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ON THE DIRAC BAG MODEL IN STRONG MAGNETIC FIELDS

J.-M. BARBAROUX, L. LE TREUST, N. RAYMOND, AND E. STOCKMEYER

ABSTRACT. In this work we study two-dimensional Dirac operators on bounded do-
mains coupled to a magnetic field perpendicular to the plane. We focus on the MIT
bag boundary condition and provide accurate asymptotic estimates for the low-lying
(positive and negative) energies in the limit of a strong magnetic field.
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1. INTRODUCTION

Consider an open, smooth and simply connected domain 2 C R? and a magnetic field
B = Bz, smooth and pointing in direction Z orthogonal to the plane. In this work we
consider a Dirac operator restricted to (2 and coupled to the magnetic field B through
a magnetic vector potential A = (A, A;)T satisfying V x A = B. The magnetic Dirac
operator acts on a dense subspace of L?(£2,C?) as,

0 —i(8y — i0y) — bA; + ibA, )
—i(0y +i0y) — bA;, — ibA, 0 A

where b > 0 is a positive coupling constant. We write 0-x = 0121 + 0925 for x = (21, 25)
with the usual Pauli matrices

01 0 —i 1 0
e (o) e (T) (0 0 )

If we assume that the spinors satisfy a boundary relation of the type ¢ = By on 02
with a unitary and self-adjoint boundary matrix B: 92 — C?*2, then simple integration
by parts shows that the local current density (@, o - ng)c2 vanishes at each point of the
boundary if and only if

a-(—iV—bA):(

Bo-n+oc-nB=0 on 09, (1.2)

where n is the normal vector pointing outward to the boundary and (-,-)cz is the
standard scalar product on C? (antilinear w.r.t. the left argument). In particular, for
these cases, the Dirac operator is formally symmetric and satisfies the bag condition, i.e.,
that no current flows through 02 [10]. In the physics literature these type of models have
being earlier considered to describe neutrino billards [10] and (in the three dimensional
setting) quark confinement [13]. More recently, they have regained attention with the
advent of graphene and other Dirac materials, see e.g., [1, 12, 34, 16].

Using the properties of the Pauli matrices and those of B it is easy to see that the
most general form of B acts as a multiplication on L?(9€2) with

B=B,=(o-t)cosn+ossinn, (1.3)

for certain sufficiently smooth 7 : 92 — R and t being the unit tangent vector pointing
clockwise (we have that n x t = Z). The most frequently used boundary conditions in
the physics literature are the cases when cosn = 0 and sinn = 0 known as zig-zag and
MIT bag or infinite-mass boundary conditions, respectively. For recent mathematical
literature on the subject in the two and three dimensional settings see for instance
[8, 4, 24, 27, 7] about self-adjointness, [35, 3, 5] for the derivations as an infinite mass
limit, and [9, 25, 2] for eigenvalue estimates.

In this work we consider Dirac operators D, acting as in (1.1) on spinors ¢ satisfying
© = Byp, with n € [0,27). We give the precise definition of the self-adjoint realization
below. Assuming that the magnetic field satisfies inf, . B(x) = by > 0 (besides certain
geometrical conditions, see Assumption 1.7), we provide asymptotic estimates for the
corresponding low-lying eigenvalues in the strong coupling constant limit b — oco.

The behavior of the corresponding operators in the physically most relevant cases
mentioned above are quite different from each other. Indeed, on the one hand, the
spectrum of a zig-zag operator is symmetric with respect to zero and zero is an eigenvalue
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of infinite multiplicity. On the other hand, the spectrum of the MIT-bag is far from
being symmetric for large magnetic fields and zero is never in its spectrum.

Our main results can be roughly summarized as follows: For k € {1,2,3,...} we
denote by " > 0 and 1, < 0 the non-negative and negative eigenvalues of Dy, the MIT
bag operator with 7 = 0. They are ordered such that |[n| < |nif,,|. Then, there is a
constant C," > 0 such that, as b — oo,

nt = Clv e 2%(1 + 0o(1)). (1.4)

We provide explicit expressions for the constants C; and a > 0 in terms of the geometry
and the magnetic field B (see Theorem 1.10). In particular, the positive eigenvalues
of Dy accumulate exponentially fast to zero in the strong magnetic field limit. This
behavior is in contrast to the one of the negative eigenvalues. Indeed, for the first
negative eigenvalue we show that there is a constant C'~ > 0 such that

nT = —Cb2(1+0(1)). (1.5)

The constant C'~ obeys an effective minimization problem (see Theorem 1.14). We can
even describe the repartition of the first negative eigenvalues by means of an effective
operator obtained by microlocal technics (see Theorem 1.19).

The proof of (1.4) and (1.5) is based upon the asymptotic analysis of a min-max
principle for the corresponding operator Dy. We show a new min-max characterization,
well adapted to our setting, whose proof is inspired by [15] and [19]. A result in the same
spirit has being recently used in [2]. It is easy to see that the min-max characterization
applies well to any boundary conditions with cosn # 0, as described in Appendix A one
obtains the same type of asymptotic formulas (1.4) and (1.5) with different constants.

As for the zig-zag case, when cosn = 0, we obtain analogous results for the energies
through a simple application of the asymptotic analysis performed in [6] and the relation
between zig-zag and Pauli-Dirichlet operators. This is explained in Section 1.4 and the
results can be summarized as follows: For k € {1,2,3,...} we denote by y; and p}
the k-th positive eigenvalue of D/, and Dsy /o, respectively. Then, we find constants
0 < ¢, <O, < oo that, as b — o0,

b2 (14 0(1)) < g < G2 (1 + o(1))

and

fg = /20y ,

where o > 0 is the same constant appearing in (1.4).

Our results compare qualitatively well with the findings in the physics literature
[33, 20, 37| for constant magnetic fields on the disk. Let us mention nevertheless that
the exponential decays of n;” and u; of the type e~ phyb? (aphy > 0) conjectured by the
physicists are too strong. We also show that the eigenvalues (7, )x>1 do not merge to
form the Laudau levels since the eigenfunctions associated with the lowest eigenvalues
concentrate on the edge (see Theorem 1.14 and Proposition 6.2).
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1.1. Basic definitions and assumptions. We study the equivalent semiclassical prob-
lem given by the the action of

0 d
a=a-o-A)= (0 ), (16
h,A
where p = —¢hV for h > 0,
dpa = —2ih0, — Ay +iAy, dj o = —2ih0z — A} —iAy,
with 05 = % and 0, = @. We focus on the boundary conditions described above
for n = 0, that is
B=oc-t=—ios(c-n),
where n is the outward pointing normal to the boundary 0€2. The associated magnetic
Dirac operator with MIT bag (or infinite mass) boundary condition is (Zj, a, Dom(Zy.a))
with
Dom(Za) = {¢ € H'(Q,C*), By =pondQ} .

Remark 1.1. Note that
n— 0 n
g “\n 0/

so that the boundary condition reads

U = inul s
where ¢ = (u1,u)”, and n = (ny,n2)7 denotes the normal vector in R? and also
n—=—mn;+ Z"flg e C.

Notation 1. We denote by (-,-) the standard L*-scalar product (antilinear w.r.t. the
left argument) on 2 and by || - || the associated norm. In the same way, we denote by
(-,-)oq the L*-scalar product on L?(992).

The main purpose of the paper is to study the asymptotic behavior of the eigenvalues
near 0 in the semiclassical limit h — 0.

Remark 1.2. The eigenvalues in the strong magnetic field limit given by the operator
Dy described in the introduction can be found by a simple scaling argument. We have
sp Do = bsp Z1/p.a -

Then, (1.4) and (1.5) are direct consequences of Theorems 1.10 and 1.14, respectively
(see below).

Assumption 1.3.
(i) Q is bounded, simply connected, OS) is C%-reqular,
(i) B € Wh(Q) .

Under Assumption 1.3, the operator %, without magnetic field, is self-adjoint on
L*(Q)? (see for instance [8]). We work in the so-called Coulomb gauge that is given
through the unique solution of the Poisson equation

Ap=B,  ¢pa=0, (L.7)

by choosing A = (—0,0,0,0)7 = V¢t. Notice that by standard regularity theory the
components of A are bounded. Hence %, 4 is self-adjoint and it has compact resolvent
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since Dom(Z,, o) C H'. In particular, the spectrum %, a of is discrete. We denote by
(AL (h))r=1 and (=, (h))k>1 the positive and negative eigenvalues of %), o counted with
multiplicities. In fact, &), o has no zero modes. This can be seen using the following
lemma, which is a consequence of [21]| and [6].

Lemma 1.4. For all h > 0, there exists C'(h) > 0 such that, for all u € HJ(2), we
have

[ djs aull® = C(R)||ul?.
Proposition 1.5. The operator P, o has no zero modes.

Proof. Consider ¢ = (u,v)T € Dom(Z, a) such that Z, ap = 0. We have dj av =
d,f, At = 0. Thus, integrating by parts, and using the boundary condition, we get

0= (dnav,u) = (v,dj yu) + h(—=iDv,u)sq = h|ul|3q -
Therefore u € H}(2), and Lemma 1.4 implies that u = 0. O
Since 7, o has no zero mode, its spectrum is
sp(Zna) ={.--» Ay (h), =AL (W)} UAN(R), A7 (h),...}. (1.8)
Assumption 1.6. B is positive. We define by = infq B > 0 and b, = mingg B.

Under this assumption, ¢ is subharmonic so that

maxo = maxo =0
zeN ¢ T€N ¢ ’

and the minimum of ¢ will be negative and attained in (2.

Assumption 1.7.

(i) The minimum ¢uwin of ¢ is attained at a unique point Topiy,.

(ii) The Hessian matrizc Hessying® of ¢ at Ty is positive definite i.e. Tyin is non-
degenerate minimum. We also denote by zyin, the minimum xn;, seen as a complex
number.

1.2. Main results. The magnetic Hardy space is
A (Q) = {u € L*(Q) - d yu=0,u9q € L*(09)} .
We let
Hna=H'(Q)+ %QA(Q) ;
and endow it with the Hermitian scalar product given by
V(ui,ug) € Hna X Dpas (U1, Us)g, o = (U1, uz) + (dj g1, djy gu2) + (U1, u)oq -

1.2.1. About the positive eigenvalues. The following result gives us a non-linear min-max
characterization for the positive eigenvalues of Zj a.

Theorem 1.8. Under Assumption 1.3. We have, for all h >0 and k > 1,

' h||u||%sz+\/h2||u||fm+4||u||2||dZ,AU||2
M (h) = min  max

WCHn.a ueW\{0} 2||ul|
dim W=k
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Remark 1.9. Due to the symmetry of the problem we can also use this min-max
characterization for the negative eigenvalues of %, o after changing the sign of the
magnetic field. Indeed, consider the charge conjugation operator

C: @662H01¢€C2,
where © is the vector of C? made of the complex conjugate of the coefficients of . We
have CDom(Zya) = Dom(Z, A ), and CZp aC = —D), _a . In particular, we get that

sp(Zha) = —sD(Zh.-a) -

In order to state our next result on the asymptotic estimates of the A\ (h) we introduce
some notation to explicitly define the constant C}" from (1.4).

Notation 2. Let us denote by 0(Q2) and &(C) the sets of holomorphic functions on
and C. We consider the following (anisotropic) Segal-Bargmann space

#*(C) ={uc O(C): Ng(u) < +oo},

where

1/2
Np(u) = (/ ‘U(yl + iy2)|2e_Hessxmm¢(y7y)dy) .
R2

We also introduce the Hardy space
Q) ={uec 0K): |ulog < +oo},

) 1/2
lullon = ( / (31 + )| dy) |
o0

We also define for P € 5#%(Q), A C #*(Q),

disty (P, A) = inf {||P — Q|loq, forall Q € A},
and for P € #*(C), A C #?*(C),

distp(P, A) = inf {Ng(P — Q) , forall Q € A} .

where

The following constant is important in our asymptotic analysis

dist 2 — Zoin) L 2 (Q ?
where Pj,_» = span (1,...,2""%) c #*(C), P_; = {0} and
2 (Q) = {u € H*Q), u™ (2uin) =0, for n € {0,....k—1}}. (1.10)
Theorem 1.10. Under Assumptions 1.3, 1.6 and 1.7, we have for all k > 1,
A (h) = Cr(B, Q)R Fe2@min/M(1 4 o), (1)) .

Remark 1.11. Let us assume that € is the disk of radius R centered at 0, and that B is
radial. In this case zy;, = 0 and Hess, . ¢ = B(0)Id/2. Moreover, using Fourier series,
we see that (2"),>0 is an orthogonal basis for Ns and || - |laq. In particular, J£2(Q) is
|| - [lan-orthogonal to 2"~ so that

(1.9)

2
disty, (zk_l, %gf(@)) = |12*1 |2, = R?2|0Q) = 2r R2L.
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In addition, Py_» is Nz-orthogonal to z*~! so that
2 2k=1(k —1)!
diStB <Zk_1,73k_2> = NB(Zk_1)2 = QW—B((O)k ) s

Thus, we get that

B(O)* /R2\h-1
Ck(B,Q)_m<7> R

Remark 1.12. Theorem 1.10 can evoke some kind of tunneling estimate. In the semi-
classical study of electric Schrodinger operators with symmetric wells, it is well-known
that the lowest eigenvalues differ from each other modulo terms in the form e~/
The quantity S reflects the interaction between the wells and is related to lengths of
geodesics connecting the wells. Here, the eigenvalues are themselves exponentially small
and the S is replaced by ¢n,. In our analysis we will even see that the corresponding
eigenfunctions are essentially localized near x,,;,. Nevertheless, this x,,;, is determined
by the global magnetic geometry. That is why, we could interpret Theorem 1.10 as
measure of a tunneling effect between every points of Q.

1.2.2. About the negative eigenvalues. We now turn to the negative eigenvalues of Zj, a.
Consider, for all a > 0,

@) - fRi [(—i0y, — @2 + 1(—i0y,) )ul?dzrdas + o [g [u(zy, 0)[*day
v(@)= in

vt L) ul?
u#0

, (1.11)

with Ay = (—x9,0). Notice that the quadratic form minimized in (1.11) corresponds
to the magnetic Schréodinger operator on a half-plane with a constant magnetic field
(equaling 1) and equipped by a Robin-like boundary condition. More details are given
in Section 4.

Remark 1.13. We can prove (see Proposition 4.15) that the equation v(a) = a? has a
unique positive solution, denoted by ag. In fact, we will see that ag equals

Sz lu(s, 0)[*ds + \/(fR lu(s, 0)|2d5)2 + 4|ul]? fRi |(—i0s — T +i(—i0;))u|>dsdT
inf .

uen? 5 (B2) 2[|ul[?
u#0

Moreover, ag € (0, \/5) Numerical calculations suggest that ag is approximately equal
to 1.31236.

Theorem 1.14. Under Assumptions 1.3 and 1.6, we have

A7 () = h2 min(/2bg, ag/by) + onso(h?)
where A\{ (h) is defined in Section 1.1, by = ming B(z) and by = mingg B(z). In partic-

ular, when B = by is constant, we have

)\;(h) = g\ boh + Ohﬁo(h%) .

Remark 1.15. The asymptotic analysis leading to Theorems 1.10 and 1.14 strongly
differ from each other. Indeed, the eigenfunctions are localized near x,,;, for the positive
energies, whereas, when B is constant, they are localized near the boundary for the
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negative ones. Moreover, in this last case, for non-constant magnetic fields (see the
discussion in Appendix B), the eigenfunctions might be localized inside if by/bj is small
enough. Consequently, the underlying semiclassical problems do not share the same
structure.

1.2.3. Negative eigenvalues for a constant magnetic field. Let us now focus on the case
with constant magnetic field, and improve Theorem 1.14. In order to establish our
improvement, and to make the analysis more elegant, we make the following assumption
(see Appendix D for more detail). This assumption will allow to define “holomorphic
tubular coordinates”, which are particularly adapted to our operator.

Assumption 1.16. The boundary OS2 is an analytic curve.

Various properties of the eigenvalues of the operator (///Rjﬂag associated with the

following (analytic) family of quadratic forms
e = [ (WP +IE=DuP) 7+ (@ = OuOF + Jul. o> 0.¢ R,
R

play a fundamental role in the analysis of the negative eigenvalues. The Robin boundary
condition reads
9yu(0) = (o = &§)u(0).

We denote by (v, ;(a,§));>1 the non-decreasing sequence of its eigenvalues. For short-
ness, we let v~ (a,§) = Vg, 1, and we denote by uq¢ the corresponding normalized
positive eigenfunction. We can prove (see Section 4) that v~ («,-) has a unique mini-
mum at some &,, which is non-degenerate.

This operator appears after using the partial Fourier transform in relation with (1.11).

Let us consider the following differential operator
2

Q5 = (D, +4,)° — % (1.12)
where
Y] agp T
=" Tt e
hloQ  pz |09
ag is defined in Remark 1.13 and
aou? (0
¢ = 0 ao,;lo( ) > 0.
2a0 — uao’aO(O)

Remark 1.17. We will see that the denominator of ¢y is indeed positive. Moreover,
this constant is directly related to the second derivative of the first negative dispersion
curve ¥; at ag of the Dirac operator on the half-plane with constant magnetic field
(equal to 1), see Section 1.3 and Theorem 4.3.

We denote by A, (25T) the n-th eigenvalue of Q4.

Remark 1.18. By gauge invariance, the spectrum of Q5T does not change whenever t,,
is replaced by t;, + %. Therefore, we can easily check that, for all n > 1, there exists

C > 0 such that, for all h € (0, hy),
(N < C.
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Here comes our last main result.
Theorem 1.19. We have
AL (h) = h2ag + h2 oA, (QF) + o(h?) .
In the disk case, we can compute the eigenvalues A, (5T) recursively.
Proposition 1.20. Let (m,(h)).>1 be a sequence of Z which satisfies
mp(h) € argmin{|m + t,|,m € Z\ {m1(h),...,mu_1(h)}} \ {mi(h),...,mu_1(h)}.

If Q is a disk of radius R > 0, we have for alln > 1,

An(Q57) = [ma(h) + tf* —

12R?"

Remark 1.21. Since t;, depends continuously on h and t, — +o0o as h — 0, there are
infinitely many h > 0 for which there exists k € Z such that

1
=5 +k. (1.13)

In these cases, the spectrum of Q5T for the disk of radius R > 0 is

1
- 12R2,m€N},

each eigenvalue has multiplicity 2 and the sequence (m,,(h)),>1 is not uniquely defined.
If (1.13) is not satisfied then, all the eigenvalues are simple.

2

1
p(Q4) = {\§+m

Actually, the microlocal strategy used to obtain Theorem 1.19 also allows to get results
for variable magnetic fields. Such results are described with some details in Appendix
B. Somehow, the case with variable magnetic field is simpler since the variations of the
field have a stronger effect than the geometry.

Theorem 1.19 should also be compared to [17, Theorem 1.1] which deals with the
Neumann Laplacian with constant magnetic field. In their paper, Fournais and Helffer
show the crucial influence of the curvature on the spectral asymptotics and on the
spectral gap. This gap is directly related to the localization of the eigenfunctions near
the points of maximal curvature. We stress that it is not the case with Theorem 1.19
since the effective operator does not induce a particular localization on the boundary.
This reflects that our problem is more degenerate from the semiclassical point of view.
In order to deal with such a degeneracy, we use a microlocal dimensional reduction to
the boundary (also known as the Grushin method). As far as we know, such a method,
combined with a non-linear characterization of the eigenvalues, does not seem to have
been used before to study semiclassical Dirac operators. The version of this method
that we use in this paper is inspired by [26] and closely related to the Ph. D. thesis by
Keraval [23]. It was also recently used to establish a formula describing a pure magnetic
tunnel effect in [11].
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1.3. Dirac operators with constant magnetic field on R? and RZ. When con-
sidering Theorem 1.14, we can wonder what the interpretation of the positive constant
ap is. In fact, an important part of the semiclassical analysis of spectral problems relies
on the study of some operators obtained (formally) after a semiclassical zoom around
each point of Q. In the present article, these are magnetic Dirac operators with con-
stant magnetic field. Thus, let us consider homogenenous Dirac operators on R? and
RZ = R xRy with the same formalism by choosing the gauge associated with the vector
potential Ag = (—z5,0)7.

Definition 1.22. The operators Zg2 and Zg: act as o - (—iV — Ap) on
Dom(Zg2 ) = {¢ € H'(R*,C?), 9 € L*(R*,C?)}
and
Dom(Zgz2 ) = {pe H'(RZ,C?), xp€ Ll*(R%,C%, o1p=¢pondR}.

