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ON THE DIRAC BAG MODEL IN STRONG MAGNETIC FIELDS

J.-M. BARBAROUX, L. LE TREUST, N. RAYMOND, AND E. STOCKMEYER

ABSTRACT. In this work we study two-dimensional Dirac operators on bounded do-
mains coupled to a magnetic field perpendicular to the plane. We focus on the MIT
bag boundary condition and provide accurate asymptotic estimates for the low-lying
(positive and negative) energies in the limit of a strong magnetic field.
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1. INTRODUCTION

Consider an open, smooth and simply connected domain 2 C R? and a magnetic field
B = Bz, smooth and pointing in direction Z orthogonal to the plane. In this work we
consider a Dirac operator restricted to (2 and coupled to the magnetic field B through
a magnetic vector potential A = (A, A;)T satisfying V x A = B. The magnetic Dirac
operator acts on a dense subspace of L?(£2,C?) as,

0 —i(0y — i0) — bA; + z'bA2> (L1)

o - (—N — bA) = (—i(81 + 282) — bAl — ibAQ 0

where b > 0 is a positive coupling constant. We write 0-x = 0121 + 0925 for x = (21, z5)
with the usual Pauli matrices

01 0 —i 10
(Vo) m=(00) w0 5)

If we assume that the spinors satisfy a boundary relation of the type ¢ = By on 02
with a unitary and self-adjoint boundary matrix B: 92 — C**2, then simple integration
by parts shows that the local current density o-n vanishes at each point of the boundary
if and only if

Bo-n+oc-nB=0 on 09, (1.2)

where n is the normal vector pointing outward to the boundary. In particular, for these
cases, the Dirac operator is formally symmetric and satisfies the bag condition, i.e., that
no current flows through 09 [10]. In the physics literature these type of models have
being earlier considered to describe neutrino billards [10] and (in the three dimensional
setting) quark confinement [12]. More recently, they have regained attention with the
advent of graphene and other Dirac materials, see e.g., [1, 11, 24, 14].

Using the properties of the Pauli matrices and those of B it is easy to see that the
most general form of B acts as a multiplication on L?*(9€) with

B=DB,=(c-t)cosn+ossinn, (1.3)

for certain sufficiently smooth 7 : 92 — R and t being the unit tangent vector pointing
clockwise (we have that n x t = Z). The most frequently used boundary conditions in
the physics literature are the cases when cosn = 0 and sinn = 0 known as zig-zag and
MIT bag or infinite-mass boundary conditions, respectively. For recent mathematical
literature on the subject in the two and three dimensional settings see for instance
[8, 4, 19, 21, 7] about self-adjointness, [25, 3, 5] for the derivations as an infinite mass
limit, and [9, 20, 2] for eigenvalue estimates.

In this work we consider Dirac operators D, acting as in (1.1) on spinors ¢ satisfying
¢ = Byp, with n € [0,27). We give the precise definition of the self-adjoint realization
below. Assuming that the magnetic field satisfies inf .5 B(x) = By > 0 (besides certain
geometrical conditions, see Assumption 1.6), we provide asymptotic estimates for the
corresponding low-lying eigenvalues in the strong coupling constant limit b — oco.

The behavior of the corresponding operators in the physically most relevant cases
mentioned above are quite different from each other. Indeed, on the one hand, the
spectrum of a zig-zag operator is symmetric with respect to zero and zero is an eigenvalue
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of infinite multiplicity. On the other hand, the spectrum of the MIT-bag is far from
being symmetric for large magnetic fields and zero is never in its spectrum.

Our main results can be roughly summarized as follows: For k € {1,2,3,...} we
denote by ;7 > 0 and 7, < 0 the non-negative and negative eigenvalues of, Dy, the
MIT bag operator with 7 = 0. They are ordered such that || < |ni,,|. Then, there
is a constant C}f > 0 such that, as b — oo,

ne = CrbFe™%(1 + o(1)). (1.4)

We provide explicit expressions for the constants C;" and a > 0 in terms of the geometry
and the magnetic field B (see Theorem 1.9). In particular, the positive eigenvalues of
P a accumulate exponentially fast to zero in the strong magnetic field limit. This
behavior is in contrast to the one of the negative eigenvalues. Indeed, for the first
negative eigenvalue we show that there is a constant C'~ > 0 such that

ny = —C"b2 +o(b"2). (1.5)

The constant C'~ obeys an effective minimization problem and we know that it is smaller
or equal than /2 and for constant magnetic field C~ < v/2 (see Theorem 1.11).

The proof of (1.4) and (1.5) is based upon the asymptotic analysis of a mini-max
principle for the corresponding operator Dy. We show a new min-max characterization,
well adapted to our setting, whose proof is inspired by [13] and [16]. A result in the same
spirit has being recently used in [2]. It is easy to see that the mini-max characterization
applies well to any boundary conditions with cosn # 0, as described in Appendix A one
obtains the same type of asymptotic formulas (1.4) and (1.5) with different constants.

As for the zig-zag case, when cosn = 0, we obtain analogous results for the energies
through a simple application of the asymptotic analysis performed in [6] and the relation
between zig-zag and Pauli-Dirichlet operators. This is explained in Section 1.3 and the
results can be summarized as follows: For k € {1,2,3,...} we denote by y; and p
the k-th positive eigenvalue of D/, and D3,/ o, respectively. Then, we find constants
0 < ¢ <Cp < ¢ that, as b — o0,

Ckb(k+1)/ze_ab(1 +0(1)) < pp, < Ckb(k—i-l)/?e—ab(l +0(1)),
and

/’Lz > V 2bBO7

where o > 0 is the same constant appearing in (1.4).
Let us finally mention that our results compare well with the findings in the physics
literature [23, 17, 27| for constant magnetic fields.

1.1. Basic definitions and assumptions. We study the equivalent semiclassical prob-
lem given by the the action of

0 d

@h’A:O"(p—A): <d>< IBA) s (16)
h,A

where p = —ihV for h > 0,

dpa = —2ihd, — Ay +idy, 7y = —2ih0; — A, —iAs,
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with 05 = % and 0, = @. We focus on the boundary conditions described above
for n = 0, that is
B=o0-t=—io3(c-n),
where n is the outward pointing normal to the boundary 0f2. The associated magnetic
Dirac operator with MIT bag (or infinite mass) boundary condition is (Z;, a, Dom(Zy,.a))
with
Dom(Zha) = {¢ € H'(Q,C?), By = ond0} .

Remark 1.1. Note that
o 0 n
o-n=|_ 0)

so that the boundary condition reads

U = inul s
where ¢ = (u1,us)”, and n = (ny,n)? denotes the normal vector in R?* and also
n—=—n;+ inz e C.

The main purpose of the paper is to study the asymptotic behavior of the eigenvalues
near 0 in the semiclassical limit h — 0.
Assumption 1.2.

(i) Q is bounded, simply connected, O is C*-regular,

(i) B € Wl>(Q) .

Under Assumption 1.2, the operator %, without magnetic field, is self-adjoint on
L?(2)? (see for instance [8]). We work in the so-called Coulomb gauge that is given
through the unique solution of the Poisson equation

A¢p =B, Do =0, (1.7)

by choosing A = (—0y¢,0,¢)T = Vét. Notice that by standard regularity theory the
components of A are bounded. Hence 9, 4 is self-adjoint and it has compact resolvent
since Dom(Z,a) C H 1. In particular, the spectrum D a of is discrete. We denote by
(Af(R))k=1 and (—A; (h))k>1 the positive and negative eigenvalues of 7, o counted with
multiplicities. In fact, &, o has no zero modes. This can be seen using the following
lemma, which is a consequence of [18]| and [6].

Notation 1. We denote by (-, ) the standard scalar product on 2 (antilinear w.r.t. the
left argument), and by || - || the associated norm. In the same way, we denote by (-, -)aq
the L?-scalar product on L?*(99).

Lemma 1.3. For all h > 0, there exists C'(h) > 0 such that, for all u € Hy(S2), we
have

Iy aull® = C () [Jull?.
Proposition 1.4. The operator 9, a has no zero modes.

Proof. Consider ¢ = (u,v)T € Dom(Z, a) such that Z, o = 0. We have dj av =
d,f’ At = 0. Thus, integrating by parts, and using the boundary condition, we get

0= (dnav,u) = (v,dj yu) + h(=iDv,u)sq = h|ul|3q -

Therefore u € H}(2), and Lemma 1.3 implies that u = 0. O
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Since 7, o has no zero mode, its spectrum is
DTna) = L =Nz (h), =X (WFUINE(R), A ().} (1.8)
Assumption 1.5. B is positive. We define by = infq B > 0 and by = mingg B.
Under this assumption, ¢ is subharmonic so that

maxo = max¢o =0
e ¢ €00 ¢ ’

and the minimum of ¢ will be negative and attained in ).

Assumption 1.6.

(i) The minimum ¢uwin of ¢ is attained at a unique point Tppiy,.

