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ON THE DIRAC BAG MODEL IN STRONG MAGNETIC FIELDS

J.-M. BARBAROUX, L. LE TREUST, N. RAYMOND, AND E. STOCKMEYER

Abstract. In this work we study two-dimensional Dirac operators on bounded do-
mains coupled to a magnetic field perpendicular to the plane. We focus on the MIT
bag boundary condition and provide accurate asymptotic estimates for the low-lying
(positive and negative) energies in the limit of a strong magnetic field.
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1. Introduction

Consider an open, smooth and simply connected domain Ω ⊂ R2 and a magnetic field
B = Bẑ, smooth and pointing in direction ẑ orthogonal to the plane. In this work we
consider a Dirac operator restricted to Ω and coupled to the magnetic field B through
a magnetic vector potential A = (A1, A2)T satisfying ∇×A = B. The magnetic Dirac
operator acts on a dense subspace of L2(Ω,C2) as,

σ · (−i∇− bA) =

(
0 −i(∂1 − i∂2)− bA1 + ibA2

−i(∂1 + i∂2)− bA1 − ibA2 0

)
, (1.1)

where b > 0 is a positive coupling constant. We write σ ·x = σ1x1 +σ2x2 for x = (x1, x2)
with the usual Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

If we assume that the spinors satisfy a boundary relation of the type ϕ = Bϕ on ∂Ω
with a unitary and self-adjoint boundary matrix B : ∂Ω→ C2×2, then simple integration
by parts shows that the local current density σ ·n vanishes at each point of the boundary
if and only if

B σ · n + σ · nB = 0 on ∂Ω , (1.2)

where n is the normal vector pointing outward to the boundary. In particular, for these
cases, the Dirac operator is formally symmetric and satisfies the bag condition, i.e., that
no current flows through ∂Ω [10]. In the physics literature these type of models have
being earlier considered to describe neutrino billards [10] and (in the three dimensional
setting) quark confinement [12]. More recently, they have regained attention with the
advent of graphene and other Dirac materials, see e.g., [1, 11, 24, 14].

Using the properties of the Pauli matrices and those of B it is easy to see that the
most general form of B acts as a multiplication on L2(∂Ω) with

B ≡ Bη = (σ · t) cos η + σ3 sin η , (1.3)

for certain sufficiently smooth η : ∂Ω→ R and t being the unit tangent vector pointing
clockwise (we have that n× t = ẑ). The most frequently used boundary conditions in
the physics literature are the cases when cos η = 0 and sin η = 0 known as zig-zag and
MIT bag or infinite-mass boundary conditions, respectively. For recent mathematical
literature on the subject in the two and three dimensional settings see for instance
[8, 4, 19, 21, 7] about self-adjointness, [25, 3, 5] for the derivations as an infinite mass
limit, and [9, 20, 2] for eigenvalue estimates.

In this work we consider Dirac operators Dη acting as in (1.1) on spinors ϕ satisfying
ϕ = Bηϕ, with η ∈ [0, 2π). We give the precise definition of the self-adjoint realization
below. Assuming that the magnetic field satisfies infx∈Ω B(x) = B0 > 0 (besides certain
geometrical conditions, see Assumption 1.6), we provide asymptotic estimates for the
corresponding low-lying eigenvalues in the strong coupling constant limit b→∞.

The behavior of the corresponding operators in the physically most relevant cases
mentioned above are quite different from each other. Indeed, on the one hand, the
spectrum of a zig-zag operator is symmetric with respect to zero and zero is an eigenvalue
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of infinite multiplicity. On the other hand, the spectrum of the MIT-bag is far from
being symmetric for large magnetic fields and zero is never in its spectrum.

Our main results can be roughly summarized as follows: For k ∈ {1, 2, 3, . . . } we
denote by η+

k > 0 and η−k < 0 the non-negative and negative eigenvalues of, D0, the
MIT bag operator with η = 0. They are ordered such that |η±k | 6 |η

±
k+1|. Then, there

is a constant C+
k > 0 such that, as b→∞,

η+
k = C+

k b
ke−2αb(1 + o(1)) . (1.4)

We provide explicit expressions for the constants C+
k and α > 0 in terms of the geometry

and the magnetic field B (see Theorem 1.9). In particular, the positive eigenvalues of
Dh,A accumulate exponentially fast to zero in the strong magnetic field limit. This
behavior is in contrast to the one of the negative eigenvalues. Indeed, for the first
negative eigenvalue we show that there is a constant C− > 0 such that

η−1 = −C−b
1
2 + o(b−

1
2 ) . (1.5)

The constant C− obeys an effective minimization problem and we know that it is smaller
or equal than

√
2 and for constant magnetic field C− <

√
2 (see Theorem 1.11).

The proof of (1.4) and (1.5) is based upon the asymptotic analysis of a mini-max
principle for the corresponding operator D0. We show a new min-max characterization,
well adapted to our setting, whose proof is inspired by [13] and [16]. A result in the same
spirit has being recently used in [2]. It is easy to see that the mini-max characterization
applies well to any boundary conditions with cos η 6= 0, as described in Appendix A one
obtains the same type of asymptotic formulas (1.4) and (1.5) with different constants.

As for the zig-zag case, when cos η = 0, we obtain analogous results for the energies
through a simple application of the asymptotic analysis performed in [6] and the relation
between zig-zag and Pauli-Dirichlet operators. This is explained in Section 1.3 and the
results can be summarized as follows: For k ∈ {1, 2, 3, . . . } we denote by µ−k and µ+

k

the k-th positive eigenvalue of Dπ/2 and D3π/2, respectively. Then, we find constants
0 < ck 6 Ck <∞ that, as b→∞,

ckb
(k+1)/2e−αb(1 + o(1)) 6 µ−k 6 Ckb

(k+1)/2e−αb(1 + o(1)) ,

and

µ+
k >

√
2bB0 ,

where α > 0 is the same constant appearing in (1.4).
Let us finally mention that our results compare well with the findings in the physics

literature [23, 17, 27] for constant magnetic fields.

1.1. Basic definitions and assumptions. We study the equivalent semiclassical prob-
lem given by the the action of

Dh,A = σ · (p−A) =

(
0 dh,A

d×h,A 0

)
, (1.6)

where p = −ih∇ for h > 0,

dh,A = −2ih∂z − A1 + iA2 , d×h,A = −2ih∂z − A1 − iA2 ,
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with ∂z = ∂1+i∂2

2
and ∂z = ∂1−i∂2

2
. We focus on the boundary conditions described above

for η = 0, that is
B = σ · t = −iσ3(σ · n) ,

where n is the outward pointing normal to the boundary ∂Ω. The associated magnetic
Dirac operator with MIT bag (or infinite mass) boundary condition is (Dh,A,Dom(Dh,A))
with

Dom(Dh,A) =
{
ϕ ∈ H1(Ω,C2) , Bϕ = ϕ on ∂Ω

}
.

Remark 1.1. Note that
σ · n =

(
0 n
n 0

)
,

so that the boundary condition reads
u2 = inu1 ,

where ϕ = (u1, u2)T , and n = (n1, n2)T denotes the normal vector in R2 and also
n = n1 + in2 ∈ C.

The main purpose of the paper is to study the asymptotic behavior of the eigenvalues
near 0 in the semiclassical limit h→ 0.

Assumption 1.2.
(i) Ω is bounded, simply connected, ∂Ω is C2-regular,
(ii) B ∈ W 1,∞(Ω) .

Under Assumption 1.2, the operator Dh,0, without magnetic field, is self-adjoint on
L2(Ω)2 (see for instance [8]). We work in the so-called Coulomb gauge that is given
through the unique solution of the Poisson equation

∆φ = B , φ|∂Ω = 0 , (1.7)

by choosing A = (−∂2φ, ∂1φ)T = ∇φ⊥. Notice that by standard regularity theory the
components of A are bounded. Hence Dh,A is self-adjoint and it has compact resolvent
since Dom(Dh,A) ⊂ H1. In particular, the spectrum Dh,A of is discrete. We denote by
(λ+

k (h))k>1 and (−λ−k (h))k>1 the positive and negative eigenvalues of Dh,A counted with
multiplicities. In fact, Dh,A has no zero modes. This can be seen using the following
lemma, which is a consequence of [18] and [6].

Notation 1. We denote by 〈·, ·〉 the standard scalar product on Ω (antilinear w.r.t. the
left argument), and by ‖ · ‖ the associated norm. In the same way, we denote by 〈·, ·〉∂Ω

the L2-scalar product on L2(∂Ω).

Lemma 1.3. For all h > 0, there exists C(h) > 0 such that, for all u ∈ H1
0 (Ω), we

have
‖d×h,Au‖

2 > C(h)‖u‖2 .

Proposition 1.4. The operator Dh,A has no zero modes.

Proof. Consider ϕ = (u, v)T ∈ Dom(Dh,A) such that Dh,Aϕ = 0. We have dh,Av =
d×h,Au = 0. Thus, integrating by parts, and using the boundary condition, we get

0 = 〈dh,Av, u〉 = 〈v, d×h,Au〉+ h〈−in v, u〉∂Ω = h‖u‖2
∂Ω .

Therefore u ∈ H1
0 (Ω), and Lemma 1.3 implies that u = 0. �
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Since Dh,A has no zero mode, its spectrum is

sp(Dh,A) = {. . . , −λ−2 (h) , −λ−1 (h)} ∪ {λ+
1 (h) , λ+

2 (h) , . . . } . (1.8)

Assumption 1.5. B is positive. We define b0 = infΩ B > 0 and b′0 = min∂Ω B.

Under this assumption, φ is subharmonic so that

max
x∈Ω

φ = max
x∈∂Ω

φ = 0 ,

and the minimum of φ will be negative and attained in Ω.

Assumption 1.6.
(i) The minimum φmin of φ is attained at a unique point xmin.
(ii) The Hessian matrix Hessminφ of φ at xmin is positive definite i.e. xmin is non-

degenerate minimum. We also denote by zmin, the minimum xmin seen as a complex
number.

1.2. Main results. The magnetic Hardy space is

H 2
h,A(Ω) = {u ∈ L2(Ω) : d×h,Au = 0 , u|∂Ω ∈ L2(∂Ω)} .

We let
Hh,A = H1(Ω) + H 2

h,A(Ω) ,

and endow it with the Hermitian scalar product given by

∀(u1, u2) ∈ Hh,A × Hh,A , 〈u1, u2〉Hh,A = 〈u1, u2〉+ 〈d×h,Au1, d
×
h,Au2〉+ 〈u1, u2〉∂Ω .

The following result gives us a non-linear min-max characterization for the positive
eigenvalues of Dh,A.

Theorem 1.7. Under Assumption 1.2. We have, for all h > 0 and k > 1,

λ+
k (h) = min

W⊂Hh,A
dimW=k

max
u∈W\{0}

h‖u‖2
∂Ω +

√
h2‖u‖4

∂Ω + 4‖u‖2‖d×h,Au‖2

2‖u‖2
.

Remark 1.8. Due to the symmetry of the problem we use also this min-max charac-
terization for the negative eigenvalues of Dh,A after changing the sign of the magnetic
field. Indeed, consider the charge conjugation operator

C : ϕ ∈ C2 7→ σ1ϕ ∈ C2 ,

where ϕ is the vector of C2 made of the complex conjugate of the coefficients of ϕ. We
have CDom(Dh,A) = Dom(Dh,A) , and CDh,AC = −Dh,−A . In particular, we get that

sp(Dh,A) = −sp(Dh,−A) .

In order to state our next result on the asymptotic estimates of the λ+
k (h) we introduce

some notation to explicitly define the constant C+
k from (1.4).