The spectral properties of Zg2 can be found for instance in [36, Theorem 7.2]. A
novelty in this paper is the study of @Ri )

Theorem 1.23. The operators P> and %Ri are self-adjoint and satisfy
Sp(@RZ) = {:i:\/ 2k7k S N},

and
sp(Zgz ) = (—00, —ae] U [0, +00)

where ag € (0,+/2) is defined in Remark 1.13. The spectrum of Do is made of infinitely
degenerate eigenvalues. The spectrum of ‘@Ri s purely absolutely continuous.

We will present with more details the study of the negative part of the spectrum of
%Ri since many of the associated results will be used in the proof of the asymptotics of
the negative eigenvalues.

1.4. The zig-zag case. In this paper, we consider the Dirac operator with MIT bag
boundary condition (and its variants in Appendix A). The so-called zig-zag boundary
condition also appears commonly in the description of the electrical properties of pieces
of graphene. It is worth noticing that the spectral properties of the related operators
exhibit completely different asymptotic behaviors compared with the ones studied here.
More precisely, the operators (ff}fA, Dom(ﬁ,ﬁfA)) acting as 0 - (p — A) on

Dom (2 ) = Hy(Q,C) x {u € L*(Q,C),0.u € L*(Q,C)},
Dom(Z,",) = {u € L*(Q,C),dzu € L*(Q,C)} x Hy(©2,C),

are self-adjoint. This is easily seen since by construction the operators ff}fA have the
supersymmetric structure
0 D
+ +
%L,A = ( DL 0 ) )

where D, and D* have Dirichlet boundary conditions. Moreover, 0 is an eigenvalue of
infinite multiplicity for both of them and their kernels can be determined explicitly (see
[36, Chapter 5], [32] and [6, Proposition 4.4]).
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Next notice that since Ug%th = —Qﬁang holds, the spectra of both operators is
symmetric with respect to zero. Moreover, by simply squaring the operators one sees
that, due to the isospectrality of D, D%} and D} D, away from zero,

[N A€ (250 \ {01} = sp{D1 Dy}, and { A% 0 € sp (2, \ {0}} = sp{D_D:}.

Thus, their discrete spectrum satisfy
spa(25) =50 (250 10) = { oz ke v fu{ i ke nv )

where (o} (h))r=1 and (ag (h))r=1 are the ordered sequences of the eigenvalues (counted
with multiplicity) of the operators D% D, and D_D* that act as

|lp—A|* +hB, and |p—A]®>-hB,

on H}(Q,C)N H?(2,C). Therefore, we deduce from [6, Theorem 1.3.], that there exists
(Ck(B,Q))k>1 and 6y € (0, 1] such that for all k£ > 1

~ 1/2
(000k(B,Q)h1"“62¢mi“/h> (1+ onso(1)) < y/ap (R)

~ 1/2
< (Ck(B,Q)hl‘keQ¢min/h> (14 on0(1)),

as h — 0. Finally, it is well known that

Vot (h) = v/2beh.

1.5. Structure of the article. The article is organized as follows.

Section 2 is devoted to establish a non-linear min-max characterization of the positive
eigenvalues, see Proposition 2.8. A crucial step in our way of proving this proposition is
Proposition 2.12 which establishes an isomorphism between a positive eigenspace and
a kernel of Schrédinger operator.

In Section 3, we prove Theorem 1.10 by using the non-linear min-max characteriza-
tion. First, we establish an upper bound, see Lemma 3.1 and Proposition 3.5. Then,
we prove that the minimizers of our non-linear min-max are approximated by functions
such that dj; yu = 0 (see Section 3.2). This allows to establish the lower bound, see
Corollary 3.16 and Proposition 3.10.

In Section 4, we prove Theorem 1.23 about the spectrum of homogeneous magnetic
Dirac operators on R? and RZ. Various properties of the corresponding dispersion
curves are also established. The characterization of ay € (0,1/2) as the unique solution
of v(a) = o? is explained in Section 4.7. Numerical illustrations are also provided, see
Section 4.6.

Section 5 is devoted to the proof of Theorem 1.14. One of the main ingredients is
Proposition 5.1 which establishes a one-term asymptotics of the ground-state energy of
a Pauli-Robin operator. This proposition is proved by means of a semiclassical partition
of the unity. Near the boundary, due to the lack of ellipticity of the Cauchy-Riemann
operators, we are led to introduce conformal tubular coordinates thanks to the Riemann
mapping theorem. This is the price to pay to be able to approximate the magnetic field
by the constant magnetic field, and to control the remainders.



DIRAC BAG MODEL IN STRONG MAGNETIC FIELDS 13

In Section 6, we consider the case with constant magnetic field and we start the
proof of Theorem 1.19. The first step is to show that the first eigenfunctions of our
Pauli-Robin operator are localized near the boundary at the scale h%, see Proposition
6.2. This allows to reduce the analysis to a tubular neighborhood of the boundary, see
Corollary 6.5. In this neighborhood, we use the holomorphic tubular coordinates given
in Appendix D (where it is explained how to contruct such coordinates by imposing
a parametrization by arc length of 0X2), and put the operator under a normal form by
means of changes of gauge and of functions. The operator is rescaled with respect to
the normal variable and we get the operator .4, j, see (6.7).

In Section 7, up to inserting cutoff functions, this operator is seen as a pseudo-
differential operator with respect to the curvilinear coordinate, see (7.1) and Section
7.1.3. Corollary 7.3 tells us that it is enough to study our pseudo-differential with cutoff
functions c/@,h. Then, a parametrix is constructed by means of the Grushin formalism,
see Proposition 7.5. This parametrix is used to reveal an effective operator, see (7.4).
The connection with the spectrum of i/ﬁm is made in Proposition 7.9. The spectral
analysis of the effective operator is done in Section 7.3, see especially Proposition 7.11.
Finally, the relation between the spectrum of the Pauli-Robin operator and the one of
the Dirac operator is explained in Section 7.4.

In Appendix C, for the convenience of the reader, we recall why the magnetic Hardy
space is a Hilbert space.

In Appendix A, we discuss some straightforward extensions of our results related to
variable boundary conditions.

In Appendix B, we explain how to describe all the negative eigenvalues when the
magnetic field is variable, under generic assumptions. The main steps are only sketched
since the analysis does not crucially involve subprincipal terms as for the constant
magnetic field case.

2. A NON-LINEAR MIN-MAX CHARACTERIZATION

The aim of this section is to establish Theorem 1.8. To do so, we first establish
in Section 2.1 some fundamental properties of the natural minimization space j a.
Then, we prove that the \-eigenspace of 7, o are isomorphic with the 0-eigenspace of
an auxiliary operator % depending quadratically on A, see Proposition 2.12. Section
2.3 is devoted to describe the spectrum of %), and in particular when 0 € sp(.%)).

Throughout this section, A > 0 is fixed.

2.1. Magnetic Hardy spaces.
Definition 2.1. The magnetic Hardy space is
HA) = {u € LX) 2 dif gu = 0, uppe € LX)}
We let
Hna=H'(Q)+ %IQA(Q) ;
and endow it with the Hermitian scalar product given by
V(ui,uz2) € Nna X Npa, (U1, u2)g, o = (U1, u2) + (dj, aur, dj gus) + (w1, u)oq -

Let us recall the following proposition.
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Proposition 2.2 ( |6, Proposition 2.1.]). The free Dirac operator and the magnetic
Dirac operator are related by the formula
e30/h s p603¢/h =0 (p—A), (2.1)

as operators acting on H* (2, C?) functions.

Remark 2.3. By using the change of function v = e~%/"w suggested by Proposition
2.2, we have
%LQ,A(Q) = 6_¢/h%2(9) ) th,A = e_d)/h”ﬁo )
where
$Ho = H'(Q) + 75(Q),
and
Q) = {w € L*() : dsw = 0, wpq € L*(0Q)}.
Note that, for all (u1,u2) € Hpa X Hpa,
<u1, u2>m7A = <’LU1, w2>L2(672¢/h) + (—Zih@wl, —2ih@w2>[/2(672¢/h) + <w1, ’LU2>3Q ,

where w; = e?/ hu; for j = 1,2. Then, by using the Riemann biholomorphism F : D —
Q, the classical Hardy space J2(Q)) = #%(Q2) becomes the canonical Hardy space

(n)
D)= f e o) (f n'(())) € 2(N)
’ n>0
Note that, for f € #*(D),

IFIP=2r) 2n+2) unf®s IflBe=27) |ual®, un=

nz=1 n>0

F(0)

n!

(2.2)

The following lemma is a classical result. For the reader’s convenience, we recall the
proof in Appendix C.

Lemma 2.4. The space (56°5(Q),(-,-)aq) is a Hilbert space. Moreover, S5 () is
compactly embedded in L*(Q).

The next lemma is related to elliptic estimates for magnetic Cauchy-Riemann oper-
ators.

Lemma 2.5 (|6, Theorem 4.6.]). There exists ¢ > 0 such that, for all h > 0, and for
allu € {v € L*(Q) ,dy yv € L*(Q)},
V2hbo [T aull < [l aull,  ch® (I aullon + VI aull) < [ldy gull

where 11, o is the (orthogonal) spectral projection on the kernel of the adjoint of the
operator dj o with Dirichlet boundary conditions, i.e. (dna, Hy(Q))*, and

Id=Tpa+ 14 -
Let us now prove some properties of the spaces $p a.

Proposition 2.6. The following holds.

(1) (Dnas (> )nna) is a Hilbert space.
(i) HY(2) is dense in Hya-
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(iii) The embedding $Hpa — L*(Q) is compact.

Proof. Let us prove (i). We consider a Cauchy sequence (u,,) for |- ||s, ,. It is obviously
a Cauchy sequence for || - || and || - [|aq. We write u, = IIy atn + ITj oty From Lemma
2.5, we see that (II; yun) is a Cauchy sequence in H'(Q2), and thus converges to some
ut € HY(Q). Moreover, by using again Lemma 2.5, (I, au,) is a Cauchy sequence in
75 (Q). From Lemma 2.4, (ITj, auy,) converges to some u € %5 (Q). It follows that
(u,) converges to u + ut in Hya.

Item (ii) is a consequence of |6, Lemma C.1].

By using again the orthogonal decomposition induced by 11, o, and the compactness
of H'() — L*(Q), and of 47, () < L*(Q2) (see Lemma 2.4), we get (iii).

O

2.2. Statement of the min-max characterization. The proof of Theorem 1.8 is a
consequence of Propositions 2.7 and 2.8, see below.

Notation 3. For all k£ > 1 and all A > 0, we define

r(h) = inf sup u),
pu(h) Vggfvf;<f,3>ueW\{0}p+( )

where

hlull3e + \/hQHUH%Q + 4l[u]|?|dy aul®
2|[ulf?

p+(u) =

Proposition 2.7. We have, for all k > 1,

h)= inf  su u) = min  su u) > 0.
pu () witd | Jup p+(u) Woin  suwp p+(u)
dim W=k dim W=k
Proof. We use Proposition 2.6 (ii) & (iii), and observe that py(u) > 0 for all u €
9.4\ {0} U

Proposition 2.8. For all k > 1, and h > 0, we have
NE(R) = ulh)
The following sections are devoted to the proof of Proposition 2.8.

In the following, we drop the h-dependence in the notation.

2.3. A characterization of the .
Notation 4. Let A > 0. Consider the quadratic form defined by

Vu € Hna,  Qa(u) = lldy aull” + A [JulFo — N lul?,
and, for all k& > 1,

Qx(u)

le(N\) = inf sup  ——.
) WCHY(Q) yew\ {0} ]2
dim W=k

Note that, for all u € ;.4 \ {0},

Qa(u) = —Jul*(A = p—(w)) (A = p+(u)), (2.4)
where py(u) is defined in (2.3) and p_(u) is the other zero of the polynomial above.
From Proposition 2.6, we deduce the following.
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Lemma 2.9. For A > 0, the (bounded below) quadratic form Q) is closed. The asso-
ciated (unbounded) self-adjoint operator £\ has compact resolvent, and its eigenvalues
are characterized by the usual min-maz formulas

l,(A\) = inf  sup Q) Qx(u)

WCHY Q) yew\ (o} |12 _Wcm,AueW\{O} ul[2
dim W=k dim W=k

We prove some properties of £, seen as a function of \.

Lemma 2.10. For all k > 1, the function ly : (0,400) — R satisfies the following:
(i) 41 is concave,
(ii) for all € (0, 1), and all k > 1, £ (u) > 0,
(111) lim,\_,+oo ék()\) = —0Q,
(iv) lx is continuous,
v) the equation l(N) = 0 has exactly one positive solution, denoted by E.
(vi) for all A >0,
6] > MBi - .

Proof. Ttem (i) follows by observing that the infimum of a family of concave functions
is itself concave.

It is enough to check Item (ii) for £ = 1. Consider p > 0. Thanks to Proposition
2.7, there exists a normalized function u € $), o such that ¢;(p) = Q,(w). If ¢1(p) <0,
then, by (2.4), we have that u > py(u) > p.

By taking any finite dimensional space W C H}(Q), we readily see that

0,(N) < sup[ldg pull = A%
ueW, ||lu||=1
We get Item (iii).

Since (1 is concave, it is also continuous. Then, the family (:£))a>o is analytic of type
(B) in the sense of Kato (i.e., Dom(Q,) is independent of A > 0). This implies that
the /5 are continuous functions. Actually, this can directly be seen from the following
equality

M@ () = A7 @ (1) = O = M) (I8 aulPOada) ™+ ) (25)

for all A\j, A2 >0 and u € Hjp.a.
Let us now deal with Item (v). Firstly, let 0 < Ay < Ay and W C $H,a with
dim W = k. By (2.5), for all u € W\ {0}, we have

A (W) = (Ao = M) lull* + A3 Qxy ().
and taking the supremum over the vectors u € W \ {0},

At osup @, (g) > (A2 — A1)+ At sup Q)‘Q(g) :
ueW\{0} [Jull ueW\{0} [l

Hence, taking the infimum over the subsets W C $);, o of dimension k, we get
A = (Mg — M)+ A e (A) . (2.6)

By Items (ii), (iii) and (iv), there is at least one A > 0 such that f,(\) = 0. Assume
by contradiction that ¢; has two zeros 0 < A\; < Ay. By (2.6), we get the contradition
0 > Ao — Ay > 0. Therefore, ¢, has only one positive zero.
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To deal with Item (vi), we take first Ay = Ej < Ay so that
—le(A2) = Xa(A2 — Ey),
and |0x(A2)| = Aa|Aa — Ek|. Then, consider 0 < A\ < \y = E},
l(M) = M(E, — A1),
and |lx(A1)| = A1|A1 — Ex|. These two inequalities give Item (vi).

Proposition 2.11. For all k > 1, py is the only positive zero of {y, i.e.,
Er = p .

Proof. In virtue of Proposition 2.7, we notice that p; > 0. Then, we proceed in two
steps.
Firstly, consider a subspace W}, C £ 4 of dimension k such that

a = .
Jhax p+(u) = iy

For all u € Wi\ {0}, ps(u) < pg. By the definition of ¢ (i) and (2.4), we have

¢ < <0.
k(1) Lonax Qu ()

Secondly, for all subspace W C ), o of dimension k, we have

< a .
e S max p. (w)

There exists u, € W\ {0} such that p < pi(ug). Then, we have

= =0,
ug/[l/'ai}{{o} Q#k (u) Q#k (uk>

and taking the infimum over W, we find ¢;(py) > 0.
We deduce that ¢ () = 0 and conclude by using Lemma 2.10 (v). O

2.4. Proof of Proposition 2.8.

2.4.1. An isomorphism. The following proposition is crucial.

Proposition 2.12. Let A > 0. Then, the map
ker & — ker(Znpa — )

/)\Z u
T W s

s well-defined and it is an isomorphism.

Proof. First, we show that the range of ¢, is indeed contained ker(Z,a — A). Let
u € ker(.Z)). Notice that u € ker(%)) is equivalent to

Vw € Hpa, Qi(u,w) = (d; su, d,f’Aw> + hM(u, w)a0 — N {u,w) = 0. (2.7)

We set
U d/f,A“
¥ = v ) v = A .
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wy
For all ¢ = (w ) € Dom(Zp.a), we have
2
<907 %,A¢> = <u’ dh7Aw2> + <v’ d;;Aw1>

X
= (dj pu,wz) + (u, —thiww,) +<dh’—Aude>
hAY W2 ) 2/00Q A » Yh,A W1

A
= <)‘U7w2> + )\(U, wl) = )\((,0, ¢> )

AN
= (A, wy) + h(u, wi)an + { —— dj g1

where

— the second equality comes from an integration by parts using Proposition 2.6 (ii),
— the third uses the boundary condition ws = tnwy,
— the fourth uses (2.7).

This shows, by the definition of the adjoint, that ¢ € Dom(Z), o*) = Dom %, o and in
particular that &, o = Ap. Therefore, the map is well-defined, and we observe that it
is injective.
Let us show that ¢, is surjective. Consider (5) € ker(Zna — A). The eigenvalue
equation reads
dyau=Mv, dpav=2Au, andv=inuon JQ.
Let w € $, 4. Using the eigenvalue equation, and again an integration by parts, we get
Qa(u,w) = (d yu, dj yw) + hA(u, w)oq — N (u, w)

= Mu, dj yw) + hA (=i, w) o — A*(u, w)

= Mdpav, w) — N {u,w) = N {u,w) — N {u,w) =0.
Hence, u € Dom(.Zy) = Dom (%)) and u € ker %, O

Corollary 2.13. We set A = {)\],j > 1} and M = {py,k > 1}. We have A = M. In
particular, py, = A\ .

Proof. Let A € A. Proposition 2.12 implies that 0 € sp(:£)). Then, there exists 7 > 1
such that ¢;(\) = 0 and thus (Proposition 2.11) A = E; = pu; € M.

Let yo € M. Then, there exists j > 1 such that 4 = E;, and hence ¢;(¢) = 0. In
particular, 0 € sp(.%),) and thus p € sp(Z,,a) by the isomorphism. O

Notation 5. Let us denote by (ax)r>1 the unique increasing sequence such that A =
M ={ap,k > 1}. (ug)k>1 is just a priori a non decreasing sequence. In addition, for
all k£ > 1, we set my = dimker(Z, a — ax).

2.4.2. Induction argument. Now, we can prove Proposition 2.8 by induction.
For n > 0, the induction statement is

Pn)  Yie{l,...,omi+...+m,+1}, 1y = A,
Thanks to Corollary 2.13, Z2(0) is satisfied.
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Let n > 0. Assume that, for all 0 < k < n, £ (k) holds.
Notice that

Moy +.Amp+1 = )‘jr_zl—l—...—l-m"—l—l = Qp+1 - (28)
By definition, we have a,11 € sp(Zn.a). Moreover, by using the isomorphism,
Myq1 = dimker( %, ).

By the min-max theorem, there exists j, > 0 such that

Ci+1(@ni1) = .- = igsmpyr (Ang1) = 0.

By Lemma 2.10 (v), we have

ant1 = Ejor1 = ... = Ejormy

so that, using again Proposition 2.11,

Unt+1 = Hjo+1 = - -+ = Hgjo+mpq -

Let us now show that jo = m; + ...+ m,. By the induction hypothesis, we have

Hmi+..4+m, — Qn < Qp41 -

Thus, jo = mi+ ...+ my,.
Let us suppose, by contradiction, that jo > mq + ...+ m, + 1. With (2.8), we get

Hmy+..4mp+1 = Hjo+1 = -+ - = Hjo+mppr — An+1 -

In particular, we have the m,; + 1 relations:

Crny oot 1 (A1) = Ljos1(@ng1) = o = Ljoym, o (@ng1) = 0.

By the min-max theorem, this shows that
dimker %, ., > mpy1 + 1> my = dimker(Zpa — any1) .

This contradicts the isomorphism property. Therefore, jo = m; + ...+ m,. This argu-
ment also shows that the multiplicity of fiy,, +..4m,., equals m, ;. With the induction
hypothesis, we get

VjE{l,...,m1+...+mn+1}, /,Lj:)\;r

By definition, we have
/\;1+...+mn+1+1 = min (A \ {a,... ,am_l}) = min (M \ {ai,... ,an+1}) )

We observe that fim, 4. 4m,,1+1 > @ns1 since the muliplicity of fiy,, 4. +m,., equals m,4;.
This proves that

>\:721+...+mn+1+1 = min (M \Har, ... ,an+1}) = Hmit.Ampg1+1 -

This concludes the induction argument.
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3. SEMICLASSICAL ANALYSIS OF THE POSITIVE EIGENVALUES

In this section we prove Theorem 1.10 by applying Theorem 1.8, and considering the
asymptotic analysis of a simpler problem. If one wants to estimate A (h), it is natural
to use the functions of the Hardy space .7, (Q) introduced in Definition 2.1 as test

functions. This cancels the d; ,-term in p; and leads to define

h 2
)= inf sup Ml
WCH2 A () uew\{0} [ ull
dim W=k

Theorem 1.10 is a consequence of the following three results.
Lemma 3.1. For all k € N\ {0} and all h > 0, we have
A () < v(h) .
Proof. Tt follows from the definition of vy (h). O

Actually, we can prove that v (h) is also a good asymptotic lower bound for A (h),
see Section 3.2 where the following is proved.