(ii) The Hessian matric Hessying® of ¢ at Ty is positive definite i.e. Ty is non-
degenerate minimum. We also denote by zyin, the minimum xu;, seen as a complex
number.

1.2. Main results. The magnetic Hardy space is
,%’ij(Q) ={uc L*): dy ot =0, upq € L*(09)} .
We let
na=H'(Q)+ %Q,A(Q) 5
and endow it with the Hermitian scalar product given by
V(ur, uz) € Apa X Dna, (Ui, Us)g, o = (U1, ug) + (dj au1, dj gtz) + (U1, uz)a0 -

The following result gives us a non-linear min-max characterization for the positive
eigenvalues of 7, a.

Theorem 1.7. Under Assumption 1.2. We have, for all h >0 and k > 1,

' h||u||%sz+\/h2||u||4asz+4||u||2||dZ,AU||2
M (h) = min  max

WCHn.a ueW\{0} 2||ul|
dim W=k

Remark 1.8. Due to the symmetry of the problem we use also this min-max charac-
terization for the negative eigenvalues of 7, o after changing the sign of the magnetic
field. Indeed, consider the charge conjugation operator

C:peC?— 01 C?,
where @ is the vector of C? made of the complex conjugate of the coefficients of ¢. We
have CDom(Z.a) = Dom(Zy a), and CZp aC = —D), _a . In particular, we get that
sp(Zna) = —SP(Dh,-a) -

In order to state our next result on the asymptotic estimates of the A (h) we introduce
some notation to explicitly define the constant C} from (1.4).

Notation 2. Let us denote by €0(Q2) and &' (C) the sets of holomorphic functions on 2
and C. We consider the following (anisotropic) Segal-Bargmann space

$*(C) = {u € O(C) : Ng(u) < +oo},
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where

1/2
) 2 - €SS .
Np(u) = (/R2 \U(y1 + 2y2)| e H xmlrlcb(y,y)dy) .

We also introduce the Hardy space
Q) ={uec 0f): |ulog < +oo},

.\ 2
fulon = ( [ futn+ i)l an)
Q
We also define for P € #72(Q2), A C H#72(Q),

disty (P, A) = inf {NH(P —Q), forall Q € A} ,
and for P € #*(C), A C #?*(C),
dists(P, A) = inf {Ns(P — Q) for all Q € A} .

where

The following constant is important in our asymptotic analysis

Cu(B.Q) — disty ((z = 2mim) ", HG2Q)) ?
M N distpg (Zkil, Pk_z) ’

where Py_s = span (1,...,257?) c #*(C), P_; = {0} and

A2 Q) = {u € A*Q), u™ (2min) =0, forn € {0,...,k—1}}.
Theorem 1.9. Under Assumptions 1.2, 1.5 and 1.6, we have for all k > 1,

AL (R) = C(B, QA FeXmn/h(1 4 0, (1))

(1.9)

(1.10)

Remark 1.10. Let us assume that () is the disk of radius R centered at 0, and that
B is radial. In this case zy, = 0 and Hess, . ¢ = B(0)Id/2. Moreover, using Fourier
series, we see that (2"),>0 is an orthogonal basis for N and Ny. In particular, 74%(Q)

is Ny-orthogonal to z*~! so that

2
disty, (zk_l, %’f(Q)) = |12*72|12, = R?2|0Q) = 2n R2L.

In addition, P;_s is Ng-orthogonal to z*~! so that
2
diStB (Zkil,Pk_2> = NB(Zk71)2 =27 B(O)k
Thus, we get that

Cr(B,Q) = %(%2>k1.

We now turn to the negative eigenvalues of &, o. Consider, for all ¢ > 0,

fRi [(—i0s — 7 4 i(—10;))ul*dsdT + ¢ [, |u(s,0)[*ds

=1 — 1)

vic) = inf
= el ) [al?
u#0

(1.11)

with Ag = (—7,0). Notice that the quadratic form minimized in (1.11) corresponds
to the magnetic Schrédinger operator on a half-plane with a constant magnetic field
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(equaling 1) and equipped by a Robin-like boundary condition. More details are given
in Appendix C.

We can prove (see Proposition C.7) that the equation v(c) = ¢® has a unique positive
solution, denoted by c¢q. Moreover, cq € (0, \/i)

Theorem 1.11. Under Assumptions 1.2 and 1.5, we have
A7 (h) = k2 min(y/2bg, con/b}) + onso(h7)

where A\{ (h) is defined in Section 1.1, by = ming B(z) and by = mingg B(z). In partic-
ular, when B = by is constant, we have

AL () = co\/boh + opso(h2).
Remark 1.12. In fact, ¢y equals
Jg lu(s, 0)[?ds + \/(fR lu(s, 0)|2ds)2 + 4| ul]? fRi |(—i0s — T + i(—i0;))u|>dsdT
inf .

ueh? o, (R2) 2[u?
u#0

Remark 1.13. The asymptotic analysis leading to Theorems 1.9 and 1.11 strongly
differ from each other. Indeed, the eigenfunctions are localized near x,,, for the pos-
itive energies, whereas, when B is constant, they are localized near the boundary for
the negative ones. Moreover, in this last case, for non-constant magnetic fields, the
eigenfunctions might be localized inside if by/bj is small enough. Consequently, the
underlying semiclassical problems do not share the same structure. Actually, in a forth-
coming paper, we reduce the spectral analysis of the negative energies to the one of a
pseudo-differential operator on the boundary.

Remark 1.14. The eigenvalues in the strong magnetic field limit given by the operator
Dy described in the introduction can be found by a simple scaling argument. Fix the
magnetic field B to be lower bounded by b > 0. Then we have

spDy =bsp %y, 4,
where the components of A satisfy &, Ay — 9,A; = B/b. Then equations (1.4) and (1.5)
are direct consequences of theorems 1.9 and 1.11, respectively.

1.3. The zig-zag case. In this paper, we consider the Dirac operator with MIT bag
boundary condition (and its variants in Appendix A). The so-called zig-zag boundary
condition also appears commonly in the description of the electrical properties of pieces
of graphene. It is worth noticing that the spectral properties of the related operators
exhibit completely different asymptotic behaviors compared with the ones studied here.
More precisely, the operators (fé’}lfA, Dom(ﬁfA)) acting as 0 - (p — A) on

Dom(Z, 5) = Hy(Q,C) x {u € L*(2,C),d0.u € L*(2,C)},

Dom(,,@”,:’rA) ={u e L*(Q,C),0u e L*(Q,C)} x Hy(?,C),

are self-adjoint. This easily seen since by construction the operators %L%A have the

supersymmetric structure
+ (0 Di
%LA - (Di O ) )
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where D, and D* have Dirichlet boundary conditions. Moreover, 0 is an eigenvalue of
infinite multiplicity for both of them and their kernels can be determined explicitly (see
[26, Chapter 5],[22] and |6, Proposition 4.4]).

Next notice that since agff}fA = — thag holds, the spectra of both operators is
symmetric with respect to zero. Moreover, by simply squaring the operators one sees
that, due to the isospectrality of D, D% and D% D, away from zero,

(DA€ sp(Z)\ {0} =sp{DiDy}, and {Nxesp(Z0)\ {0} = sp{D-D"}.

Thus, their discrete spectrum satisfy

spa(25) =sp 250\ 10) = { oz ke fud i ke )
where (o} (h))r=1 and (az (h))r=1 are the ordered sequences of the eigenvalues (counted
with multiplicity) of the operators D% D, and D_D* that act as
|lp—A|*+hB, and |p—A]®>-hB,
on H}(Q,C)N H?(2,C). Therefore, we deduce from [6, Theorem 1.3.], that there exists
o € (0, 1] such that for all & > 1
1/2
(902@(3, Q)hl—ke%mm/h) (1+ ons0(1)) < \/ag (R)

1/2
< (201@(37 Q)hl—k€2¢min/h) (1 + Oh_>0(1)) ’

as h — 0. Finally, it is well known that
\/ a:(h) 2 \V 2B0h .

2. A NON-LINEAR MIN-MAX CHARACTERIZATION

The aim of this section is to establish Theorem 1.7. To do so, we first establish
in Section 2.1 some fundamental properties of the natural minimization space $j a.
Then, we prove that the \-eigenspace of 7, o are isomorphic with the 0-eigenspace of
an auxiliary operator %) depending quadratically on A, see Proposition 2.12. Section
2.3 is devoted to describe the spectrum of %), and in particular when 0 € sp(.%)).

Throughout this section, A > 0 is fixed.

2.1. Magnetic Hardy spaces.
Definition 2.1. The magnetic Hardy space is
%L%A(Q) ={uc L*): dy gt =0, upq € L*(09)}.
We let
Ona=H'(Q)+ %LzA(Q) 5

and endow it with the Hermitian scalar product given by

V(ur, ug) € Opa X Nna, (Ui, Us)sy, o = (U1, U) + (dy g, dj qz) + (U1, U)o -
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Proposition 2.2. The free Dirac operator and the magnetic Dirac operator are related
by the formula

e pesth = 5. (p—A), (2.1)

as operators acting on H'(Q, C?) functions.