Notation 2. Let us denote by O(Ω) and O(C) the sets of holomorphic functions on Ω
and C. We consider the following (anisotropic) Segal-Bargmann space

B2(C) = {u ∈ O(C) : NB(u) < +∞} ,
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where

NB(u) =

(∫
R2

∣∣u (y1 + iy2)
∣∣2 e−Hessxminφ(y,y)dy

)1/2

.

We also introduce the Hardy space

H 2(Ω) = {u ∈ O(Ω) : ‖u‖∂Ω < +∞} ,
where

‖u‖∂Ω =

(∫
∂Ω

∣∣u (y1 + iy2)
∣∣2 dy

)1/2

.

We also define for P ∈H 2(Ω), A ⊂H 2(Ω),

distH(P,A) = inf
{
NH(P −Q) , for all Q ∈ A

}
,

and for P ∈ B2(C), A ⊂ B2(C),

distB(P,A) = inf
{
NB(P −Q) , for all Q ∈ A

}
.

The following constant is important in our asymptotic analysis

Ck(B,Ω) =

(
distH

(
(z − zmin)k−1,H 2

k (Ω)
)

distB
(
zk−1,Pk−2

) )2

, (1.9)

where Pk−2 = span
(
1, . . . , zk−2

)
⊂ B2(C), P−1 = {0} and

H 2
k (Ω) = {u ∈H 2(Ω), u(n)(zmin) = 0, for n ∈ {0, . . . , k − 1}} . (1.10)

Theorem 1.9. Under Assumptions 1.2, 1.5 and 1.6, we have for all k > 1,

λ+
k (h) = Ck(B,Ω)h1−ke2φmin/h(1 + oh→0(1)) .

Remark 1.10. Let us assume that Ω is the disk of radius R centered at 0, and that
B is radial. In this case zmin = 0 and Hessxmin

φ = B(0)Id/2. Moreover, using Fourier
series, we see that (zn)n>0 is an orthogonal basis for NB and NH. In particular, H 2

k (Ω)
is NH-orthogonal to zk−1 so that

distH
(
zk−1,H 2

k (Ω)
)2

= ‖zk−1‖2
∂Ω = R2k−2|∂Ω| = 2πR2k−1 .

In addition, Pk−2 is NB-orthogonal to zk−1 so that

distB
(
zk−1,Pk−2

)2

= NB(zk−1)2 = 2π
2k−1(k − 1)!

B(0)k
,

Thus, we get that

Ck(B,Ω) =
B(0)k

(k − 1)!

(R2

2

)k−1

.

We now turn to the negative eigenvalues of Dh,A. Consider, for all c > 0,

ν(c) = inf
u∈H2

−A0
(R2

+)

u6=0

∫
R2

+
|(−i∂s − τ + i(−i∂τ ))u|2dsdτ + c

∫
R |u(s, 0)|2ds

‖u‖2
, (1.11)

with A0 = (−τ, 0). Notice that the quadratic form minimized in (1.11) corresponds
to the magnetic Schrödinger operator on a half-plane with a constant magnetic field
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(equaling 1) and equipped by a Robin-like boundary condition. More details are given
in Appendix C.

We can prove (see Proposition C.7) that the equation ν(c) = c2 has a unique positive
solution, denoted by c0. Moreover, c0 ∈ (0,

√
2).

Theorem 1.11. Under Assumptions 1.2 and 1.5, we have

λ−1 (h) = h
1
2 min(

√
2b0, c0

√
b′0) + oh→0(h

1
2 ) ,

where λ−1 (h) is defined in Section 1.1, b0 = minΩ B(x) and b′0 = min∂Ω B(x). In partic-
ular, when B ≡ b0 is constant, we have

λ−1 (h) = c0

√
b0h+ oh→0(h

1
2 ) .

Remark 1.12. In fact, c0 equals

inf
u∈H2

−A0
(R2

+)

u6=0

∫
R |u(s, 0)|2ds+

√(∫
R |u(s, 0)|2ds

)2
+ 4‖u‖2

∫
R2

+
|(−i∂s − τ + i(−i∂τ ))u|2dsdτ

2‖u‖2
.

Remark 1.13. The asymptotic analysis leading to Theorems 1.9 and 1.11 strongly
differ from each other. Indeed, the eigenfunctions are localized near xmin for the pos-
itive energies, whereas, when B is constant, they are localized near the boundary for
the negative ones. Moreover, in this last case, for non-constant magnetic fields, the
eigenfunctions might be localized inside if b0/b

′
0 is small enough. Consequently, the

underlying semiclassical problems do not share the same structure. Actually, in a forth-
coming paper, we reduce the spectral analysis of the negative energies to the one of a
pseudo-differential operator on the boundary.

Remark 1.14. The eigenvalues in the strong magnetic field limit given by the operator
D0 described in the introduction can be found by a simple scaling argument. Fix the
magnetic field B to be lower bounded by b > 0. Then we have

spD0 = b sp D1/b,Ã ,

where the components of Ã satisfy ∂1Ã2− ∂2Ã1 = B/b. Then equations (1.4) and (1.5)
are direct consequences of theorems 1.9 and 1.11, respectively.

1.3. The zig-zag case. In this paper, we consider the Dirac operator with MIT bag
boundary condition (and its variants in Appendix A). The so-called zig-zag boundary
condition also appears commonly in the description of the electrical properties of pieces
of graphene. It is worth noticing that the spectral properties of the related operators
exhibit completely different asymptotic behaviors compared with the ones studied here.
More precisely, the operators (Z ±

h,A,Dom(Z ±
h,A)) acting as σ · (p−A) on

Dom(Z −
h,A) = H1

0 (Ω,C)× {u ∈ L2(Ω,C) , ∂zu ∈ L2(Ω,C)} ,
Dom(Z +

h,A) = {u ∈ L2(Ω,C) , ∂zu ∈ L2(Ω,C)} ×H1
0 (Ω,C) ,

are self-adjoint. This easily seen since by construction the operators Z ±
h,A have the

supersymmetric structure

Z ±
h,A =

(
0 D±
D∗± 0

)
,



DIRAC BAG MODEL IN STRONG MAGNETIC FIELDS 9

where D+ and D∗− have Dirichlet boundary conditions. Moreover, 0 is an eigenvalue of
infinite multiplicity for both of them and their kernels can be determined explicitly (see
[26, Chapter 5],[22] and [6, Proposition 4.4]).

Next notice that since σ3Z
±
h,A = −Z ±

h,Aσ3 holds, the spectra of both operators is
symmetric with respect to zero. Moreover, by simply squaring the operators one sees
that, due to the isospectrality of D±D∗± and D∗±D± away from zero,{
λ2, λ ∈ sp (Z +

h,A) \ {0}
}

= sp{D∗+D+}, and
{
λ2, λ ∈ sp (Z −

h,A) \ {0}
}

= sp{D−D∗−} .

Thus, their discrete spectrum satisfy

spd (Z ±
h,A) = sp (Z ±

h,A) \ {0} =

{√
α±k (h) , k ∈ N∗

}
∪
{
−
√
α±k (h) , k ∈ N∗

}
,

where (α+
k (h))k>1 and (α−k (h))k>1 are the ordered sequences of the eigenvalues (counted

with multiplicity) of the operators D∗+D+ and D−D∗− that act as

|p−A|2 + hB , and |p−A|2 − hB ,

on H1
0 (Ω,C)∩H2(Ω,C). Therefore, we deduce from [6, Theorem 1.3.], that there exists

θ0 ∈ (0, 1] such that for all k > 1(
θ02Ck(B,Ω)h1−ke2φmin/h

)1/2

(1 + oh→0(1)) 6
√
α−k (h)

6
(

2Ck(B,Ω)h1−ke2φmin/h
)1/2

(1 + oh→0(1)) ,

as h→ 0. Finally, it is well known that√
α+
k (h) >

√
2B0h .

2. A non-linear min-max characterization

The aim of this section is to establish Theorem 1.7. To do so, we first establish
in Section 2.1 some fundamental properties of the natural minimization space Hh,A.
Then, we prove that the λ-eigenspace of Dh,A are isomorphic with the 0-eigenspace of
an auxiliary operator Lλ depending quadratically on λ, see Proposition 2.12. Section
2.3 is devoted to describe the spectrum of Lλ, and in particular when 0 ∈ sp(Lλ).

Throughout this section, h > 0 is fixed.

2.1. Magnetic Hardy spaces.

Definition 2.1. The magnetic Hardy space is

H 2
h,A(Ω) = {u ∈ L2(Ω) : d×h,Au = 0 , u|∂Ω ∈ L2(∂Ω)} .

We let
Hh,A = H1(Ω) + H 2

h,A(Ω) ,

and endow it with the Hermitian scalar product given by

∀(u1, u2) ∈ Hh,A × Hh,A , 〈u1, u2〉Hh,A = 〈u1, u2〉+ 〈d×h,Au1, d
×
h,Au2〉+ 〈u1, u2〉∂Ω .
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Proposition 2.2. The free Dirac operator and the magnetic Dirac operator are related
by the formula

eσ3φ/hσ · p eσ3φ/h = σ · (p−A) , (2.1)

as operators acting on H1(Ω,C2) functions.

Remark 2.3. By using the change of function u = e−φ/hw suggested by Proposition
2.2, we have

H 2
h,A(Ω) = e−φ/hH 2

0 (Ω) , Hh,A = e−φ/hH0 ,

where
H0 = H1(Ω) + H 2

0 (Ω) ,

and
H 2

0 (Ω) = {w ∈ L2(Ω) : ∂zw = 0 , w|∂Ω ∈ L2(∂Ω)} .
Note that, for all (u1, u2) ∈ Hh,A × Hh,A,

〈u1, u2〉Hh,A = 〈w1, w2〉L2(e−2φ/h) + 〈−2ih∂zw1,−2ih∂zw2〉L2(e−2φ/h) + 〈w1, w2〉∂Ω ,

where wj = eφ/huj for j = 1, 2. Then, by using the Riemann biholomorphism F : D→
Ω, the classical Hardy space H 2

0 (Ω) = H 2(Ω) becomes the canonical Hardy space

H 2(D) =

f ∈ O(D) :

(
f (n)(0)

n!

)
n>0

∈ `2(N)

 .

Note that, for f ∈H 2(D),

‖f‖2 = 2π
∑
n>1

(2n+ 2)−1|un|2 , ‖f‖2
∂Ω = 2π

∑
n>0

|un|2 , un =
f (n)(0)

n!
. (2.2)

The following lemma is a classical result. For the reader’s convenience, we recall the
proof in Appendix B.

Lemma 2.4. The space (H 2
h,A(Ω), 〈·, ·〉∂Ω) is a Hilbert space. Moreover, H 2

h,A(Ω) is
compactly embedded in L2(Ω).

Lemma 2.5. There exists c > 0 such that, for all h > 0, and for all u ∈ H1(Ω),√
2hB0‖Π⊥h,Au‖ 6 ‖d×h,Au‖ , ch2(‖Π⊥h,Au‖∂Ω + ‖∇Π⊥h,Au‖) 6 ‖d×h,Au‖ ,

where Πh,A is the (orthogonal) spectral projection on the kernel of the adjoint of the dh,A
with Dirichlet boundary conditions, i.e. (dh,A, H

1
0 (Ω))?, and

Id = Πh,A + Π⊥h,A .