Proposition 3.2. For all k > 1, we have
vi(h) < N (h)(1+ O(h™)) .

In the next section, we study the asymptotic behavior of vy (h), which is summarized
in the following proposition.

Proposition 3.3. For all k > 1,
vi(h) = Cp(B, Q)b Fe2émin/h(1 4 0(1)),
where Ci(B, Q) is defined in (1.9).

Remark 3.4. Proposition 3.3 shows that each v4(h) goes to zero exponentially when
h goes to zero. The analysis in Section 3.2 strongly relies on this fact.

3.1. About the proof of Proposition 3.3. Using the change of function v = e=%/"v
suggested by Proposition 2.2 and detailed in Remark 2.3, we get

vg(h) =  inf sup M.
WCH2(Q) yew\ {0} le=¢/mo)||2
dim W=k

In what follows we give upper and lower bounds for v4(h). The technics borrow ideas
from our previous work [6].

3.1.1. Upper bound. Let us consider k > 1 fixed.

Notation 6. Let us denote by (P,),en the Ng-orthogonal family such that P,(Z) =
Z" + Z;L:_g bn,;jZ¢ obtained after a Gram-Schmidt process on (1,7,...,2Z",...). Since
P, is Ng-orthogonal to P,,_1, we have

diStB (Zn, Pn—l) = diStB (Pn, Pn—l) = mf{NB(Pn - Q) ,Q € Pn—l}

: (3.1)
= inf{\/Ns(P,)% + Ns(Q)?,Q € P,_1} = N3(P,), forn € N.
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By the Cauchy-Schwarz inequality and the Cauchy formula, the subspace J72(Q) is
closed in #%(Q). Therefore, there exists a unique Q,, € 4%(Q) such that

disty, ((2 = zmin)", 747(Q) = 1z = 2uin)" = Qu(2)lle,
for n € {0,...,k —1}. We recall that Ng, P,_1, and J4%(Q2) are defined in Notation 2.
The following proposition gives the wanted upper bound.
Proposition 3.5.

2
disty ((z — Zmin) 7L, %’22(9)) 1—k _2¢m;
h < h ¢mm/h 1 1 .
vi(h) ( distg (2*1, Pr_2) ’ (o)

Proposition 3.5 is a consequence of the following lemmas and relies on the introduction
of an appropriate k-dimensional vector space Vj, , of test functions. Let us define Vj,
by

Vis = span(wop, . . ., Wy—1,,) C H7(Q), (3.2)
wop(z) = h™3P, (%) — W5 Qu(z), for n € {0,... k—1}.

Lemma 3.6 (|6, Lemma 3.5]). Let h € (0,1], v, = Z?;& cjwjp € Vi with cg,...cp_1 €
C, and (wjn)jeqo,. k—1y defined in (3.2). We have

k—1

/ |Uh|26—2(¢(l')_¢min)/hdx = (14 0(1)) Z |Cj|2NB(f)j)2 : (3.3)
Q

=0
where o(1) does not depend on ¢ = (co,...,Cr_1)-

For the numerator, we have the following result.

Lemma 3.7. Let h € (0,1], v, = Z;:é cjwin € Vig with co,...cx—1 € C. We have

2
+ h_k 22 .
Q O( )HCHE

(Z - Zmin)k_1 - Qk—l 8

Here, o(1) does not depend on cq, ... cCp_1.

lonllde < lex-1 A"

Proof. Let us estimate ||vp||gq. From the triangle inequality, we get
k-2
[valloe < lekilllwi—1alloo + > lejlllwinllon
=0
Then, from degree considerations and the triangle inequality, we get, for 1 < j < k— 2,

1—k

lwsallon = & (K'5) .

and
k
3

l-1llon = (14 (1R 5 | (2 = zmin) ™" = Quea |-
The conclusion follows. U

Proposition 3.5 follows from these last two lemmas and a straightforward study of a
finite dimensional min-max problem on vectors (cy, ..., cx_1) € C.
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3.1.2. Lower bound. Let k > 1. Let us consider an orthonormal family (v;;)i1<j<x (for

the scalar product of L?(e~2#/"dz)) associated with the eigenvalues (v;(h))1<jck. We
define

é,(h) = spanvj, .

1<k
The next two lemmas gives a priori bounds on the functions in & (h).

Lemma 3.8. There exist C,hy > 0 such that for all v, € &x(h) and h € (0, hy), we
have,

lon ] < Ch_ke%mi"/h/ e 2y, 2dz .
Q

Proof. From the continuous embedding #2(Q2) — L?*(§2), and Proposition 3.5, there
exist ¢, C, hg > 0 such that, for all h € (0, hg) and all v € &(h),

chl|v]|* < h|v]|3g < vi(h) / e~ 29/ |y 2de < Chlk62¢min/h/ e~ 29/M |y 2d .
0 0

Lemma 3.9. Let a € (1/3,1/2). We have

. fD(»Tmim he) 6_2¢/h‘vh (l’) ’2d33’
lim sup

-1/ =0,
h=0 4, e, (M\{0} fQ 6_2¢/h|vh($)|2dx

Proof. Assume that o € (%, %) We have for all © € D(zpin, h®),

1
(b(x) - ¢min + §Hessxmin¢('r - xminy xr — xmm) + ﬁ(hga) .
By the maximum principle,

weD(ilr’ln}rrx]; hcv)c ¢(I) - :JCEBD(IOICEE, ha)c ¢($) 2 gbmin + h2a mln Sp(HeSS'Tmin) + ﬁ<h3a) °

The result follows from Lemma 3.8. U
We are now in a good position to study the lower bound.
Proposition 3.10. We have

2
disty ((2 = zuin)" ", 242(Q)) 1=k 2¢xmi
h) > ’ hl=ke2min/h(1 4 0(1)) .
vi(h) ( distg (Zk_l,Pk—2> ‘ (o)

Proof. Let a € (1/3,1/2). With Lemma 3.9,

2
e (1 4+ 0(1)) < vi(R) e 3t 8 =tminly,

3.4
L2(D(min;h®)) ( )
In the following, we split the proof into two parts. Firstly, we replace v, by its Taylor
expansion at the order k — 1 at z,;, in the R. H. S. of (3.4). Secondly, we do the same
for the L.H.S. of the same equation.
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i. In view of the Cauchy formula, and the Cauchy-Schwarz inequality, there exist
C > 0, hy > 0 such that, for all h € (0, hg), for all v € (), all zy € D(zmin, hY),
and all n € {0,...k},

[0 (20)] < Cllvllog - (3.5)
Let us define, for all v € #2%(Q),

_ 1 e
Nh(v) :He 2hHesszmin¢(x Lmin,T xmln)v‘

L2(D(@minsh®))
By the Taylor formula, we can write
vy, = Tayl,_jvp + Ri—1(vn) ,

where

(n)
v (Zmin) n
Tayl, v, = E —h _Tmin) o (z — Zmin)"

n=0
and, for all zg € D(zuyin, h*),

| Rio1(vn) (20)] < Clz = zinl®  sup 1]
D(Zmin,ha)

With (3.5) and a rescaling, the Taylor remainder satisfies
Na(Bi-a(vn)) < Ch2h2 oo
Thus, by the triangle inequality,
ko1
Nh(vh) < Nh(Taylk_lvh) + Ch= h; ||Uh||aQ .
Thus, with (3.4), we get
k
(L + o))" Vhljunllon < /i () Na(Tayly_y0n) + CV/i(W)E ™ onon
so that, thanks to Proposition 3.5,

(1+ o(1))e® /" hlvnllae < v/vi(R) Nu(Tayl,_ v) < /v (h) N (Tayl,_jvs),  (3.6)

with

— He °h Hesszmm Z—ZTmin,L~ZLmin w‘

L2(R?)
This inequality shows in particular that Tayl,_; is injective on &;(h) and

dimTayl, &k (h) =k . (3.7)
ii. Let us recall that
Q) = {uec Q) :Vne{0,... . k—1},u™ (zym) = 0}.
Since (vy, — Tayl,_jvp,) € F42(2), we have, by the triangle inequality,

(k—1)
v Zmin _
lvnllon = —h(k _(1)| )( — Zmin)* ! 4 (v, — Tayl,_vp) — ||Tauyl,€_2vhHaQ
' a0
08" ()|

=z WdiStH<(z — Zmin)k_l,e%’f(ﬁ)) - HTaylkfﬂ}h”aQ ,
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where

dist((z — zmin)" 1, HG2())

— inf { (2 = zumin)" ' = Q(2)

Using again the triangle inequality,

2
. forallQE%(Q)}.

k—2
I Tayl, svnllon < C D [vp" (zuin)| -
n=0

Moreover,

N

k—2 —2 k—1

n _ k=2 n n _ k-2 n n
> 1o i)l T2 Y hE 0 ()| <A77 B3 [0 (2in)|
n=0 n=0

n

Il
=)

k—2

< Ch™ "z h™ 2 Ny(Tayl,_,vn),

where we used the rescaling property
k—1 k—1
A 1 n
Ny, Z Cn(z = zmin)" | = h2N; Z cnh2(z — zmin)" | (3.8)
n=0 n=0
and the equivalence of the norms in finite dimension:
k—1 k—1 k—1
IC>0.VdeCr, O dol S Ny [ D dn(z = zmin) | C D ldal .
n=0 n=0 n=0

We find
[0 i) b1 g2 .
[vn]log > Wdﬁt((z — zmin)" A, (@) — Ch™ 2 h™> Ny(Tayly,_yvp)

and thus, by (3.6),

(k=1),_
(1+ 0(1))e¢min/h\/ﬁ—‘“h( ; j'zln;;n)’dist((z L 7l (8))
< (« /ve(h) + Ch%e(ﬁm"“/h) Ni(Tayl, qop). (3.9)

Let us now end the proof of the lower bound by using (3.9) and (3.7).
Since we have (3.7), we deduce that

| . - |1
(14 o(1))e?™n/"\/hdisty ((z — 2zmin)* 1, 2(Q)) sup — —~
" FE e N E a2 — Zn))

< Vre(h) + Ch*Z efmin/h - (3.10)
By (3.8), we infer

~ h5|cp
h% sup — k1] = sup — ek

ceCk Nh(ZfL;(l) Cn(z - Zmin)n) ceCk Nl(Zﬁ;g) Cn(Z o Zmin)n) .
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Since N is related to the Segal-Bargmann norm Np via a translation, and recalling
Notation 6, we get

sup k1] = sup [C1] = ! .
ceck N1 (30 a2 = zmim)")  cecr No(Yn_gcnz")  Ne(Fi-1)
Thus,
ik 4 disty((z — zmin)’“_1 Jff(ﬂ))
1+ 0(1))h7z ePmin/h ’ < u(h). 3.11
(1+0(1)) ST (). @
The conclusion follows. O

3.2. Approximation results. Let us roughly explain the strategy to establish Propo-
sition 3.2. Recall Theorem 1.8 which gives a nonlinear min-max formulation for A} (h).
Let us remark that the functions in the range of the orthogonal projector 11, o defined
in Lemma 2.5,

ranllya = {u € L*(Q) ,d} yu =0} = e *"0(Q) N L*(Q),
do not have in general an L?(9Q)-trace. Nevertheless, since
ranlly , C H'(Q),

the projection Il ou = u — HtAu has an L*(9N)-trace whenever u € $;, o (u itself has
an L?(0N)-trace) :

rg Hh,A1ﬁh,A: *’%LQ,A(Q) :
Consider a minimizing subspace Wj, C $na = 75 (Q) + H'(Q) (of dimension k).
Then, we can prove that W}, is quasi invariant under the orthogonal projector IIj a, see
Lemma 3.14. So, we would like to write pi(u) ~ pi (Il au) for all w € W),. In the
following, we will use approximate subspaces to highlight the stability of the projection
procedure. For that purpose, we will use a number Mj(h) > A} (h) such that

Mi(h) = N (h) (14 0(1)).
Remark 3.11. By Remark 3.4, M (h) goes itself exponentially fast to zero.
Notation 7. For notational simplicity, we write M = My(h).
There exists W), C $, A with dim W), = k such that

M (h) < sup py(u) < M. (3.12)
Wr\{0}

The following lemma is straightforward.
Lemma 3.12. For all u € H5 4, we have
2hfjullze < 2n(u),  2llulllld; aull < 2n(u),

where

i (w) = hllull3e + /12 ullfo + 4llul2]d; pul?.

Thanks to Lemma 3.12 and (3.12), we get the following.



26 J.-M. BARBAROUX, L. LE TREUST, N. RAYMOND, AND E. STOCKMEYER

Lemma 3.13. For all u € W,
hllull3e < Mjul?, (3.13)

and thus
[y aul|® < MP|ull?. (3.14)

Lemma 3.14. For all v € W},, we have

M
i pu| < ——||ul, 3.15
11wl < 5l (315)
M
T, aullon < %HUH : (3.16)

Moreover, for h small enough, 11, Alw, is injective.

Proof. Combining (3.14) and Lemma 2.5, we readily get (3.15) and (3.16). The injec-
tivity follows from (3.15) and Remark 3.11. O

Proposition 3.15. For all u € Wy, we have
AL (R)(1+ 0(h%)) [Ty, aull® > ATy aul5q -
Proof. Let us consider (3.13). We have
Mz ||ul| = Vh||ulloa = VAT au + T aulloo = V([ at]en — [T au]lo)
By (3.16), we get

N |=

1
M (1 + h_gEMé) [ ul| = VR ausq -

From (3.15), and the triangle inequality, we have

(1 M )H | < 1 Moaul

— ul] < ull .

V2hbo hA
M

By Remark 3.11, we see that, for h small enough, 1 — N 0. Hence,

1. . M O\ !
14+h2-M:)(1- 1 > V| .
( . ) ( \/m) (I TL5, ael] [ TT5, at|o0

Squaring this, and using Remark 3.11, we obtain the desired estimate. Il

N[

M

Corollary 3.16. For all k > 1, we have
ve(h) < MNP (h) (14 O(h™)).
Proof. Since I1, A1w, is injective, we have dim II, o (W},) = k. Moreover, II, o (W},)

C
7,74 (Q). The conclusion follows from Proposition 3.15 and the definition of vy (k). O

4. HOMOGENEOUS DIRAC OPERATORS

This section is devoted to the proof of Theorem 1.23. After using the fibration
induced by the partial Fourier transform with respect to the tangential variable, it
is a consequence of Theorem 4.3. More formulas related to the fibered operators are
established in Section 4.8 in our way of proving Theorem 1.19.
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4.1. The fibered operators. Using the Fourier transform in the x;-direction, we are
lead to introduce the following family of fiber operators that are one-dimensional Dirac
operators.

Definition 4.1. Let £ € R be the Fourier variable in the x;-direction. The operators
Der and Ye g, act as

—ia'zat + 0'1(5 + t) s

on
Dom(Z;r) = B'(R,C?) := {p € H'(R,C?), ty e L*(R,C*)}
and
Dom(Zcr,) = {¥ € BY(R%,C?), 019(0) = ¢(0)} ,
where

BI(R-HCQ) = {QOEHI(R-HCQ)a t()OEL2(R+a(C2)} :
Let us state the main properties of these operators.

Proposition 4.2. Let { € R. The operators Yer and Der. are self-adjoint with
compact resolvent.

Notation 8. (0 (§))k=1 and (V5 (£))k=1 are the increasing sequences of the non-
negative eigenvalues of Zgr and Zer,. (= p(§))r=1 and (U g, (§))r=1 are the de-
creasing sequences of the negative eigenvalues of Z¢r and Z¢r,. The eigenvalues are
counted according to their multiplicity.

Let us present the properties of the dispersion curves.

Theorem 4.3. Let k > 1. We have
(i) 0 p(€) = 2(k — 1) and U} 5(€) = V2k, for all § € R,

(i) & — ﬁ;KL (&) is a regular increasing function with no critical point such that

Jm Oip, (§) = V2(k—1) and m Uiz, (€) = +oo,

—+o00

(iti) &= Vyg, (§) is a regular function with a single critical point &, that decreases on
(—00, &) and increases on (&, +00) and such that

lim g (€) =+o0 and lim ¥y (&) = V2k.

{—+—00 {—+oo

Moreover, & = ag where 0 < ag := min 191_R+ = 191_R+ (&1) < V2, and

2a0u307a0(0)
2a9 — u2, ,,(0)

Theorem 1.23 follows from Proposition 4.2, Theorem 4.3, Theorem XIII.86 and The-
orem XIII.85 of [31].

o7 (&) = > 0. (4.1)
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4.2. Proof of Proposition 4.2. Let { € R. Let us prove the proposition for Z; . .
The proof for Z, g follows the same line. Since 0, is a bounded and symmetric matrix,
Der. is self-adjoint if and only if Zy g, is self-adjoint. Let & be the operator acting as
—iJQat + O'lt on

Dom(-@) = {SO S H&(R+7C2)> t(,O € LQ(R-H(CQ)} :

By the anti-commutation relations of the Pauli matrices, the operator Z is symmetric
and for all ¢ € Dom(2),

1Z¢llz, = 10¢lli, + Itellk, +2Re(—io20kp, ortep)

+o0
— a2, + ]2, + / 10,0, osp)cadlt
0

= 10pllz, + ltellz, — (@, 030) -
Hence, & is closed. The adjoint * acts as —io20; + o1t on
Dom(2*) = {¢ € L*(R;,C?), (—io20; + o1t)p € L*(Ry,C?)} .
Studying the deficiency indices, we consider a solution ¢ € L*(R,,C?) of
Do =1ip.
We get
(7)o = (=0 +1" —03) p=—p.
By [14, Eq. 12.2.2, 12.8.2, 12.8.3|, we deduce that the only L2-solutions of Z*p = iy

are of the form
t—a e, ﬂt) =a
\/L§U(17 \/ﬁt) : P4

where a € C and U(0,-), U(1,-) are parabolic cylinder functions. Similarly, the only
L2-solutions of 2*p = —ip are of the form

U.vE \

where b € C. By [30, Theorem X.2|, there is a one-to-one correspondance between the
set of self-adjoint extensions of 2 and the circle {¢, @ € R}. The corresponding
operators 29 act as —1090; + o1t on

Dom(2?) = {go +alpy +e®p ), @€ Dom(2),ac C} .
We have Zyr, = 2% where 0y € (—m,7) is the unique 6 € (—, 7] such that

o1(ps +€%p_)(0) = ¢4 (0) + “p_(0).

This means that

U(1,0) (1 . ew) — U(0,0)(1 + ¢,

S



DIRAC BAG MODEL IN STRONG MAGNETIC FIELDS 29

so that 6 # 7 (since U(1,0) # 0) and

i —2isin (9
VaU(0.0) _ 1-e? 2 g>>tan(€)-

=1 — =1
U(1,0) 1+ eif 2c:os<

This ends the proof of Proposition 4.2.

4.3. Min-max characterization of the eigenvalues of the fibered operators.

Notation 9. Let a > 0,£ € R. We introduce
G (u) = / (€ £t +0y)ul*dt = / (10ul® + (€ £ t)ul” F |ul?) dt,
R R

for all w € B}(R,C) and

e = [ 1€+ 0)0Pdt + alu(0)?
Ry

:/R (18] 4+ (& £ t)o* F [0f*) dt + (a = €)[v(0)?,

for all v € BY(R, C).
These quadratic forms are closed and non-negative. The associated operators
Me = +({t+E’F1
and
MG e =—00+ (£ F1

with the boundary condition ¢'(0) = (a—&)p(0) are self-adjoint with compact resolvent.
Note also that the family (%§+7a’5)a>0766ﬂ§ is of type (B) in the sense of Kato:

(i) Dom(qﬁmaﬁ) = BY(R,) does not depend on ¢ or «,
(i) for all w € B'(Ry), (@,€) = g, o¢(u) is analytic.

Remark 4.4. For a > 0, the operator ,///Bi’a’a +1 coincides with the famous de Gennes
operator (see [18]).

Notation 10. Let a > 0, € R, k € N\ {0}. We introduce

+
U
ve (&)= inf sup qRL(Q),
’ vV C BYR) wueV\{0} [ioaF
dimV =k
and
+
. 4r 704,{(“’)
= inf sy T
V C B'(R4+) weV\{0} ||U||]R+
dimV =k

The arguments of Section 2 can be easily adapted to this setting and imply that

Jir(€) = \/vax(8)
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and ﬁi& (€) is the only solution o > 0 of

Vi, (@, 8) = a?,

where ﬁiR(f ) and Qﬁ,ﬂh (&) are defined in Notation 8.

By translation invariance, we have
yﬁgk(g) = uﬂik(()) for k> 1and £ € R.
These are related with the eigenvalues of the harmonic oscillator and Point (i) of The-

orem 4.3 follows.