Remark 2.3. By using the change of function u = e~%/"w suggested by Proposition
2.2, we have

KA Q) = e AT (Q), Hma =0,
where
$o = H'(Q) + A7(Q),
and
AP (Q) ={w € L*(Q) : d:w = 0, wppq € L*(0N)}.
Note that, for all (u1,u2) € Hpa X HiA,

(u, U2>f,h7A = (wy, w2>L2(e—2¢/h) + (—2ihozwy, —Qihaéw2>m(e—2¢/h) + (w1, wa)aa

where w; = e?/ hu; for j = 1,2. Then, by using the Riemann biholomorphism F : D —
Q, the classical Hardy space 42(2) = #%(Q)) becomes the canonical Hardy space

HD) = feﬁ(D):(f(ZfO)> € 2(N)

Note that, for f € #2(D),

(n)
P =20 @+ ) s 1 Ba=20 Y s w=1 2 (29

n!
n>1 n=0

The following lemma is a classical result. For the reader’s convenience, we recall the
proof in Appendix B.

Lemma 2.4. The space (G4 (Q), (-, -)aq) is a Hilbert space. Moreover, 775 (Q) is
compactly embedded in L*(Q).

Lemma 2.5. There exists ¢ > 0 such that, for all h > 0, and for all u € H'(Q),
V2hBo||[y aull < lldi pgull s ch?([Tjaullo + [IVIT aull) < 15 aull,

where Iy o is the (orthogonal) spectral projection on the kernel of the adjoint of the dj, a
with Dirichlet boundary conditions, i.e. (dna, Hy(Q))*, and

Id =TT a +11; 5 -

Proposition 2.6. The following holds.

i) (Dna, (-, -)m’A) is a Hilbert space.
(i) H'(2) is dense in Hya-
(iii) The embedding $Hpa — L*(Q) is compact.
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Proof. Let us prove (i). We consider a Cauchy sequence (u,,) for |- [|s, ,. It is obviously
a Cauchy sequence for || - || and | - [[ao. We write u, = Iy atin + I} Aty From Lemma
2.5, we see that (II; yun) is a Cauchy sequence in H'(2), and thus converges to some
ut € H'(Q2). Moreover, by using again Lemma 2.5, (ITj au,) is a Cauchy sequence in
25 (). From Lemma 2.4, (IIj, auy,) converges to some u € 7475 (Q2). It follows that
(u,) converges to u + ut in ..

Item (ii) is a consequence of |6, Lemma C.1].

By using again the orthogonal decomposition induced by IIj, o, and the compactness

of H'(Q) — L*(Q), and of 775 () — L*(Q) (see Lemma 2.4), we get (iii).
U

2.2. Statement of the min-max characterization. The proof of Theorem 1.7 is a
consequence of Propositions 2.7 and 2.8, see below.

Notation 3. For all £ > 1 and all A > 0, we define

h) = inf sup u),
px(h) %}gz(g)uew\{o}m( )

where

hlull3o + \/h2|IUH§Q + 4lju]|?|dy pul®
2|[ulf?

p+(u) =

Proposition 2.7. We have, for all k > 1,

pe(h) = _inf ~ sup p(u)= min sup p.(u)>0.
" S wEWA{0) A WCHnA uew\{0} +(u)

Proof. We use Proposition 2.6 (ii) & (iii), and observe that py(u) > 0 for all u €
hA- 0
Proposition 2.8. For all k > 1, and h > 0, we have

Ni () = ().

The following sections are devoted to the proof of Proposition 2.8.
In the following, we drop the h-dependence in the notation.

2.3. A characterization of the py.
Notation 4. Let A > 0. Consider the quadratic form defined by

Yu € Hna,  Qa(u) = lldy sull® + A [[ullFo — N lul?,
and, for all k£ > 1,

lg(N) = inf sup M

2
werm (@ uew\jo vl
Note that, for all u € ;4 \ {0},

Qa(u) = —Jlul*(A = p-(w))(A = ps(u)), (2.4)
where py(u) is defined in (2.3) and p_(u) is the other zero of the polynomial above.
From Proposition 2.6, we deduce the following.
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Lemma 2.9. For A > 0, the (bounded below) quadratic form Q) is closed. The asso-
ciated (unbounded) self-adjoint operator £\ has compact resolvent, and its eigenvalues
are characterized by the usual min-maz formulas

lg(N) = inf sup Q’\(I;) = min QA(?
WCHY(Q) yewjoy ||| WChra ueW\{0} ||
dim W=k dim W=k

Lemma 2.10. For all k > 1, the function ¢ : (0,400) — R satisfies the following:
(i) ¢4 is concave,

(ii) for all p € (0,p1), and all k =1, €(u) > 0,

(111) lim,\_>+oo gk()\) = —0Q,

(iv) 4y is continuous,

(v) the equation €x(\) = 0 has ezactly one positive solution, denoted by Ej.

Proof. Ttem (i) follows by observing that the infimum of a family of concave functions
is itself concave.

It is enough to check Item (ii) for £ = 1. Consider x > 0. Thanks to Proposition 2.7,
there exists u € $;,a such that ¢1(p) = Qu(u). If ¢1(p) < 0, then, by (2.4), we have
that p1 > py(u) > .

By taking any finite dimensional space W C H}(Q), we readily see that

0,(N) < sup[ldg pull = A7
ueW, ||lu||=1
We get Item (iii).

Since ¢; is concave, it is also continuous. Then, the family (<£))a>o is analytic of type
(B) in the sense of Kato (i.e., Dom(Q,) is independent of A > 0). This implies that
the ¢, are continuous functions. Actually, this can directly be seen from the following
equality

ATIQx, (1) = AT @y (1) = (Me — Ay) <Hd;f,AuHQ()\1)\2)fl + HUHZ) , (2.5)

for all A\;, A2 >0 and u € Hy A.

Let us now deal with Item (v). Consider A\; > 0 such that ¢;(A;) = 0.

Firstly, there exists W C $,a with dimW = £ such that maxy @), = 0. In
particular, for all u € W, @, (u) < 0. Using (2.5), we find, for all w € W,

271 Q) < =0z = M) (Il aulPOure) ™ + ull?)
This implies that, for all Ay > Ay,
s Q) < —(Ce=A) it (Jld aulPure) T+ [ul?) < =0 = h).

ueW, ||ul|=1 u€W, ||lul|=1
Hence,
V)\Q > )\1 , gk(>\2) < —)\2()\2 — )\1) <0 (26)
Secondly, for all W C $j 4 with dim W = k, we have max,cw,juj=1 @, (u) = 0. We
have, for all Ay < A1, and all w € W with |Ju| =1,

AT Q@ () = (o = ) (15 aulPOnde) ™+ Jlul) + 23" Qs (1)
<A — A+ A7 max  Qy,(u),

ueW,|lu[=1
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so that, taking the supremum for u € W,
0< (A — A+ A0 max  Qy,(u),

ueW,|jul|=1
and thus
Vg € (O, )\1), 0< )\2()\1 — )\2) < gk(kg) . (27)

From (2.6) and (2.7), we see that the zeros of ¢4 are isolated. From Item (ii), these zeros
do not accumulate at 0. Thus, we can consider E}j to be the smallest positive zero of /.
Consider Ej, > Ej, the possible next positive zero of ¢;. From (2.6) and by continuity,
we see that £ < 0 on (E, Ek), but, from (2.7), ¢, > 0 on (Ek,Ek). Therefore, /), has
only one positive zero. O

Proposition 2.11. For all k > 1, py is the only positive zero of y, i.e.,
Ey = ..

Proof. In virtue of Proposition 2.7, we notice that pp > 0. Then, we proceed in two
steps.
Firstly, consider a subspace W}, C £ 4 of dimension k such that

a = .
Jhax p+(u) = iy

For all uw € Wi\ {0}, ps(u) < pg. By the definition of ¢ (i) and (2.4), we have

¢ < <0.
k() Lmax Q, ()

Secondly, for all subspace W C $);, o of dimension k, we have

< ma Uu) .
Pk ueW\){(O}p+()

There exists u, € W\ {0} such that p < py(ug). Then, we have

= =0,
uer{/[l/a\}{(o} Qﬂk (u) Q#k (uk>

and taking the infimum, we find £y (u;) > 0.
We deduce that ¢4 () = 0 and conclude by using Lemma 2.10 (v). O

2.4. Proof of Proposition 2.8.

2.4.1. An isomorphism. The following proposition is crucial.

Proposition 2.12. Let A > 0. Then, the map
ker & — ker(Zna — )
/)\ : u
T W s
is well-defined and it is an isomorphism.

