
ploits a vulnerability (CVE-2018-7445) published 13 days
before. First, infected hosts scan random IP addresses
on port 8291 to identify MikroTik devices. Once the bot
has identified one device, it tries to infect it with a pub-
lic exploit package sent via port 80 or an alternate port.
If successful, the device infects new victims in turn un-
der the same protocol. This day, as for the Mirai botnet,
our program saw many IP addresses targeting the MAWI
network on port 8291, using various source port numbers.
This anomaly has been detected with a score of 4 in the
UCSD dataset.

vi) On Apr. 26 and March 3, two anomalies on port 23
are detected. We observe that these days, meanSize con-
siderably rises while srcDivIndex and destDivIndex fall.
The number of packets is also lower than usual. Thus it
looks like there are less malicious scans towards this port
these days. Actually, botnets tend to use alternate ports
because vulnerabilities are progressively patched and de-
vices are armed against possible exploits on port 23. These
changes have also been noticed in the UCSD dataset, pro-
ducing anomalies with scores of 4 and 5.

vii) On June 28, a 16-score is stored for port 60001,
probably corresponding to a Trojan named Trinity. It
first connects to one of 11 IRC servers on UnderNet. The
Trojan then joins a chat room and waits for commands
to attack individual agents on the channel. The noticed
anomaly probably results from that trojan, that we iden-
tified coming from two different IP addresses.

viii) On Sept. 6, a 16-score anomaly is observed on port
8000. Several days before, the possibility for an unauthen-
ticated attacker to exfiltrate sensitive information about
the network configuration (network SSID and password)
has been made possible by an information disclosure in
Netwave IP camera (CVE-2018-11653 and CVE-2018-11654).
This anomaly has been detected in the UCSD dataset with
a score of 4.

4.5.2. In the UCSD Network Telescope dataset
Figures 7a (2016), 7b (2017) and 7c (2018) show the

number of ports with a given anomaly score each day, high-
lighting the main anomalies found these last years in the
UCSD dataset. Once again, we frame common anomalies
(found in both datasets) in red, and describe the anomalies
detected uniquely in this one hereafter.

2016 period. Several noticeable scores appear in Fig-
ure 7a showing anomaly detection results in 2016.

i) On Feb. 18, we observe many scans targeting des-
tination ports from 36242 to 36560 (even numbers only),
producing 6-score anomalies. The scans probably come
from a botnet, because the source and destination IP ad-
dresses are very diverse. It is hard to determine the nature

11

of these scans, because they target registered ports with
no known vulnerabilities. It may be a stealthy scan tech-
nique to first determine if the host is up, to then focus on
some ports showing vulnerabilities (as the Reaper botnet
does, cf. [41]).

ii) On March. 17 and 24, a decrease in the scans target-
ing the range 36242-36560 is observed, producing 6-score
anomalies.

iii) Once again, several scans targeting the range 19328-
19454, producing 6-score anomalies have been noticed on
Dec. 1.

iv) On Dec. 8, an anomaly is detected with a score of 5,
highlighting a scan performed by Mirai on port TCP/2222,
running Rockwell Automation ControlLogix whose several
vulnerabilities are known [51]. The MAWI dataset con-
tains traffic from a backbone link, and port 2222 may also
be used as an alternative port for SSH, producing noise in
data. This may explain why we did not detect the scan in
the MAWI dataset

2017 period. Several noticeable scores appear in Fig-
ure 7b showing anomaly detection results in 2017.

i) A 6-score anomaly on Jan. 5 highlights a scan on port
TCP/27017 that runs MongoDB. A few days later, it has
been reported and confirmed that many unsecured Mon-
goDB databases have been scanned and vandalized around
the world [49]. This attack affects only those databases
which maintain default configurations, which leaves the
database open to external connections via the Internet.
We observe also a scan of the same nature on Feb. 16.

ii) We observe on March. 30 several scans targeting
destination ports 88, 443, 3389, 6666 and 54313, coming
from very distinct source IP addresses and with no flags (a
network scanning technique known as Inverse TCP Flag
Scanning). All of these ports present known vulnerabil-
ities. A vulnerability on port 54313 to exploit a Netis
Router Backdoor has been detected and exploited by bot-
nets back in Aug. 2016[43]. We did not find any informa-
tion about a botnet targeting all these ports conjointly in
the literature, thus we assume it is a small-scale attack.

iii) A 6-score on May. 18 highlights a scan on port
TCP/445 that runs Server Message Block (SMB) known
for its "EternalBlue" vulnerability. On May. 17, the recent
WannaCry ransomware takes advantage of this vulnerabil-
ity to compromise Windows machines [17].

iv)A 6-score on Oct. 12 highlights a scan on port 20480,
probably from the Reaper botnet targeting a sequence of
destination ports including 20480 [41]. However, instead
of doing aggressive, asynchronous SYN scans for open Tel-
net ports, Reaper performs a more elaborate, conservative
TCP SYN scan on a series of different ports, one IP at a
time, targeting uncommon ports. Only after the first wave
of scans on the victim, a second wave starts consisting of
potential IoT web service ports: 80, 81, 82, 83, 84, 88, etc.

v) As in 2016, we observe a decrease in the scans tar-
geting the range 19328-19454, producing 6-score anomalies
on Dec. 7 and 14.