4.4. About the dispersion curves I/ﬁi x- In this section, we prove the following

ol . . . +
proposition concerning the dispersion curves VR, k-

Proposition 4.5. Let a >0 and k > 1.
(i) The function & — V§+7k(a,f) is smooth, has no critical point, is increasing, and
tends to +o00 as & — +oo and to 2(k — 1) as £ - —oo.
(ii) The function & — Vﬂ@”k(a,g) is smooth, has a unique critical point, which is a
minimum &,, decreases on (—00,&,) and increases on (&,, +00), tends to +00 as
§ — —o0 and to 2k as § — +00. Moreover, v ,(a,&,) < 2.

Remark 4.6. Actually, to prove VH§+71(04,§Q) < 2, one could avoid the asymptotic
analysis by using the knowledge of the de Gennes function. Consider £ = o > 0. Then,
Vg, 1(o,a) = pla) +1,
where p is the celebrated de Gennes function. We know that, on R, , p < 1. Thus, for

all a > 0,

Vi, (@, 60) < pla) +1 <2 = (V2).

Let @ > 0 and £ > 1 be fixed. In this part, we remove the subscript R, for the
sake of notation simplicity. By the analytic pertubation theory, we know that V]j:(-, )
are analytic functions of a and &. Let & — v¥(a,€) be one the analytic branch of
eigenvalues of .#Z jfé and uig is a corresponding normalized eigenfunction.

The following elementary lemma will be used many times in this section.

Lemma 4.7. We have
(=0, 0) = (¥, =¢") + ¥'(0)(0) — ¥ (0)¢'(0) -
Proof. We have
(=07, 0) = (W', &) +4(0)p(0) = =¥, ") + ¢'(0)p(0) — ¥ (0)¢(0).

In the following lemmas, we compute derivatives of v* with respect to a and €.

Lemma 4.8. We have
+o0o
Oev(a, &) = / 2(€ £ t)ud (t)dt — uqag(0)%,
0

and
(Mg =V )0ag = (O tag — 2 £ Uag,  Vag = Ogliag,

,
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with
(0 + & — a)vae(0) = —uag(0) .
Proof. We have
+ +
(A e~V Juae =0.

«

Then,
(///jfg — V) Ot ¢ + 85//ligua7g = 0™ ()Une
so that .
(M= ot grtog) +2 [ (€00 (000t = 00 (6).
By integrations by parts, we have
(M e — v )OeUag, tae) = 010¢uae(0)uag(0) — Detine(0)Drtine(0) -

Note that
858tua,5(0) = —ua’g(O) + (Oé — f)agua,f(o) .

Thus,
(M — V)t g, Uag) = —a,c(0)?.
O
In the following lemma, we focus on the second derivative in &.
Lemma 4.9. We have
(///O:é'f£ — ui)w%f = 2(6§Vi)va7§ + agl/iuaf — 4 £ t)vae — 2Unge, Wae= Gguaf ,
with
(8t + f - Oé)wayg(()) = —21}&,5(0) .
Moreover,
8521/
5 T 14 2 £ )vag, Uag) = Uag(0)0a(0) .
Proof. We have
<(‘///o:lt§ - Vi)wa,ﬁv Ua ) = Opwag(0)ta,e(0) — Wag(0)0stae(0) = —2uq£(0)vae(0) -
In addition,
((.///jE — ui)wa,g, Upg) = Ggui — 2 —4((€ £t)Vae, Ung) -
O

In the next lemma, we explicitely use the a-dependence of the eigenfunctions.

Lemma 4.10. We have
&lyi(a,f) = U?x,g(o) )
and
(A = v (0,€))Ontiag = Oav™ (0 tiag
with
DOt ¢ (0) = U ¢ (0) + (@ — €)Datine(0) .
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Proof. We get
Vi(a7 §) = <(‘%(;t§ - Vi(a’ §))Oatia g, Uage) = 010aUag(0)tae(0) — Ontia,g(0)Iptiae(0),
and the conclusion follows. O
A consequence (which will be used later) of the previous lemma is the following.
Lemma 4.11. We have
v (0, &) = —2Un e (0)va e (0) + 4((€ £ )Une, Oaliag) s  Vae = Oling -
Proof. Thanks to Lemma 4.8, and using that (uq.¢, Oatae) = 0, we have
(M — v Vg, Oatiag) = —2((€ £ t)Uae, Daliag) -
Integrating by parts, we get using Lemmas 4.8 and 4.10,
—2((§ £ 1)tae, Oatiag) = O1va,(0)datias(0) = Va,e(0)0r0atia,g(0)
= (0 = &)vae(0) = a,g(0))Oatia(0) = vag(0)((a = £)Datiag(0) + tag(0))
= —Ua,(0)0atae(0) = tag(0)va(0) .
Lemma 4.10 gives

2“%5(0)8&“&,5(0) = ai’/i(a: ),

and the conclusion follows. O
Let us study the critical points of & — v*(a, £).
Proposition 4.12. We have

ev™(a, &) = £ (v (e, &) + a® — 2a€) Ui,g(o) . (4.2)
In particular, if &, is a critical point of vE(a, ), we have
vE(a, &) = —a® + 206, . (4.3)
Moreover,
25 (a, &) = $2aui7§a(0) : (4.4)

All the critical points of v~ are local non-degenerate minima, and all the critical points
of vt are local non-degenerate maxima. In particular, there is at most one critical point.
If such a point exists for vt («, ), then v (a,-) is bounded from above.

Proof. With Lemma 4.8, we get
oo )=+ [ A€+ O 0 ~ a0
0 .
=$2A (6 — £ tae (0 ((D)E F 2t c(0)° — e (0)?
+oo
:qm/ (Wl o(8) + (5 (01, €) % Dt )t (1)t F 210 ¢(0)° — 11 (0)?
0

3/ma(< O (7(0,) £ 1) A1 F o0 — (07

= (£ (0, £1) £ (a = &) FE — 1) uag(0)”
= (v (o, &) £ a® F 20€) uqe(0)°.
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We get (4.3). Taking the derivative of (4.3), we deduce (4.4). The last sentence follows
from (4.3) and (4.4). O

Next, we show that v~ («, -) has always a critical point.

Corollary 4.13. Forall 7 > 1, the function 1/]7(04, -) has a unique critical point o and
it is a non-degenerate minimum. The function § — v, (. §) is decreasing on (—00,&; )
and is increasing on (§; ,, +00).

Proof. If v; (v, -) has no critical points, then it is decreasing (it is decreasing on (—o0,0)
by Proposition 4.12). From Proposition 4.12, we deduce that, for all £ > 0,
—v; (a,§) —a? +2a£ <0,

and that lime, 0 v (a,€) = 4o00. This is in contradiction with the function being

decreasing. This shows that v, (a,-) has a unique critical point. It is a local non-
degenerate minimum. Since there is only one critical point, this shows that it is a
global minimum. O

Let us study the asymptotic behavior of V,it.
Lemma 4.14. Let k > 1. We have that
1. Jr — 1. — —
§~1>qu100 Vk; (Oé, 5) §~1>IEIOO Vk; (Oé, g) +00 )
and
li A =2(k—-1 li " =2k.
Jm v, §) =2(k—1),  lim v (a8
Proof. Let us first remark that for £ < 0 and u € BY(R, ), we have
Qoe(u) = (€7 = Dllullg, .
and

Jim g (0,€) = oo,

For £ > 0 and v € B'(R,) \ {0}, we denote by 7 = £t and v(7) = u(t) so that
Goew)  Ja, (Ol +[(€+ D)l — Jul?) dt + (a = §)[u(0)?

o2, ~ ull,
i, (10002 + 16 + Do = 0P ) dr + € = ©)[o(0)
) oI,
_fg@(WWP+K1+éWP—€”MﬂdT+@—JHMWP
I,
e (1 gy e [OPAT £ 2~ DROPY
oI,

Let us consider the Robin Laplacian associated with the quadratic form

vis | [8,0Pdr + (% - 1> 0(0)]2.

Ry
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Its essential spectrum is [0, +o00) and the only point in the negative spectrum is the

eigenvalue —(1 — /€)% whose eigenspace is spanned by 7+ e~(1=%/97 We get
qz,g(u)
lullz,

> (1-¢7—(1-a/f)?) =206 — (1+0a7),

and thus

Jim v (e, §) = +oc.

Let £ < 0. Let us consider v € BY(R,), we define u(t) = v(§ + t)
goew)  Ja, (0w +[(€+t)uf = [ul?) dt + (a = §)[u(0)[?

lullg, i},
ST 100 A o = [ol?) dE A+ (@ = e
- 19 4o |
Using truncated Hermite’s functions as test functions, we get that
ligm supy; (o, ) < 2(k —1). (4.5)
——00

Since

+oo
Q;r,g(u) > fg (|87U|2 + [ro]? - |U|2) dt
2 )
(§+00)

lullg, ~ [o]]

the eigenvalue v (o, €) is larger than the k-th eigenvalue of the operator —9? 4+ 7% — 1
with Neumann boundary condition on (£, +00). In other words,

Vi (&) =€) — 1,

where p, is the k-th dispersion curve of the de Gennes operator. It is well-known that *
lim p(€) =2k —1.
E——o0

Thus,
liminf v (o, &) > 2(k — 1).
E——00

As in (4.5), using Hermite’s functions, we get that

limsup v, (o, &) < 2k. (4.6)

E—+oo

Let £ > /2. Let us consider u,v € B'(R,) such that u(t) = v(£t). We have

Grel) = [ (10 +1(t = P + ) dt + (@ = OIul0)

Ry

“+oo
_/ (latu|2 + |<t . §)u|2 + |u|2) dt
a/

4
a/4
+¢! / (€100 + [(7/€ = v + [0*) dr + (@ = (),

Isee, for instance, [18, Prop. 3.2.2 & 3.2.4]
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and

at/4
e / (E210,02 + (/€ — )] + o) dr + (a — ) u(0)

ag/4 ot /4
XS (/0 002 dT + (/€ — 1)|v(0)|2> FEeN 1 (6 - a/4)2)/0 wf2dr

By studying the spectrum of the Robin-Neumann Laplacian whose quadratic form is
at/4
v [ 100Pdr + 0/ - DIO)F,
0
we get,
a4 af/4
3 / 0rvPdr + (a/€ = Do(0)]* | = &(-1+a/E+ 0(51))/ [o]*dr .
0 0

We deduce that

fa/d
e / (E210,0 + (/€ — €0 + [o]?) dr + (0 — E)[u(0)]?

ag/4
> (/2 + o(1)) / jof?dr,

so that
+oo a/d
Qo e(u) > // (\0tu|2 + | (t — E)ul? + |u|2) dt + &(a/2 4 o(1)) / lul?dt . (4.7)
a/4 0
Let (uig,...,ure) be an orthonormal family of eigenfunctions of .7 associated with

the k first eigenvalues.

We have, for all u € spanu;g,
1<k

+oo

@O > g > [ (0P + I - OuP + o) ar € (§ +ow) [ fupar
0

a/4
> ¢ (% + 0(1)) /0 Juf?dt

By (4.7) and the upper bound (4.6), we get that for £ large enough, the family of the

e

restrictions of uy ¢, ..., ue to the interval (a/4,400) is of dimension k£ and
+oo
Ao (a.6)>  inf sup [ (0l |~ Oul + JuP)
V C BY(a/4,+00) ueV a/d
dimV = k

||u||(o¢/4,+oo) =1
In the same way as for the de Gennes operator (a = 0), we get

lim v, (a,§) =2k,

E—+o00

and the conclusion follows. O
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End of the proof of Proposition 4.5. By Proposition 4.12 and Lemma 4.14, we get
that & — v (a,€) has no critical point. Using again Lemma 4.14, we deduce that
&= v (a, €) is increasing.

The behavior of & — v, (a,§) is described in Corollary 4.13. The monotonicity of
€ — vy (o, ) and its limit in 400 ensure that vy (o, &,) < 2.

4.5. Proof of points (ii) and (iii) of Theorem 4.3. In this part, we remove the
subscript R, for the sake of notation simplicity. Let £ > 1 and £ € R. By the min-max
characterization of 93 (£), we have that

0 < vif(a, &) —a?, forall 0 < a < 9E(€),
0> vif(a, &) —a?, for all a > i (€),

0 = vE(WE (), &) — vE(€)*.

4.5.1. Limits of 19%. Let a > 0 be fixed. By Proposition 4.5, there is M € R such that
for all ¢ > M

vi(a, &) —a* >0,
Hence, a < 9, (€). This shows that
lim 9 (&) = +o0.

E—+oo

The same kind of arguments ensure that

Sim 97() = 20k = 1)

lim 95 (£) = +oo and lim 9 (£) = V2k.

E——00 E—+o00
4.5.2. Regularity of ﬁ,f. We have, for all £ € R,
Vi (05 (6),€) = ¥ (§)* = 0.

Let us explain why 19,9i is smooth. Consider the function

Fla,€) = v (@, ) — o.
We have

Fla,) = dav(,€) — 20
By Lemma 4.10, we get

Ok (0, §) = [ukzaﬁ(O)]Q —2a.

Let us analyze the sign of 9,F (97 (€),€). Notice that P : a qié(uiﬁf(g),g) — o2
is a polynomial of degree 2, which is zero at a = 19%(5) Moreover, by the min-max
principle, we have

P(a) > v (a,€) — o®,
so that, for all a € (0,97(€)), P(a) > 0. It follows that P'(9;(€)) < 0. Since

P'(05:(€)) = [tica,¢(0))* — 2a = 0a F (¥ (£).€)
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we get that 0, F (95 (€),€) < 0. With the Implicit Function Theorem, we deduce that
¥ is a smooth function (since F is smooth). Moreover, the derivative of the implicit
function is given by the usual formula

COFE(9).8) _ 95 (95(8).6)
DuF (I (6).6) 203 (6) = ari (95(6),6)

where we see that the denominator of the last expression is a positive function.

el (§) =

(4.8)

4.5.3. Critical points of ¥;. We deduce that 09 (€) has the sign of dcv (95 (€), €).
Thus, by Proposition 4.5, £ — 9 (§) increases and has no critical points.

Moreover, & is a critical point of £ — ¥, (§) if and only if & is a (actually the)
critical point of & — v, (¥, (&),&). Let & € R be such a critical point. By (4.8) and
Proposition 4.12, we have

9 1/ q—
85219];(50) _ _ [agyk](ﬁk_(gﬂ):éb) >0,
20 (&) = Oavy (U, (§0); o)
Hence, there is at most one critical point which is a non-degenerate minimum. The func-
tion ¥, has exactly one minimum &, increases on (&, +00) and decreases on (—o0, &).
For o« = 97 (&), we also get that & is the minimum of the function & — vy (o, ). By
Proposition 4.12,

0= (a, &) — o” = —2a” + 2061,
so that & = o = 07 (&). Using again Proposition 4.12 and Lemma 4.10, we get

5o B 20014, o (0)?
85,191 (él) - 2@ o ua7a(0)2

4.6. Numerical illustrations. By using naive finite difference method and dichotomy

method, it is a possible to compute the eigenvalues uﬂiﬂk(a, -) and ﬂfﬂh by using a short

> 0.

Python script. Subfigures (a) and (b) of Figure 1 below present v ;(«,-) in colored
lines. The horizontal dashed lines represent the Landau levels and the dotted affine line
of (b) is the graph of the function & — —a? + 2a€ (see Proposition 4.12).

124

101

(R4, 2,8)

2.01
M 24

T T T T T T T T T T S T T T T T
0.5 1.0 15 2.0 25 3.0 3.5 4.0 0.5 1.0 15 2.0 25 3.0 35 4.0
3 3

(a) The function vg, ;(2,-) (b) Functions v, ,(2,-) and the function
€ —a? +2af

Figure 1. Dispersion curves VR, k
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Figure 2 displays the increasing behavior of the uﬂ'{h j(oz, -) and the associated Landau
levels 2(j — 1) for j > 1.

25 A

20 A

154

Vj+(R+.21‘E)

Figure 2. The functions VHL (2,0

Figure 3 shows the dispersion curves iﬁi ; representing the spectrum of the fibered
Dirac operators %, r, with the associated Landau levels +v/2k as dashed lines.

8% (R+, &)
o

Figure 3. Functions :i:19§+ j

All these simulations agree with all our theoretical results.
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4.7. On the function v. We recall that v is defined in (1.11).

Proposition 4.15. The function v is non-negative on |0, +00), increasing, concave and
it satisfies
v(0) =0, v(+o0)=2, liminf@ >0.
a—0t o
In particular, the constant ay defined in Theorem 4.3 is the unique positive solution of
the equation v(a) = . Moreover, &, = ag, where, for all a > 0, &, is the unique &
such that v(a) = vy (o, €) and

lullieg + \/llullses + 4llull® fog |(=i0s — 7+ i(—i00))ul*dsdr
ap = inf

uen? 5 (B2) 2[|ul[?
u#0

Proof. The function v is concave as an infimum of linear functions. The equality v(0) =
0 follows by considering the zero modes?, and v(+0c) = 2 comes from the fact that, when
a — 400, v(a) converges to the groundstate energy on the half-space with Dirichlet
boundary condition. Then, the concavity implies that

lim inf v@) > 0. (4.9)
a—07t Q

Let us explain why v is a smooth function on (0, 400). Let us recall that by Proposition
4.12,

(o) = min v (0, €) = v (0, &) < 2, (4.10)
€
and that, for all o > 0, &, > 0 is the unique solution of
Oevy (a,8) =0. (4.11)

For all & > 0, we have 8£2V1_ (v, &) > 0, and thus the analytic implicit function theorem
applied to (4.11) implies that o +— &, is analytic. Since v, is analytic, we deduce that
a — v(a) is analytic. We notice that

déa

V(o) = 0oy (a,&0) + evy (o €a) 3o = Oarr (@,6a).

Thanks to Lemma 4.10, we get
Va)=ul, (0)>0. (4.12)
Let us now consider the function
fla) =v(a) —a*.
From (4.9), we see that f is positive on some interval (0,a) with a > 0. Then, by
v(+o00) = 2, we see that f is negative on some interval (b, +00). By the Intermediate
Value Theorem, we deduce that f has at least one zero in (0, +00). Let us prove that

there is only one zero. Consider o > 0 such that f(a) = 0. We have f'(a) = /() —2a.
Due to (4.3), we have &, = «, and with Lemma 4.8, we get

+oo
200 —uf ¢ (0) = /0 tul ¢ (t)dt > 0.

2We can also check that v is right continuous at 0.
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This, with (4.12), implies that f'(o) < 0. We deduce that f has at most one positive
zero (and thus exactly one, denoted by a;). By (4.10), we get that
v(a1) = vy (a1,a1) = a3,

so that a; = 97 (a1). By (4.8) and Theorem 4.3, a; is the only critical point of 9] so
that ag = ay.
Let us denote by as the constant introduced in Remark 1.13 :

ag = inf u),
2 UEfJEAO (Ri)p( )
u#0
with
Jg lu(s, 0)[?ds + \/(fR lu(s, 0)|2ds)2 + 4| ul]? fRi |(—i0s — T + i(—i0;))u|>dsdT
plu) = -

2|[ulf?

Let u € $% 5, (R%)\ {0} such that |lu|]| = 1. p(u) is the only positive root of the second
order polynomial

Qu: o |(—i0y, — 2 + i(—i@m))u\zdxldxg + a/ |u(zy, 0)|2dx1 —a?.
R2 R

By (1.11), we get that 0 = Q.(a) > v(a) — o* with @ = p(u). Hence, ag < « and
taking the infimum over u ensures that ay < ay. Let € > 0. We have v(a) — a? < 0
with o = ag +&. Therefore, there exists a normalized function u € £2 5 (R?) such that

Qua) <0.

By definition of p(u), we get that p(u) < «. By definition of ay, we get ay < ag + ¢ and
the result follows.
Il

4.8. More formulas for v; . In this usection, we study other properties of the eigen-
functions associated with the negative eigenvalues. Let o > 0, £ € R, v = vy and
Uq,e 18 a regular branch of real normalized eigenfunctions associated with the eigenvalue

v(a,§):
«///_@Ua,g - V(Oé, g)ua,f , On R-i- P

«

(0r +& — a)uae(0) =0.
4.8.1. About the momenta of us¢ and 6:. We consider the operator
(55:2(7///(;§+§—8T+72(£—T)) , (4.13)
which will appear in the computation of the asymptotics of the negative eigenvalues.
Lemma 4.16. The operator €; is symmetric on H*(R,).
Proof. For shortness, we let ng = ., ¢ We write

{(tng — 0;)u, v) = (nou, Tv) — (U, v)

= (u,no(7v)) + v/ (0)(Tv)(0) — u(0)(7v)'(0) — (', v)
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so that
((tno — 07 )u, v) = (nou, 7v) — u(0)v(0) + (u,v") + u(0)v(0),
and
((tng — 0r)u,v) = (u, (no™ + 0:)v) = (u, (Tng — 0;)v) .
O
We let
M; = /0 (&= 7)Yl dr,

and

Pi(r)=(§-T).
In order to compute the momenta M, the following lemma will be convenient.