Proposition 2.6. The following holds.
(i) (Hh,A, 〈·, ·〉Hh,A) is a Hilbert space.
(ii) H1(Ω) is dense in Hh,A.
(iii) The embedding Hh,A ↪→ L2(Ω) is compact.
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Proof. Let us prove (i). We consider a Cauchy sequence (un) for ‖ ·‖Hh,A . It is obviously
a Cauchy sequence for ‖ · ‖ and ‖ · ‖∂Ω. We write un = Πh,Aun + Π⊥h,Aun. From Lemma
2.5, we see that (Π⊥h,Aun) is a Cauchy sequence in H1(Ω), and thus converges to some
u⊥ ∈ H1(Ω). Moreover, by using again Lemma 2.5, (Πh,Aun) is a Cauchy sequence in
H 2

h,A(Ω). From Lemma 2.4, (Πh,Aun) converges to some u ∈ H 2
h,A(Ω). It follows that

(un) converges to u+ u⊥ in Hh,A.
Item (ii) is a consequence of [6, Lemma C.1].
By using again the orthogonal decomposition induced by Πh,A, and the compactness

of H1(Ω) ↪→ L2(Ω), and of H 2
h,A(Ω) ↪→ L2(Ω) (see Lemma 2.4), we get (iii).

�

2.2. Statement of the min-max characterization. The proof of Theorem 1.7 is a
consequence of Propositions 2.7 and 2.8, see below.

Notation 3. For all k > 1 and all h > 0, we define

µk(h) = inf
W⊂H1(Ω)

dimW=k

sup
u∈W\{0}

ρ+(u) ,

where

ρ+(u) =
h‖u‖2

∂Ω +
√
h2‖u‖4

∂Ω + 4‖u‖2‖d×h,Au‖2

2‖u‖2
. (2.3)

Proposition 2.7. We have, for all k > 1,

µk(h) = inf
W⊂Hh,A
dimW=k

sup
u∈W\{0}

ρ+(u) = min
W⊂Hh,A
dimW=k

sup
u∈W\{0}

ρ+(u) > 0 .

Proof. We use Proposition 2.6 (ii) & (iii), and observe that ρ+(u) > 0 for all u ∈
Hh,A. �

Proposition 2.8. For all k > 1, and h > 0, we have

λ+
k (h) = µk(h) .

The following sections are devoted to the proof of Proposition 2.8.
In the following, we drop the h-dependence in the notation.

2.3. A characterization of the µk.

Notation 4. Let λ > 0. Consider the quadratic form defined by

∀u ∈ Hh,A , Qλ(u) = ‖d×h,Au‖
2 + hλ‖u‖2

∂Ω − λ2‖u‖2 ,

and, for all k > 1,

`k(λ) = inf
W⊂H1(Ω)

dimW=k

sup
u∈W\{0}

Qλ(u)

‖u‖2
.

Note that, for all u ∈ Hh,A \ {0},
Qλ(u) = −‖u‖2(λ− ρ−(u))(λ− ρ+(u)) , (2.4)

where ρ+(u) is defined in (2.3) and ρ−(u) is the other zero of the polynomial above.
From Proposition 2.6, we deduce the following.
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Lemma 2.9. For λ > 0, the (bounded below) quadratic form Qλ is closed. The asso-
ciated (unbounded) self-adjoint operator Lλ has compact resolvent, and its eigenvalues
are characterized by the usual min-max formulas

`k(λ) = inf
W⊂H1(Ω)

dimW=k

sup
u∈W\{0}

Qλ(u)

‖u‖2
= min

W⊂Hh,A
dimW=k

max
u∈W\{0}

Qλ(u)

‖u‖2
.

Lemma 2.10. For all k > 1, the function `k : (0,+∞)→ R satisfies the following:
(i) `1 is concave,
(ii) for all µ ∈ (0, µ1), and all k > 1, `k(µ) > 0,
(iii) limλ→+∞ `k(λ) = −∞,
(iv) `k is continuous,
(v) the equation `k(λ) = 0 has exactly one positive solution, denoted by Ek.

Proof. Item (i) follows by observing that the infimum of a family of concave functions
is itself concave.

It is enough to check Item (ii) for k = 1. Consider µ > 0. Thanks to Proposition 2.7,
there exists u ∈ Hh,A such that `1(µ) = Qµ(u). If `1(µ) 6 0, then, by (2.4), we have
that µ > ρ+(u) > µ1.

By taking any finite dimensional space W ⊂ H1
0 (Ω), we readily see that

`k(λ) 6 sup
u∈W, ‖u‖=1

‖d×h,Au‖ − λ
2 .

We get Item (iii).
Since `1 is concave, it is also continuous. Then, the family (Lλ)λ>0 is analytic of type

(B) in the sense of Kato (i.e., Dom(Qλ) is independent of λ > 0). This implies that
the `k are continuous functions. Actually, this can directly be seen from the following
equality

λ−1
1 Qλ1(u)− λ−1

2 Qλ2(u) = (λ2 − λ1)
(
‖d×h,Au‖

2(λ1λ2)−1 + ‖u‖2
)
, (2.5)

for all λ1, λ2 > 0 and u ∈ Hh,A.
Let us now deal with Item (v). Consider λ1 > 0 such that `k(λ1) = 0.
Firstly, there exists W ⊂ Hh,A with dimW = k such that maxW Qλ1 = 0. In

particular, for all u ∈ W , Qλ1(u) 6 0. Using (2.5), we find, for all u ∈ W ,

λ−1
2 Qλ2(u) 6 −(λ2 − λ1)

(
‖d×h,Au‖

2(λ1λ2)−1 + ‖u‖2
)
.

This implies that, for all λ2 > λ1,

λ−1
2 sup

u∈W, ‖u‖=1

Qλ2(u) 6 −(λ2 − λ1) inf
u∈W, ‖u‖=1

(
‖d×h,Au‖

2(λ1λ2)−1 + ‖u‖2
)
6 −(λ2 − λ1) .

Hence,
∀λ2 > λ1 , `k(λ2) 6 −λ2(λ2 − λ1) < 0 (2.6)

Secondly, for all W ⊂ Hh,A with dimW = k, we have maxu∈W,‖u‖=1Qλ1(u) > 0. We
have, for all λ2 < λ1, and all u ∈ W with ‖u‖ = 1,

λ−1
1 Qλ1(u) = (λ2 − λ1)

(
‖d×h,Au‖

2(λ1λ2)−1 + ‖u‖2
)

+ λ−1
2 Qλ2(u)

6 (λ2 − λ1) + λ−1
2 max

u∈W,‖u‖=1
Qλ2(u) ,
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so that, taking the supremum for u ∈ W ,

0 6 (λ2 − λ1) + λ−1
2 max

u∈W,‖u‖=1
Qλ2(u) ,

and thus
∀λ2 ∈ (0, λ1) , 0 < λ2(λ1 − λ2) 6 `k(λ2) . (2.7)

From (2.6) and (2.7), we see that the zeros of `k are isolated. From Item (ii), these zeros
do not accumulate at 0. Thus, we can consider Ek to be the smallest positive zero of `k.
Consider Ẽk > Ek, the possible next positive zero of `k. From (2.6) and by continuity,
we see that `k < 0 on (Ek, Ẽk), but, from (2.7), `k > 0 on (Ek, Ẽk). Therefore, `k has
only one positive zero. �

Proposition 2.11. For all k > 1, µk is the only positive zero of `k, i.e.,

Ek = µk .

Proof. In virtue of Proposition 2.7, we notice that µk > 0. Then, we proceed in two
steps.

Firstly, consider a subspace Wk ⊂ Hh,A of dimension k such that

max
u∈Wk\{0}

ρ+(u) = µk .

For all u ∈ Wk \ {0}, ρ+(u) 6 µk. By the definition of `k(µk) and (2.4), we have

`k(µk) 6 max
u∈Wk\{0}

Qµk(u) 6 0 .

Secondly, for all subspace W ⊂ Hh,A of dimension k, we have

µk 6 max
u∈W\{0}

ρ+(u) .

There exists uk ∈ W \ {0} such that µk 6 ρ+(uk). Then, we have

max
u∈W\{0}

Qµk(u) > Qµk(uk) > 0 ,

and taking the infimum, we find `k(µk) > 0.
We deduce that `k(µk) = 0 and conclude by using Lemma 2.10 (v). �

2.4. Proof of Proposition 2.8.

2.4.1. An isomorphism. The following proposition is crucial.

Proposition 2.12. Let λ > 0. Then, the map

Jλ :


ker Lλ −→ ker(Dh,A − λ)

u 7−→
(

u
λ−1d×h,Au

)
is well-defined and it is an isomorphism.

Proof. First, we show that the range of Jλ is indeed contained ker(Dh,A − λ). Let
u ∈ ker(Lλ). Notice that u ∈ ker(Lλ) is equivalent to

∀w ∈ Hh,A , Qλ(u,w) = 〈d×h,Au, d
×
h,Aw〉+ hλ〈u,w〉∂Ω − λ2〈u,w〉 = 0 . (2.8)
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We set

ϕ =

(
u
v

)
, v =

d×h,Au

λ
.

For all ψ =

(
w1

w2

)
∈ Dom(Dh,A), we have

〈ϕ,Dh,Aψ〉 = 〈u, dh,Aw2〉+ 〈v, d×h,Aw1〉

= 〈d×h,Au,w2〉+ 〈u,−ihnw2〉∂Ω +

〈
d×h,Au

λ
, d×h,Aw1

〉

= 〈λv, w2〉+ h〈u,w1〉∂Ω +

〈
d×h,Au

λ
, d×h,Aw1

〉
= 〈λv, w2〉+ λ〈u,w1〉 = λ〈ϕ, ψ〉 ,

where
– the second equality comes from an integration by parts using Proposition 2.6 (ii),
– the third uses the boundary condition w2 = inw1,
– the fourth uses (2.8).
This shows, by the definition of the adjoint, that ϕ ∈ Dom(Dh,A

∗) = Dom Dh,A and in
particular that Dh,Aϕ = λϕ. Therefore, the map is well-defined, and we observe that it
is injective.

Let us show that Jλ is surjective. Consider
(
u
v

)
∈ ker(Dh,A − λ). The eigenvalue

equation reads

d×h,Au = λv , dh,Av = λu , and v = inu on ∂Ω .

Let w ∈ Hh,A. Using the eigenvalue equation, and again an integration by parts, we get

Qλ(u,w) = 〈d×h,Au, d
×
h,Aw〉+ hλ〈u,w〉∂Ω − λ2〈u,w〉

= λ〈v, d×h,Aw〉+ hλ〈−inv, w〉∂Ω − λ2〈u,w〉
= λ〈dh,Av, w〉 − λ2〈u,w〉 = λ2〈u,w〉 − λ2〈u,w〉 = 0 .

Hence, u ∈ Dom(Dh,A) and u ∈ ker Lλ. �

Corollary 2.13. We set Λ = {λ+
j , j > 1} and M = {µk , k > 1}. We have Λ = M . In

particular, µ1 = λ+
1 .

Proof. Let λ ∈ Λ. Proposition 2.12 implies that 0 ∈ sp(Lλ). Then, there exists j > 1
such that `j(λ) = 0 and thus (Proposition 2.11) λ = Ej = µj ∈M .

Let µ ∈ M . Then, there exists j > 1 such that µ = Ej, and hence `j(µ) = 0. In
particular, 0 ∈ sp(Lµ) and thus µ ∈ sp(Dh,A) by the isomorphism. �

Notation 5. Let us denote by (ak)k>1 the unique increasing sequence such that Λ =
M = {ak , k > 1}. In addition, for all k > 1, we set mk = dim ker(Dh,A − ak).
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2.4.2. Induction argument. Now, we can prove Proposition 2.8 by induction.
For n > 0, the induction statement is

P(n) : ∀j ∈ {1, . . . ,m1 + . . .+mn + 1} , µj = λ+
j .