2018 period. Several noticeable scores appear in Fig-
ure 7c showing anomaly detection results in 2018.

i) A 6-score on May. 17 highlights a scan on port TCP/8000,
performed by the Satori botnet exploiting a buffer over-
flow vulnerability, tracked as CVE-2018-10088 [42]. The
exploit could be used by remote attackers to execute arbi-
trary code by sending a malformed package via ports 80 or
8000. The upsurge of malicious scanning activity has been
observed on June 15 but we could think that we detected a
preliminary scan campaign from Satori developers. More-
over, this scan was probably not targeting the whole IPv4
range because we did not detect it in the MAWI dataset.

ii) A 6-score on May. 17 highlights a scan on port
TCP/445, a port known for its "EternalBlue" vulnerabil-
ity exploited by Wannacry. We noticed at this time an
important increase in the botnet scan activities.

iii) A 6-score on Aug. 2 highlights a scan on port
TCP/37215, a port used by Huawei HG532 routers. At the
end of July, an IoT hacker identifying himself as "Anarchy"
claimed to have hacked about 18000+ Huawei routers [4].
It works by exploiting an already known vulnerability which
CVE is 2017-17215, used in Satori.

4.6. Anomaly score distribution
Last subsection shows that there are only a few emerg-

ing anomalies, and a lot more with small anomaly scores.
We can so wonder which anomalies are greater enough to
be analyzed. Figure 8 shows the mean anomaly score oc-
currence per day in logarithmic scale for each year. For
6 features, we observe different levels of 6 items, e.g., AS
from 1 to 6 are close to 10, then from 7 to 12 close to 0.3,
then the number of anomalies progressively declines. Once
again, the occurrence AS = 5 is high because a given varia-
tion on one port in one subnetwork generates one anomaly
per feature, except for perSYN. For next evaluations, we
set the threshold to define an anomaly either to 6 or 12,
depending on if we want to detect a large variety of anoma-
lies or only significant ones.

Figure 8: Occurrences of each anomaly score during the last three
years, showing a low number of significant anomalies, for the MAWI
dataset.

In addition, Figure 9 shows the distribution of anomaly
scores resulted from the evaluation made on the UCSD

12

(a) In 2016.

(b) In 2017.

(c) In 2018.

Figure 7: Anomaly scores for the UCSD Network Telescope dataset (number of anomalies for one port, taking into account all features and
all monitors). In the coloured squares are given the numbers of ports with this anomaly score this day. Events detected in both datasets are
tagged with a red frame.

dataset. We observe a very low number of significant
anomalies, i.e., with a score at least equal to 4. For the
MAWI dataset, we observed a decrease starting from AS =
7 (thus at least two impacted subnetworks) and not 4,
probably because it contains more false positives due to
traffic generated by internal hosts (while there is no such
traffic in the UCSD dataset).

Figure 9: Occurrences of each anomaly score during the last three
years, showing a low number of significant anomalies, for the UCSD
dataset.

4.7. Features and parameters choice
In this subsection, we aim to refine the detection ac-

curacy by analyzing how the features and the parameters
impact the results.

4.7.1. Feature selection
We use two metrics to determine which features are

the most useful in the anomaly detection process. The
two following experiments are made on the whole traffic
from 2016 to 2018. For both, a large number of anomalies,
i.e., with an AS > 6 is first considered, then only major
ones, i.e., with an AS > 12.

F-Test based feature selection: F-Test is a statis-
tical test used to compare between models, here between
the input (features) and the output (anomaly detection
results). It is useful in feature selection as we get to know
the significance of each feature in improving the model.
First, the anomalies are generated by launching our solu-
tion, and only the ones whose AS is higher than T are kept.
Then, we observe the impact of each variation of feature
on the anomalies found. Table 4 gives the results of F-Test
applied on the produced anomalies, for each feature vari-
ation. We observe that the perSYN feature, that scores
0.114 / 0.009 and 0.152 / 0.039 respectively for an increase
and a decrease, has the least impact on the results.

Number of absolute variations: we analyze for
each anomaly whether the variations of features are dis-
tributed in several subnetworks, i.e., if the feature only
rises or decreases in several subnetworks. This kind of
variations is wanted as it means a distributed change, and
not some random, differing variations. In Table 5 is given
the number of absolute anomalies, i.e., where one given

13

Feature F-Test score
(T = 6)

F-Test score
(T = 12)

+srcDivIndex 0.269 0.136
-srcDivIndex 0.689 1.000
+destDivIndex 0.599 0.378
-destDivIndex 1.000 0.610
+portDivIndex 0.633 0.188
-portDivIndex 0.648 0.899
+meanSize 0.321 0.158
-meanSize 0.932 0.463
+stdSize 0.692 0.302
-stdSize 0.478 0.825
+perSYN 0.114 0.009
-perSYN 0.152 0.039

Table 4: F-Test scores per feature, among anomalies whose AS is
higher than T. The higher the F-Test score of a feature is, the greater
impact the feature has on final results.

feature is only rising in several subnetworks, or decreasing
in several subnetworks. We observe that the perSYN fea-
ture contains a majority of random variations, contrary to
other features.

Feature # absolute
variations
(T = 6)

absolute
variations
(T = 12)

srcDivIndex 318 12
destDivIndex 296 17
portDivIndex 334 16
meanSize 260 14
stdSize 211 7
perSYN 154 6

Table 5: Number of absolute variations per feature (either rise in sev-
eral subnetworks, or decrease in several subnetworks), among anoma-
lies whose AS is higher than T.