Lemma 4.17. Let p be any polynomial in the T variable. We have
<///CZ§ —v(a, 5)) (2pu;7£ — P'Uag)
= (P = 4((6 = 7)? + 1 = (@, ) +4(¢ = T)p) tag

Moreover, we have

(Mg = V(. €)) (2P ¢ = Ptne), tag)
=2 ¢(0) (=p"(0) + 20/ (0)(a — ) + 2p(0)(€? + 1 — v(,€) — (a — §)")) .

Proof. The first part follows by a straightforward computation. For the second identity,
we use Lemma 4.7 and the equation and the boundary condition satisfied by ¢,

(M = 1(@,0)) 20l = Ptae), tag)
— (2puy, ¢ — p’uag) Uy, £(0) + (2pug, ¢ — P'tiae) (0)ta g (0)
= —2p(0)(& — a)*ug ¢(0) + p'(0) (e — )uz £(0)
+ (2p(0)ug £(0) +2p (0)(a = uag(0) — p"(0)uae(0) — p'(0)(a — §)uag(0))tae(0)
=u? ¢(0) (=2p(0)(€ = a)® + 2p'(0)(a = &) +2p(0)(&? + 1 — v(a, €)) — p"(0)) .
]

In the following lemma, we compute the first momenta M.

Lemma 4.18. We have

= 1o - - g,
M2 _ I/(Oé,g) -1 n Uai(o) (—(Oé _f) +5(§2 +1— V(Oé,f) . (Oé o 6)2)) :
“35(0)

My = == (4r(e,§) =4 +263)(E +1 - p(@,6) — (a = §)) =2~ 4@ —¢)) .
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and
3 3 2.0
M, = 3 g(y —1)*+ u%) (—6£+ (3(1 = v) — 6£°) (« —5))
Uae(0) 2 2
+ 2068 4 30— DEE +1— v — (0 - ©)?)
Assume that o = & = ag. Then, we have
M, = ui;(O) ,
_ -1 fuig(O)
My = 5 + VR
2 _
Ms = < 9 1“1,5(0%
_3 3 2 132 ui’g(O) 3 _
My= 5+ 2(€ = 1) + = (56" - 96).

Remark 4.19. The assumption on « and £ comes from that fact that we will need the
momenta with & = £, when « satisfies v(a) = a?. In this case, £ = a = ag. See (4.3).

Proof. In Lemma 4.17, we take p = 1 and get
AMy = 203 (0)(€% +1 = v(a,€) — (a = §)?).
We recover the results of Lemma 4.8 and Proposition 4.2. Taking p = (£ — 7), we get
8My + 4Mo(1 — v(a,€)) = ug (0) (—2(a — &) + 26(8 + 1 — (e, §) — (a = €)?))
and the result follows. Taking p = (£ — 7)?%, we get
8(1 —v(a,&)) My + 12M;
=ug (0) (=2 = 4&(a = &) +26%(€ + 1 = v(a,§) — (a = &)%) ,
and
Ui,g(o)

SO (40(0,€) — 44 28)(E + 1= v(0,§) — (0= ) —2— 4(a — ©))
Finally, taking p = (£ — 7)3, we get
—6+ 16My + 12(1 — v(«, §)) Mo

= U ¢(0) (=6€ +2(=36") (0 — &) + 263 + 1 — v(a,§) — (@ = §)*)) ,

M; =

and
My =2
16
4 %y —1) (”; Ly ““j(o) (~la=O+E&E+1-v—(a— f>2>>>
+ —ua’féo) (—6¢ = 66%(a — &) +26%(€ + 1= v(, &) — (@ = €))) -

The remaining identities follows from the fact that v(ag, ag) = a2 (see Theorem 4.3 and
Notation 10). O
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The following quantities appear in the construction of the effective operator on the
boundary that we obtain expanding the operator (written in appropriate coordinates)
in powers of h.

Lemma 4.20. We have
<(€£U£, U§> = 23(057 é)ui,é(o) )

where
Blo6) =~ "2 (e 11 (e ) (- ) + 1
o (4, ) — 44 28)(E +1 - (0, 8) — (0~ ) 2~ 46(a — ©))
S (am g € - e — (0 7)
% (€ +1-v(0.8) = (a=¢)) .
Ifa=¢=a, then
(Gt tiag) =0, Oc(Getag, tag) = —w‘

Proof. We let ng = 4, .. Let us write
(o — € = 0; + T2 (€ = 7)) Uayg, Uag)

+oo 2 (0
— V(a,g)/ Tuisd’r — &+ ua,E( )
0

+oo
+/0 (5—7—5)2(5—7)ui£d7,
so that

<(7’no — -0, + 7€ - T)) Up g, Uag)

ui 5(0>
= £(r(€) — 1) = wla, )My + "2 4 My — 260y + €My
Therefore,
<Cg€uo¢,€7 ua,{) =2 (A(Oé, 6) + B(Oé, f)ui,5(0)> )
where

A(O@g) - g(V(Oz,f) - 1) - g(y(a7§> - 1) =0.
When o = ¢ and v(a, ) = &2, we easily check that

B(a7£) = 0’ <%§ua,§7ua,§> =0.
Let us compute the derivative 9;B(a, &) when o = € and v(a, ) = £%. We have

OeB(a, &) = —€v(a, &) + % (4€ +26(66 — 4) + 4¢) — g — 3(1 + 1428+ €646
_ ¢
2
Thus,
dgv(a,§)

Oe(Cetiae, Uag) = —Eul ¢(0) = — 5
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Remark 4.21. Note that, when a = ¢ = &, we have
uga(O) =0,

and this means that v(a, §,) is an eigenvalue of the de Gennes operator with parameter
&, > 0. This eigenvalue lies on the parabola & ~— £2.

The functions g, ¢ and k, ¢ studied in the next two sections appear in the construction
of the symbol of the effective operator on the boundary.

4.8.2. About the function .

Lemma 4.22. For all o > 0, £ € R, there exists a unique go ¢ such that
(M e — (0, 6))gag = s e(0)tae, (€ —a+0:)gae(0) = tae(0), (Jae tae) =0.

Moreover,
ua,&(o)va,ém) —2((€ - 7)ot ua,£> = _uaé(o)gaé(o) )

and

(M e = v(,€))DeGae = Ocv(t, €)ae + 2t e(0)Vae(0)tta e + Ul ¢(0)Vae — 2(€ = T)gae -

Proof. For shortness, we write u, v and ¢ instead of uq¢, voe and goe. For any g
satisfying the boundary condition, we have

(A —v(a.)g,u) = g'(0)u(0) — g(0)'(0) = (4'(0) — g(0)(a — £))u(0) = u*(0).
We have
(M = v(a,€))0eg = Oev(ev, §)g + 2u(0)v(0)u + u*(O)v — 2(§ — 7)g.
Then, using the fact that 0 = 9¢||u* = 2(u,v), and Lemma 4.7,
(A e = v(a,€))0eg, u) = 2u(0)v(0) — 2((§ — T)g, u)
= 0-0¢9(0)u(0) — Deg(0)u'(0)
— (0:069(0) + (€ — )9 (0)) u(0) .
Note that
(€ — a4+ 0;)09(0) = v(0) — g(0) .
Thus
2u(0)v(0) = 2((§ = 7)g, u) = u(0)v(0) — u(0)g(0).

Lemma 4.23. We have
(M e — (0, 6))(Vag + Gag) = Ocv(, E)tia e — 2(E — LYtae + uf (0)ta g,
with the boundary condition
(0 + € — @) (Vag + 9ae)(0) = 0,
and (Vog + Gag, Uag) = 0.
Proof. 1t follows from Lemmata 4.8 and 4.22. U
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Lemma 4.24. We have
Ua,£(0)gag(0) = S92v(, €) .

Proof. For shortness, we write u, v and g instead of uq¢, vae and goe. Thanks to
Lemma 4.10, we have

(f///o:§ o V(Oévé))g = 8ay(oz,§)u :
Taking the derivative with respect to o and then the inner product with u, we get
(Mye — V(@,€))0ag, u) = Oav(a, §)(g, u) + Tv(a, §) + Dav(, €) (Oau, u) = Oav(a, §),
and an integration by parts provides us with

0:0a9(0)u(0) — 0ag(0)0ru(0) = Dav(ev, €)

We have
(0s + & — @)0a9(0) = dau(0) + g(0),
so that
,u(0)u(0) + u(0)g(0) = O%v(a, €) .
02 v(a, €) = 2u(0)0,u(0) ,
so that
PRy, §
u(0)g(0) = %08
O
4.8.3. About the function kq¢. Let k¢ be the unique solution orthogonal to wu,¢ of
(M o = V(,€))kae = =TT (Cetiag) - (4.14)

with
(6 —a+0-)kae(0) =0,
where It is the orthogonal projection on the orthogonal of u,¢,
Lemma 4.25. We have
(Cettag; Vae) = —Kae(0)uag(0) +2((€ — T)kae tag) -

Proof. We recall (4.14), and Lemma 4.8. Then, since (uq.¢, Voe) = 0 and (uae, ko) =0,
we get, by an integration by parts,

—(Getlag, Vo) = — (1M Cetlae, Vae) = <(///a_,g - V(Oéjf)) Kovg: Vo)
= K (000 g(0) = Rag(0)00,(0) + (k. (e = 1(0.6)) vag)
=t 6(0)ag(0) = 2((6 — Tug. hirg)
U

In fact the function k, ¢ can be computed explicitly when o = £ and v(a, §) = o
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Lemma 4.26. Assume that o = & = ag. Consider the function

£ 2 2 1
koz(—§+§P1 ua{—" §(1—§2)+€P1—§P2 U,a’g.

It solves
(Mg —v(a,§))ko = —Ceuag,

and satisfies the Neumann condition.

Proof. We take a = £ = ag. For shortness, we remove the reference to (a,&). We want
to solve the equation

(M —V)k=—Ccu.

We have
(M —v)(pu+ qu') = —p"u — ¢"v — 2" — 2¢'u" + q( M — V),
and
(M- -2 -Thu=0, —u"=(@-1u—(&-7).
Thus,

(A —v)(pu+qu') = (—p" +2¢' (v = 1) = Po) +2qP1)u+ (=2p' — ¢")u’.

Looking at the expression of €; in (4.13), we want that

-2 —q¢" =2,
so that we take
/
p=-r-1
5
Let us now determine the function g. We want that
q(g) / 2
—7+2Q((V—1)—P2)+2qpl :—2V7+2£—27 Pl'
We get
q(3) / 2
_7+QQ((V—1>—P2>+QQP1:2VP1—2£V+2£—2(§—T—§> Pl,
which can be written as
3)
—%+2ql((V_1)—P2)+2qP1 = —26(v — 1)+ (2v — 26%) P, + 4EP, — 2P

We look for ¢ in the form
q:a3P3+a2P2+a1P1+a0.
We have ¢®® = —6a; and

q/ = —30./3P2 —20./2P1 — Q.
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We get
3ag — 20 (v —1) = =2¢(v — 1),
—4on(v—1) + 209 =2(v — %) =0,

200 — bag(v — 1) + 20y = 4€,
40[2+2042:—2,
60(3—{-20(3:0.

This gives
1 2
az; =0, a2=—§, ap =¢, 04025(1—52)-
Thus,
2 1
=-(1-€)+¢eP - =P
q 3( &) +En 312
and
q 1 2 & 2
=—7—=—=P—¢—=(-€(+=-P)=—2+=-P;.
P Ty 1 =& 2( 5+31) 2+31

Let us check that ko satisfies the Neumann condition. Notice that «/(0) = 0 and
u”(0) = u(0). We have

0-ko(0) = (—g + 2(1 — 4 £ - ;) u(0) = 0.

g

The following two lemmata will be used in the proof of Theorem 1.19, especially to
find the constant —5 in (1.12).

Lemma 4.27. Assume that a = £ = ag. Then,

3 11

19 37, 19
_ v T2 T4 Y T3 2
(Cekogs Uag) = RIS +( BET 165)%,5(0).

Proof. We drop the index («a, ). We have
(Ck,u) = (Cko,u) = (ko, Cu) = 2(k, (£(6% — 1) —26P, + Py — 0:) u)

where we used Lemmata 4.16 and 4.20, and the explicit expression of ¢ in (4.13).
Therefore, with Lemma 4.26, we have to estimate

]:<(—g+§fﬁ>u+<§(1—§2)+§P1—%P2>u/,(§(§2—1)—2§P2+P3)u—u'>.

It can be written as

I'=051+ 1+ 15+ Iy,
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where
<( flp ) €€ 1)~ 2%+ Bu > ,
< g )+ &P — é%) > ;
< —g +=-P)u u> ,
2, 1 ,
We have
(-5+2r) @@ -n-2n+r) = -SE-0+ 3@ -OR+ER-Tenain
so that ) . )
=€+ 2~ OMy+ €My — SN+ S M. (4.15)

Then, by integrating by parts and using u'(0) = 0,

I = <<(§(1 — &) +¢EP — %PQ) u>u>
I, = <<—g + §P1> uu> + <<§(1 - +¢£P - %P2> uu> .

By integration by parts,

We get

<(—g n %Pl)u',u> _ % n g@ﬂ(m .

We recall that u” = (P, + 1 — £*)u so that

<(§<1 ~¢)4en-3n) uu> S RN VN [ S P

and then
2 2 1 " 2 2\2 2 1 2 1
(5(1 — &) +EP - §P2> u,u )= 5(1—5 ) +E(1=¢€ )Mﬁ—g(l—f ) Mo+E M. —§M4-

We deduce that

1 1
[2_ 3 é 2(0) ( 52) +€(1_€2)M1+5(1—52)M2+€M3—§M4 (416)
Integrating by parts, we get
1
L= 5+ S02(0). (4.17)
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Finally, we again integrate by parts to find

1 e[ /2 1 '
Iy = §u2(0) — 5/ [(5(1 — )+ EP, — §P2) (E(E% — 1) — 26Py + Py)| wldr,
0
so that
1 20 5
I, = §u2(0) -3 (—52(52 — 1) +26(1 — EH M, + (862 — 2) M, — %Mg - §M4) .
(4.18)
It remains to notice that (€k,u) = 2I, to use (4.15), (4.16), (4.17), (4.18), and to
remember Lemma 4.18. O

Lemma 4.28. Assume that o = & = agy. Let
Ceo = —4T(0r + &€ — 7) + 27700 + ;(5 — 7)1 —Art+ 1 ng= Mo
We have
(Gratingstod) = 3 ~ €+ €+ (o6~ 166 ) 0.
Proof. We have

= (T -+ € =P - 2P+ &,
T = (T —€+€)° = —Py+ 3P, — 3P + €,
= (E—T =€) = Py — AP+ 68°Py — AP + €*.

Thus,

8
Ceo = —ATO; + 4Py — AEP, + 2(Py — 26P, + E%)ng + g(—P4 +3EP; — 362 P, + £ P))
— 4(Py — 26P, + &) + Py — 46P; + 662 Py — 43P, 4 €1,

Since we consider (¢ auq¢,Uae), We can replace ng by v. Rearranging the terms, we

get
D 16 3 2 4
(e2uag tag) =2 — gMay+ 4EMs + (46 — €)My — 467 + 367

It remains to use Lemma 4.18.
O

Lemmata 4.27 and 4.28 can be combined with Proposition 4.12 to get the following.

Lemma 4.29. Assume that o = & = ag. Then,

2:0) (e,
<(€§ua7£,ka’£> + <(g£’2ua’§’ua’£> = guag( ) — gyig g) .
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5. SEMICLASSICAL ANALYSIS OF THE FIRST NEGATIVE EIGENVALUE

5.1. About the proof of Theorem 1.14. Thanks to the charge conjugation (see
Remark 1.9), the negative eigenvalues A, (h) can be characterized as follows. For A > 0,
consider the quadratic form

Qa(u) = aan(u) = Xllul®, gan(u) = Iy _gull® + Anlful3o

Let us denote by (Zk(A)) k=1 the eigenvalues of the corresponding operator. As in Section

2, for all k£ > 1, the equation f;(\) = 0 has a unique positive solution; this solution is
Ay (h). On the other hand, we have

gk(/\) = /Yk:()ﬁ h) — N )

where the (7x(A, h))k>1 are the eigenvalues of the operator associated with ¢ . Note
that, by Lemma 2.10(vi), for all A > 0,

(A1) = A2 = 16N = AN = AL ()] (5.1)

and A (h) is the unique solution of

(A, h) = A2
We write A, (h) = ex(h)hz, and the equation becomes
vi(ex(h)h2, h) = ex(h)?h. (5.2)
Note that, by setting A = ah? with a > 0, we have the reformulation of (5.1):
\h 'y (ahz, h) — a®| > ala — ex(h)]. (5.3)

The main goal of the next section is to establish the following estimate.
Proposition 5.1. We have, for all a > 0,
y(ah®, h) = hA(a) + o(h), A(a) = min (Qbo, bgy(a(bg)ﬂ/?)) .
Proposition 5.1 implies Theorem 1.14. Indeed, observe that, substituing this asymp-
totic expansion into (5.3), we get
|A(a) — a® 4+ o(1)| > ala — ey (h)].
Notice that, if a > 0 is such that A(a) = a?, then
er(h) =a+o(l).
Actually, there is a unique positive a such that
min (2()0, bgy(a(bg)_lm)) =a?,

which is given by

a = min(y/2by, ag\/B}) ,

where qq is the unique positive solution of v(a) = a2, see Proposition 4.15. We deduce

that
}llirr(l) e1(h) = min(y/2bg, ag\/b}) ,
—
or equivalently

A7 (h) = h2 min(y/2bg, ag\/b)) + o(h?) .
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5.2. Ground energy of a Pauli-Robin type operator. Let a > 0. We consider the
quadratic form

3
Dan(1) = qpis p(u) = ||y _pull® + ah2 [Jull5q .

and we have

2,
yl(ah%,h): inf #(;)
uen? , () lull
u#0

5.2.1. Localization formula. Let p € (0, %) Let us consider a semiclassical partition of
the unity (x;);ez2 with supp x; C D(z;, h?), and such that

inzl, Z|VXj|2 <Ch™?, (C>1).
JEZ? JEZ?

Lemma 5.2. We have

=3 2w — 12 Y (Tl

jEZ? JEZ?
In particular,

W) > D Lanxju) — >,

jEeZ?

Proof. Let us write

H%,—AM‘Z = Z<d; AU, dy, A(qu»

JEL?

= 3 (i awld_aoxalow) + Oy _au, s ()
JEZ?

= 3 (00 awld il + Cadi_au, d_x ()
JEZ?

= 3 (I Xl + (O[5 ) + iy s _a ()
Jjez?

= 3 (s O 12 = o Xl + 20T (i (), (65 i) )
jEZ2

where we used that the commutator [d; 4, x;] = —2ihdzx; is a function. Taking the

real part, we get

Iy aull® = D7 (s O 12 = 1BV )ul?) -

jez?
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5.2.2. Lower bound. Let j be such that supp(x;) C €. Then, we have
Lo (xju) = [|d5 5 ) [I? = 2hbo|Ix;ull?, (5.4)
since the Dirichlet realization of
dp-ady _5 = (—ihV + A)* + hB

is bounded from below by 2hby.

Therefore, let us focus on the j such that supp(x;) N 92 # (. We may assume that
T € 0f).

Let us bound the local energy 2, 5 (x;u) from below.

Proposition 5.3. We have
Lonxyu) = |V (a(ty) )b = Chz | ||yl (5.5)

Proof. Before starting the proof, let us say a few words about the strategy. The general
idea is to approximate the magnetic field, on the support of ;, by a constant magnetic
field, and to flatten the boundary by means of tubular coordinates. Due to the lack of
ellipticity of the Cauchy-Riemann operators, we cannot choose the canonical tubular
coordinates (given by the curvilinear abscissa and the distance to the boundary). How-
ever, with the exponential coordinates (5.6), we are able to avoid this problem for the
disc, and then, by means of the Riemann mapping, for €2. This amounts to constructing
“conformal” tubular coordinates for (2.
It is convenient to use the change of function

u=e"My.