Thanks to Corollary 2.13, P(0) is satisfied.
Let n > 0. Assume that, for all 0 6 k 6 n, P(k) holds.
Notice that

µm1+...+mn+1 = λ+
m1+...+mn+1 = an+1 . (2.9)

By definition, we have an+1 ∈ sp(Dh,A). Moreover, by using the isomorphism,

mn+1 = dim ker(Lan+1) .

By the min-max theorem, there exists j0 > 0 such that

`j0+1(an+1) = . . . = `j0+mn+1(an+1) = 0 .

By Lemma 2.10 (v), we have

an+1 = Ej0+1 = . . . = Ej0+mn+1 ,

so that, using again Proposition 2.11,

an+1 = µj0+1 = . . . = µj0+mn+1 .

Let us now show that j0 = m1 + . . .+mn. By the induction hypothesis, we have

µm1+...+mn = an < an+1 .

Thus, j0 > m1 + . . .+mn.
Let us suppose, by contradiction, that j0 > m1 + . . .+mn + 1. With (2.9), we get

µm1+...+mn+1 = µj0+1 = . . . = µj0+mn+1 = an+1 .

In particular, we have the mn+1 + 1 relations:

`m1+...+mn+1(an+1) = `j0+1(an+1) = . . . = `j0+mn+1(an+1) = 0 .

By the min-max theorem, this shows that

dim ker Lan+1 > mn+1 + 1 > mn+1 = dim ker(Dh,A − an+1) .

This contraditcs the isomorphism property. Therefore, j0 = m1 + . . .+mn. This argu-
ment also shows that the multiplicity of µm1+...+mn+1 equals mn+1. With the induction
hypothesis, we get

∀j ∈ {1, . . . ,m1 + . . .+mn+1} , µj = λ+
j .

By definition, we have

λ+
m1+...+mn+1+1 = min

(
Λ \ {a1, . . . , an+1}

)
= min

(
M \ {a1, . . . , an+1}

)
.

We observe that µm1+...+mn+1+1 > an+1 since the muliplicity of µm1+...+mn+1 equalsmn+1.
This proves that

λ+
m1+...+mn+1+1 = min

(
M \ {a1, . . . , an+1}

)
= µm1+...+mn+1+1 .

This concludes the induction argument.
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3. Semiclassical analysis of the positive eigenvalues

In this section we prove Theorem 1.9 by applying Proposition 2.8, and considering
the asymptotic analysis of a simpler problem. If one wants to estimate λ+

k (h), it is
natural to use the functions of the Hardy space H 2

h,A(Ω) as test functions. This cancels
the d×h,A-term in ρ+ and leads to define

νk(h) = inf
W⊂H 2

h,A(Ω)
dimW=k

sup
u∈W\{0}

h‖u‖2
∂Ω

‖u‖2
.

Theorem 1.9 is a consequence of the following three results.

Lemma 3.1. For all k ∈ N \ {0} and all h > 0, we have

λ+
k (h) 6 νk(h) .

Proof. It follows from the definition of νk(h). �

Actually, we can prove that νk(h) is also a good asymptotic lower bound for λ+
k (h),

see Section 3.2 where the following is proved.

Proposition 3.2. For all k > 1, we have

νk(h) 6 λ+
k (h)(1 + O(h∞)) .

In the next section, we study the asymptotic behavior of νk(h), which is summarized
in the following proposition.

Proposition 3.3. For all k > 1,

νk(h) = Ck(B,Ω)h1−ke2φmin/h(1 + o(1)) ,

where Ck(B,Ω) is defined in (1.9).

Remark 3.4. Proposition 3.3 shows that each νk(h) goes to zero exponentially when
h goes to zero. The analysis in Section 3.2 strongly relies on this fact.

3.1. About the proof of Proposition 3.3. Using the change of function u = e−φ/hv,
we get

νk(h) = inf
W⊂H 2(Ω)

dimW=k

sup
v∈W\{0}

h‖v‖2
∂Ω

‖e−φ/hv‖2
.

In what follows we give upper and lower bounds for νk(h). The technics borrow ideas
from our previous work [6].

3.1.1. Upper bound. Let us consider k > 1 fixed.

Notation 6. Let us denote by (Pn)n∈N the NB-orthogonal family such that Pn(Z) =
Zn +

∑n−1
j=0 bn,jZ

j obtained after a Gram-Schmidt process on (1, Z, . . . , Zn, . . . ). Since
Pn is NB-orthogonal to Pn−1, we have

distB (Zn,Pn−1) = distB (Pn,Pn−1) = inf{NB(Pn −Q) , Q ∈ Pn−1}

= inf{
√
NB(Pn)2 +NB(Q)2 , Q ∈ Pn−1} = NB(Pn) , for n ∈ N .

(3.1)
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Let Qn ∈H 2
k (Ω) be the unique function such that

distH
(
(z − zmin)n,H 2

k (Ω)
)

= NH((z − zmin)n −Qn(z)) ,

for n ∈ {0, . . . , k−1}. We recall that NB, NH, Pn−1, and H 2
k (Ω) are defined in Notation

2.

Proposition 3.5.

νk(h) 6

(
distH

(
(z − zmin)k−1,H 2

k (Ω)
)

distB
(
zk−1,Pk−2

) )2

h1−ke2φmin/h(1 + o(1)) .

Proposition 3.5 is a consequence of the lemmas.
Let us define the k-dimensional vector space Vh,k by

Vh,k = span(w0,h, . . . , wk−1,h) ⊂H 2(Ω) , (3.2)

wn,h(z) = h−
1
2Pn

(
z − zmin

h1/2

)
− h−

1+n
2 Qn(z), for n ∈ {0, . . . , k − 1} .

Lemma 3.6. Let h ∈ (0, 1], vh =
∑k−1

j=0 cjwj,h ∈ Vh,k with c0, . . . ck−1 ∈ C, and
(wj,h)j∈{0,...,k−1} defined in (3.2). We have∫

Ω

|vh|2e−2(φ(x)−φmin)/hdx = (1 + o(1))
k−1∑
j=0

|cj|2NB(Pj)
2 , (3.3)

where o(1) does not depend on c = (c0, . . . , ck−1).

Lemma 3.7. Let h ∈ (0, 1], vh =
∑k−1

j=0 cjwj,h ∈ Vh,k with c0, . . . ck−1 ∈ C. We have

NH(vh)
2 6 |ck−1|2h−kNH

(
(z − zmin)k−1 −Qk−1

)2

+ o(h−k)‖c‖2
`2 .

Here, o(1) does not depend on c0, . . . ck−1.

Proof. Let us now estimate NH(vh). From the triangle inequality, we get

NH(vh) 6 |ck−1|NH(wk−1,h) +
k−2∑
j=0

|cj|NH(wj,h) .

Then, from degree considerations and the triangle inequality, we get, for 1 6 j 6 k− 2,

NH(wj,h) = O
(
h

1−k
2

)
,

and

NH(wk−1,h) = (1 + o(1))h−
k
2NH

(
(z − zmin)k−1 −Qk−1

)
.

The conclusion follows. �
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3.1.2. Lower bound. Let k > 1. Let us consider an orthonormal family (vj,h)16j6k (for
the scalar product of L2(e−2φ/hdx)) associated with the eigenvalues (νj(h))16j6k. We
define

Ek(h) = span
16j6k

vj,h .

Lemma 3.8. There exist C, h0 > 0 such that for all vh ∈ Ek(h) and h ∈ (0, h0), we
have,

‖vh‖2 6 Ch−ke2φmin/h

∫
Ω

e−2φ/h|vh|2dx .

Proof. From the continuous embedding H 2(Ω) ↪→ L2(Ω), and Proposition 3.5, there
exist c, C, h0 > 0 such that, for all h ∈ (0, h0) and all v ∈ Ek(h),

ch‖v‖2 6 h‖v‖2
∂Ω 6 νk(h)

∫
Ω

e−2φ/h|vh|2dx 6 Ch1−ke2φmin/h

∫
Ω

e−2φ/h|vh|2dx .

�

Lemma 3.9. Let α ∈ (0, 1/2). We have

lim
h→0

sup
vh∈Ek(h)\{0}

∣∣∣∣∣∣
∫
D(xmin, hα)

e−2φ/h|vh(x)|2dx∫
Ω
e−2φ/h|vh(x)|2dx

− 1

∣∣∣∣∣∣ = 0 ,

We can now start the proof of the lower bound.

Proof. Assume that α ∈
(

1
3
, 1

2

)
. We have, for all x ∈ D(xmin, h

α),

φ(x) = φmin +
1

2
Hessxmin

φ(x− xmin, x− xmin) + O(h3α) .

Then, with Lemma 3.9,

he2φmin/h‖vh‖2
∂Ω (1 + o(1)) 6 νk(h)

∥∥∥e− 1
2h

Hessxminφ(x−xmin,x−xmin)vh

∥∥∥2

L2(D(xmin,hα))
. (3.4)

In the following, we split the proof into two parts. Firstly, we replace vh by its Taylor
expansion at the order k − 1 at xmin in the R. H. S. of (3.4). Secondly, we do the same
for the L.H.S. of the same equation.
i. In view of the Cauchy formula, and the Cauchy-Schwarz inequality, there exist
C > 0, h0 > 0 such that, for all h ∈ (0, h0), for all v ∈H 2(Ω), all z0 ∈ D(xmin, h

α),
and all n ∈ {0, . . . k},

|v(n)(z0)| 6 C‖v‖∂Ω . (3.5)
Let us define, for all v ∈H 2(Ω),

Nh(v) =
∥∥∥e− 1

2h
Hessxminφ(x−xmin,x−xmin)v

∥∥∥
L2(D(xmin,hα))

.

By the Taylor formula, we can write

vh = Taylk−1vh +Rk−1(vh) ,

where

Taylk−1vh =
k−1∑
n=0

v
(n)
h (zmin)

n!
(z − zmin)n ,
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and, for all z0 ∈ D(zmin, h
α),

|Rk−1(vh)(z0)| 6 C|z − zmin|k sup
D(zmin,hα)

|v(k)
h | .

With (3.5) and a rescaling, the Taylor remainder satisfies

Nh(Rk−1(vh)) 6 Ch
k
2h

1
2‖vh‖∂Ω .

Thus, by the triangle inequality,

Nh(vh) 6 Nh(Taylk−1vh) + Ch
k
2h

1
2‖vh‖∂Ω .

Thus, with (3.4), we get

(1 + o(1))eφmin/h
√
h‖vh‖∂Ω 6

√
νk(h)Nh(Taylk−1vh) + C

√
νk(h)h

1+k
2 ‖vh‖∂Ω ,

so that, thanks to Proposition 3.5,

(1 + o(1))eφmin/h
√
h‖vh‖∂Ω 6

√
νk(h)Nh(Taylk−1vh) 6

√
νk(h)N̂h(Taylk−1vh) , (3.6)

with
N̂h(w) =

∥∥∥e− 1
2h

Hessxminφ(x−xmin,x−xmin)w
∥∥∥
L2(R2)

.

This inequality shows in particular that Taylk−1 is injective on Ek(h) and

dimTaylk−1Ek(h) = k . (3.7)

ii. Let us recall that

H 2
k (Ω) = {u ∈H 2(Ω) : ∀n ∈ {0, . . . , k − 1} , u(n)(xmin) = 0} .