We can induce from these two experiments that the
perSYN feature has the lowest impact on final results and
does not often rise or decrease in the majority of subnet-
works. This observation is interesting as this feature is
widely used in TCP SYN scan detection algorithms.

4.7.2. Parameters tuning
Our algorithm has four parameters (see Table 1). In

this subsection, we evaluate and discuss the impact of the
key ones: the window size (Ndays) and the minimum num-
ber of packets on one port (Nmin).

Number of days in the window (Ndays): first, we
wonder how the number of elements in the time-window
impacts the validity of a normal distribution based on me-
dian. For each feature, we compute the median MSE (for
all ports) between the true distribution and the normal
distribution based on median, by making Ndays vary. The
result is shown in Figure 10. We observe that the more
days in the model, the more normally distributed the set

Figure 10: Median MSE (between the true and the normal distribu-
tion) per feature, with the window size (Ndays) varying.

of data, making the model with 20 days the best approx-
imation. However, it may be possible to find a trade-off
between a good approximation and a minimized time ex-
ecution and memory allocation.

Looking at the anomaly detection results can also give
evidence about the appropriate window size. The objective
is to find an optimal window size that is not too large,
but still gives a satisfactory detection accuracy. In Figure
11a is shown the number of anomalies in 2016 depending
on the threshold (minimum AS value) for diverse Ndays

values. We observe that 10 days (in green) enable to see all
substantial anomalies, i.e., with an AS higher than 12. We
keep Ndays = 10 for the following simulations to minimize
the window size.

Minimum number of packets on one port (Nmin):
this time, we show the number of anomalies in 2016 de-
pending on the threshold (minimum AS value) for diverse
Nmin values in Figure 11b. We observe that for a thresh-
old higher than 12, the number of anomalies is the same
no matter Nmin . It means that anomalies happen most of
the time on ports with a sufficient amount of traffic (more
than 100 packets). Therefore we choose Nmin = 100 to
limit the number of ports to deal with, hence reducing the
time execution and memory allocation.

To complete the study, Figure 12 shows the number of
ports to deal with in each subnetwork in 2016, by making
Nmin vary. With Nmin = 100, the maximum amount of
ports to analyze is around 6,000 for subnetwork E, which
is quite reasonable.

4.8. Anomalies classification
We define a set of commonly-called ‘expert rules’ with

some conditions about the features evolution. For each
characteristic, the variation has to be noticed in at least
two subnetworks, while the opposite variation must not be
noticed in any subnetwork. For example, if the character-
istic is -srcDivIndex, an anomaly is verified if srcDivIndex
decreases in at least two subnetworks (-srcDivIndex ≥ 2)

14

(a) Varying the number of days in the model (Ndays). (b) Varying the minimum number of packets on one port (Nmin).

Figure 11: Number of anomalies depending on a parameter for diverse thresholds (2016).

Figure 12: Number of ports to analyze in every subnetwork, with
the minimum number of packets per port (Nmin) varying.

and if it does not rise in any subnetwork (+srcDivIndex
= 0). Furthermore, the feature portDivIndex is not self-
speaking and thus not used in the classification. However
it gives additional information about the likelihood for the
source port to be spoofed or not. Therefore, if portDi-
vIndex rises in at least two subnetworks while it does not
decrease in any subnetwork, then the source port may be
randomly chosen. If the exact opposite is observed, the
port may be spoofed. In addition, the perSYN feature is
not used for the classification either, because of its small
impact on the results (see Section 4.7.1).

In Table 6 are given several classes of anomalies ob-
served the last few years, followed by their characteristics.
They are ordered so that the most specific rules override
the lower ones. Some anomalies referring to attacks are
identified, such as "forged packets", "large scan" proba-
bly launched with ZMap, "DDoS attack", "targeted scan",
"botnet scan" and "botnet expansion" that kills other pro-
cesses bound to a port. There are also anomalies caused
by a drop in malicious activities, such as "normal packets"

and "less botnet scan".
Only significant anomalies (whose AS > 12) are kept

to be classified. The fact that some anomalies do not be-
long to any class is not worrying, as it means a port whose
nature evolves rapidly, rather than a port targeted by one
clearly identified attack. We observe a nature of traffic
seemingly different between 2016 and 2018, with a major-
ity of scans and DDoS attacks in 2016 and more normal
activity in 2018.

Classes and characteris-
tics

2016 2017 2018

More normal packets
+meanSize,+stdSize 1 5 12
More forged packets
-meanSize,-stdSize 0 1 1
Large scan
-srcDivIndex,+destDivIndex,
-meanSize 3 5 0
DDoS
+srcDivIndex,-destDivIndex 6 1 3
Botnet scan
+srcDivIndex,+destDivIndex
,-meanSize 5 2 6
Botnet expansion
+srcDivIndex,+destDivIndex
,-stdSize 2 2 2
Targeted scan
-srcDivIndex,-destDivIndex 1 2 4
Less botnet scan
-srcDivIndex,-dstDivIndex,
+meanSize,+stdSize 0 5 3
Total 18/21 23/32 31/40

Table 6: Definition of classes and their characteristics, with their
occurrences each year.

15

4.9. Ground-truth
Since we are detecting anomalies on a long-term scale

and based on destination port numbers, we are not able to
compare our work to other intrusion detection systems on a
fair basis. We are only comparing our results to the MAW-
ILab database, showing that it did not detect the main
anomalies that we identified, either in the MAWI dataset
or the UCSD dataset. Moreover, as a matter of fact we
focus on detecting major botnets and attacks arisen these
last years and we do not benefit from a labelled dataset of
a several-years period.