Proof. First, we show that the range of ¢, is indeed contained ker(Z,a — A). Let
u € ker(%). Notice that u € ker(.Z)) is equivalent to

Vw € Hpa, Qu(u,w) = (d; gu,d; sw) + hA(u, w)an — N (u,w) = 0. (2.8)
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We set
” dy AU
p=1,) v= )\ .
For all ¢ = (Zl) € Dom(Zp.a), we have
2
(¢, Dnath) = (u, dpaws) + (v, dj; y01)
= (d; au, w2) + (u, —ihiws) +<M dy w>
h,A Y V2 ) 2/00Q \ y Uy AW
dy AU y

- <AU,U)2> + h<u)w1>89 + ,T) dhyAwl

= <)\U,’LU2> + )\(U,@U1> = )‘<()07 ¢> )
where

— the second equality comes from an integration by parts using Proposition 2.6 (ii),
— the third uses the boundary condition wy = inwy,
— the fourth uses (2.8).

This shows, by the definition of the adjoint, that ¢ € Dom(Z, o*) = Dom %), a and in
particular that 9, o = Ap. Therefore, the map is well-defined, and we observe that it
is injective.

Let us show that _#, is surjective. Consider (Z) € ker(Zna — A). The eigenvalue

equation reads
dy su=2Mv, dpav=2Au, andv=inu on .
Let w € $;, a. Using the eigenvalue equation, and again an integration by parts, we get
Qx(u, w) = (dy gu, dj; sw) + hA(u, w)an — M (u, w)
= Mu, dj yw) + hA (=i, w) o — A*(u, w)
= Mdpav, w) — N {u,w) = N {u,w) — N {u,w) =0.
Hence, u € Dom(Zy,.a) and u € ker %,. O

Corollary 2.13. We set A ={X\/,j > 1} and M = {y ,k > 1}. We have A= M. In

particular, 1, = M.

Proof. Let A € A. Proposition 2.12 implies that 0 € sp(.%)). Then, there exists 7 > 1
such that ¢;(\) = 0 and thus (Proposition 2.11) A = E; = u; € M.

Let po € M. Then, there exists j > 1 such that 4 = E;, and hence ¢;(¢) = 0. In
particular, 0 € sp(.%),) and thus p € sp(Z,,a) by the isomorphism. O

Notation 5. Let us denote by (ay)r>1 the unique increasing sequence such that A =
M = {ay,k > 1}. In addition, for all k > 1, we set my, = dimker(Z), a — ax).
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2.4.2. Induction argument. Now, we can prove Proposition 2.8 by induction.
For n > 0, the induction statement is

Pn)  Vjie{l,....omi+...+m,+ 1}, py =\

Y
Thanks to Corollary 2.13, Z2(0) is satisfied.
Let n > 0. Assume that, for all 0 < k£ < n, £ (k) holds.
Notice that

Hma+.4mp+1 = )\j‘r_zl—l-...—l-mn—l-l = Qn41 - (2.9)
By definition, we have a1 € sp(Zn,a). Moreover, by using the isomorphism,
Mp+1 = dimker(Z,, . ,).

By the min-max theorem, there exists j, > 0 such that

€j0+1(an+1) == €j0+mn+1 (anJrl) =0.

By Lemma 2.10 (v), we have
ani1 = Ej0+1 =...= Ej0+mn+1 ’

so that, using again Proposition 2.11,

nt1 = Hjo+1 = -+ = Hjotmpir -

Let us now show that jo = m; + ...+ m,. By the induction hypothesis, we have

oy +..tmy, = An < Gpy1 -
Thus, jo = mi+ ...+ m,.
Let us suppose, by contradiction, that jo = my + ...+ m, + 1. With (2.9), we get
Hmay+.dmn+1 = Hjo+1 = oo = Hjotmpir = Ant1 -

In particular, we have the m,; + 1 relations:

Coy i1 (Ang1) = €j0+1<an+1) S = fjo+mn+1(@n+1) =0.

By the min-max theorem, this shows that

dimker %, ., > mpy1 + 1> my = dimker(Zpa — any1) -

This contraditcs the isomorphism property. Therefore, jo = mq + ...+ m,. This argu-
ment also shows that the multiplicity of fiy,, 1. +m,., equals m, ;. With the induction
hypothesis, we get

VjE{l,...,m1+...+mn+1}, ,u]:)\;—

By definition, we have

)\:,rll+_._+mn+l+1 = min (A \ {ai,... ,an+1}) = min (M \ {ai,... ,an+1}) )

We observe that fim, 4. 4m, 1+1 > A1 since the muliplicity of i, 4. +m,., equals M, 4.
This proves that

)\7—;1+...+mn+1+1 = mln (M \ {a“].? e 7an+1}> = Mm1+...+mn+1+1 .

This concludes the induction argument.
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3. SEMICLASSICAL ANALYSIS OF THE POSITIVE EIGENVALUES

In this section we prove Theorem 1.9 by applying Proposition 2.8, and considering
the asymptotic analysis of a simpler problem. If one wants to estimate Al (h), it is
natural to use the functions of the Hardy space 7, (€2) as test functions. This cancels
the d;; ,-term in p; and leads to define

h 2
ve(h) = - sup ||U||;m
WCAR A Q) uew\{o}  ||U]]
dim W=k

Theorem 1.9 is a consequence of the following three results.
Lemma 3.1. For all k € N\ {0} and all h > 0, we have
N (h) < velh).
Proof. Tt follows from the definition of vy (h). 0

Actually, we can prove that v (h) is also a good asymptotic lower bound for A, (h),
see Section 3.2 where the following is proved.

Proposition 3.2. For all k > 1, we have
vi(h) < /\:(h)(l + O(h™)).

In the next section, we study the asymptotic behavior of v4(h), which is summarized
in the following proposition.

Proposition 3.3. For all k > 1,
vi(h) = Ci(B, Q)b F e/t (1 4 o(1)),
where Ci(B, Q) is defined in (1.9).

Remark 3.4. Proposition 3.3 shows that each vy (h) goes to zero exponentially when
h goes to zero. The analysis in Section 3.2 strongly relies on this fact.

3.1. About the proof of Proposition 3.3. Using the change of function u = e~*/"v,
we get

vp(h) = inf sup M.
WeA(Q) yewfoy |le= %/ vl|?
dim W=k

In what follows we give upper and lower bounds for v4(h). The technics borrow ideas
from our previous work [6].

3.1.1. Upper bound. Let us consider k > 1 fixed.

Notation 6. Let us denote by (P,)nen the Np-orthogonal family such that P,(Z) =
Z" + Z?_g bn;jZ7 obtained after a Gram-Schmidt process on (1,7,...,2Z",...). Since

P, is Ng-orthogonal to P,,_1, we have
diStB (Zn, Pn—l) = diStB (Pn, Pn—l) = mf{NB(Pn - Q) ,Q € Pn—l}

: (3.1)
= inf{\/Ns(P,)% + Ns(Q)?,Q € P,_1} = N3(P,), forn € N.
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Let Q, € 242(Q) be the unique function such that
diStH ((Z - Zmin)na %2“))) = NH((Z - Zmin)n - Qn(z)) )

forn € {0,...,k—1}. We recall that N, Ny, P,_1, and 5?(Q) are defined in Notation
2.

Proposition 3.5.

ve(h) < (diSt”H ((z = 2min)" ", H2() ) 2 Bk e2omin/h(1 4 o(1)) .

distg (Zk_l, Pk_2>

Proposition 3.5 is a consequence of the lemmas.
Let us define the k-dimensional vector space V}, 5, by

Vh,k = span(wo’h, . ,wk_Lh) C %Z(Q) s (32)

Wy p(2) = h"iP, <ﬂ) - h_HTnQn(z), forn e {0,...,k—1}.

Lemma 3.6. Let h € (0,1], v, = Z?;& cjwjn € Vg with ¢y, ...ck1 € C, and

M1

/|”h|2€2(¢(”3)¢mi“)/hd$= (L+0(1) ) lejI*Ns(F;)*, (3.3)
Q

J

Il
=)

where o(1) does not depend on ¢ = (co,...,Cr_1)-

Lemma 3.7. Let h € (0,1], v, = Z?;é cjwjn € Vig with co,...cx—1 € C. We have

2
N(wn)? < e P Ny (2 = zuin) ™ = Quma )+ 0(h™) el
Here, o(1) does not depend on cq, .. .cCp_1.

Proof. Let us now estimate Ny (v,). From the triangle inequality, we get

k—2

Nag(vn) < leno1|Nag(wi—rn) + > lej| Ny (wsn)
=0

Then, from degree considerations and the triangle inequality, we get, for 1 < j < k— 2,
1—k
N'H(w]‘ﬁ) =0 (h 2 ) R
and
k
Nu(wi-1) = (L4 0(1)A™5 Ny (2 = z) ™ = Q) -

The conclusion follows. O
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3.1.2. Lower bound. Let k > 1. Let us consider an orthonormal family (v;;)i1<j<x (for

the scalar product of L?(e~2#/"dz)) associated with the eigenvalues (v;(h))1<jck. We
define
é,(h) = spanv;, .