Since (vh − Taylk−1vh) ∈H 2
k (Ω), we have, by the triangle inequality,

‖vh‖∂Ω >

∥∥∥∥∥v(k−1)
h (zmin)

(k − 1)!
(z − zmin)k−1 + (vh − Taylk−1vh)

∥∥∥∥∥
∂Ω

−
∥∥Taylk−2vh

∥∥
∂Ω

>
|v(k−1)
h (zmin)|
(k − 1)!

distH((z − zmin)k−1,H 2
k (Ω))−

∥∥Taylk−2vh
∥∥
∂Ω

,

where
dist((z − zmin)k−1,H 2

k (Ω))

= inf

{∥∥∥(z − zmin)k−1 −Q(z)
∥∥∥
∂Ω

, for all Q ∈H 2
k (Ω)

}
.

Using again the triangle inequality,

‖Taylk−2vh‖∂Ω 6 C
k−2∑
n=0

|v(n)
h (zmin)| .

Moreover,
k−2∑
n=0

|v(n)
h (zmin)| 6 h−

k−2
2

k−2∑
n=0

h
n
2 |v(n)

h (zmin)| 6 h−
k−2

2

k−1∑
n=0

h
n
2 |v(n)

h (zmin)|

6 Ch−
k−2

2 h−
1
2 N̂h(Taylk−1vh) ,
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where we used the rescaling property

N̂h

k−1∑
n=0

cn(z − zmin)n

 = h
1
2 N̂1

k−1∑
n=0

cnh
n
2 (z − zmin)n

 , (3.8)

and the equivalence of the norms in finite dimension:

∃C > 0 ,∀d ∈ Ck , C−1

k−1∑
n=0

|dn| 6 N̂1

k−1∑
n=0

dn(z − zmin)n

 6 C
k−1∑
n=0

|dn| .

We find

‖vh‖∂Ω >
|v(k−1)
h (zmin)|
(k − 1)!

dist((z − zmin)k−1,H 2
k (Ω))− Ch−

k−2
2 h−

1
2 N̂h(Taylk−1vh) ,

and thus, by (3.6),

(1 + o(1))eφmin/h
√
h
|v(k−1)
h (zmin)|
(k − 1)!

dist((z − zmin)k−1,H 2
k (Ω))

6
(√

νk(h) + Ch
2−k

2 eφmin/h
)
N̂h(Taylk−1vh) . (3.9)

Let us now end the proof of the lower bound by using (3.9) and (3.7).
Since we have (3.7), we deduce that

(1 + o(1))eφmin/h
√
hdistH((z − zmin)k−1,H 2

k (Ω)) sup
c∈Ck

|ck−1|
N̂h(

∑k−1
n=0 cn(z − zmin)n)

6
√
νk(h) + Ch

2−k
2 eφmin/h . (3.10)

By (3.8), we infer

h
1
2 sup
c∈Ck

|ck−1|
N̂h(

∑k−1
n=0 cn(z − zmin)n)

= sup
c∈Ck

h
1−k

2 |ck−1|
N̂1(
∑k−1

n=0 cn(z − zmin)n)
.

Since N̂1 is related to the Segal-Bargmann norm NB via a translation, and recalling
Notation 6, we get

sup
c∈Ck

|ck−1|
N̂1(
∑k−1

n=0 cn(z − zmin)n)
= sup

c∈Ck

|ck−1|
NB(

∑k−1
n=0 cnz

n)
=

1

NB(Pk−1)
.

Thus,

(1 + o(1))h
1−k

2 eφmin/h
distH((z − zmin)k−1,H 2

k (Ω))

NB(Pk−1)
6
√
νk(h) . (3.11)

The conclusion follows. �
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3.2. Approximation results. Let us roughly explain the strategy to establish Propo-
sition 3.2. Recall Proposition 2.7 which states that λ+

k (h) = µk(h). Consider a mini-
mizing subspace W ⊂ Hh,A = H 2

h,A(Ω) +H1(Ω) (of dimension k). Then, we can prove
that W is quasi invariant under Πh,A, see Lemma 3.13. So, we would like to write
ρ+(u) ' ρ+(Πh,Au) for all u ∈ W . Unfortunately, the elements of Πh,AW do not neces-
sarily belong to L2(∂Ω). Then, we cannot relate ρ+(Πh,Au) to the simpler optimization
problem defining νk(h). The elements in Hh,A do not necessarily belong to H1(Ω) (see
for instance [22]). However, according to Proposition 2.6, H1(Ω) is dense in Hh,A and
then we can check (see the proof of Corollary 3.15) that Πh,AH

1(Ω) ⊂ H1(Ω), and the
desired trace property is satisfied.

The price to pay is to use an approximate subspace Wh ⊂ H1(Ω). For that purpose,
we will use a number Mk(h) > µk(h) such that

Mk(h) = µk(h)(1 + O(h∞)) .

Remark 3.10. By Remark 3.4, we may choose Mk(h) = µk(h)(1 + µk(h)). Notice also
that Mk(h) goes itself exponentially fast to zero.

Notation 7. For notational simplicity, we write M ≡Mk(h).

There exists Wh ⊂ H1(Ω) with dimWh = k such that

µk(h) 6 sup
Wh\{0}

ρ+(u) 6M . (3.12)

The following lemma is straightforward.

Lemma 3.11. For all u ∈ H1(Ω), we have

2h‖u‖2
∂Ω 6 Qh(u) , 2‖u‖‖d×h,Au‖ 6 Qh(u) ,

where
Qh(u) = h‖u‖2

∂Ω +
√
h2‖u‖4

∂Ω + 4‖u‖2‖d×h,Au‖2 .

Thanks to Lemma 3.11 and (3.12), we get the following.

Lemma 3.12. For all u ∈ Wh,

h‖u‖2
∂Ω 6M‖u‖2 , (3.13)

and thus
‖d×h,Au‖

2 6M2‖u‖2 . (3.14)

Lemma 3.13. For all u ∈ Wh, we have

‖Π⊥h,Au‖ 6
M√
2hB0

‖u‖ , (3.15)

‖Π⊥h,Au‖∂Ω 6
M

ch2
‖u‖ . (3.16)

Moreover, for h small enough, Πh,A�Wh
is injective.

Proof. Combining (3.14) and Lemma 2.5, we readily get (3.15) and (3.16). The injec-
tivity follows from (3.15) and Remark 3.10. �
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Proposition 3.14. For all u ∈ Wh, we have

µk(h)(1 + O(h∞))‖Πh,Au‖2 > h‖Πh,Au‖2
∂Ω .

Proof. Let us consider (3.13). We have

M
1
2‖u‖ >

√
h‖u‖∂Ω =

√
h‖Πh,Au+ Π⊥h,Au‖∂Ω >

√
h(‖Πh,Au‖∂Ω − ‖Π⊥h,Au‖∂Ω) .

By (3.16), we get

M
1
2

(
1 + h−

3
2

1

c
M

1
2

)
‖u‖ >

√
h‖Πh,Au‖∂Ω .

From (3.15), and the triangle inequality, we have(
1− M√

2hB0

)
‖u‖ 6 ‖Πh,Au‖ .

By Remark 3.10, we see that, for h small enough, 1− M√
2hB0

> 0. Hence,

M
1
2

(
1 + h−

3
2

1

c
M

1
2

)(
1− M√

2hB0

)−1

‖Πh,Au‖ >
√
h‖Πh,Au‖∂Ω .

Squaring this, and using Remark 3.10, we obtain the desired estimate. �

Corollary 3.15. For all k > 1, we have

νk(h) 6 µk(h)(1 + O(h∞)) .

Proof. Since Πh,A�Wh
is injective, we have dim Πh,A(Wh) = k. Moreover, Πh,A(Wh) ⊂

H1(Ω). Indeed, for u ∈ H1(Ω), we write

Πh,Au = u− Π⊥h,Au ∈ H1(Ω) ,

by Lemma 2.5. This shows that Πh,A(Wh) ⊂H 2
h,A(Ω).

The conclusion follows from Proposition 3.14 and the definition of νk(h). �

4. Semiclassical analysis of the first negative eigenvalue

4.1. About the proof of Theorem 1.11. Thanks to the charge conjugation (see
Remark 1.8), the negative eigenvalues λ−k (h) can be characterized as follows. For λ > 0,
consider the quadratic form

Q̃λ(u) = qλ,h(u)− λ2‖u‖2 , qλ,h(u) = ‖d×h,−Au‖
2 + λh‖u‖2

∂Ω .

Let us denote by (˜̀
k(λ))k>1 the eigenvalues of the corresponding operator. As in Section

2, for all k > 1, the equation ˜̀
k(λ) = 0 has a unique positive solution; this solution is

λ−k (h). On the other hand, we have
˜̀
k(λ) = γk(λ, h)− λ2 ,

where the (γk(λ, h))k>1 are the eigenvalues of the operator associated with qλ,h. Note
that, by (2.6) and (2.7), for all λ > 0,

|γk(λ, h)− λ2| = |˜̀k(λ)| > λ|λ− λ−k (h)| . (4.1)

Therefore, λ−k (h) is the unique solution of

γk(λ, h) = λ2 .
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Let us now consider the case k = 1. We write λ−1 (h) = e1(h)h
1
2 , and the equation

becomes
γ1(e1(h)h

1
2 , h) = e1(h)2h . (4.2)

Note that, by setting λ = ah
1
2 with a > 0, we have the reformulation of (4.1):

|h−1γ1(ah
1
2 , h)− a2| > a|a− e1(h)| . (4.3)

The main goal of the next section is to establish the following estimate.

Proposition 4.1. We have, for all a > 0,

γ1(ah
1
2 , h) = hΛ(a) + o(h) , Λ(a) = min

(
2b0, b

′
0ν(a(b′0)−1/2)

)
.

Proposition 4.1 implies Theorem 1.11. Observe that, substituing this asymptotic
expansion into (4.3), we get

|Λ(a)− a2 + o(1)| > a|a− e1(h)| .
Notice that, if a > 0 is such that Λ(a) = a2, then e1(h) is approximated by a.

Actually, there is a unique positive a such that

min
(

2b0, b
′
0ν(a(b′0)−1/2)

)
= a2 ,

which is given by
a = min(

√
2b0, c0

√
b′0) ,

where c0 is the unique positive solution of ν(c) = c2, see Proposition C.7. We deduce
that

lim
h→0

e1(h) = min(
√

2b0, c0

√
b′0) ,

or equivalently
λ−1 (h) = h

1
2 min(

√
2b0, c0

√
b′0) + o(h

1
2 ) .

4.2. Ground energy of Pauli-Robin type operator. Let a > 0. We consider the
quadratic form

Qa,h(u) = qah1/2,h(u) = ‖d×h,−Au‖
2 + ah

3
2‖u‖2

∂Ω ,

and we have
γ1(ah

1
2 , h) = inf

u∈H2
−A(Ω)
u6=0

Qa,h(u)

‖u‖2
.

4.2.1. Localization formula. Let ρ ∈
(
0, 1

2

)
. Let us consider a semiclassical partition of

the unity (χj)j∈Z2 with suppχj ⊂ D(xj, h
ρ), and such that∑

j∈Z2

χ2
j = 1 ,

∑
j∈Z2

|∇χj|2 6 Ch−2ρ .

Lemma 4.2. We have

Qa,h(u) =
∑
j∈Z2

Qa,h(χju)− h2
∑
j∈Z2

‖(∇χj)u‖2 .