Nevertheless, we attempted to provide a retrospective
analysis of the major botnets and attacks arisen between
2016 and 2018. The literature in this field is not prolific
so we combined different attack data sources [40, 56] to
create the list; we then evaluated whether we detected
them using different datasets. Table 7 hereafter shows the
IoT and Malware Botnets reported between 2016 and 2018,
and the anomaly score of the event in case we detected it.

The false detection rate is computed as the number of
benign events classified as malicious over the total number
of benign events. However, we do not have labelled data in
the available datasets and thus it is not feasible to compute
the false positive rate. For instance, we cannot distinguish
between a false positive and a small attack which targets
only this network and which is not referenced as a botnet.
However, we estimate hereafter the number of unknown
anomalies, defined as major detected anomalies which
are not part of a known botnet. For the MAWI dataset,
we consider as major anomalies those starting from an
anomaly score (AS) of 12 (therefore the equivalent of 2
subnetworks impacted with 6 anomalous features); for the
UCSD dataset, which only contains one vantage point, we
consider as major anomalies those with an AS of 6 (i.e.,
with all features anomalous). We count 71 (respectively
22, 25 and 24 in 2016, 2017 and 2018) unknown anomalies
for the MAWI dataset and 26 (respectively 14, 9 and 3 in
2016, 2017 and 2018) for the UCSD dataset.

As a result, we detected a slightly higher number of
anomalies in the UCSD dataset: this happens likely be-
cause it is less noisy and only contains unsolicited traf-
fic. On the contrary, the MAWI dataset shows the advan-
tage of containing proportionally less unknown anomalies.
This is likely due to the several subnetworks in the MAWI
dataset; this enables to discard the local anomalies (i.e.,
seen in only one subnetwork), which are caused by occa-
sional traffic peaks and may be considered as false alerts,
and to keep only distributed anomalies.

5. Complexity and performances analysis

5.1. Complexity analysis
To evaluate the scalability of our algorithm, we provide

the space and time complexity analysis of each step. Table
8 hereafter aims at simplifying the notations to express the
complexity.

Notation Definition
p Number of packets collected in the subnet
a Number of attributes per collected packet
p′ Number of ports after applying Nmin filter
f Number of features
l Number of anomalies during one time slot

ni Number of entries in CTi (for feature i)

Table 8: Complexity notations.

5.1.1. Data collection

Space complexity : the program stores a attributes per
packet, hence the complexity is O(a · p).

Time complexity : packets are collected on the fly, and
packets attributes are instantly stored. Therefore the ex-
ecution of the algorithm is near real-time.

5.1.2. Features computation (see Algorithm 1)

Space complexity : the memory space needed to com-
pute features from attributes is O(1) for all features, i.e.,
the three diversity indices, the mean, the standard devia-
tion, the percentage and the number of packets. Therefore,
the total space complexity is O(f).

Time complexity : first, we need to parse ports and
compute a set of features for each one. The feature com-
putations, i.e., three diversity indices, a mean, a stan-
dard deviation, a percentage and a counter, multiplied
by the number of ports, generates a total complexity of
O(p′ ·

∑ f
i=1 ni).

5.1.3. Anomaly detection (see Algorithm 2)
Note that steps 2 and 3 can be merged to avoid parsing

twice each tuple of ports and features.
Space complexity : the median computation requires to

order values using quick sort, whose memory space allo-
cated is logarithmic: O(log(Ndays)). Then, one need to
store values for the median, the median absolute devia-
tion, the modified Z-score and the anomalies. These val-
ues are updated for each feature and port, thus the space
complexity is O(3 + l).

Time complexity : The time complexity for the quick
sort needed to compute the median is O(Ndays ·log(Ndays)).

Finally, as a << p, the total space complexity for all
steps is equal to O(p + log(Ndays)). The total time com-
plexity is O(p′ ·

∑ f
i=1 ni + Ndays · log(Ndays)).

Both space and time complexity directly depend on
Nmin (which determines the number of ports p′ to deal
with) and on Ndays . That is why, in the following eval-
uations, we better minimize these values, while keeping a
good detection rate.

5.2. Execution performance
We performed our experiments on a 2017 MacBook Pro

with 2.3 GHz Intel Core i5 Processor and 16GB RAM. The

16

Botnet Port Year MAWI dataset UCSD dataset
Mirai (IoT botnet) 23 2016 X(26/54) X(5/6)
Mirai (IoT botnet) 2323 2016 X(28/54) X(6/6)
Mirai (IoT botnet) 7547 2016 X(29/54) X(5/6)
Mirai (IoT botnet) 6789 2016 X(20/54) X(6/6)
Mirai (IoT botnet) 2222 2016 X X(5/6)
Mirai (IoT botnet) 23231 2016 X(20/54) X

Hajime (Malware botnet) 5358 2017 X(19/54) X(6/6)
Reaper (IoT botnet) 20480 2017 X X(6/6)
Satori (IoT botnet) 37215 2017 X(27/54) X(4/6)
Satori (IoT botnet) 52869 2017 X(17/54) X(5/6)

ADB.Miner (IoT botnet) 5555 2018 X(19/54) X(4/6)
Memcached (Malware botnet) 11211 2018 X(12/54) X
Hajime (Malware botnet) 8291 2018 X(19/54) X(4/6)