For notational simplicity, we let u; = x;u and v; = x;v. We have

Dop(uy) = B / e2*/"20:0; 2dx + ah?||vj]| 3 -
Q

Let us use the Riemann biholomorphism F': D — Q. We let w; = v; o F. We get

D (5) = 412 /

1
A 2P W/M o 2dy + ah? /{m ;| F|do s 05 = 5Dy, +i0y,).

Note that w; is supported in a neighborhood of order h” of JD. Let us now use a
change of coordinates near the boundary. Let § > 0. Consider the “exponential polar
coordinates”, y = P(s,T), given by

ypr=e€ "coss, ys=e¢€ 'sins (s,7)€ T5:=10,2m) x (0,6). (5.6)
P is a smooth diffeomorphism in a neighborhood of the boundary. We have
—e"0s = sins0,, — cossdy,, —e’0. = cossO,, +sinsd,,,

and we get
Oy, + 10y, = ie" (0, +i0,) .
The coordinates of the center z; of the support of x; are denoted by (s;,0).
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In terms of these new coordinates, we have

Don(uj) = h2/ 2o PP (9, +i0,.) (w; o P)|*dsdr
Ts

B 27T .
+ah3/ lw; 0 P(s, 0)2| F'()[ds
0

We let ¢ = ¢o F o P. Since ¢ is zero at the boundary, we have that ¢29(9/h — 1. Then,
by using that |F’(e)] > (1 — Ch?)|F'(e"7)|, and by commuting the exponential with
the Cauchy-Riemann derivative, we get

(1 —=CR) ' Dun(uy) = | |(hOs — 056 + ihdy — i0,0)e® M (w; o P)[*dsdr
Ts

2 . )
+ah3/ e/t o P(s, 0)[2| F'(¢7)|ds
0
Then,

(1= Ch) ' Dun(uy) = | |(—ih0s + Ay +i(—ihd, + Ay))W;|2dsdr

|
T

21
+yF'(ei8j>yah3/ W, (s,0)[2ds,
0

where W, = eé(S’T))/h(wj o P) and A = V¢ = (—0,¢,0,6). Now, we have a magnetic
Cauchy-Riemann problem on a flat space, with a uniform Robin condition.
A computation that uses the identity (95 + 9, )(e”""*) = 0 and

VxA=(0?+0*)(poFoP)=e Ay (o F)(P(s,T))
= e 7TIF'(P(s,7))?B(F(P(s, 7)))
=B+ O0(s — sj| + |7 —750),

gives the new constant magnetic field 8; = |F'(y;)|*B(x;).
Using the Young inequality, we get

[(—ihds + Ay +i(—ih0, + Ay))W;[*dsdr
Ts

> (1—¢) [ |[(—ihs+ Ay +i(—ihd, + Ay ;) )W |2 dsdr —e [ |A— A2 W,;|2dsdT,

Ts | Ts

where A; = (A, Ay;) is the Taylor approximation of A at the order one at (s;, 7;):
A~ A;] < CR*,

on the support of W;. We get that

(1 —Ch?) 'y n(uy) = (1 —2)Q;(W;) — Ch4”a_1/ |W;2dsdr, (5.7)
Ts
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with
Q3<W) = / |(—zh(98 + Alyj + z(—zh@T + AQJ))WFdeT
¥

+|F'<ei5j)|ah3/|W(s,0)|2ds.
R

Let us remark that, by construction,
V x AJ = /8] ,

so that after a change of gauge, we can assume that flj = (—p;7,0).
Thus, we get a new quadratic form on L? (Ri) which is associated with a new operator
L;. We are interested in the bottom of its spectrum:

o Q;(W) |
wes? , ®2) [|[W]?
W0

infsp(L;) =

Let us consider the rescaling

1 1

(5,7) = h3B,*(5,7).

We get
. e )
infsp(L;) = hBu;, p;= inf -
i) = Wit 13 = 3y B ) WP
W#£0
where

Q;(W) = /R

(1= Ch*) ' Lanluy) = [(1 —e)hBpu; — ChYe] W52
We choose ¢ such that

|(—i0s — 7 + i(—i0,))W|*dsdT + aB(:Uj)’% / W (s,0)|*ds.
2 R
+

Then,

ch=¢e'h',

so that

e=h"7t%
and
(1= CW) " @up(y) > [yp; — CHE>] W12

In particular, we get

Dunly) > [hBjp; — CHE — ChI* | ||W5 2.
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Then,
Don(uj) = _hﬁjuj — Ch%”p] / ez‘ﬁ(s’T))/hl(vj o o P)|*dsdr
- Ts

> (W85 — Chi+2 — thler} / FEWNIN (1 0 F(y))Pdy
L D

= (1, = onber —cne] | @i @)

WV

FY )l (W = O = onte] [ 0 a) P

WV

1B () — > — ] / /M uy(x)Pda
- Q

WV

:hB(l’j),Uj - Ch%“f’} /Qew/hlvj(:v)’?dﬂf

= (B, —Chéﬁp} / Ixju(z)Pdz.
: Q
Then, letting Ag = (—7,0), we have

. B(x;) Jga [(=i0s — 7+ i(=i0;))ul*dsdr + aB(z;)? [, |u(s,0))*ds
B(xj)u; =  inf E

uEfJ2_A0 (Ri)
u#0

by Jiz |(—i0s — 7 +i(—i0;) yuldsdr + a(by)z [, |u(s,0)>ds
inf

7 ues? , (B2) J[u]?
u#0

= by (a(by)~7?).
The result follows. U

Remark 5.4. It is clear from the proof that we also have a reverse inequality of (5.7):
(1—Ch) ' 2,1 (uj) < (1 +6)Q;(W;) + Ch*e™t [ |W;|*dsdr . (5.8)
Ts

Gathering the estimates (5.4) and (5.5), and using Lemma 5.2, we find that
() > [A@)h = CHA*2 — O] ]2

We choose p such that

1
5 T20=2-2.

Thus, p = g and
EOE [A(a)h — CRi] |lu?.

The min-max principle implies the lower bound in Proposition 5.1.
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5.2.3. Upper bound. The upper bound in Proposition 5.1 follows by inserting appropri-
ate localized test functions in £, ;. Let us provide the main lines of the strategy for
this classical analysis.

We recall that 9
yl(ah%, h) = inf —a’h(Qu)
uen? , (@) |lull
u#0

In particular, we have

Dan(u) [(=ihV + A)u|l* + o hBlu[*dx

1
m(ah2,h) < inf ——= = inf
\uef;s(gm [ wl]? ueH; () [ ]|?

The last quantity is the groundstate energy of (—ihV + A)? + hB. Pick up a point
zo € Q. We can always find a normalized test function ¢, in €5°(2), localized at the

scale h? near xg, and such that
|(—ihV + A)pn||® + / hB|on|*dz < 2B(xzo)h + o(h) .
Q

Now, if B attains its minimum inside at xq, then we deduce that
vi(ah?, h) < 2boh + o(h) . (5.9)

If not, for any € > 0, we may find zy € Q such that |B(zg) — by| < €, and (5.9) is true
as well.
On the other hand, let us consider xy € 92 where the minimum of Bjyq is attained.

Take a fixed cutoff function x centered at x, and a minimizing sequence (W,) C . (R2)
1

associated with g Then, we consider the function (s, 7) = x(s, 7)W,((b})2h~2 (s, 7))
and its avatar ¢, in the original coordinates (afer the maps P and F'). Using Remark
5.4 (where u; is replaced by ¢y), we get

Yi(ah?, h) < hbgu(a(bh) ™) + o(h).
This, together with (5.9), gives the desired upper bound.

6. A FIRST NORMAL FORM

The aim of this section is to start the proof of Theorem 1.19 by reducing the analysis
to a tubular neighborhood of the boundary.

6.1. Description of the operator. We consider the closed quadratic form
Don(u) = A7 _aul® +ah?|ul3q, df o =—2ihd; + A +idy,  (6.1)

for u € Dom(Z,) = Hn—a with

n-a = H'(Q) + H2_A(Q),

A0 Q) ={u € L*(Q) 1 d _yu=0,upn € L*(0Q)}.
We also let

dh,,A = —QZhaz -+ Al - ZAQ .

Let us describe the associated self-adjoint operator ., j,. For that purpose, we will need
the following lemma.
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Lemma 6.1. For all u,v € H'(Q),

(u, dy _pv) = {(dn—au,v) + ih/ nuvdo .
20

Proof. We recall that
(u, 0;v) = —(0ju,v) +/ njuvdo .

o9
Thus,

(u, —2i0zv) = (—2i0,u,v) +i/ nuvdo .
o9
O
By Proposition 2.6 and Lemma 6.1, we write for all u € Dom(.Z, 1), and allv € $;, _a,

(A7 g, df_z0) + ah? / uvdo
o0

= ((dhy_Ad}f_A) u,v>+ih/ d;_Aumda—i-ahg/ uvdo
' 9 o0

so that the operator %, ; acts on L?(2) as
(dm_Ad,j,,A) = (—ihV + A)2 + hB (6.2)
and the boundary condition is
— iﬁd,j_Au = ah%u, on 0f). (6.3)

6.2. Localization near the boundary. We can prove that the eigenfunctions associ-
ated with the low-lying eigenvalues have an exponential localization near the boundary,
at the scale hz.

Proposition 6.2. Let g € (0,2by) and v € (0,/29). There exist C,hg > 0 such
that for all h € (0,hg), all a > 0 and all eigenvalue N < (2by — €0)h of Lup and any
eigenfunction 1y, of £, associated with X\, we have

~vdist(-, 0§2) _ ydist (-, 0)
‘whexp (T +hn! Do | Ynexp Tz < C‘Wh“%?(m-
Lemma 6.3. Let h > 0, x be a real Lipschitzian function on Q0 and ¢ € 9 _a, we

Before giving the proof, let us recall the following lemma.
have

2

L*(Q)

Re (dy ¥, dy _a (X)), = lldy _a OO)II* = [0V xI".
Let us now give the proof of Proposition 6.2.
Proof. Let us define the following Lipschitzian functions
235 x— d(x) = ~dist(x,00) € R,

and
Q3x— xn(x) = PN e R
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Since H'() is dense in Dom(2, ;) and ¥, is Lipschitzian, we get that x3t, belongs to
Dom(Z, ). We have that

Qa,h(l/fh, X%ﬂ/%) = Re <$a,h¢h7 X%ﬂﬂhﬂz
— Re {(d _ptn, di_a (xEn) o + ah* 2 xntnllBe |
By Lemma 6.3, we get that
Do (n: Xtn) = Lan(xntn) — P10V xall22(q) -

Recall that v, is an eigenfunction of .Z, ), associated with the eigenvalue A, so that

Lan(xntn) = W2 [0V Xall72 () = MxatnlZ2q) - (6.4)
Let R > 1 and ¢ > 1. We introduce a quadratic partition of unity of €2,

2 2
Xinrt+ Xonr =1,

in order to study the asymptotic behavior of ¥, in the interior and near the boundary
OS2 separately. We assume that x; 5 r satisfies

1 if dist(x,0Q) > h'/2R
X1,h,R(X) = o

0 if dist(x,00) < h

and that,

max(|Vx1r(X)], [Vx2nr(x)]) < 2¢h72/R,
for all x € 2. Using again Lemma 6.3, we get

Lan(Xn¥n) = Z Do n (Xin X0 0n) — P2 X0V Xkl 22 () -

k=12

We have 2, n(X1.0.8X00n) = 200h||X1.0,RXUn||* Dy support considerations. Let us also
remark that

P2 XnonV Xen el 22 ) < 40/ R xnnll72 (o)
and
W2 0nV Xl 22 @) < B Ixntonll 22y -
We deduce from (6.4) that

Axatnllzzq) = Len(Xanrxntn) + Len(Xanrxntn) — Mvnxalizq) (v +8R™?)
Since 2, n(X2,n,rXYR) = 0, we get
Mxa¥nllz2) = 200kl x1nmx8 00> = Bllnxnll7e) (Y2 + 82 R7?)
Then,

]¢?
200h — X\ — h (% + ﬁ> X1 0 m XU

8c?

R2 ) ||X2,h,,RXh¢h||2 .

< AMxenrxanll® + h (72 +
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Using the assumption on A and the support of x24 r, We get

2 8¢? 2
hle— |~ +ﬁ 1 X1,n,RXn YR

8c?

Rg> X2 mXRYR " < C(R)AIR|1 -

< Allxenrxatnl® + R (’72 +

With v € (0, /2¢), and choosing R such that
8c?
80—(’}/2—|—ﬁ)>0,
we infer the existence of ¢ > 0 such that
ellxanrxntnl* < C(R)|[¢nl*-
We deduce that
Ixrnll 2 < Cllvnll 2
and the conclusion follows by coming back to (6.4). O

Remark 6.4. When B = by = 1 is constant, by Proposition 5.1, for all a > 0,
vi(ah?,h) = hA(a) + o(h) = hmin(2, v(a)) + o(h) .

By Proposition 4.15, v(a) < 2 for all @ > 0 so that A(a) = v(a).
Thus, for any 0 < € < 2 — v(a), there exist hy > 0 such that, for all h € (0, hy),

vi(ah?,h) < (2by — )h.
With the same proof as the one of Theorem 1.14, we also have for all n > 1,
va(ah?, h) = hv(a) + o(h)
and thus up to choosing a smaller hy > 0 we get for all 0 < h < hy,
lah?, h) < (2by — )b,
and the hypothesis of Proposition 6.2 are satisfied for the n-first eigenvalues of .Z, ;.
From now on, we assume that B = by = 1. Let us fix 0 < e < 2 — v(a). Consider
Ni(a) = {n >1:y,(ah2, h) < (2by — £)h}.

With Remark 6.4, we see that, for h small enough, N, (a) contains any given n > 1.

Let us consider the operator ., acting on the square integrable functions of the
small neighborhood of the boundary Q5 = ¢(Ss), with Ss = R/(|0Q|Z) x (0,6), and
where = = (s, t) corresponds to the holomorphic tubular coordinates given in Section D
(where we explain how to construct these coordinates in such a way that [0s¢(s,0)| = 1).

The operator %, acts on L?(€2s) as
(—ihV + A)* + hB, (6.5)
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and the boundary conditions are

1
—x 1
—ind;, _au=ahzu, on 08,

(6.6)
u=0, ondQs\IN.

We denote by (%(ah%, h))n>1 the increasing sequence of the eigenvalues of the operator
952;;1 counted with multiplicity.

We take § = h2 ™" with n e (0, %)

As a consequence of Proposition 6.2 and Remark 6.4, we have the following.

Corollary 6.5. For alln > 1, we have
Yn(ah?, h) < Fn(ah?, h),

and
An(ah2,h) < y,(ah2,h) + O(h™),
uniformly in a, for a in any interval (0, M) with M > 0.

6.3. An operator near the boundary. In this section, we write the operator .:?Z,h
in holomorphic tubular coordinates.

6.3.1. Tubular coordinates. On the neighborhood €25, we use the holomorphic boundary
coordinates

r=(s,t), (s,t)€Ss=R/(|0QZ) x (0,9).
Lemma 6.6. We have
—2ihdz4 A1 +iAy = || 72 (hDS +ihDy 4+ Ay + @'212) . A(s,t) = (dp)ToAoyp(s, t),
where D = —i0d. Moreover, we have

83A2<57 t) - atAl(& t) - |¢/(8 + Zt>|2 :
as _ as(Pl 83@2 81
O Opr Owpa ) \O2) '

81 — ’(p/|72 a1%02 —0s5¥2 83

0 —Oip1 Osipr o)

where ¢’ stands for ¢'(s + it). We deduce that

2|20z = 00205 — Dsspa0y +i(— 0105+ 05010;) = (Dyipa — 10pp1) s+ (— o2 +105501) s .
Thus,

2|90’\285 = (35901 - i@tgol)ﬁs + (—at% + iassﬁl)at = (35901 + ias%)as + i(as% + iasSOQ)at )
so that

Proof. We have

and also

2|¢'|* 0z = sp(Ds +10;) -
Note also that Osp(s,t) = ¢'(s + it) and thus
20: = || 72(0s +i0;) .
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85@1 8s§02
do)t =
(d¢) (3t901 at@z) ’

Recalling that

we have
Ay _ | /’—2 Op2  —0sp2 {11
Ay ? —0wp1 Osip1 Ay
Hence
A +iAy = ¢ 72 (8t<p2/~11 — Ospady +i(—0p1 A1 + as8011‘~12)>
= || ((at902 — i0yp1) Ay + (—Osipo + z’@sgpl)fl2>
= |80/|728590 (Al -+ ZAQ) = ’g&l‘72g01 (Al =+ ZAQ) .
The conclusion follows. O

We recall that that quadratic form associated with .,5/,’27h is given by

Don(u) = [ |(=2ihds + Ay + id)uPdz + ah? | |ul’do.
Qs o0

With Lemma 6.6, we deduce that

~ B B 09|
Don(u) = 2, p(0) = |(hDy +ihD; + Ay + i Ay)ii|*dsdt + ah? / (s, 0)|*ds,
Ss 0

where u(s,t) = uo ¢(s,t), and where we used that |0s¢(s,0)] = 1 to deal with the
boundary term (see Appendix D). The ambiant Hilbert space is now L?(|¢'|*dsdt). To
go to the flat L2-space, we let & = ¢'ti. Since ¢’ is holomorphic, it commutes with the
0 + i0;, and we deduce that

R B 5 |09
Dan(u) = Zypn(v) = |<p'|_2(hD5 +1hD,+ A; + Z'Ag)ﬂ|2dsdt + ah® / |a(s, O)|2ds )
Ss 0

The operators g;h and .5,/”; , are unitarily equivalent.

6.3.2. Change of gauge. Let us now use an appropriate change of gauge to cancel A,.
Consider

t
Ui (s,t) = / Ay(s,7)dr, A=A — V.
0
Notice that

~

t

Ay(s4) = Ay (s, 1) — / 0. Ao(s, u)du, As(s,t) = 0.
0

Clearly, with Lemma 6.6,

—3t1211 = 85142 — 8751211 = |(,0/|2 .

so that, we have

~

t
Ay(s,1) = A (s,0) — / (s +ir)Pdr
0



62 J.-M. BARBAROUX, L. LE TREUST, N. RAYMOND, AND E. STOCKMEYER

s [ 00|
Pa(s) = /0 <A1(U,0) - ﬁ/o Al(U,O)dv) du .

The function 1 is |09Q|-periodic. We let

Now, consider

A=A—_Vi=A-—Vy,
where

=1+ 1y
We find that

. 1 |09 . t .
Ai(s,t) = m/o Ay (v,0)dv —/0 /(s +ir)|*dr,  As(s,t) =0.

By the Green-Riemann formula,

00| 09
/ Ai(v,0)dv = / Aj(v,0)dv= [ A-4/ds= / curlA dz = |9].
0 0 20 0

Thus,
A ! ! -\ |2 A |Q|
Ais.) == [ (s +inPdr, Aas.)=0. =0
0 09|
Letting @ = e~ ™/Mi, we get
_ ) L lool
Dun(@) = [ |¢|7?(hDg +ihD; + Ay)ul*dsdt + ah? / (s, 0)[*ds .
Ss 0

The associated operator is
Mop = (—ihds — hd; + Ai(s,1))|¢'| 2 (—ih0s + ho; + Ay(s,1))
and the boundary conditions are
(—ihds + 70 + hdy) u(s,0) = ah'?u(s,0), u(s,d) =0.
Remark 6.7. By unitary equivalence, the eigenvalues of 9, , are (%(ah%, h))ns1-

6.3.3. Rescaling. We let t = ht with h = hz. We also divide the operator by h and we
get the operator, called ., , acting on the Hilbert space L?(Ss;-1,dsdr) as

My, = (—ihdy — Or + K Ay (s, hr))|¢ (s + ihT)| "2 (—ihds + Or + h Ay (s, hT)) |

and the boundary conditions are

(—Zﬁ@s + % + 87-) u<87 O) = a‘u<87 0) ) u<87 6h_1) = 0 :
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6.3.4. Another change of gauge. For all m € Z, the function s — ™ P91 is |9€)|-
periodic. Thus, the operators

%aﬁ,m — €2i7rm‘a—‘fm%a7he—2iﬂ'mﬁ 7
are unitarily equivalent to .#, ; and act as
Mo pm = (—ih0s — Or + Ay (s, 7))@ (s + ih7)| 2 (—=ihds + Oy + AL pm(s, 7)),

where
2mmh <

Al,ﬁ,m(sa 7') = —W + h_lAl(S, ﬁT) .

The boundary conditions are

» Yo 2mmh B 1y
( zh@s—l—(h mm)—l—&) u(s,0) = au(s,0), wu(s,0h ") =0.

Let us make a particular choice of m. This choice is made so that % — 2mrh s the

0]
1092 vo 1
shn "%

closest possible to 0. Consider

dy, *= min
meZ

Let us denote by mj, the smallest minimizer (there are at most two minimizers), and let

.
2mh h
We have dj, = |r;| and we can write
fﬁ_2mh7rh: ’ 922—7r7’ﬁ~
h |09 109
The constant @ is uniformly bounded:
T
1< 5

With this choice of my, we get the new (self-adjoint) operator
e/Va’h = (—Zh&s — 87— + Al,h’mh)h&I(S + ih7)|’2(—z'h85 + a-r + Alﬁymn) s (67)

where
ht
A7) =10 =1 [ |5, 0) P
0

and
2wy |9 2mym

o9 m2loQ] 09|
The boundary conditions are

(—ihids + 16 + 9;) u(s,0) = au(s,0), u(s,6h~")=0.