In particular,
Qa,h(u) >

∑
j∈Z2

Qa,h(χju)− Ch2−2ρ‖u‖2 .
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Proof. Let us write

‖d×h,−Au‖
2 =

∑
j∈Z2

〈d×h,−Au, d
×
h,−A(χ2

ju)〉

=
∑
j∈Z2

(
〈d×h,−Au, [d

×
h,−A, χj]χju〉+ 〈χjd×h,−Au, d

×
h,−A(χju)〉

)
=
∑
j∈Z2

(
〈χjd×h,−Au, [d

×
h,−A, χj]u〉+ 〈χjd×h,−Au, d

×
h,−A(χju)〉

)
=
∑
j∈Z2

(
−‖[d×h,−A, χj]u‖

2 + 〈d×h,−A(χju), [d×h,−A, χj]u〉+ 〈χjd×h,−Au, d
×
h,−A(χju)〉

)
=
∑
j∈Z2

(
‖d×h,−A(χju)‖2 − ‖[d×h,−A, χj]u‖

2 + 2iIm 〈d×h,−A(χju), [d×h,−A, χj]u〉
)
,

where we used that the commutator [d×h,−A, χj] = −2ih∂zχj is a function. Taking the
real part, we get

‖d×h,−Au‖
2 =

∑
j∈Z2

(
‖d×h,−A(χju)‖2 − ‖h(∇χj)u‖2

)
.

�

4.2.2. Lower bound. Let j be such that supp(χj) ⊂ Ω. Then, we have

Qa,h(χju) = ‖d×h,−A(χju)‖2 > 2hb0‖χju‖2 , (4.4)

since the Dirichlet realization of

dh,−Ad
×
h,−A = (−ih∇+ A)2 + hB

is bounded from below by 2hb0.
Therefore, let us focus on the j such that supp(χj) ∩ ∂Ω 6= ∅. We may assume that

xj ∈ ∂Ω.
Let us bound the local energy Qa,h(χju) from below.

Proposition 4.3. We have

Qa,h(χju) >
[
b′0ν(a(b′0)−1/2)h− Ch

1
2

+2ρ
]
‖χju‖2 . (4.5)

Proof. Before starting the proof, let us say a few words about the strategy. The general
idea is to approximate the magnetic field, on the support of χj, by a constant magnetic
field, and to flatten the boundary by means of tubular coordinates. Due to the lack of
ellipticity of the Cauchy-Riemann operators, we cannot choose the canonical tubular
coordinates (given by the curvilinear abscissa and the distance to the boundary). How-
ever, with the exponential coordinates (4.6), we are able to avoid this problem for the
disc, and then, by means of the Riemann mapping, for Ω. This amounts to constructing
“conformal” tubular coordinates for Ω.

It is convenient to use the change of function

u = eφ/hv .
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For notational simplicity, we let uj = χju and vj = χjv. We have

Qa,h(uj) = h2

∫
Ω

e2φ/h|2∂zvj|2dx+ ah
3
2‖vj‖2

∂Ω .

Let us use the Riemann biholomorphism F : D→ Ω. We let wj = vj ◦ F . We get

Qa,h(uj) = 4h2

∫
D
e2φ◦F (y)/h|∂ywj|2dy + ah

3
2

∫
∂D
|wj|2|F ′|dσ , ∂y =

1

2
(∂y1 + i∂y2) .

Note that wj is supported in a neighborhood of order hρ of ∂Ω. Let us now use a
change of coordinates near the boundary. Let δ > 0. Consider the “exponential polar
coordinates”, y = P (s, τ), given by

y1 = e−τ cos s , y2 = e−τ sin s (s, τ) ∈ Tδ := [0, 2π)× (0, δ) . (4.6)

P is a smooth diffeomorphism in a neighborhood of the boundary. We have

−eτ∂s = sin s∂y1 − cos s∂y2 , −eτ∂τ = cos s∂y1 + sin s∂y2 ,

and we get

∂y1 + i∂y2 = ieτ+is(∂s + i∂τ ) .

The coordinates of the center xj of the support of χj are denoted by (sj, 0).
In terms of these new coordinates, we have

Qa,h(uj) = h2

∫
Tδ
e2φ◦F (P (s,τ))/h|eτ (∂s + i∂τ )(wj ◦ P )|2e−2τdsdτ

+ ah
3
2

∫ 2π

0

|wj ◦ P (s, 0)|2|F ′(eis)|ds .

Approximating e2τ by 1 on the support of wj ◦ P , we get

(1− Chρ)−1Qa,h(uj) > h2

∫
Tδ
e2φ◦F (P (s,τ))/h|(∂s + i∂τ )(wj ◦ P )|2dsdτ

+ ah
3
2

∫ 2π

0

|wj ◦ P (s, 0)|2|F ′(eis)|ds .

We let φ̌ = φ◦F ◦P . Since φ is zero at the boundary, we have that e2φ̌(s,0)/h = 1. Then,
by using that |F ′(eis)| > (1 − Chρ)|F ′(eisj)|, and by commuting the exponential with
the Cauchy-Riemann derivative, we get

(1− Chρ)−1Qa,h(uj) >
∫
Tδ
|(h∂s − ∂sφ̌+ ih∂τ − i∂τ φ̌)eφ̌(s,τ))/h(wj ◦ P )|2dsdτ

+ah
3
2

∫ 2π

0

|eφ̌(s,0))/hwj ◦ P (s, 0)|2|F ′(eisj)|ds ,

with a possible different constant C > 0.
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Then,

(1− Chρ)−1Qa,h(uj) >
∫
Tδ
|(−ih∂s + Ǎ1 + i(−ih∂τ + Ǎ2))Wj|2dsdτ

+ |F ′(eisj)|ah
3
2

∫ 2π

0

|Wj(s, 0)|2ds ,

where Wj = eφ̌(s,τ))/h(wj ◦ P ) and Ǎ = ∇φ̌⊥ = (−∂τ φ̌, ∂sφ̌). Now, we have a magnetic
Cauchy-Riemann problem on a flat space, with a uniform Robin condition.

A computation that uses the identity (∂s + i∂τ )(e
−τ+is) = 0,

∇× Ǎ = (∂2
s + ∂2

τ )(φ ◦ F ◦ P ) = e−2τ∆y(φ ◦ F )(P (s, τ))

= e−2τ |F ′(P (s, τ))|2B(F (P (s, τ)))

= βj + O(|s− sj|+ |τ − τj|) ,

gives the new constant magnetic field βj = |F ′(yj)|2B(xj).
Using the Young inequality, we get∫
Tδ
|(−ih∂s + Ǎ1 + i(−ih∂τ + Ǎ2))Wj|2dsdτ

> (1− ε)
∫
Tδ
|(−ih∂s+ Ǎ1,j + i(−ih∂τ + Ǎ2,j))Wj|2dsdτ − ε−1

∫
Tδ
|Ǎ− Ǎj|2|Wj|2dsdτ ,

where Ǎj = (Ǎ1,j, Ǎ2,j) is the Taylor approximation of Ǎ at the order one at (sj, τj):

|Ǎ− Ǎj| 6 Ch2ρ ,

on the support of Wj. We get that

(1− Chρ)−1Qa,h(uj) > (1− ε)Qj(Wj)− Ch4ρε−1

∫
Tδ
|Wj|2dsdτ , (4.7)

with

Qj(W ) =

∫
R2

+

|(−ih∂s + Ǎ1,j + i(−ih∂τ + Ǎ2,j))W |2dsdτ

+ |F ′(eisj)|ah
3
2

∫
R
|W (s, 0)|2ds .

Let us remark that, by construction,

∇× Ǎj = βj ,

so that after a change of gauge, we can assume that Ǎj = (−βjτ, 0).
Thus, we get a new quadratic form on L2(R2

+) which is associated with a new operator
Lj. We are interested in the bottom of its spectrum:

inf sp(Lj) = inf
W∈H2

−Ǎj
(R2

+)

W 6=0

Qj(W )

‖W‖2
.
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Let us consider the rescaling

(s, τ) = h
1
2β
− 1

2
j (s̃, τ̃) .

We get

inf sp(Lj) = hβjµj , µj = inf
W∈H2

−Ǎj
(R2

+)

W 6=0

Q̃j(W )

‖W‖2
,

where

Q̃j(W ) =

∫
R2

+

|(−i∂s − τ + i(−i∂τ ))W |2dsdτ + aB(xj)
− 1

2

∫
R
|W (s, 0)|2ds .

Then,

(1− Chρ)−1Qa,h(uj) >
[
(1− ε)hβjµj − Ch4ρε−1

]
‖Wj‖2 .

We choose ε such that

εh = ε−1h4ρ ,

so that

ε = h−
1
2

+2ρ ,

and

(1− Chρ)−1Qa,h(uj) >
[
hβjµj − Ch

1
2

+2ρ
]
‖Wj‖2 .

In particular, we get

Qa,h(uj) >
[
hβjµj − Ch

1
2

+2ρ − Ch1+ρ
]
‖Wj‖2 .

Then,

Qa,h(uj) >
[
hβjµj − Ch

1
2

+2ρ
] ∫
Tδ
e2φ̌(s,τ))/h|(vj ◦ F ◦ P )|2dsdτ

>
[
hβjµj − Ch

1
2

+2ρ − Ch1+ρ
] ∫

D
e2φ(F (y)))/h|(vj ◦ F (y))|2dy

=
[
hβjµj − Ch

1
2

+2ρ − Ch1+ρ
] ∫

Ω

e2φ/h|vj(x)|2|(F−1)′(x)|2dx

> |(F−1)′(xj)|2
[
hβjµj − Ch

1
2

+2ρ − Ch1+ρ
] ∫

Ω

e2φ/h|vj(x)|2dx

>
[
hB(xj)µj − Ch

1
2

+2ρ − Ch1+ρ
] ∫

Ω

e2φ/h|vj(x)|2dx

>
[
hB(xj)µj − Ch

1
2

+2ρ
] ∫

Ω

e2φ/h|vj(x)|2dx

=
[
hB(xj)µj − Ch

1
2

+2ρ
] ∫

Ω

|χju(x)|2dx .
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Then, letting A0 = (−τ, 0), we have

B(xj)µj = inf
u∈H2

−A0
(R2

+)

u6=0

B(xj)
∫
R2

+
|(−i∂s − τ + i(−i∂τ ))u|2dsdτ + aB(xj)

1
2

∫
R |u(s, 0)|2ds

‖u‖2

> inf
u∈H2

−A0
(R2

+)

u6=0

b′0
∫
R2

+
|(−i∂s − τ + i(−i∂τ ))u|2dsdτ + a(b′0)

1
2

∫
R |u(s, 0)|2ds

‖u‖2

= b′0ν(a(b′0)−1/2) .

The result follows. �

Remark 4.4. It is clear from the proof that we also have a reverse inequality of (4.7):

(1− Chρ)−1Qa,h(uj) 6 (1 + ε)Qj(Wj) + Ch4ρε−1

∫
Tδ
|Wj|2dsdτ . (4.8)

Gathering the estimates (4.4) and (4.5), and using Lemma 4.2, we find that

Qa,h(u) >
[
Λ(a)h− Ch

1
2

+2ρ − Ch2−2ρ
]
‖u‖2 .

We choose ρ such that
1

2
+ 2ρ = 2− 2ρ .

Thus, ρ = 3
8
and

Qa,h(u) >
[
Λ(a)h− Ch

5
4

]
‖u‖2 .

The min-max principle implies the lower bound in Proposition 4.1.

4.2.3. Upper bound. The upper bound in Proposition 4.1 follows by inserting appropri-
ate localized test functions in Qa,h. Let us provide the main lines of the strategy for
this classical analysis.

We recall that

γ1(ah
1
2 , h) = inf

u∈H2
−A(Ω)
u6=0

Qa,h(u)

‖u‖2
.