1<j<k

Lemma 3.8. There exist C,hy > 0 such that for all vy, € &(h) and h € (0, hy), we
have,

lonl* < Oh_k€2¢mi“/h/ e 20/ 2dx .
Q

Proof. From the continuous embedding ##2(Q2) — L*(2), and Proposition 3.5, there
exist ¢, C, hg > 0 such that, for all h € (0, hg) and all v € &(h),

ch||v||* < hl|v]|3q < vi(h) / e~ 2"y, |2z < C’hl_k62¢"‘i“/h/ e~ 2/, [Pd .
Q Q

Lemma 3.9. Let o € (0,1/2). We have

, Sonn, ney €2 Mo () Pda
lim sup -

h=0 4, €&, (M)\{0} fQ 6_2¢/h|vh($)’2d1’ 7

We can now start the proof of the lower bound.

Proof. Assume that o € (%, %) We have, for all € D(zpn, h*),

1
gb(x) - Qbmin + éHessxmin¢(fE — Tminy, T — I'min) + ﬁ(hsa) .

Then, with Lemma 3.9,

2
h62<;5min/h||vh||(299 (1 + 0<1)) < Vk(h)"e—ﬁHessxminqﬁ(:c—a:mimx—xmin)Uh‘

(3.4)

L2(D(@min,h®))
In the following, we split the proof into two parts. Firstly, we replace v, by its Taylor
expansion at the order k — 1 at xp;, in the R. H. S. of (3.4). Secondly, we do the same
for the L.H.S. of the same equation.

i. In view of the Cauchy formula, and the Cauchy-Schwarz inequality, there exist
C > 0, hy > 0 such that, for all h € (0, hg), for all v € (), all zy € D(zmin, hY),
and all n € {0,...k},

[0 (20)] < Cllvllon (3.5)
Let us define, for all v € 5#2(Q),

1
Nh(v) — H eiﬁHesswmin(b(zfxminyx*xmin),U ’

L2(D(@min:h®))
By the Taylor formula, we can write
vy, = Tayl,_vp + Rk—1(vp)
where
< (m) (Zmin>

v
Tayl,_un, = Z L ol

n=0

(Z - Zmin)n 5
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and, for all zg € D(zmin, h®),

[Ri1(0n) (20)] < Clz = zminl* sup oy

With (3.5) and a rescaling, the Taylor remainder satisfies
k
Ny (Ri_1(vn)) < Ch2h7 |[oglaq -
Thus, by the triangle inequality,
Na(en) < Nu(Tayl_yon) + Ch2hz [[on|on.
Thus, with (3.4), we get
1+k
(1+ o(1))e™n/"/h|vn||oe < v/vk(R)Na(Tayly_yon) + C/vi(R)h "% [|on]lon ,

so that, thanks to Proposition 3.5,

(1+ 0(1))e¢mi“/h\/ﬁﬂvh||ag < VVk(h)Np(Tayl,_qvp) < \/Vk(h)Nh(Taylk_lvh), (3.6)

with

Nh(w) — e_ﬁHeSSmmi“¢($_rminax_xmin)w‘ .
L2(R2)
This inequality shows in particular that Tayl,_; is injective on &;(h) and
dimTayl,_,&x(h) = k. (3.7)

ii. Let us recall that
Q) = {u e Q) :Vne{0,... .k — 1}, u™ (2pm) = 0}.
Since (v, — Tayl,_,v5) € J42(2), we have, by the triangle inequality,

(k—1)
v Zmin _
[vnllon = w(fz - Zmin)k 14 (v, — Tayl,_qvp) — ||Taylk_21)hHaQ
' a0
|U}(Lk_1) (Zmin)| . k—1 2
Z Wdlsty((z — zmin)" T, G2 (Q)) — || Tayl,_gvnl|,, »
where

dist((z — zmin) "1, HG2(2))

= inf { (2 = 2min) ™ = Q(2)

Using again the triangle inequality,

2
. forallQE%(Q)}.

k—2
ITayl_svnllon < C > 101" (zmin)]
n=0

Moreover,
k—2 . k—2 X k—1
n _ k=2 n n _ k=2 n n
> oy i) | RT3 BE ) ()| S BTE D R E [0 (2|
n=0 n=0 n=0

k

< Ch™ "= h™2 Ny(Tayl,_,vn),
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where we used the rescaling property

k—1 k-1
N, Z cn(z = zmm)" | = héﬁl Z cnh%(z — Zin)" | (3.8)
n=0 n=0

and the equivalence of the norms in finite dimension:
k—1 k—1 k—1
3C>0,vd e Cr, O T dal < Ny (D dn(z = 2min)" | SC Y ldal -
n=0 n=0 n=0

We find
08 i) |

1) dist((z — zmm)* 1, S42(Q)) — C’h_%h_%Nh(Taylk_lvh) :

v oo =

and thus, by (3.6),

(k—1)

(1+ 0(1))e¢mi“/h\/ﬁwdis‘c((z — Zmin)" Y, SEE(Q))

< (\/uk(h) v Ch%e%m/h) Na(Tayl, o). (3.9)

Let us now end the proof of the lower bound by using (3.9) and (3.7).
Since we have (3.7), we deduce that

| . _ k-1
(14 o(1))e®n/"/hdisty (2 — 2mm)* L, H62(Q)) sup — -
F ceCk Nh(ZfL:é Cn(z - Zmin)n)

< Vr(h) + Ch*z efmin/h (3.10)
By (3.8), we infer

1-k
hl |ci—1] h™= |cp_1]
2 sup — = sup — )

ceck No(Son—gen(z = Zmin)") ek Ni(Xnrg (2 = Zmin)")

Since N is related to the Segal-Bargmann norm Np via a translation, and recalling
Notation 6, we get

sup 1] = sup 1] = !
ceCk Nl(Zi;(l) Co(2 = Zmin)")  ceck NB(Z::) cnz®)  Np(Pi-1)

Thus,

1n 4 pdisty (2 — 2mm) 1, IG2(Q))
14 0(1))h 7 fmn/h —H B <
(1+o(1)h="e Na(Pey)

The conclusion follows. O

ve(h) . (3.11)



DIRAC BAG MODEL IN STRONG MAGNETIC FIELDS 21

3.2. Approximation results. Let us roughly explain the strategy to establish Propo-
sition 3.2. Recall Proposition 2.7 which states that A} (k) = ux(h). Consider a mini-
mizing subspace W C 4 = 54 (Q) + H'(Q) (of dimension k). Then, we can prove
that W is quasi invariant under IIj, o, see Lemma 3.13. So, we would like to write
p+(u) =~ py (Il au) for all uw € W. Unfortunately, the elements of 11, AW do not neces-
sarily belong to L?(9€). Then, we cannot relate p (I, au) to the simpler optimization
problem defining v, (h). The elements in $);, o do not necessarily belong to H'(Q) (see
for instance [22]). However, according to Proposition 2.6, H'(f2) is dense in ), o and
then we can check (see the proof of Corollary 3.15) that IT, A H'(Q) C H'(2), and the
desired trace property is satisfied.

The price to pay is to use an approximate subspace W, C H(2). For that purpose,
we will use a number My (h) > ui(h) such that

My(h) = pu(h)(1 + O(h*)).

Remark 3.10. By Remark 3.4, we may choose My (h) = pi(h)(1+ pr(h)). Notice also
that My (h) goes itself exponentially fast to zero.

Notation 7. For notational simplicity, we write M = My(h).
There exists W, C H'(Q2) with dim W}, = k such that

pr(h) < sup py(u) < M. (3.12)
Wi\ {0}

The following lemma is straightforward.
Lemma 3.11. For allu € H(Q), we have
2h|ullze < 2n(u),  2[ulllldy sull < 2n(u),

where

2 (u) = hllullze + \/hQHUH%Q + ]|l aull?-
Thanks to Lemma 3.11 and (3.12), we get the following.
Lemma 3.12. For allu € W,
hllullfe < Mllull*, (3.13)

and thus
[y aul® < M |ull?. (3.14)

Lemma 3.13. For all u € W), we have

H u|| < 3.15

I gl < (3.15)
M

T, aullon < %HUH : (3.16)

Moreover, for h small enough, 11, Alw, s injective.

Proof. Combining (3.14) and Lemma 2.5, we readily get (3.15) and (3.16). The injec-
tivity follows from (3.15) and Remark 3.10. O
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Proposition 3.14. For all u € W), we have
pe(h)(1+ O(h%)) [Ty, aull® > Al aull5 -
Proof. Let us consider (3.13). We have
Mz |lul| = Vh[ulloo = VAT aw+ 113 s ulloo > VAT att]lon — [T aulla0)
By (3.16), we get

N

1. .
M (L K20 ) ful > VAl

From (3.15), and the triangle inequality, we have

(1 M )H | < IMoaul

— | [Ju|| < ul| .

V2hB, A
M

By Remark 3.10, we see that, for h small enough, 1 — N 0. Hence,

1 31 1 M -1
Mz (1+h2-M2)(1— Il > V|| .
( . ) ( \/TBJ ([ TT5, A ] [T, a|o0

Squaring this, and using Remark 3.10, we obtain the desired estimate. Il
Corollary 3.15. For all k > 1, we have
v(h) < pr(h)(1+ O(h™)).