Satori (IoT botnet) 8000 2018 X X(6/6)
Total 11/14 detected (T PR = 78.6%) 12/14 detected (T PR = 85.7%)

Table 7: List of most impactful botnets reported these last three years.

time spent to detect anomalies depends on the number of
analyzed ports, thus on Nmin , the minimum number pack-
ets on a port to consider it. We consider here the UCSD
dataset, composed of 152 days picked from 2016 to 2018,
each one containing one million of packets. The learning
phase (building per-port profiles) and the detection phase
(computing the Z-score) are run simultaneously. In fact,
we dispose of a sliding window, thus the model is updated
each time and the detection is made on the updated model
on the fly. In total, it took 6390 seconds to run the full
algorithm (i.e., the learning and detection phases) on 152
days, covering 17,152 ports and one subnetwork.

6. Conclusion and perspectives

The port-based anomaly detection algorithm we pro-
posed is able to detect known and unknown attacks target-
ing connected objects and servers around the world. Early
stages of the attacks, namely the exploited vulnerabilities,
can be detected beforehand.

Our method, called Split-and-Merge detection, lever-
age on statistics to detect main changes in the usage of
application ports. The empirical results obtained apply-
ing our method to real traces are very promising, since our
algorithm detected a number of world-wide attacks from
2016 to 2018. In contrast, current IDSs, among which
the notorious MAWILab, have not detected them. We
evaluated the scalability of our algorithm by computing
its complexity in terms of space and time. Moreover, we
showed that our algorithm produces a very low number of
false positives. We demonstrated the validity of our statis-
tical model assumptions, showing how leveraging on dis-
tribution analysis of features we can refine the detection
accuracy by analyzing how the parameters and features
impact the results. We provide a classification of detected
attacks given expert rules by analyzing jointly the features

evolution.
The objective of this work is to detect the early appari-

tion of botnets, newly exploited vulnerabilities and other
diverse attacks within a given network. However, we no-
ticed that we could obtain a comprehensive list of major
botnets that emerged last years by coupling different data
sources. For example, some preliminary scans target a
limited IPv4 range only and thus are visible only on some
datasets. As a result, we found that some attacks de-
tected in one real traffic source (the MAWI dataset), con-
taining both attack traffic and background traffic, were
not found in another source containing only attack or un-
solicited traffic (the UCSD dataset). We thus believe it
would be interesting in future work to leverage these dif-
ferent data sources in order to describe the landscape of
major attacks and botnets in recent years.

As a further work, we also plan to implement our pro-
posal in an SDN environment, using a controller and sev-
eral switches running the algorithm. This way the identi-
fied attacks could be mitigated, for example by patching
the appropriate services or network programming.

References

[1] Akamai, 2018. Memcached UDP reflection attacks.
URL https://blogs.akamai.com/2018/02/
memcached-udp-reflection-attacks.html

[2] Antonakakis, M., April, T., Bailey, M., Bernhard, M.,
Bursztein, E., Cochran, J., Durumeric, Z., Halderman, J. A.,
Invernizzi, L., Kallitsis, M., Kumar, D., Lever, C., Ma, Z., Ma-
son, J., Menscher, D., Seaman, C., Sullivan, N., Thomas, K.,
Zhou, Y., 2017. Understanding the Mirai botnet. In: Proceed-
ings of the USENIX Security Symposium (USENIX Security).
pp. 1093–1110.

[3] Aqil, A., Khalil, K., Atya, A. O., Papalexakis, E. E., Krishna-
murthy, S. V., Jaeger, T., Ramakrishnan, K. K., Yu, P., Swami,
A., 2017. Jaal: Towards network intrusion detection at isp scale.
In: Proceedings of the International COnference on emerging
Networking EXperiments and Technologies - (CoNEXT).

17

https://blogs.akamai.com/2018/02/memcached-udp-reflection-attacks.html
https://blogs.akamai.com/2018/02/memcached-udp-reflection-attacks.html

[4] Avira, 2018. 18000 routers taken hostage in less than a day.
URL https://blog.avira.com/
18000-routers-taken-hostage-in-less-than-a-day/

[5] Bhuyan, M. H., Bhattacharyya, D. K., Kalita, J. K., 2014. Net-
work anomaly detection: Methods, systems and tools. IEEE
Communications Surveys & Tutorials 16 (1), 303–336.

[6] Bhuyan, M. H., Bhattacharyya, D. K., Kalita, J. K., April 2011.
Surveying port scans and their detection methodologies. The
Computer Journal 54 (10), 1565–1581.

[7] Blaise, A., Bouet, M., Secci, S., Conan, V., 2019. Split-and-
Merge: detecting unknown botnets. In: Proceedings of the
IFIP/IEEE International Symposium on Integrated Network
Management (IM).

[8] CAIDA, 2020. UCSD Network Telescope Aggregated Flow
Dataset.
URL https://www.caida.org/data/passive/
telescope-flowtuple.xml

[9] Callegari, C., Giordano, S., Pagano, M., 2017. Entropy-based
network anomaly detection. In: Proceedings of International
Conference on Computing, Networking and Communications
(ICNC).

[10] Celenk, M., Conley, T., Willis, J., Graham, J., jun 2010. Predic-
tive network anomaly detection and visualization. IEEE Trans-
actions on Information Forensics and Security 5 (2), 288–299.