7

(6.8)

Remark 6.8. The eigenvalues of .4, are the (W30 (ahz, h))ps1.
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7. MICROLOCAL DIMENSIONAL REDUCTION

Let us now focus on the spectral properties of .4, defined in (6.7), and its boundary
conditions are with the boundary conditions

(—ihds + 0;) u(s,0) = au(s,0), wu(s,0h" ") =0, a:=a—0h.

We underline that # depends on A and «, but that it is uniformly bounded. In what
follows, 6 will be consider a parameter.

7.1. Inserting cutoff functions and pseudo-differential interpretation.

7.1.1. Cutoff with respect to the normal variable. We can prove that the first eigenfunc-
tions of .4, satisfy Agmon estimates with respect to 7 (in Proposition 6.2, dist(z, 0€2)
can essentially be replaced by t(x) near the boundary since we have (D.1)).

This leads to consider the operator, acting on L?(R/(|02|Z) x (0, +00)),

N = (=ihdy = O, + AX, (s + ihxn(r)7) 72 (—ihd, + 0 + AY,,).

1,h,mp 1L,h,mp

with
ht
AY o (8,7) = W0 — 7 — xp(T)A 7! (/ (s, u)|*du — h7'>
0

and xx(7) = x(Th") where x is a smooth cutoff function equaling 1 near 0, and n > 0
being as small as necessary. -

We can then check that the low-lying eigenvalues of .4; ;, coincide with those of A, j,
modulo &(h*). Let us drop the tildas to lighten the presentation.

7.1.2. Pseudo-differential interpretation. This operator .4, can be seen as a pseudo-
differential operator with operator symbol (for more detail, the reader can consult the
Ph.D. thesis by Keraval [23], or the paper by Martinez |26]). To describe its symbol,
let us consider some Taylor expansions (see Lemma D.4):

1" (s + ihxn(T)T)| 72 = 1 4 2hkxuT + 2K X372 + o(R?),

Afh,mh(s, 7) = hf — 7 4+ hexspT? — %hQI{QXth + o(h?) .
Then, we have
Non = Opzv(nﬁ) . np=ng+ hng + Bng + ... (7.1)
where the first symbols are given by
no=(§ =0 =7)(§+ 0 —7) = =0+ ((—7)"+1,
ny =k (26 =7 =0 )xam(€ =T+ 0) +xnTH(E =T+ )+ (E— T —0:)(xaT”))
+20(6—1),

ny =k> [2(—& + &= (0, + £ —T) (7.2)

2 (=0 + €= ) 00r) + (ur®) (@ + €~ 7))+ xir]

+ xpKb (27‘2 —24+47(€ — 7‘)) + 602 — 2} KOT
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where ng is equipped with the boundary condition
(Or +§—a)y =0.
Actually, we have
ny = kxpe+20(E—7) = kX (2T(E+ O, —T)+77), G =2(Tng—£— 0. +T(E 7)),

We also notice that
2 2 2 9 8 3 2 2 4
ne = K° | —47X5(0r + & — T) + 27°x;no + g(f — T)XT® — AXaT + X7T

4
+ xarb (27’2 — 2447 — 7')) + 0% — 2} KOT — dxaX T (0r + € —T) — §X%7'3

Remark 7.1. In our periodic framework, the usual Weyl quantization formula on R
may be expressed by means of Fourier series (on the torus R/(2LZ)):

2

. . 'h A
Op (p)o(x) = ) e*UHhep (j,w]— + whk) bk), w=37,

2
(k.j)ez?
where the Fourier coefficient is defined by

~ 1 [ :
w(k):ﬁ /0 Y(z)e ™ dz .

Let us briefly recall where this formula comes from. We have

1 (e r+y
W - i(x—y)n/h
00l ote) = 5o [ e (S50 vy
1 " i(r— ~ ijwETY ethw
=55 2 vk / eI, m) e e dydn

2
(j.k)ez? R

77 3 ) [ dgerd / dne™ -2/, )
R

( k)eZ?

o D ek / dyevt+5) gp(5, L)

( k)eZ? h

. 1 ' ) T
_ Z ezijQwa(k+;)¢(k>2_/dZGlﬁwz(k—i_;)yp(nv Z)
T Jr

(4,k)€22

= Y e (k)p ( hw(k+%)>.

(4,k)€Z?

When p only depends on &, p(z,£) = x(£), this formula becomes

Opy (p)wo(z) = Y ey (whik) (k) .

keZ
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7.1.3. Microlocal cutoff. Then, we insert cutoff functions with respect to &, and we
consider

JZL,E = Op}?(ﬁh) ) ﬁﬁ(sv 5) = nﬁ(sa Xo(g)g) y

where x( is a smooth cutoff function supported near &,. In this way, n; belongs to a
suitable symbol class (essentially, this means that everything is going as if 1, € S(1),
S(1) being the class of bounded symbols), see [11, Section 3| and [23] where similar
classes are used.

Proposition 7.2. The low-lying eigenvalues of N and those of J%ﬁ coincide module
O(h>).

Proof. The key is to prove that the eigenfunctions of .4, ;, which is a perturbation of
Opzvno, are microlocalized near &,. This fact comes from the behavior of the principal
(operator) symbol ng (its first eigenvalue, as a function of ¢ has a unique minimum,
which is not attained at infinity). A similar analysis can be found in [11, Section 5|. O

Corollary 7.3. For alln > 1, we have
h"\u(a, h) = \o(Aop) + O(R),
uniformly with respect to a in a bounded interval.

7.2. Construction of a parametrix. Let us now work on the operator with the cutoff
functions.

Lemma 7.4. Consider the operator

’FLQ —Zz - o
o = (< e ) Og) 1 Uae = Uagxo(€) -

5 Ut

For z sufficently close to v(a) = v(a,&,), Py is bijective and

P et ol = (ng — 2)7 It
0T ( lag) 2 —v(a,Exol€))) 7 10 ° '

The aim of this section is to prove the following proposition.

Proposition 7.5. We let

AW [ — 2 Uag
yﬁ_oph (( - > 0 )7

Y U g

_ (" 0
P, = (0 0) .
Consider the operator symbols defined by

21 =-2091 2,

and, for 7 > 2,

and
0@2 - —0@0@20@0 - 31@19@0 - % (850@0 . 05@1 - 850@1 . 8&@0) Qo .
Then, we have, for some N3 € N,
Op;jv(o@() + ho@l + h2°@2)¢@h = Id + FL36)(<T>N3) .
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More generally, we can find (2;)1<j<s, and Ny € N such that
Op)Y (2o +h2, + WDy + ...+ W 2,) P, =1d + W o((r)N7). (7.3)
Moreover, the bottom right coefficient of
2+ h2, + 1*2,
18
G, = 2 = v(a,€) = h{intag, tag) + 1 {(upy 71 — 12(s,Ex0(8)) g Uag) -
Proof. We have
D0y =1d.
Let us consider the operator 2; defined by the relation:

1
QoA+ 21 P + 2—2,{0@0, Pyt =0,

Note that {2y, Py} = 0 since &, does not depend on s. Then, consider also 25 defined
by
1
2Py + QP+ 2P0+ o (2o, 21} + {21, 240}) = 0.
With these choices, we have, thanks to the Weyl calculus,
Let us compute the bottom right coefficient of
2o+ h2) 4+ h2,.
We have
po upy ' po ugg
o@l - —Qoylgo = — 0 01 0 0 .

Q% MPy qoMqg
Then,

Dy = 20 P22y — 2912 — % (0e20 - 0,21 — 0,21 - 0: D) 2.

Note that

o Opyt O e 0\ ( ' U
8:Dy-0,P, - Dy = ¢ro 50"5><§ )( 0 : :
£ =20 1 0=FK <<-,8§Ua,§> _6§V(057§) 0 O (-,ua7§> Z—V(()QgXO(é))

Then, we have

. 1. K § §
Gz = —dy oty + do TPy ndy — o (Gellag, Ogtlag) — 021 0P - 2y).
Note that
—0521- 0Py - Qo = 0521 - Py - 0: 2y,
and then

71(5])71 pl(gq+) (fl — 2 0 ) ( ) p—l Ot
0,2, Py-0c 2y = —r' [P0 OP0 Po Do) (o o £Po o\
1 P : (qo (gpol 9o ng(—;— <"ua>5> 0 <'7a§u0¢7§> _aﬁy(aag)
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We deduce that

!/

. . 1. K . . . .
G = —qo 2qy + qo Tupy Mgy — 5; ((Celiag, Oeliag) — (CeDellag, Uag))
= —qg Mgy + go Tupy gy,

where we used Lemma 4.16. The existence of the 2; in (7.3) can be obtained by
induction. g

From now on, we fix J > 2

Proposition 7.6. We have

dist (0, 5p(@%,) [41] < € (1 -+ dist(0,5p(Q%,))) (e — 2l + A7 () 0]
Proof. We let

Tgy_ (@ QF
Qh Oph (QO‘i‘he@l"’h Q2+ A+ R 9@]) = Q_ Qi ,

and recall that
Non—z II* .
o= (T ) = 0nl ), = 0p g,

We have
Qh,yﬁ =1Id -+ h‘]+1ﬁ(<T>N‘]) .
This implies that
Q (Man—2) + QFII = hJ+1ﬁ((T>NJ) ,

and
Q(Mop— 2) + QT =1d + B o((r)V7).
We get that
6] < CIT|| + Cll(Aan — )0 + CE (N4
and

IQ* Tyl < Cll(Aan — 2)¢ll + CRT ()M

Then, since Q* is self-adjoint and by using the spectral theorem,

9 < € (14 s ) (o = 20l + R 01D,

so that the conclusion follows. O

Proposition 7.7. We have

dist(sp(Aen), 2) ¢l < CIQZ 2] + CR |y
Proof. We have
P9y, =1d + O(R7H) .
It follows that
(M= 2)QF +IT°QE, = O(h'+),
and
T =I1d+ o(r’*).
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We get
[(Aas = QTP < CIQZ N + CR ]l
and
dist(sp(Aan), 2) QY| < CIQZw | + CR ]l
Then,

dist(sp(A7), 2) ¥l < CIQZ ¥l + Ch [y
O

Let us consider the case when J = 2, and consider the pseudo-differential operator
whose Weyl symbol is

p‘;iﬁ(& 5) = l/(Oé, g) + h<ﬁ1ua,£’ ua,£> - h2<(ﬁ1 (‘/1{1,5 - V(av ga))_lnlﬁl - ﬁ2)ua,£7 ua,§> )
(7.4)
where £ = &xo(£). Due to the fact that v(«a,§) has a unique and non-degenerate
minimum, we can check that the low-lying eigenfunctions are microlocalized near &,.

Lemma 7.8. For all normalized eigenfunction v of Op)' psf associated with an eigen-
value N < v(a,&,) + Ch, we have

Ova(XhW = ﬁ(hoo) )

with xr(§) = X(h_%”({ — &), where x is a smooth function equal to 1 away from a
fixed neighborhood of 0, and equal to 0 near 0.
Moreover, we have

Mo, h) = v(a, &) + O(R) .

In particular, Lemma 7.8 tells us that the first eigenvalues lie in D(v(«, &, ), Ch).
From Propositions 7.6 and 7.7, we deduce the following.

Proposition 7.9. For z € D(v(a,&,), Ch),
dist(2, 5p(Op}’ (")l l] < € (1 +dist(z, 5p(OpY (55)) ) (|(Azp— 2Dl +R 7)),

and

dist(z, sp(Aa) [[0]] < ClIOP (057) — 2)¢ll + CH [y

In addition, we have
Aa(Aan) = X, R)| < CR*, o =a—0h,
uniformly with respect to a € (ag —n, a0 + 7).
7.3. On the effective operator. Let us now consider an a in the form
a = aog + hay + R*as,
or equivalently
a=ay+ha; +Ray, ag=ay, og=a;—0, o =as.

For such a choice, let us perform the spectral analysis of OpXV(pgﬁ). Note that, thanks
to Lemma 7.8, we can remove the frequency cutoff xo(£), up to a remainder of order

O(h*). We can also replace y;, by 1 thanks to the exponential decay of u,¢ modulo
O(h>).
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Then, we expand the symbol

pi(5,€) = v(ao, &) + i (5,€) + W*p5" (s,€) + O(1°),

p‘iﬂr(sa 5) :aoﬂ/(&m 5) ((11 - ‘9) + <n1uao,§7 uag{) )

off o agy(ao,f) 2 75

Py (5,€) =0av(ag,§)as + T(al —0)* + (a1 — 0)Da(mUag, tag)(a)  (T-5)
- <(n1(%ao,§ - V(a0a gao))_lﬂlnl - n2)ua0,£7 uao,€> :

Lemma 7.8 invites us to write a Taylor expansion of p¢f near &,,. We can write

;v y Sag
B (5,€) = vla0, 6a) + H0ut(an, s + A0S ¢ g o

Hh(PY (5, ao) + O (5, a0 ) (§ — &ap)) + 7 ~eﬁf( +8ag) 71
where 1, € S(1) (i.e., r; and its derivatives at any order are bounded) satisfies
’rhl C|€ gao|3 + Ch|€ gao |2 (76>

and

9av(ao, &a
G 0:80) (4, )2 4 (a1 — )00 1110, 10 (00)

- <<n1 (ﬂao,ﬁao - l/(CL()? gao))_IHLnl - n2>ua0:£a07ua07§a0> (77>

pgﬁf(S’ Eap) =

Let us consider p$f(s, &,,). By using (7.2) (with x; replaced by 1), Proposition 4.12,
Lemmata 4.8 and 4.10, we get

piﬁ?(s? gao) =0 V(aﬂ gao)(al - 0) <n1uao Lag» Wag £a0>
= Oav(a0,&aq) (a1 — 0) + 20((§ — 7)ug, Lag 1 Yao, £a0>
= a1u307£a0 (0).

Therefore,
Py (s,€) = v(ag, &ay) + aw?m,g (0)A + Uao a (0)azh® + 15" (5,€) + 7, (7.8)
where
82 9 aO A~
5 (s, &) = LD e0) (e e (s, £0)(E — €)W (5,6) . (7.9)

2

In particular, we have found our ultimate effective (differential) operator

agl/(a(),fao) 2
HECRORD, - )

%;L <8§p (8,8a0) (RDg — &4y) + (RD, — fcm)aﬁpiﬂ(sa §a0)> + hQﬁgﬂ(Svgao) .

Z — OpY (7T =
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We can rewrite it in the following form

_ 02v(ag, &) 0epS (s, &00) ?
eff _ ¢ 05 Sao N ¢D1 » Sag
Py = - hDs — &ay + h—agu (@0.60)

(aépﬁﬁ(& fao )) ’

2 ~eff —
TR P o) = o )

(7.10)

Lemma 7.10. Let (Xiﬁ(a, h))ns1 be the non-decreasing sequence of the eigenvalues of
P We have, for alln > 1,

X (a, h) = O(R?).
Proposition 7.11. There exist C;hy > 0, n € (0,%) such that the following holds.
Consider the operators ﬁgﬁ’i defined by

Teff £~ Weeff, £
Z, =O0Opyp,

where

8627/(6“)7 éao)
2

Bt = (1£Che™) (6 =00+ ROeD" (5. £00) (€= Eug) +- 75 (5, 0y £ O

For all h € (0, hy), we have
v(ag, €ay) + arud, ¢, ()R + asug, ¢ ()" + N0 (a,h) < X (a, h)

and
2T (a, 1) < v(ag, &) + aru? o (0 + agu? . (0)E2 + XEH(a, R).

ag 7£a0 ao 7£a0

Proof. Let us recall that psT is given in (7.8) and that the remainder r is defined in
(7.6). We have

Pt — <y(a0, o) + aluzojgao(O)h + a2uzo,£a0(o)h2> — 5o (5, €) 4 7
We have

(OpyY (B3 (5,€) + ra)b, 1) = (Opy By (5, )1, 1) + (Opy e, 1)) .

Let us discuss the upper bound, the lower bound following from similar arguments. We
consider

En(h) = spant;;,
1ISGSN
where (1) is an orthonormal family of eigenfunctions of Op," p;" associated with the

eigenvalues (X‘;’-H(a, h)). We can prove that, for all 1) € &y (h), we have
Opi [X (B2 7( — &) = ¥ + O ()[4 ]], (7.11)

where x is a smooth cutoff function equal to 1 near 0 with compact support, and
n e (O, %) Then, by using (7.6), (7.11), and classical pseudo-differential estimates,

(Opy rp, )] < Ch27(|(ADy — &ap )0 [|* + CHIN(AD, = &) [1” + CR* |02,
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for some 7 € (0, %) Indeed, we can write

Tﬁ(& 5) - (5 - gao)th(sa 5) + fﬁa

where 7, and 75, belong to S(1), with |7 < Cl€ — &,,|, and 7, equals 0 near &,,. Due to
(7.11) and support considerations, we get

Opy (Fa)y = O(h%) |14

Then, a computation gives
W W W W h?
Oph (5 - fao)oph (fh)oph (5 - fao) = Oph (é - £a0)2fh + Zagfh )

from which we deduce that

(0D (7 (E—Eag) ), ¥0) < (O} (74) (D —Eap )10, (RDs—Eag )00)+C R3[| OpyY (927)00 |40 -

The last term can be controlled by the Gérding inequality (in the class S°(1), with
6 =3 —n)and (7.11):

1OpY (927)]| < Cha~"||3]].
We deduce that

(Opy! (B3 (5.€) +10)0,¥)
< (0P (B3 (5, €)1, ) + Ch2 7| (RDs — ag |12 + CRJ| (ADs — & )00 | + CH 7[00 ]1?,

which gives the desired upper bound after recalling (7.9) and using the min-max prin-
ciple.
The lower bound follows in the same way (by using the eigenfunctions of Op;* p¢f). O

Proposition 7.12. For alln > 1, we have
AT+ (a, B) = AT (a, h) + o(h?) .

Proof. This comes from the fact that, if ¢ is an eigenfunction of Opzv(ﬁ;ﬂ’i), resp.
Op,Y (751), associated with AT+ (a, k) = O(h?), resp. X(a,h) = O(h?), we have
(D5 = &ao )P 1> < CR2|||%. 0

With Corollary 7.3 and Propositions 7.9 and 7.11, we deduce the following important
corollary.

Corollary 7.13. For alln > 1, we have

h_l)\n(a'a h) = V(a07 gao) + CL1U2 (O)FL + a2u20,§a0 (O)FLQ + /):szﬁ(a’v h) + O(hQ) :

ag :gao

7.4. Proof of Theorem 1.19.
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7.4.1. A choice of a. From Corollary 7.13 and (5.3), we deduce that
ala — e ()| < [v(ag, &) + arul ¢, (VR + axul, ¢, (0 + X (a, h) — a®| + o(h?).
It remains to make a clever choice of a¢; and ay,. We have
a = ao + hay + Fas .
We want that
v(ao, &) + a1l ¢, (0)h+axu? o (05 + X (a, k) — (ap + hay + h?ay)
to be o(h?). By the choice of ag, we have
v(ao, &qy) = v(ag) = ag .

Then, we would like to have

au? . (0) = 2apa; .

ag 7&5‘0

By using Lemma 4.8, we have
e, 0) =2 [ (€0 =, (1,

and by Proposition 4.12 (with our choice of ag), we have &,, = ag so that

Ugg 0 (0) — 200 = —Q/R tuy ¢, (H)dE < 0.
0

Thus, we must choose a; = 0.
Now, we must choose as so that

2 _ 2
2apa2h° = Aglqq ¢,

(0)R% + AT (a, h) + o(h?) .
Note that /):‘fff(a, h) only depends on ag. This leads to choose

(0)7" X (ag, h) .

-2 2
az = h™"(2a0 — ug, ¢,

With this choice, we get
en(h) = ag + h%ay + o(R?).

It remains to describe @ﬂ” in order to get Theorem 1.19.

7.4.2. End of the proof. Let us now analyze the dependence on 6 of 3/523 defined in
(7.10). Let us look at the first term. We have

aﬁp(leﬁ(sa gao) - —Qaaagl/(ao, £a0> + 86 <n1uao,57 Ua0,§>
+o00
—9 (—Mw(ao, ) 420 [ (€~ r>u30,§<7>dr> KOt . )
0

= 0071 (ag, £ap) + KO¢ (Cetlag ¢ Uagse) -
where we used n; = k6, + 260({ — 7) and Lemmata 4.8 and 4.10.
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This shows that

2 2
Oepi" (5, Eay) O (Cetiag £5 Uao )
ED, — €qy + i 255wl ) (EDC €0+ 16 + B £ Jao,
( 5 ang(at)a éao) 5 agQV(GO, fao)

2 2
- (hDs—gao+h9—hg> - (hDs—a0+h0—hg> ,
(7.12)

where we used Lemma 4.20 and the fact that &,, = ao.