Proof. Since 11, aAlw, is injective, we have dimII, o (W},) = k. Moreover, II, o (W) C
H'(Q). Indeed, for u € H'(Q2), we write

I au = u—HiAu € H'(Q),

by Lemma 2.5. This shows that ITj s (W) C 72, (Q).
The conclusion follows from Proposition 3.14 and the definition of vg(h). O

4. SEMICLASSICAL ANALYSIS OF THE FIRST NEGATIVE EIGENVALUE

4.1. About the proof of Theorem 1.11. Thanks to the charge conjugation (see
Remark 1.8), the negative eigenvalues A (h) can be characterized as follows. For A > 0,
consider the quadratic form

Qa(u) = gan(u) = NJull*, gan(u) = 1y _aull® + Mofull3q -

Let us denote by (€x(A))s1 the eigenvalues of the corresponding operator. As in Section

2, for all £ > 1, the equation ¢;(\) = 0 has a unique positive solution; this solution is
A (h). On the other hand, we have

O = (A h) = 2%,

where the (7,(A, h))k>1 are the eigenvalues of the operator associated with ¢y . Note
that, by (2.6) and (2.7), for all A > 0,

(A ) = A2 = |G| = AN = A ()] - (4.1)
Therefore, A, (h) is the unique solution of
r}/k()H h) = )‘2 :
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Let us now consider the case k = 1. We write A (h) = e;(h)h?, and the equation
becomes

vi(er(R)hz, h) = ey (h)?h. (4.2)
Note that, by setting \ = ah? with a > 0, we have the reformulation of (4.1):
|h='y1(ah?, h) — a?| > ala — e, (h)]. (4.3)

The main goal of the next section is to establish the following estimate.

Proposition 4.1. We have, for all a > 0,
’Vl(ah%, h) = hA(a) + o(h), A(a) = min (2()0, bgy(a(bg)’lﬂ)) _

Proposition 4.1 implies Theorem 1.11. Observe that, substituing this asymptotic
expansion into (4.3), we get
|A(a) — a® 4 o(1)| = ala — ey (h)].

Notice that, if a > 0 is such that A(a) = a?, then e;(h) is approximated by a.
Actually, there is a unique positive a such that

min (2b0, bgy(a(bg)‘1/2)> =,
which is given by

a = min(\/2bg, cor/}) ,

where ¢ is the unique positive solution of v(c) = 2, see Proposition C.7. We deduce

that
}Lirré e1(h) = min(y/2by, cor/b}) |
—

A7 (h) = h2 min(y/2b, co\/B}) + o(h?) .

4.2. Ground energy of Pauli-Robin type operator. Let a > 0. We consider the
quadratic form

or equivalently

3
Dan(1) = Gaprrz gy (1) = |l _qull® + ah?||ull3q,
and we have 9
(b by = imf 2o

uen? , (@) |ull?
u#0

4.2.1. Localization formula. Let p € (O, %) Let us consider a semiclassical partition of
the unity (x;);ezz with supp x; C D(x;, h?), and such that

D=1, Y |Vl <cn.
JEZ? JEZ?
Lemma 4.2. We have
Do) =Y Laplgu) = h* Y [[(Vxy)ul*.
jez? JjeZ?
In particular,

Dan(u) 2> Lanxsu) — CH 7 |lul>.

jEZ2
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Proof. Let us write

||df>L<,fAu”2 = Z(dx _atdp, A(qu»

jez?

= 3 (e 5 _a i) + Oy a7 ()
jEZ?

= 3 (O amld ) + Oadi_au, d_x ()
JEL?

= 37 (05 a bl + (i a G, [ axalid + s p ()
jEZ2

= 3 (I GG = N ol + 200 (O (05 a1
jEZ2

where we used that the commutator [d; _,,x;] = —2ihdzx; is a function. Taking the

real part, we get

Iyl = D7 (1 _a O 12 = 1BV )ul?) -

jez?

4.2.2. Lower bound. Let j be such that supp(x;) C Q. Then, we have
Lan(xu) = dy s Ou)[|? = 2hbol|x;ul®, (4.4)

since the Dirichlet realization of
dp-ady _p = (—ihV + A)* + hB

is bounded from below by 2hby.

Therefore, let us focus on the j such that supp(y;) N 02 # (. We may assume that
X € 0(2

Let us bound the local energy 2, (x;u) from below.

Proposition 4.3. We have
Pon(xu) = [Uyv(a(by) V2 h — Ch2+22| |y ull?. (4.5)

Proof. Before starting the proof, let us say a few words about the strategy. The general
idea is to approximate the magnetic field, on the support of x;, by a constant magnetic
field, and to flatten the boundary by means of tubular coordinates. Due to the lack of
ellipticity of the Cauchy-Riemann operators, we cannot choose the canonical tubular
coordinates (given by the curvilinear abscissa and the distance to the boundary). How-
ever, with the exponential coordinates (4.6), we are able to avoid this problem for the
disc, and then, by means of the Riemann mapping, for €2. This amounts to constructing
“conformal” tubular coordinates for €.
It is convenient to use the change of function

u:e¢/hv.
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For notational simplicity, we let u; = x;u and v; = x;v. We have

Don(uy) = h? / €29/ 12020; *dz + ah? |[v; |36, -
Q

Let us use the Riemann biholomorphism F': D — Q. We let w; = v; o F'. We get

o@&h(’u]') = 4h2/

1 .
A 2 F W/ gpw;dy + ah? /aD lw;?|F'|do, 05 = 5O +10y,)

Note that w; is supported in a neighborhood of order h” of J€2. Let us now use a
change of coordinates near the boundary. Let § > 0. Consider the “exponential polar
coordinates”, y = P(s, T), given by

yi=e 'coss, ys=e 'sins (s,7)€ Ts:=[0,2m) x (0,9). (4.6)
P is a smooth diffeomorphism in a neighborhood of the boundary. We have
—e"0s = sins0,, — cossdy,, —e’ 0, = cossdy, +sinsd,,,

and we get
Oy, + 10y, = ie" (0, +i0,) .

The coordinates of the center z; of the support of x; are denoted by (s;,0).
In terms of these new coordinates, we have

Don(uj) = h2/ 20 F PN/ eT (9, +i0,) (w; o P)[*e~*"dsdr
Ts

2
+ ah? / lw; o P(s,0)|*|F'(e)|ds .
0
Approximating €?” by 1 on the support of w; o P, we get

(1 —Ch*) 12, (u;) > h? / 20 F PN (9, 470,) (w; o P)|*dsdr
s
’ 3 2m .
+ ah>? / lw; o P(s,0)]*|F'(e*)|ds .
0
We let ¢ = ¢o FoP. Since ¢ is zero at the boundary, we have that ¢2¢(9/h = 1. Then,

by using that [F’(e*)| = (1 — Ch*)|F'(e")|, and by commuting the exponential with
the Cauchy-Riemann derivative, we get

(1 —=Ch) ' Don(uy) = | |(hOs — 05 + ihdy — i@TqvS)e‘ZB(S’T))/h(wj o P)|*dsdr
Ts

2 . i
+ah3/ e/ o P(s, 0)2| F' ()] ds |
0

with a possible different constant C' > 0.
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Then,

(1= Ch*) ' Qun(uy) = | |(—=ihds + Ay +i(—ih0, + Ap))W;|*dsdr

|
Ts
] 5 27
+]F’(e’81)]ah2/ [W,(s,0)|*ds,
0

where W; = e?™)/M(w; 0 P) and A = Vgt = (=8,¢,0,4). Now, we have a magnetic
Cauchy-Riemann problem on a flat space, with a uniform Robin condition.
A computation that uses the identity (95 + 9, )(e” ") = 0,

VxA=(0?+0*)(poFoP)=e Ay (o F)(P(s,T))
= e 7T|F'(P(s,7))?B(F(P(s,7)))
=B+ O0(s — sj| + |7 —750),

gives the new constant magnetic field 8; = |F'(y;)[*B(x;).
Using the Young inequality, we get

|(—ihds + Ay +i(—ih0, + Ay))W;[*dsdr
T

> (1—¢) [ |[(—=ih0s+ Ay +i(—ih0, + Ay ;) )W |2 dsdr —e* [ |A— A;|2W,;|2dsdT,

Ts | Ts

where A; = (A, Ay;) is the Taylor approximation of A at the order one at (s;, 7;):
|A— A;] < CR*,

on the support of W;. We get that

(1 — Ch) ™ Danluy) = (1 —€)Q;(W;) — Ch*ee' [ |W,Pdsdr, (4.7)
Ts

Qj(W):/ |(—ihOs + Ay j +i(—ih0, + Ag;))W A dsdr
R

2
+\F/(e“]‘)\ahg/|W(s,0)\2ds.
R

Let us remark that, by construction,
V x A] = BJ ,

so that after a change of gauge, we can assume that /1]- = (—p;7,0).
Thus, we get a new quadratic form on L*(R?% ) which is associated with a new operator
L;. We are interested in the bottom of its spectrum:

o Q;(W)
wes? , ®2) [|[W]?
W;é{)

infsp(L;) =




DIRAC BAG MODEL IN STRONG MAGNETIC FIELDS

Let us consider the rescaling

(5,7) = h3B;*(5,7).