In particular, we have

γ1(ah
1
2 , h) 6 inf

u∈H1
0 (Ω)

u6=0

Qa,h(u)

‖u‖2
= inf

u∈H1
0 (Ω)

u6=0

‖(−ih∇+ A)u‖2 +
∫

Ω
hB|u|2dx

‖u‖2
.

The last quantity is the groundstate energy of (−ih∇ + A)2 + hB. Pick up a point
x0 ∈ Ω. We can always find a normalized test function ϕh in C∞0 (Ω), localized at the
scale h

1
2 near x0, and such that

‖(−ih∇+ A)ϕh‖2 +

∫
Ω

hB|ϕh|2dx 6 2B(x0)h+ o(h) .

Now, if B attains its minimum inside at x0, then we deduce that

γ1(ah
1
2 , h) 6 2b0h+ o(h) . (4.9)
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If not, for any ε > 0, we may find x0 ∈ Ω such that |B(x0)− b0| 6 ε, and (4.9) is true
as well.

On the other hand, let us consider x0 ∈ ∂Ω where the minimum of B|∂Ω is attained.
Take a fixed cutoff function χ centered at x0, and a minimizing sequence (Wn) ⊂ S (R2

+)

associated with µ. Then, we consider the function ψh(s, τ) = χ(s, τ)Wn((b′0)
1
2h−

1
2 (s, τ))

and its avatar ϕh in the original coordinates (afer the maps P and F ). Using Remark
4.4 (where uj is replaced by ϕh), we get

γ1(ah
1
2 , h) 6 hb′0ν(a(b′0)−1/2) + o(h) .

This, together with (4.9), gives the desired upper bound.

Appendix A. The results under various local boundary conditions

For η ∈ R , and n is a unit vector, we define the boundary matrix

Bη,n = −iσ3(σ · n) cos(η) + σ3 sin(η) .

Bη,n is an unitary and Hermitian matrix so that its spectrum is {±1}. For any regular
function η : ∂Ω→ R, we introduce the local boundary condition

Bη(s),n(s)ϕ(s) = ϕ(s) , s ∈ ∂Ω ,

where n : ∂Ω → S1 is the outward pointing normal and ϕ : ∂Ω → C2. The associated
magnetic Dirac operator (Dh,A,η,Dom(h,Dh,A,η)) acts as Dh,A on

Dom(Dh,A,η) =
{
ϕ ∈ H1(Ω)2 , Bη,nϕ = ϕ on ∂Ω

}
.

The case η ≡ 0 correspond to the MIT bag boundary condition. Note that

Bη,n =

(
sin(η) −in cos(η)
in cos(η) − sin(η)

)
,

so that the boundary condition reads

u2 = in
cos(η)

1 + sin(η)
u1 ,

where ϕ = (u1, u2)T .

Assumption A.1. η ∈ C1(∂Ω) and cos(η(s)) > 0 for all s ∈ ∂Ω.

In [8], the authors proved that under Assumptions 1.2 and A.1, Dh,A,η is self-adjoint.
We define

γ : s ∈ ∂Ω 7→ cos(η(s))

1 + sin(η(s))
∈ R+ .

Since ∂Ω is compact, we get that

0 < inf
∂Ω
γ 6 γ(s) 6 sup

∂Ω
γ < +∞ . (A.1)

Notation 8. Let
‖u‖2

∂Ω,γ =

∫
∂Ω

|u2| γ ds ,

where u ∈ L2(∂Ω). By (A.1), this norm is equivalent with the one introduced in
Notation 2.
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It is straightforward to see that the proofs of the min-max characterization and of
Theorem 1.9 are exactly the same up to the replacement of the norm on the boundary.
In particular, the constants in the asymptotic analysis are defined with respect to the
corresponding weighted Hardy norm on the boundary.

Theorem 1.11 has also its counterpart in this context. Here, the proof has to be
slightly adapted by Taylor approximating γ around each point of the boundary. We
choose to present our proof for the MIT bag condition only in order not to burden the
reader with complicated notations that do not give more insight on the problem. More
precisely, we get :

Theorem A.2. Under Assumptions 1.2, 1.5, and A.1:
(i) Under the further assumption 1.6 we have, for all k > 1,

λ+
k (h) =

(
distH

(
(z − zmin)k−1,H 2

k (Ω)
)

distB
(
zk−1,Pk−2

) )2

h1−ke2φmin/h(1 + oh→0(1)) ,

(ii)
λ−1 (h) = h

1
2 min

(√
2b0, cγ(x)

√
B(x) ;x ∈ ∂Ω

)
+ oh→0(h

1
2 ) ,

where for any x ∈ ∂Ω, cγ(x) > 0 is the unique positive solution of the equation
νγ(x)(c) = c2 with

νγ(x)(c) = inf
u∈H1(R2

+)
u6=0

∫
R2

+
|(−i∂s − τ + i(−i∂τ ))u|2dsdτ + cγ(x)

∫
R |u(s, 0)|2ds

‖u‖2
.

Remark A.3. Using Remark 1.8, we also cover the case cos(η(s)) < 0 for all s ∈ ∂Ω.

Appendix B. Proof of Lemma 2.4

We use Remark 2.3 to consider the case when Ω = D. We let

`2
w(N) =

u ∈ `2(N) :
∑
n>0

(n+ 1)−1|un|2 < +∞

 .

Thanks to the isomorphism expressed in (2.2), (H 2(D), 〈·, ·〉∂D) is a Hilbert space.
Consider

K =

u ∈ `2(N) :
∑
n>0

|un|2 6 1

 .

It is sufficient to show that K is precompact in `2
w(N). Let ε > 0. There exists N ∈ N

such that, for all u ∈ K, ∑
n>N+1

1

n+ 1
|un|2 6

ε2

4
.

Moreover, the unit ball of CN+1 for the standard `2-norm is precompact, and we can
write

∃(a0, . . . , aM) ∈ CN+1 , BN+1(0, 1) ⊂
M⋃
j=0

BN+1,w

(
aj,

ε

2

)
,
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where BN+1,w are the balls for the `2
w-norm. We have

K ⊂
M⋃
j=0

Bw

(
aj, ε

)
,

where aj denotes the extension by zero of the finite sequence aj. Indeed, there exists
N ∈ N such that, for all u ∈ K, ∥∥∥∥∥∥u−

N∑
j=0

ujej

∥∥∥∥∥∥
`2w

6
ε

2
.

Then,
∑N

j=0 ujej ∈ BN+1(0, 1), and the conclusion follows from the triangle inequality.
Here, (ej)j>0 is the canonical basis of l2(N).

Appendix C. About the functions νj(c, ·)

For all c > 0, we have

ν(c) = inf
u∈H2

−A0
(R2

+)

∫
R2

+
|(−i∂s − τ + i(−i∂τ ))u|2dsdτ + c

∫
R |u(s, 0)|2ds

‖u‖2
.

The aim of this section is to prove that the equation ν(c) = c2 has a unique positive
solution.

Due to the min-max theorem, ν(c) is the bottom of the spectrum of the self-adjoint
operator (−i∂s − τ − i(−i∂τ ))(−i∂s − τ + i(−i∂τ )) acting on L2(R2

+) with boundary
condition

(−i∂s + i(−i∂τ ))ψ(s, 0) = cψ(s, 0) .

The Fourier transform in s gives a direct integral and

ν(c) = inf
ξ∈R

ν1(c, ξ) , (C.1)

where ν1(c, ξ) is the bottom of the spectrum of the corresponding operator:

ν1(c, ξ) = inf
u∈B1(R+)

qc,ξ(u)

‖u‖2
, B1(R+) = {u ∈ H1(R+) , τu ∈ L2(R+)} ,

where
qc,ξ(u) =

∫
R+

|(ξ − τ + ∂τ )u|2dτ + c|u(0)|2 .

Note that, for all u ∈ L2(R+), (∂τ − τ)u ∈ L2(R+) is equivalent to u ∈ B1(R+). In fact,
an integration by parts gives

qc,ξ(u) =

∫
R+

(
|u′|2 + |(ξ − τ)u|2

)
dτ + (c− ξ)|u(0)|2 + ‖u‖2 .

Let us consider the associated self-adjoint operator, acting on L2(R+),

Nc,ξ = −∂2
τ + (τ − ξ)2 + 1

with the boundary condition ϕ′(0) = (c− ξ)ϕ(0). This operator has compact resolvent
and thus, we may consider the non-decreasing sequence of its eigenvalues (νj(c, ξ))j>1.
Note also that the family (Nc,ξ)ξ∈R is of type (B) in the sense of Kato:
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(i) Dom(qc,ξ) = B1(R+) does not depend on ξ (or c),
(ii) for all u ∈ B1(R+), ξ 7→ qc,ξ(u) is analytic.
Remark C.1. When ξ = c, this operator coincides with the famous de Gennes operator
(see [15]).

Due to the aforementionned Fourier decomposition, we may focus our analysis on
the properties of the νj. In Section C.1, we prove that each νj, as a function of ξ,
has a unique minimum, which is non-degenerate. In Section C.2, we perform the large
frequency analysis of the νj (ξ → +∞): they go to Landau levels from below, as
displayed in the numerical illustrations of Section C.3. Section C.4 is devoted to the
proof that ν(c) = c2 has a unique positive solution.

C.1. Critical points of νj(c, ·). By the analytic pertubation theory, we know that
νj(c, ·) are analytic functions. Let ν(c, ·) be one these eigenvalues of Nc,ξ, and uc,ξ ≡ uξ
is a corresponding normalized eigenfunction.
Lemma C.2. We have

∂ξν(c, ξ) =

∫ +∞

0

2(ξ − t)u2
ξ(t)dt− u2

ξ(0) .

Proof. We have
(Nc,ξ − ν)uξ = 0 .

Then, in the sense of quadratic forms,
(Nc,ξ − ν)∂ξuξ + ∂ξNc,ξuξ = ∂ξν(ξ)uξ ,

so that

〈(Nc,ξ − ν)∂ξuξ, uξ〉+ 2

∫ +∞

0

(ξ − t)u2
ξ(t)dt = ∂ξν(ξ) .

By integrations by parts, we have
〈(Nc,ξ − ν)∂ξuξ, uξ〉 = ∂t∂ξuξ(0)uξ(0)− ∂ξuξ(0)∂tuξ(0) .

Note that
∂ξ∂tuξ(0) = −uξ(0) + (c− ξ)∂ξuξ(0) .

Thus,
〈(Nc,ξ − ν)∂ξuξ, uξ〉 = −u2

ξ(0) .

�

In the next lemma, we explicitely use the c-dependence of the eigenfunction.
Lemma C.3. We have

∂cν(c, ξ) = u2
c,ξ(0) .

Proof. We have
(Nc,ξ − ν(c, ξ))∂cuc,ξ = ∂cν(c, ξ)uc,ξ .

We get
∂cν(c, ξ) = 〈(Nc,ξ − ν(c, ξ))∂cuc,ξ, uc,ξ〉 = ∂t∂cuc,ξ(0)uc,ξ(0)− ∂cuc,ξ(0)∂tuc,ξ(0) .

Note that
∂c∂tuc,ξ(0) = uc,ξ(0) + (c− ξ)∂cuc,ξ(0) ,

and the conclusion follows. �
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Proposition C.4. We have

∂ξν(c, ξ) =
(
−ν(c, ξ)− c2 + 2cξ

)
u2
ξ(0) . (C.2)

In particular, if ξc is a critical point of ν(c, ·), we have

ν(c, ξc) = −c2 + 2cξc . (C.3)

Moreover, all the critical points are local non-degenerate minima and

∂2
ξν(c, ξc) = 2cu2

ξc(0) > 0 . (C.4)

In particular, there is at most one critical point.