[11] CheckPoint, 2018. IoTroop botnet: The full investigation.
URL https://research.checkpoint.com/
iotroop-botnet-full-investigation/

[12] Cid-Fuentes, J. Á., Szabo, C., Falkner, K., nov 2018. An adap-
tive framework for the detection of novel botnets. Computers &
Security 79, 148–161.

[13] Cisco, 2018. Snort - network intrusion detection & prevention
system.
URL https://www.snort.org/

[14] Dainotti, A., Benson, K., King, A., kc claffy, Kallitsis, M.,
Glatz, E., Dimitropoulos, X., dec 2013. Estimating internet ad-
dress space usage through passive measurements. ACM SIG-
COMM Computer Communication Review 44 (1), 42–49.

[15] Dromard, J., Roudiere, G., Owezarski, P., March 2017. Online
and scalable unsupervised network anomaly detection method.
IEEE Transactions on Network and Service Management 14 (1),
34–47.

[16] Edwards, S., Profetis, I., 2016. Hajime: Analysis of a decen-
tralized internet worm for IoT devices.
URL https://security.rapiditynetworks.com/
publications/2016-10-16/hajime.pdf

[17] FireEye, 2017. Smb exploited: Wannacry use of "eternalblue".
URL https://www.fireeye.com/blog/threat-research/2017/
05/smb-exploited-wannacry-use-of-eternalblue.html

[18] Fontugne, R., Borgnat, P., Abry, P., Fukuda, K., 2010. MAW-
ILab: Combining diverse anomaly detectors for automated
anomaly labeling and performance benchmarking. In: Proceed-
ings of the International COnference on emerging Networking
EXperiments and Technologies (Co-NEXT).

[19] Francois, J., Aib, I., Boutaba, R., Dec 2012. FireCol: A collab-
orative protection network for the detection of flooding DDoS
attacks. IEEE/ACM Transactions on Networking 20 (6), 1828–
1841.

[20] FukudaLab, 2019. MAWILab database.
URL http://www.fukuda-lab.org/mawilab

[21] Github, 2019. Source code for Split-and-Merge detection algo-
rithm.
URL https://github.com/a-blaise/split-and-merge

[22] Gu, G., Zhang, J., Lee, W., Feb 2008. BotSniffer: Detecting
botnet command and control channels in network traffic. In:
Proceedings of the Network and Distributed System Security
Symposium (NDSS).

[23] Guillot, A., Fontugne, R., Winter, P., MÃľrindol, P., Dainotti,
A., Pelsser, C., 2019. Chocolatine: Outage detection for internet
background radiation. In: Network Traffic Measurement and
Analysis Conference (TMA).

[24] Haddadi, F., Cong, D. L., Porter, L., Zincir-Heywood, A. N.,

2015. On the effectiveness of different botnet detection ap-
proaches. In: Information Security Practice and Experience.
Springer International Publishing, pp. 121–135.

[25] Iglewicz, B., Hoaglin, D., 1993. How to detect and handle out-
liers. In: Edward F. Mykytka, P. (Ed.), The ASQC Basic Ref-
erences in Quality Control: Statistical Techniques. Vol. 16.

[26] Kao, C.-N., Chang, Y.-C., Huang, N.-F., S, I. S., Liao, I.-J., Liu,
R.-T., Hung, H.-W., Sep 2015. A predictive zero-day network
defense using long-term port-scan recording. In: 2015 IEEE
Conference on Communications and Network Security (CNS).

[27] Lakhina, A., Crovella, M., Diot, C., 2005. Mining anomalies us-
ing traffic feature distributions. In: Proceedings of the confer-
ence on Applications, technologies, architectures, and protocols
for computer communications - SIGCOMM. ACM Press.

[28] Lobato, A. G. P., Lopez, M. A., Sanz, I. J., Cardenas, A. A.,
Duarte, O. C. M. B., Pujolle, G., 2018. An adaptive real-time
architecture for zero-day threat detection. In: IEEE Interna-
tional Conference on Communications (ICC).

[29] Lu, W., Tong, H., 2009. Detecting network anomalies using
CUSUM and EM clustering. In: Advances in Computation and
Intelligence. pp. 297–308.

[30] Mahanti, A., Carlsson, N., Mahanti, A., Arlitt, M., Williamson,
C., jan 2013. A tale of the tails: Power-laws in internet mea-
surements. IEEE Network 27 (1), 59–64.

[31] MAWI, 2019. MAWI working group traffic archive.
URL http://mawi.wide.ad.jp/mawi/

[32] Mirheidari, S. A., Arshad, S., Jalili, R., 2013. Alert correlation
algorithms: A survey and taxonomy. In: Cyberspace Safety and
Security. pp. 183–197.

[33] Netlab360, 2017. New threat report: A new IoT botnet is
spreading over http 81 on a large scale.
URL http://blog.netlab.360.com/
a-new-threat-an-iot-botnet-scanning-internet-on-port-81-en/

[34] Netlab360, 2017. Warning: Satori, a Mirai branch is spreading
in worm style on port 37215 and 52869.
URL http://blog.netlab.360.com/
warning-satori-a-new-mirai-variant-is-spreading-in-worm-style-on-port-37215-and-52869-en/

[35] Netlab360, Feb 2018. ADB.Miner: More information.
URL http://blog.netlab.360.com/
adb-miner-more-information-en/

[36] Nimrod Aviram, 2016. DROWN Attack.
URL https://drownattack.com/

[37] Nmap, 2018. Nmap: the network Mapper.
URL https://nmap.org/

[38] Panjwani, S., Tan, S., Jarrin, K., Cukier, M., 2005. An exper-
imental evaluation to determine if port scans are precursors to
an attack. In: 2005 International Conference on Dependable
Systems and Networks (DSN).