Remark 7.14. We recall that the expression of 6 is given in (6.8). By the Gauss-Bonnet
formula,

1 [l o
), O g
Thus, in (7.12), due to the gauge invariance, § can be replaced by 5 = ﬁ. This, with

Remark 1.18, is consistent with the expression of t;, in (1.12).

Let us now look at the second term in (7.10), i.e.,

(060" (5. &)
D5 (85 €ap) = 207v(ao, Eay)

where we recall (7.5) and (7.7).

Let us explain why this term does not depend on 6. It depends a priori on 6 quadrat-
ically. Let us gather the terms depending on 6 linearly (they have all k as common
factor):

L = —0a(Ge, Uaguy s Uaga,) — H(E = TV (M — v(a0)) TG, Uap.tny » Yanitay )
- a§<C€§ua0157 ua0,§> + <(27_2 -2+ 47—<§ - T))uaoéao ) ua0,£a0> . (7'14)

(7.13)

Note that
6 =212 —2+47(E — 1),
so that (7.14) becomes

L = _2<%uoﬁfa0 ? 8O¢ua7§a0 >_4<(£_T) (%_U(ajo))_lﬂL%ua07fao ) u007§a0>_2<%fua07£a0 ? Ua07§a0> ‘

We recall that (%, Uag.e,,, Uag,ea,) = 0 S0 that T e, ey e, = Ceoy Uag,ca,» a0 We use
Lemma 4.25 to get

L= _2<(g£a0 Uoray aaua,§a0> + 4<(€ - T)ka(),ﬁao ) ua07€a0> - 2<(g€uao,§a0 ) Ua0,£a0>
= _2<%§-a0 ua7£a0 ’ aaua7§a0> + 2]{:@07&10 (O)U’aOaEaO (O)

=2 [((Magtay — V(00) ity Dttty + oy (0) 1, (0)]

=2 Ky g0y (0)0utta 0y (0) = Fatny (0)00Drtta s, (0) + ity (0) e, (0]

where we used Lemma 4.7, and the fact that (.#,¢,, —v(a0))0atag,, = 0. Let us now
recall that &,, = ag, by Proposition 4.12. In addition, since 0;uq¢(0) = (@ — &)uqe(0),
we get

aa&ua,gao (O) = uamgao (O) .
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This implies that
L=0.
Let us now gather the terms depending on 6 quadratically:

o 82V(a07 gao)
B 2

+2((6 = 7)(May g0y — 1(a0)) TN (=2(€ = T)Uag,y ) Uagy) + 1 =
By Lemma 4.23, we get
(Mg ay = v(00)) T TIH(=2(€ = T)Uase,,)
= (Mo g — 7(a0)) T (=2( = T)ttag,, + g, (0)ta )
= Vag,¢ay T Jao,Eay -
Thus, with Lemmata 4.9 and 4.22,

_ 821/(@07 5&0)
2

C — 200((§ = T)Ua,ey > Uatay )

821/(&0, gao)

C - 2aa<<§ - T)uf’hfao ) ua7§a0>

82]/(@07&1 )
+ 2<(§ - T)(Uam{ao + ga0,§a0)7 ua07§a0> +1- ==

2
621/ a 75a
— ( 20 o) —20,((§ — T)uoc,fagaua,fao> +2((& — T)ga07§ao,ua07£a0>
+ uao,fao (O)’Uao,fao (0)
Ozv (a0, &ao)
= 20 0/ 28a<<€ - T)“Oz,gao 9 ua,£a0> + 2U/a07§a0 (0)?](10,5&0 (0) + u(lo,ﬁao (O)QGO,&IO (O)
Oxv(a0, ao)
ey 20 0 — 4<(£ - T)ua,éjao Y aaua,£a0> + 2'U/a07£a0 (0)'2](10,5(10 (0) —|— uao’gao (0)gao,£a0 (0)

Using Lemmata 4.11 and 4.24, we get
C=0.

Therefore, in (7.13), we can replace 6 by 0. Using again Lemma 4.20, we see that it
remains to consider p§l (s, &,,) defined in (7.7) and given by

P57(5, Eag) = (1 (Mg 0y — (a0, Eap)) T TN = 112) Uiy 15 U ) (7.15)
where n; and n,y can be replaced by?
ny =K, ng= /12%572.
Hence,
75 (s, €ap) = K ((Cféaouao,fw Kag £ay) + <(€E,2uao,€a0’ua0£ao>) :
Lemmata 4.29 and 4.20 show that

(aﬁp?ﬂr(sv 5@0))2
Qagy(am Sao)

R28§I/(CL07£@0) - H_zagy(a'()?gao) '

" (a0, )
= —0:v(ao, &) — = —
127€7 0 Sa0 8 12 2

ﬁgﬁ(sa 5(10) -

3See Lemma 4.28 and (7.2).
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Recalling (7.10), (7.12), and the discussion in Section 7.4.1, this ends the proof of
Theorem 1.19.

APPENDIX A. THE RESULTS UNDER VARIOUS LOCAL BOUNDARY CONDITIONS
For n € R, and n is a unit vector, we define the boundary matrix
B, n = —ioz(o - n)cos(n) + o3 sin(n) .

B, is an unitary and Hermitian matrix so that its spectrum is {£1}. For any regular
function n: 92 — R, we introduce the local boundary condition

Bys)ns9(s) = o(s), seo,

where n: 9 — S! is the outward pointing normal and ¢: 9Q — C2. The associated
magnetic Dirac operator (2, a ., Dom(h, Zj,a.)) acts as P, a on

Dom(Zha,) = {¢ € H'(Q)?, Bynp = on dQ} .
The case n = 0 correspond to the MIT bag boundary condition. Note that

B _ sin(n)  —imcos(n)
T \incos(n) —sin(n) )’
so that the boundary condition reads

Up = inL.(n)ul ;
1 + sin(n)

where p = (uy,ug)’.
Assumption A.1. n € C1(9) and cos(n(s)) > 0 for all s € ON.

In [8], the authors proved that under Assumptions 1.3 and A.1, I, a , is self-adjoint.
We define
cos(n(s))

: Q —
vis € 1+ sin(n(s))

eR,.
Since 0f) is compact, we get that

0 <infy < 7(s) <supy < +00. (A1)
o0 90

Notation 11. Let
ulo., = / 2]y ds,
o0

where u € L?(9€). By (A.1), this norm is equivalent with the one introduced in
Notation 2.

It is straightforward to see that the proofs of the min-max characterization and of
Theorem 1.10 are exactly the same up to the replacement of the norm on the boundary.
In particular, the constants in the asymptotic analysis are defined with respect to the
corresponding weighted Hardy norm on the boundary.

Theorem 1.14 has also its counterpart in this context. Here, the proof has to be
slightly adapted by Taylor approximating v around each point of the boundary. We
choose to present our proof for the MIT bag condition only in order not to burden the
reader with complicated notations that do not give more insight on the problem. More
precisely, we get :
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Theorem A.2. Under Assumptions 1.3, 1.6, and A.1:
(i) Under the further assumption 1.7 we have, for all k > 1,

A = disty ((z = zmim) ", HG2(Q))
dists (Zkil, ’Pkfg)

2
) L=k e2omin/h(1 1 o 0(1)),
(ii)
A7 (h) = h# min <\/2b0, e/ B@) € aQ) + opso(R?),

where for any v € 082, cy) > 0 is the unique positive solution of the equation
Uy () = ¢ with

Jg2 1(=i0s — 7 4 i(—10;))ul*dsdT + cy(x) [, |u(s, 0)[*ds
I/V(m)(c) = inf s .

e H(R2) [[ue]|?
u#0

Remark A.3. Using Remark 1.9, we also cover the case cos(n(s)) < 0 for all s € 9.

APPENDIX B. NEGATIVE EIGENVALUES AND VARIABLE MAGNETIC FIELDS

Let us assume that B is smooth and positive. As we saw in Sections 6 and 7, the
asymptotic analysis of the negative eigenvalues is related to the one of a Schrodinger
operator with a Robin-like boundary condition (see the quadratic form (6.1)). We
proved (see Proposition 5.1) the following one-term asymptotic expansion

Ai(a, h) = hmin (200, by (alth)~2)) +o(h),

where by = min, g B(x) and b, = mingecpo B(z).
It implies that
A7 (h) = h2 min(y/2bg, ag\/b)) + o(h?) .

B.1. Case of boundary localization. As for the case with constant magnetic field,
when ao\/b_6 < v/2by, we can prove that the first eigenfunctions of ., j, are exponentially
localized near the boundary when a is close enough to ag \/b_’o . In this case, we have

min (250, bgu(a(bg)*1/2)> = Vv (a(b))1?).

Let us now explain how our strategy can be adapted to describe the asymptotic behavior
of A\, (a, h). The key point is still the study of .47 , see (6.7) and to use its interpretation
as a pseudo-differential operator, see (7.1). The main difference with the case of constant
magnetic field appears in the principal operator symbol. We can check that ng is
replaced by
=07 + (& = b(s)7)* + b(s) ,

where s — b(s) is the restriction of the magnetic to the boundary, and where ng is
equipped with the Robin condition

(8T+€_a)w:()7
where we recall that a = a—hf#. We also recall that 6 is defined in (6.8) (see also Section
Jq B(z)dx

6.3.4 where vy has to be replaced by ). Implemeting the Grushin method, we see

09
that the principal symbol of the effective operator is the first eigenvalue of ngy, denoted
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by (s, €). It can be explictly described thanks to v. Consider the rescaling 7 = b(s)_%%,

we get
a §
s, )=b(s)v| —,—~ | .
(s,€) = bls) (W b(s>>

In order to study the function p (and its critical points), we will need some lemmas.
The first lemma comes from the concavity of o — v(a).

D=

Lemma B.1. For all o > 0,

V(o) < o

Lemma B.2. The function f : (0,+00) > b+ bv (%) 18 increasing and its derivative
18 positive.

Proof. We have seen in Section 4.7 that v is analytic and that v/ > 0. We have
T :V<1) _iyf(&> 2&,/(&) 0,
FO=\) " \5) 7 o’
where we used Lemma B.1. O

Proposition B.3. For all s € 092 and £ € R, we have

by <%> < b(s)v (%) < pils,€).

In particular, byv | == | is the minimal value of L.
V%

Moreover, if b has a unique minimum at sg, then p has also a unique minimum at

5,€) = | S0, /Do |.
(s,€) ( f§ﬂ>

Proof. The inequality follows from the fact that

v(a) = rgleiﬂg v(e,§),

and from Lemma B.2. Taking sy a minimum of b and £ = \/6_65\7_ (see Proposition 4.5
%

for the definition of o — &,), we get the minimal value. By using the strict monotonicity
in Lemma B.2, we get the conclusion about the unique minimum. O

Let us now make the following generic assumption.
Assumption B.4. b has a unique minimum at sg, which is non-degenerate.

Proposition B.5. The function p has a unique minimum. This minimum is non-
degenerate.

Proof. From Proposition B.3, the minimum is uniquely attained at the point (sg,&y) =

(so, \/b_{)f \/c«b_/> . We have just to check the non-degeneracy.
0
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We have
Oc(s,€) = /I(3)0ev (b(j)é , b&) ,
and
Opu(s, §)

At this point, we have®

,,(L L) :V< a ) @I,<L L) :y/<L> |
b(s)z b(s)? ()t ) \b(s)} b(s)} b(s)h

Lemma B.2 shows that 0'(s) = 0 which is consistent with the fact that b is assumed to
be minimal at s = sg.
Let us compute the derivatives of order two at (s,&) = (o, &o)-

We have

€o
O2p(s0,60) = v | ——, —= | >0, (B.1)

5 ©\bls0)? blso)?

888£M(807§0) = 07
Ppulso, &) = '(so) [ v | ——— | - —2 [ -2 >0, (B.2)
R bs0) ) 2¢/b(s0) \ V/B(s0)

This shows that the minimum is non-degenerate. U

We can prove that the eigenfunctions of .4, are microlocalized near (sg,&p). The
localization in space near the minimum of b allows to take 8§ = 0 by using an appropriate
local (near sg) change of gauge. Thus a = a.

By using the Grushin reduction (and the harmonic approximation of ), we get the
following asymptotic expansion.

Proposition B.6. We have, for some dy € R (a priori depending on a),

/ a 3 1 2 2 2
An(a, h) = byhy (ﬁ) + h2 ((n - 5)\/@#(50,50)85#(50,50) + do) + O (h?),

where the second order derivatives are given in (B.2) and (B.1).

4Recall that, for all a > 0, /() = dv(a, &y).
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From this, we can deduce the following asympotic expansion of the negative eigen-
values.

1 h 1 -
A, (h) = agh® /by + 240 ((n - 5)\/3§M(30;§0)852N(30;§0) + do) +o(h),
with dy € R and where « has to be replaced by ag in the expression of the second order
derivatives.

B.2. Case of interior localization. When ay+/b) > /2y, and when a is close enough
to v/2by, we can prove that the first eigenfunctions of .%,;, are exponentially localized
near the set {B = by}. In this case, the boundary can essentially be forgotten and the
model operator is the electro-magnetic Schrédinger operator

(—ihV — A)* + hB(x).

Here A and B are extended to R? in such a way that the minimal level set of B is not
changed. Modulo &(h™), this operator governs the spectral asymptotics of %, . The
spectral analysis of such an operator can be done by means of various methods, one
of them being the Birkhoff normal form, see [29] and |22, Section 4] where the electro-
magnetic case is tackled. In the generic case when B has a unique and non-degenerate
minimum at xg € €, we have

Anla, h) = 2bgh + h? (co(2n — 1) + 1) + O(h?),

where ¢; € R and

\/det(Hess,, B)

B(xo)

Cop =

From this, we deduce that

njot

_ 1 3 Co 6]
AZ(h) = hiv/20 + B3 2 — 1) +
(h) 0 (2\/26()( U RN

APPENDIX C. PROOF OF LEMMA 2.4

)+ o).

We use Remark 2.3 to consider the case when (2 = D. We let
2 (N)=<uel*N): Z(n 4+ 1) Hup)? < 400
n=>0

Thanks to the isomorphism expressed in (2.2), (5#2%(D), (-, -)op) is a Hilbert space.
Consider

K = uGEQ(N):Z]uanl

n=0

It is sufficient to show that K is precompact in ¢2(N). Let ¢ > 0. There exists N € N

such that, for all u € K,
1 9 _ €
< —.
Z n—|—1|un| 4

n>N+1

[\
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Moreover, the unit ball of CN*! for the standard ¢?-norm is precompact, and we can
write

M
g
3(&0,. .. ,CLM) & CN+1, BN_H(O,l) C U BN—H,w (aj,—) ,

, 2
7=0

where By, are the balls for the Efu—norm. We have

KCUB (as:5) .

]_

where a; denotes the extension by zero of the finite sequence a;. Indeed, there exists
N € N such that, for all u € K,

N
€
U_ZUjej <§.

&,

Then, Z;V:o uje; € By41(0,1), and the conclusion follows from the triangle inequality.
Here, (e;);>0 is the canonical basis of [?(N).

APPENDIX D. HOLOMORPHIC TUBULAR COORDINATES

The aim of this section is to define an appropriate system of coordinates x = ¢ (s, t)
near J€2. We want ¢ to be holomorphic, and that s — ¢(s,0) = (s) is a counterclock-
wise parametrization of the boundary by arc length, i.e., |7/(s)| = 1.

D.1. Definition of the coordinates.

Assumption D.1. The boundary 0X) is an analytic curve, i.e. there exist p > 1 and
an analytic and injective function

g:{p™ <ol <p} = R?,
such that gif|.j=1y is a reqular parametrization of OS).

Proposition D.2. Under Assumption D.1, there exist 69 > 0 and a function

v: R/(|0OQZ) x (=bdp,00) —> R?,
w = (s,1) — (s, t) =,

such that

(1) ¢ is holomorphic i.e. Ogp = 1/2(0s +i0;)p

(ii) ¢, =0} =Y 1S a positively oriented pammetmzatwn by arc length of 0%,

(iii) @ is injective and 2 = |0pp(s,t)| = 1/2 for all (s,t) € R/(|0Q|Z) x (— 50,50)

(iv) @0y C Q and ¢ induces a parametrization of a neighborhood V' of the boundary.
(v) Forallz €V,

%t(x) < dist(z, 092) < 2t(z) . (D.1)
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D.2. Proof of Proposition D.2. We will define ¢ as the flow of a gradient. The
following lemma will be crucial.

Lemma D.3. There exists an open set U C R? and a reqular function ¢: U — R such
that 0 C U and
AC =0 onU,
¢ =0 o0n0Q, (D.2)
OnC =—1 on 09Q2.

Proof. By |28, Proposition 3.1] and Assumption D.1, there exist o > 1 and a biholo-
morphism F: I(0,79) — F(D(0,70)) such that F(D) = Q. Denoting { = ¢ o F, the
problem of the existence of (U, () such that (D.2) holds is equivalent to finding an open
set U D 9D and a function ¢: U — R such that

@f =0 onU,
¢ =0ondD, (D.3)
OnC = —|F'| on dD.

Since, the function F’ does not vanish on D(0, ), there exists a holomorphic function
G on D(0,70) such that G2 = F’ and GG = |F’|. The function z — G(2)G(z71) is
holomorphic on {ry* < |z| < 7} and coincides with |F’| on dD. We can write for
—1
ro. < |z] <o,
G(x)G(z™Y = Zajzj.
jez

Since |F'| € R, we have that a; = a—; for all j and the radius of convergence r; =
limsup; , o a; |7 of 37, a;27 satisfies ry > ro. For z = re™* such that ry' < r < r,
we define

5(2) = —aglog(r) — Z a; (ﬁ + %) s

2
jEz\{0} J
P
= —aglog(l2)) = > (7 + —2)
) J —4]
JEZ\{0}
log((2l) — 2R a2+ 2
= —agp log(|z]|) — 2Re aj | —+—1,
= \Y Y
and the conclusion follows. O

We can now prove Proposition D.2.
Let v: R/(|0Q2]Z) — 0L be a positively oriented parametrization by arc length of
0€). We define the function ¢ as the solution of the following Cauchy problem

Oip(s1) = T opls,1),
{w@ﬁ) —5(5). (B4

By Cauchy-Lipschitz Theorem, there exists dp > 0 such that the function ¢: R/(|0Q2|Z)x
(—do,d0) — U is well-defined, regular and injective.
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By (D.4), we have for all (s,t) that 0, o ¢(s,t) = 1. By (D.2), we deduce that
Cop(s,t) =t and 0 = 0s(C o )(s,t) = V((p(s,t)) - Osp(s,t) so that

Op(s,t) - Osp(s,t) =0.
Therefore, there exists a regular function a such that
Osp(s,t) = a(s, t) JOyp(s, 1),

0 —1

with J = (1 0

>. By (D.2), we have

Osp(s,0) =7'(s), (s, 0) = —n(s),
so that a(s,0) = —1. We also have a(s,t) = 0sp(s,t) - JV((p(s,t)) and
Ocr(s, 1) = 05p(s,) - JVC(p(s, 1)) + Osp(s, t) - JHess ((0(s, 1)) (s, 1)
Notice that

V¢l V¢l
and using the fact that (V)T JV( =0,

) B Hess ¢ Hess ¢V (V)T
Oy - JV( = Osp - ( NEE o V(|4 ) JVE

B Hess ¢
=0 (oge ) Ive-

P <Hess§ B 2VC(VC)THeSSC) Do

By (D.2), we conclude that

8390 8590
Oy = ——— - (Hess (J + JHess () V( =
= o et IV

and Jsp = —J0;. This ends the proof of the proposition.

D.3. Taylor expansions with respect to t. We let v(s) = ¢(s,0) and we have
|7/ (s)| = 1. The curvature « is defined through

v'(s) = —kn(s). (D.5)

Lemma D.4. We have
2 2

t t
O'(s+it) = (1 — Kkt + 5/3)7’ + 5/4}/71 + o(t?),

and
|/ (s +it)]? = 1 — 26t + 26%1 + 0(t?),  |¢'(s +it)| % = 1+ 2kt + 2k%t% + o(t?) .
Proof. We have

t2
(s + it) = 0s0(s,t) = Dsp(s,0) + t0;050(s,0) + Eafﬁsgp(s, 0) +o(t?).

Since
Opp = 10,0,



84 J.-M. BARBAROUX, L. LE TREUST, N. RAYMOND, AND E. STOCKMEYER

we get
2

P (s +it) =7/ () + i7" () — 52D (s) + of?).

By using (D.5), we have
(3) _ 2.1 /
Y (s) ==k —K'n,

and thus )

t
O'(s+it) =+ —intn + 5(/127' + &/'n) + o(t?),
and the conclusion follows. Il
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