We get
| , Q,;(W)
fsp(Ly) =hBjp;, py =~ inf =25t
IESDUES) = Mstts 4 = ) TP
W#0
where

3,(W) = /R (=i — 7 + i(~i0,))W [*dsdr + aB(z;) 4 /R W (s,0)ds.

+
Then,
(1= Ch) ' unluy) = [(1 = )hBjpy — Ch¥e ] [y
We choose ¢ such that
ch=¢c'h'",
so that
e=hT2t%,
and
(1= Ch) ' D) > [RBjus — CRET2) W5 2.
In particular, we get
Do) > [hBn; — ChE¥2 — ChI| ;2.
Then,
Dan(us) > |WBjpy — Ch | / 2T (v; 0 F o P)Pdsdr
- Ts

> :hﬁjﬂj _ Chit2e _ Ch”p} /D€2¢(F(y)))/h|(vj o F(y))|*dy

= (1B, — Cnbr — one] / &2/, (@) P|(FY (2) P

> [(F~Y (2)]? [hﬁm — Ch2+% — Cth] /Qew/h\vj(w)|2d$

> [hB(a))u; — Chi+? — 0h1+P] / /M ()2 da
- Q

> [WBay - CnE] [ 0oy (0)da
- Q

= 1By = Cnt] [ (o
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Then, letting Ag = (—7,0), we have

B(x5) fao [(=i8s — 7 +i(—i0,))uldsdT 4+ aB(z;)? [y |u(s,0)[*ds
B(zj)p; = inf -

u€h? 5 (R3) [[ull?
u#0

. Uy Jrz (=105 — 7+ i(~i0r) juldsdr + a(by)? [, Ju(s,0)[*ds
1n

= 2
e e (8 [l
u#0

— thwla(th) ).
The result follows. O

Remark 4.4. It is clear from the proof that we also have a reverse inequality of (4.7):

(1= Ch) ' Dun(uy) < (1 +£)Q;(W;) + Chve! / WiPdsdr.  (4.8)
Ts

Gathering the estimates (4.4) and (4.5), and using Lemma 4.2, we find that
D) > [Ma)h — ChE*2 — Ch22) ul]?
We choose p such that
1 +20=2—-2p.

2
Thus, p = g and

Do) > [A(a)h - oh%} 2.
The min-max principle implies the lower bound in Proposition 4.1.

4.2.3. Upper bound. The upper bound in Proposition 4.1 follows by inserting appropri-
ate localized test functions in £, ;. Let us provide the main lines of the strategy for
this classical analysis.

We recall that 9
vl(ah%, h) = inf —a’h(g)
ues? , (@) ||ull
u#0

In particular, we have

1 2, —ihV + A)ul]? + [, hBu[?d
ahd by < imf Zerlt) g N Jull_+ Jo hBuld
wety@ ull® - uery@) [l

The last quantity is the groundstate energy of (—ihV + A)? + hB. Pick up a point
zo € Q. We can always find a normalized test function ¢, in €5°(2), localized at the

scale h2 near Zo, and such that
[(—ihV + A)nl® + / hB|op|*dz < 2B(z0)h + o(h) .
Q

Now, if B attains its minimum inside at x(, then we deduce that

vi(ahz, h) < 2boh + o(h) . (4.9)
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If not, for any € > 0, we may find z € Q2 such that |B(x¢) — bo| < €, and (4.9) is true
as well.
On the other hand, let us consider zy € J€2 where the minimum of By is attained.

Take a fixed cutoff function x centered at o, and a minimizing sequence (W,,) C . (@)
associated with . Then, we consider the function (s, 7) = x(s, T)W,((b))2h~2 (s, 7))
and its avatar ¢, in the original coordinates (afer the maps P and F'). Using Remark
4.4 (where u; is replaced by ¢y,), we get

vi(ah?, h) < Wb (a(®))2) + o(h) .

This, together with (4.9), gives the desired upper bound.

APPENDIX A. THE RESULTS UNDER VARIOUS LOCAL BOUNDARY CONDITIONS
For n € R, and n is a unit vector, we define the boundary matrix
B, n = —ios(o - n)cos(n) + o3 sin(n) .
B, is an unitary and Hermitian matrix so that its spectrum is {£1}. For any regular
function n: 02 — R, we introduce the local boundary condition
Bys)m(s)(s) = ¢(s), s€ 09,
where n: 9Q — S! is the outward pointing normal and ¢: 9Q — C2. The associated
magnetic Dirac operator (2, a ,,, Dom(h, Zj, a.)) acts as Zj, A on
Dom(Zha,) = {¢ € H'(Q)*, Bynp = on dQ} .
The case n = 0 correspond to the MIT bag boundary condition. Note that
B _ < sin(n) —iﬁ'cos(n))
n incos(n) —sin(n) )’
so that the boundary condition reads

cos(1)

U = anu

1,

where ¢ = (u1,us)T.
Assumption A.1. n € C1(9Q) and cos(n(s)) > 0 for all s € O9.

In [8], the authors proved that under Assumptions 1.2 and A.1, &, a, is self-adjoint.
We define
cos(n(s))

’yISGaQHHTm(S))

eR,.
Since 0f) is compact, we get that

0 <infy <7(s) <supy < +0. (A.1)
o0 90

Notation 8. Let
lul2g,, = / 2]y ds,
o0

where u € L*(99). By (A.1), this norm is equivalent with the one introduced in
Notation 2.
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It is straightforward to see that the proofs of the min-max characterization and of
Theorem 1.9 are exactly the same up to the replacement of the norm on the boundary.
In particular, the constants in the asymptotic analysis are defined with respect to the
corresponding weighted Hardy norm on the boundary.

Theorem 1.11 has also its counterpart in this context. Here, the proof has to be
slightly adapted by Taylor approximating v around each point of the boundary. We
choose to present our proof for the MIT bag condition only in order not to burden the
reader with complicated notations that do not give more insight on the problem. More
precisely, we get :

Theorem A.2. Under Assumptions 1.2, 1.5, and A.1:
(i) Under the further assumption 1.6 we have, for all k > 1,

/\;(m _ disty ((z T L %’f(Q))
distg (Zk_l, Pk_g)

2
) hl_k€2¢mm/h(1 + op0(1)),

(ii)
A7 (h) = h® min (\/2170, ey V/B(@) iz € aQ) +onso(h?),
where for any x € 08, ¢y > 0 1s the unique positive solution of the equation
Vo) (€) = ¢ with
Jgeo (=105 — 7 4+ i(—i0; ) )ul*dsdT 4 cy(z) [ [u(s, 0)[ds
Vy(c) = inf = :

ueH (R%) [l
u#0

Remark A.3. Using Remark 1.8, we also cover the case cos(n(s)) < 0 for all s € 9.

APPENDIX B. PROOF OF LEMMA 2.4
We use Remark 2.3 to consider the case when 2 = D. We let

2 (N) =< ue*N): Z(n + 1) u,|* < +o0

n=0

Thanks to the isomorphism expressed in (2.2), (#*(D), (-,-)sp) is a Hilbert space.
Consider

K = uEEQ(N):Z|un|2<1

n=0

It is sufficient to show that K is precompact in ¢2 (N). Let ¢ > 0. There exists N € N

such that, for all u € K,
1 | ‘2<€2
Z nr1m S

n>N+1

Moreover, the unit ball of CN*! for the standard ¢?>-norm is precompact, and we can
write

M
H(CLO,...,OJM) E(CN+1’ BN+1(0,1) C UBN+1’U} (aj,%) ,
=0
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where By, are the balls for the E?U-norm. We have
M

K C UBw (aj,es) ,
§=0

where a; denotes the extension by zero of the finite sequence a;. Indeed, there exists
N € N such that, for all u € K,

N
€
U — E u;e; < -
- 2
Jj= @

Then, Z;V:o uje; € By41(0,1), and the conclusion follows from the triangle inequality.
Here, (e;);>0 is the canonical basis of [?(N).

APPENDIX C. ABOUT THE FUNCTIONS v;(c,-)

For all ¢ > 0, we have

‘ Jge (=105 — 7 4+ i(—id;) )u*dsdT + ¢ [; |u(s, 0)[ds
v(c) = inf - 5 :
et e ful

The aim of this section is to prove that the equation v(c) = ¢* has a unique positive
solution.

Due to the min-max theorem, v(c) is the bottom of the spectrum of the self-adjoint
operator (—ids — 7 — i(—i0;))(—i0s — T + i(—id;)) acting on L*(R?%) with boundary
condition

(—i0s + i(—1i0;))(s,0) = c)(s,0) .

where v;(c, €) is the bottom of the spectrum of the corresponding operator:

_ . Geg(u) 1 _ 1 2
Vl(ca f) - ueérll(f‘R+) ||U||2 ) B (R-‘r) - {U €H (R-l—) y TU € L (R-F)}v

where
q%ww3/|@—f+@w&h+dmmﬁ
Ry

Note that, for all u € L*(R,), (0, — 7)u € L*(R,) is equivalent to u € B*(R,). In fact,
an integration by parts gives

Geg(u) = /R (1] + 1€ = T)ul*) d7 + (e = [u(0)[* + [Jull*.