[39] Paxson, V., Dec 1999. Bro: a system for detecting network
intruders in real-time. Computer Networks 31 (23-24), 2435–
2463.

[40] PentaSecurity, 2017. Top 5 botnets of 2017.
URL https://www.pentasecurity.com/blog/
top-5-botnets-2017/

[41] Radware, 2017. Why the world is under the spell of IoTReaper.
URL https://blog.radware.com/security/2017/10/iot_
reaper-botnet/

[42] Radware, 2018. Satori iot botnet variant.
URL https://security.radware.com/ddos-threats-attacks/
threat-advisories-attack-reports/satori-iot-botnet/

[43] SANS ISC InfoSec Forums, 2017. Surge in exploit attempts for
netis router backdoor (udp/53413).
URL https://isc.sans.edu/forums/diary/Surge+in+
Exploit+Attempts+for+Netis+Router+Backdoor+UDP53413/
21337/

[44] Shanmugam, P. K., Subramanyam, N. D., Breen, J., Roach, C.,
der Merwe, J. V., 2014. DEIDtect: towards distributed elastic
intrusion detection. In: Proceedings of the ACM SIGCOMM
workshop on Distributed cloud computing (DCC).

[45] Singh, D., Patel, D., Borisaniya, B., Modi, C., 2015. Collabora-
tive IDS framework for cloud. International Journal of Network

18

https://blog.avira.com/18000-routers-taken-hostage-in-less-than-a-day/
https://blog.avira.com/18000-routers-taken-hostage-in-less-than-a-day/
https://www.caida.org/data/passive/telescope-flowtuple.xml
https://www.caida.org/data/passive/telescope-flowtuple.xml
https://research.checkpoint.com/iotroop-botnet-full-investigation/
https://research.checkpoint.com/iotroop-botnet-full-investigation/
https://www.snort.org/
https://security.rapiditynetworks.com/publications/2016-10-16/hajime.pdf
https://security.rapiditynetworks.com/publications/2016-10-16/hajime.pdf
https://www.fireeye.com/blog/threat-research/2017/05/smb-exploited-wannacry-use-of-eternalblue.html
https://www.fireeye.com/blog/threat-research/2017/05/smb-exploited-wannacry-use-of-eternalblue.html
http://www.fukuda-lab.org/mawilab
https://github.com/a-blaise/split-and-merge
http://mawi.wide.ad.jp/mawi/
http://blog.netlab.360.com/a-new-threat-an-iot-botnet-scanning-internet-on-port-81-en/
http://blog.netlab.360.com/a-new-threat-an-iot-botnet-scanning-internet-on-port-81-en/
http://blog.netlab.360.com/warning-satori-a-new-mirai-variant-is-spreading-in-worm-style-on-port-37215-and-52869-en/
http://blog.netlab.360.com/warning-satori-a-new-mirai-variant-is-spreading-in-worm-style-on-port-37215-and-52869-en/
http://blog.netlab.360.com/adb-miner-more-information-en/
http://blog.netlab.360.com/adb-miner-more-information-en/
https://drownattack.com/
https://nmap.org/
https://www.pentasecurity.com/blog/top-5-botnets-2017/
https://www.pentasecurity.com/blog/top-5-botnets-2017/
https://blog.radware.com/security/2017/10/iot_reaper-botnet/
https://blog.radware.com/security/2017/10/iot_reaper-botnet/
https://security.radware.com/ddos-threats-attacks/threat-advisories-attack-reports/satori-iot-botnet/
https://security.radware.com/ddos-threats-attacks/threat-advisories-attack-reports/satori-iot-botnet/
https://isc.sans.edu/forums/diary/Surge+in+Exploit+Attempts+for+Netis+Router+Backdoor+UDP53413/21337/
https://isc.sans.edu/forums/diary/Surge+in+Exploit+Attempts+for+Netis+Router+Backdoor+UDP53413/21337/
https://isc.sans.edu/forums/diary/Surge+in+Exploit+Attempts+for+Netis+Router+Backdoor+UDP53413/21337/

Security 18, 699–709.
[46] Su, M.-Y., Yu, G.-J., Lin, C.-Y., jul 2009. A real-time network

intrusion detection system for large-scale attacks based on an
incremental mining approach. Computers & Security 28 (5),
301–309.

[47] Symantec, 2017. Hajime worm battles mirai for control of the
internet of things.
URL https://www.symantec.com/connect/blogs/
hajime-worm-battles-mirai-control-internet-things

[48] Tartakovsky, A. G., Polunchenko, A. S., Sokolov, G., Feb 2013.
Efficient computer network anomaly detection by changepoint
detection methods. IEEE Journal of Selected Topics in Signal
Processing 7 (1), 4–11.