Proof. By using the previous lemma, we get

∂ξν(c, ξ) = −
∫ +∞

0

∂t[(ξ − t)2]u2
ξ(t)dt− uξ(0)2

= 2

∫ +∞

0

(ξ − t)2uξ(t)u
′
ξ(t)dt+ ξ2uξ(0)2 − uξ(0)2

= 2

∫ +∞

0

(u′′ξ (t) + (ν(c, ξ)− 1)uξ)u
′
ξ(t)dt+ ξ2uξ(0)2 − uξ(0)2

=

∫ +∞

0

∂t

(
(u′ξ)

2 + (ν(c, ξ)− 1)u2
ξ

)
dt+ ξ2uξ(0)2 − uξ(0)2

=
(
−(ν(c, ξ)− 1)− (c− ξ)2 + ξ2 − 1

)
uξ(0)2

=
(
−ν(c, ξ)− c2 + 2cξ

)
uξ(0)2 .

We get (C.3). Taking the derivative of (C.3), we deduce (C.4). The last sentence follows
from (C.3) and (C.4). �

The previous statement tells us that ν(c, ·) has at most one critical point, which is a
non-degenerate minimum. Next, we show that there is always a critical point.

Corollary C.5. For all j > 1, the function νj(c, ·) has a unique critical point ξj,c, and
it is a non-degenerate minimum. The function νj is decreasing on (−∞, ξj,c) and is
increasing on (ξj,c,+∞).

Proof. If νj(c, ·) has no critical points, then it is non-increasing (it is non-increasing on
(−∞, 0) by Proposition C.4). From Proposition C.4, we deduce that, for all ξ > 0,

−νj(c, ξ)− c2 + 2cξ 6 0 ,

and that limξ→+∞ νj(x, ξ) = +∞. This is in contradiction with the function being de-
creasing. This show that νj(c, ·) has a unique critical point. It is a local non-degenerate
minimum. Since there is only one critical point, this shows that it is a global mini-
mum. �

C.2. Asymptotic analysis of νj(c, ξ). This section is devoted to the asymptotic anal-
ysis of νj(c, ξ) when ξ → +∞.

When ξ > 0, we use the rescaling τ = ξt, and Nc,ξ is unitarily equivalent to

ξ2(Pc,h + h) , h = ξ−2
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where Pc,h = −h2∂2
t + (t− 1)2 is equipped with the boundary condition

h2ϕ′(0) = (ch
3
2 − h)ϕ(0) .

The corresponding quadratic form is

Qc,h(ϕ) =

∫ +∞

0

(h2|ϕ′|2 + |(t− 1)ϕ|2)dt+ (ch
3
2 − h)|ϕ(0)|2 .

Let us denote by (πj(c, h))j>1 the non-decreasing sequence of the eigenvalues of Pc,h.

Proposition C.6. For all j > 1,

πj(c, h) = (2j − 1)h+ O(h∞) .

In particular,
νj(c, ξ) = 2j + O(ξ−∞) .

Moreover, for all ξ large enough, we have

νj(c, ξ) < 2j . (C.5)

Proof. By using the Hermite functions and the spectral theorem, we have, for all n > 1,

dist((2n− 1)h, sp(Ph,c)) = O(h∞) .

Moreover, for h small enough, we have

Qc,h(ϕ) 6
∫ +∞

0

(h2|ϕ′|2 + |(t− 1)ϕ|2)dt .

Thus, by the min-max principle,

πj(c, h) 6 µNeu
j (h) ,

where µNeu
j (h) is the j-th eigenvalue of the Neumann realization of −h2∂2

t + (t − 1)2.
From our knowledge of the de Gennes operator1, we have, for h small enough,

µNeu
j (h) = (2j − 1)h+ O(h∞) , µNeu

j (h) < (2j − 1)h . (C.6)

Therefore, for all j > 1, and for all h small enough, the j-th eigenvalue of Ph,c satisfies

πj(c, h) < (2j − 1)h .

Consider ε > 0 to be determined later. We have

Qc,h(ϕ) =

∫ εh
1
2

0

(h2|ϕ′|2 +|(t−1)ϕ|2)dt+(ch
3
2−h)|ϕ(0)|2 +

∫ +∞

εh
1
2

(h2|ϕ′|2 +|(t−1)ϕ|2)dt .

We get

Qc,h(ϕ) > Q1
c,h(ϕ) + (1− 2εh

1
2 )‖ϕ‖2

L2(0,εh
1
2 )

+

∫ +∞

εh
1
2

(h2|ϕ′|2 + |(t− 1)ϕ|2)dt ,

with

Q1
c,h(ϕ) =

∫ εh
1
2

0

h2|ϕ′|2dt+ (ch
3
2 − h)|ϕ(0)|2 .

1see, for instance, [15, Prop. 3.2.2 & 3.2.4] where the result is expressed in terms of ξ
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The corresponding operator P1
h,c is −h2∂2

t with the Robin condition at zero h2ϕ′(0) =

(ch
3
2 − h)ϕ(0) and Neumann condition at εh

1
2 , ϕ′(εh

1
2 ) = 0. Consider a negative eigen-

value λ = −ω2, with ω > 0. We have

−h2ϕ′′ = λϕ , h2ϕ′(0) = (ch
3
2 − h)ϕ(0) , ϕ′(εh

1
2 ) = 0 .

We have
ϕ(t) = Be−ωt/h + Aeωt/h .

The boundary conditions become

ω(A−B) = (A+B)(ch
1
2 − 1) , B = Ae2ωε/h1/2

.

Thus,

ω =
1 + e2ωε/h1/2

1− e2ωε/h1/2
(ch

1
2 − 1) .

This equation has a unique positive solution. We can check that this solution satisfies
ω = 1− ch 1

2 + O(h∞). Therefore, the first negative (and only negative) eigenvalue λ of
P1

h,c satisfies
λ = −1 + 2ch

1
2 − c2h+ O(h∞) .

Take ε = c
4
. For h small enough, we have

Qc,h(ϕ) > ch
1
2‖ϕ‖2

L2(0,εh
1
2 )

+

∫ +∞

εh
1
2

(h2|ϕ′|2 + |(t− 1)ϕ|2)dt .

Consider
EN(h) = span16j6N ψj ,

where (ψj)16j6N is an orthonormal family of eigenfunctions associated with (πj(c, h))16j6N .
For all ϕ ∈ EN(h), we have

πN(c, h)‖ϕ‖2 > ch
1
2‖ϕ‖2

L2(0,εh
1
2 )

+

∫ +∞

εh
1
2

(h2|ϕ′|2 + |(t− 1)ϕ|2)dt > ch
1
2‖ϕ‖2

L2(0,εh
1
2 )
.

In particular, since πN(c, h) 6 (2N − 1)h, EN(h) 3 ϕ 7→ ϕ
|(0,εh

1
2 )

is injective for h small
enough.

Moreover,

(πN(c, h)− ch
1
2 )‖ϕ‖2

L2(0,εh
1
2 )

+ πN(c, h)‖ϕ‖2

L2(εh
1
2 ,+∞)

>
∫ +∞

εh
1
2

(h2|ϕ′|2 + |(t− 1)ϕ|2)dt .

For h small enough, we have πN(c, h)− ch 1
2 6 0. Then,

πN(c, h)‖ϕ‖2

L2(εh
1
2 ,+∞)

>
∫ +∞

εh
1
2

(h2|ϕ′|2 + |(t− 1)ϕ|2)dt .

By the min-max theorem, and using the aforementioned injectivity, we have

µN(ε, h) 6 πN(c, h) ,

where the (µj(ε, h))16j6N are the eigenvalues of the Neumann realization on L2(εh
1
2 ,+∞)

of −h2∂2
t + (t− 1)2. As for (C.6) (i.e., when ε = 0), we check that

µN(ε, h) = (2N − 1)h+ O(h∞) .

The conclusion follows.
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The inequality (C.5) is a consequence of Corollary C.5. �

C.3. Numerical illustrations. By using a naive finite difference method, it is a pos-
sible to compute the eigenvalues νj(c, ·) by using a short Python script, see the figures
below. These simulations are consistent with all our theoretical results.

(a) The function ν1(2, ·)
(b) Functions νj(2, ·) and the function ξ 7→
−c2 + cξ

C.4. On the function ν. We recall that ν is defined in (1.11).

Proposition C.7. The function ν is non-negative on [0,+∞), concave and it satisfies

ν(0) = 0 , ν(+∞) = 2 , lim inf
c→0+

ν(c)

c
> 0 .

In particular, the equation ν(c) = c2 has a unique positive solution c0 and c0 ∈ (0,
√

2).

Remark C.8. Numerical calculations suggest that c0 is approximately equal to 1.31236.

Proof. The function ν is concave as an infimum of linear functions. The equality ν(0) =
0 follows by considering the zero modes2, and ν(+∞) = 2 comes from the fact that,
when c→ +∞, ν(c) converges to the groundstate energy on the half-space with Dirichlet
boundary condition. Then, the concavity implies that

lim inf
c→0+

ν(c)

c
> 0 . (C.7)

Let us explain why ν is a smooth function on (0,+∞). Let us recall that
ν(c) = min

ξ∈R
ν1(c, ξ) = ν1(c, ξc) ,

and that, for all c > 0, ξc > 0 is the unique solution of
∂ξν1(c, ξ) = 0 . (C.8)

For all c > 0, we have ∂2
ξν1(c, ξc) > 0, and thus the analytic implicit function theorem

applied to (C.8) implies that c 7→ ξc is analytic. Since ν1 is analytic, we deduce that
c 7→ ν(c) is analytic. We notice that

ν ′(c) = ∂cν1(c, ξc) + ∂ξν1(c, ξc)
dξc
dc

= ∂cν1(c, ξc) .

2We can also check that ν is right continuous at 0.
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Thanks to Lemma C.3, we get
ν ′(c) = u2

c,ξc(0) . (C.9)
Let us now consider the function

f(c) = ν(c)− c2 .

From (C.7), we see that f is positive on some interval (0, a) with a > 0. Then, by
ν(+∞) = 2, we see that f is negative on some interval (b,+∞). By the Intermediate
Value Theorem, we deduce that f has at least one zero in (0,+∞). Let us prove that
there is only one zero. Consider c > 0 such that f(c) = 0. We have f ′(c) = ν ′(c)− 2c.
Due to (C.3), we have ξc = c, and with Lemma C.2, we get

2c− u2
c,ξc(0) =

∫ +∞

0

tu2
c,ξc(t)dt > 0 .

This, with (C.9), implies that f ′(c) < 0. We deduce that f has at most one positive
zero (and thus exactly one, denoted by c0).

Let us now prove that c0 ∈ (0,
√

2). Let us recall (C.1). From (C.5) and Corollary
C.5, we have ν(c0) = ν1(c0, ξc0) < 2. Thus, c2

0 = ν(c0) < 2. This shows that c0 <
√

2.
�

Remark C.9. Actually, one could have avoided our asymptotic analysis to prove that
c0 <

√
2 by using the knowledge of the de Gennes function. Consider ξ = c > 0. Then,

ν1(c, c) = µ(c) + 1 ,

where µ is the celebrated de Gennes function. We know that, on R+, µ < 1. Thus, for
all c > 0,

ν(c) < µ(c) + 1 < 2 = (
√

2)2 .

Nevertheless, the dispersion curves play a very important role in the description of the
subprincipal terms of Theorem 1.11.
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