[49] TechRepublic, 2017. Massive ransomware attack takes out
27,000 mongodb servers.
URL https://www.techrepublic.com/article/
massive-ransomware-attack-takes-out-27000-mongodb-servers/

[50] TechRepublic, March, 2018. How to stop Memcached DDoS
attacks with a simple command.
URL https://www.techrepublic.com/article/
how-to-stop-memcached-ddos-attacks-with-a-simple-command/

[51] US CERT, 2019. Ics advisory (icsa-13-011-03), rockwell au-
tomation controllogix plc vulnerabilities.
URL https://www.us-cert.gov/ics/advisories/
ICSA-13-011-03

[52] US Congress, 2017. Internet of Things (IoT) Cybersecurity
Improvement Act of 2017.
URL https://www.congress.gov/115/bills/s1691/
BILLS-115s1691is.pdf

[53] Wang, A., Chang, W., Chen, S., Mohaisen, A., 2018. Delving
into internet DDoS attacks by botnets: Characterization and
analysis. IEEE/ACM Transactions on Networking 26 (6), 2843–
2855.

[54] Wang, W., Shang, Y., He, Y., Li, Y., Liu, J., feb 2020. Bot-
Mark: Automated botnet detection with hybrid analysis of flow-
based and graph-based traffic behaviors. Information Sciences
511, 284–296.

[55] Zakir Durumeric, E. W., Halderman, J. A., 2013. ZMap: Fast
internet-wide scanning and its security applications. In: Pro-
ceedings of the USENIX Security Symposium (USENIX Secu-
rity).

[56] ZDNet, 2019. A decade of malware: Top botnets of the 2010s.
URL https://www.zdnet.com/article/
a-decade-of-malware-top-botnets-of-the-2010s/

[57] Zhou, C. V., Leckie, C., Karunasekera, S., Feb 2010. A survey of
coordinated attacks and collaborative intrusion detection. Com-
puters & Security 29 (1), 124–140.

Agathe Blaise is currently a Ph.D. student at Thales
Communications & Security (Gennevilliers, France) and
LIP6, Sorbonne University (Paris, France). She received
her Engineering degree in Computer Science from ISEN
(Lille, France) in 2017. Her research interests are in the
field of data analysis applied to network security.

Mathieu Bouet received the Ph.D. degree in Computer
Science and the Habilitation degree from Sorbonne Univer-
sity (formerly UPMC – Paris VI) in 2009 and 2017, respec-
tively. He is a Research Expert in networking and commu-
nications with Thales, France, where he currently manages
research activities on network softwarization with the Net-
working Laboratory, Advanced Studies Department. His
research interests are mainly focused on network virtual-
ization and network optimization.

Vania Conan received the Engineering and Ph.D. degrees
in Computer Science from Mines ParisTech in 1990 and
1996, respectively, and the Habilitation degree from Sor-
bonne University, Paris in 2012. He is a Senior Research
Expert in networking and communications with Thales,
France. He is currently the Head of the Networking Lab-
oratory, Advanced Studies Department in Thales. He has
been conducting research in the fields of software-defined
communications and wireless networking. He has pub-
lished over 100 international conference and journal pa-
pers and holds 10 patents in networking technologies. His
current research topics include mobile network protocols
and virtualized network design.

Stefano Secci is professor of networking at Cnam (Con-
servatoire national des arts et metiers), Paris, France. He
received the M.Sc. Degree in telecommunications engi-
neering from Politecnico di Milano, Italy, in 2005, and a
dual Ph.D. Degree in computer science and networks from
Politecnico di Milano and Telecom ParisTech, France, in
2009. He was associate professor at LIP6, UPMC from
2010 to 2018. His current interests cover novel routing and
switching architectures and network virtualization. Web-
page: http://cedric.cnam.fr/~seccis/.

19

https://www.symantec.com/connect/blogs/hajime-worm-battles-mirai-control-internet-things
https://www.symantec.com/connect/blogs/hajime-worm-battles-mirai-control-internet-things
https://www.techrepublic.com/article/massive-ransomware-attack-takes-out-27000-mongodb-servers/
https://www.techrepublic.com/article/massive-ransomware-attack-takes-out-27000-mongodb-servers/
https://www.techrepublic.com/article/how-to-stop-memcached-ddos-attacks-with-a-simple-command/
https://www.techrepublic.com/article/how-to-stop-memcached-ddos-attacks-with-a-simple-command/
https://www.us-cert.gov/ics/advisories/ICSA-13-011-03
https://www.us-cert.gov/ics/advisories/ICSA-13-011-03
https://www.congress.gov/115/bills/s1691/BILLS-115s1691is.pdf
https://www.congress.gov/115/bills/s1691/BILLS-115s1691is.pdf
https://www.zdnet.com/article/a-decade-of-malware-top-botnets-of-the-2010s/
https://www.zdnet.com/article/a-decade-of-malware-top-botnets-of-the-2010s/
http://cedric.cnam.fr/~seccis/

	Introduction
	Related work
	Intrusion detection methodologies
	Large-scale intrusion detection
	Botnet detection
	Our contribution

	Split-and-Merge Port-centric Network Anomaly Detection
	Rationale
	Data collection
	Features computation
	Anomaly detection

	Features design
	Local anomaly detection
	Central correlation

	Evaluation
	Network traffic datasets
	Normal distribution fitting
	Local anomaly detection
	Comparison between aggregated and split views
	Last years panorama
	In the MAWI dataset
	In the UCSD Network Telescope dataset

	Anomaly score distribution
	Features and parameters choice
	Feature selection
	Parameters tuning

	Anomalies classification
	Ground-truth

	Complexity and performances analysis
	Complexity analysis
	Data collection
	Features computation (see Algorithm 1)
	Anomaly detection (see Algorithm 2)

	Execution performance

	Conclusion and perspectives