Let us consider the associated self-adjoint operator, acting on L*(R),
Nee=—024+(1—&)?7+1

with the boundary condition ¢'(0) = (¢ — £)¢(0). This operator has compact resolvent
and thus, we may consider the non-decreasing sequence of its eigenvalues (v;(c,€));>1.
Note also that the family (¢ ¢)ecr is of type (B) in the sense of Kato:
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(i) Dom(g.¢) = B*(R,) does not depend on & (or ¢),

(ii) for all u € B*(R,), £ — ge¢(u) is analytic.
Remark C.1. When £ = ¢, this operator coincides with the famous de Gennes operator
(see [15]).

Due to the aforementionned Fourier decomposition, we may focus our analysis on
the properties of the v;. In Section C.1, we prove that each v;, as a function of &,
has a unique minimum, which is non-degenerate. In Section C.2, we perform the large
frequency analysis of the v; (§ — +o00): they go to Landau levels from below, as
displayed in the numerical illustrations of Section C.3. Section C.4 is devoted to the
proof that v(c) = ¢ has a unique positive solution.

C.1. Critical points of vj(c,-). By the analytic pertubation theory, we know that
vj(c, ) are analytic functions. Let v(c, ) be one these eigenvalues of A ¢, and u.¢ = ug
is a corresponding normalized eigenfunction.

Lemma C.2. We have

+o0
Oev(c,§) = / 2(& — t)ug(t)dt — ug(0) .
0
Proof. We have
(J;/C,g — l/)u§ =0.
Then, in the sense of quadratic forms,
(JVC’g — V)&gUg + 85,/1/075115 = 8§V(£)u5 ,
so that .
((Aes = V)0t ue) +2 [ (€~ Dud(tydt = Dev().
0
By integrations by parts, we have
(Mg = v)O¢ug, ug) = 0,0¢ug(0)ug(0) — Oeug(0)dyue(0) -
Note that
O¢Oue (0) = —ue(0) + (¢ — §)0ue(0) -
Thus,
(Mg = v)Deue, ug) = —ug(0).

In the next lemma, we explicitely use the c-dependence of the eigenfunction.

Lemma C.3. We have
Oev(c, &) = uZ(0).
Proof. We have
(f/Vc,é - V(C7 5))807%,{ = acl/<ca é)uc,f .
We get
Oev(c, &) = ((Meg —v(c, §))Octice, Ucg) = 0rOctice(0)uce(0) — Dette,e(0)Dpuce(0) -
Note that
acatuc,ﬁ(()) - u6,5<0) + (C - g)aCuC,f(O) )

and the conclusion follows. O
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Proposition C.4. We have

Oev(c,§) = (—V(c, £ —c+ 20{) ug(O) ) (C.2)
In particular, if & is a critical point of v(c,-), we have
v(c, &) = —c* + 2c€. . (C.3)
Moreover, all the critical points are local non-degenerate minima and
div(c, &) =2cuz (0) > 0. (C4)

In particular, there is at most one critical point.

Proof. By using the previous lemma, we get
vt )=~ [ ale ~ 070t - ue07
=2 [ e 0P uctudlonde + €0) ~ a0
=2 [0 + (e~ D0+ a0 — w0

— /(:OO 0, ((u’g)2 + (v(c, &) — 1)u§> dt + E%ug(0)* — ug(0)?

= (-6 = 1) = (e = €2 + € = 1) ug(0)°
- (_V(C7 £) -+ 265) ug(O)Q .

We get (C.3). Taking the derivative of (C.3), we deduce (C.4). The last sentence follows
from (C.3) and (C.4). O

The previous statement tells us that v(c,-) has at most one critical point, which is a
non-degenerate minimum. Next, we show that there is always a critical point.

Corollary C.5. For all j > 1, the function v,(c,-) has a unique critical point &; ., and
it is a non-degenerate minimum. The function v; is decreasing on (—o0,&;.) and is
increasing on (& ., +00).

Proof. If vj(c, -) has no critical points, then it is non-increasing (it is non-increasing on
(—00,0) by Proposition C.4). From Proposition C.4, we deduce that, for all £ > 0,

~v;(c,€) = ¢ +2¢£ <0,

and that lime_, o vj(x, &) = +o00. This is in contradiction with the function being de-
creasing. This show that v;(c, -) has a unique critical point. It is a local non-degenerate
minimum. Since there is only one critical point, this shows that it is a global mini-
mum. U

C.2. Asymptotic analysis of v;(c, £). This section is devoted to the asymptotic anal-
ysis of v;(c, ) when £ — +o0.
When £ > 0, we use the rescaling 7 = {t, and .4 is unitarily equivalent to

E(Pep+h), h=¢72
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where Z.;, = —h?0} + (t — 1)? is equipped with the boundary condition
h2g!(0) = (ch* = h)p(0).

The corresponding quadratic form is

2ea(e) = [ ORI+ 16 = V)it + (eh? — WO
Let us denote by (7;(c, h));>1 the non-decreasing sequence of the eigenvalues of &, ,.
Proposition C.6. For all j > 1,
mi(e,h) = (2§ — 1)h + O(h™).
In particular,

vi(e,§) =2j+ 0(§7).

Moreover, for all & large enough, we have
vi(c,€) < 2j. (C.5)
Proof. By using the Hermite functions and the spectral theorem, we have, for alln > 1,
dist((2n — 1)h,sp(Pp.)) = O(h™).

Moreover, for h small enough, we have

+0o0
Zale) < [ @RIP+ |- Dol
0
Thus, by the min-max principle,
mi(e,h) < py(h),

where p3*(h) is the j-th eigenvalue of the Neumann realization of —h?d} + (t — 1)

From our knowledge of the de Gennes operator’, we have, for h small enough,
PN(R) = (2 — Dh+ O(h=), 15 (h) < (2] — D (C.6)
Therefore, for all j > 1, and for all A small enough, the j-th eigenvalue of &}, . satisfies
mi(e,h) < (2j —1)h.

Consider € > 0 to be determined later. We have

eh?2 3 400
Dun(p) = / (21! P+ (= 1) pl2)dt + (ch? —B)|p(0)P + / (R21! P4+ (= 1))
0 ch?2
We get
+o00
1
20a(9) > 2L(0) + (L= 2B, 4+ / R (= D),
with

eh?2
2',(p) = / R21o! Pt + (ch? — B)|p(0)]2
0

Isee, for instance, [15, Prop. 3.2.2 & 3.2.4] where the result is expressed in terms of &
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The corresponding operator 1@%70 is —h?0? with the Robin condition at zero h%¢'(0) =
(ch2 — h)p(0) and Neumann condition at ehz, /(chz) = 0. Consider a negative eigen-
value A = —w?, with w > 0. We have
R =Ap,  R2P(0) = (ch? — h)p(0), ¢'(eh?)=0.
We have
gO(t) _ Befwt/h_i_Aewt/h.
The boundary conditions become

w(A— B) = (A+ B)(cht — 1), B = Ae*</""*,

Thus,
1+ 62ws/h1/2
w =

(ch% —1).

1 — e2we/h1/?
This equation has a unique positive solution. We can check that this solution satisfies
w =1—ch? + O(h*). Therefore, the first negative (and only negative) eigenvalue A of
Py . satisfies
A=—1+42chz — h+ O(h™).
Take € = §. For h small enough, we have
+oo
Lual) 2 el 0+ [ URIE + L= g
Consider
gN(h) = Spally ;<N @Dj )
where (10;)1<;j<n is an orthonormal family of eigenfunctions associated with (m;(c, h))i<j<n-
For all ¢ € &y(h), we have

+oo
1 1
(e Wl > chllell, .y, + /hl (W11 + 1(t = Pyt = ch2llell?, 4
) ch?2 ’

In particular, since my(c, h) < (2N — 1)h, Ex(h) 2 ¢ — ¢
enough.
Moreover,

)

©end) 18 injective for A small

+o0
1 2 2 2 112 2
— > — X
(mn (e, h) ch2)H<PHL2(O’Eh%) + 7wy (e, h)HSDHLQ(Eh%’JFOO) //5 (P (= D)l de

h?2

For h small enough, we have my(c, h) — chz < 0. Then,
+0o0

(el > [ G 1= e,

h2

By the min-max theorem, and using the aforementioned injectivity, we have
MN(€7 h) g 7-‘-N(Ca h) )

where the (115(g, h))1<j<n are the eigenvalues of the Neumann realization on L*(eh2, +00)
of —h%9? + (t — 1)%. As for (C.6) (i.e., when € = 0), we check that

un(eh) = 2N — Db+ O(h).

The conclusion follows.
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The inequality (C.5) is a consequence of Corollary C.5. U

C.3. Numerical illustrations. By using a naive finite difference method, it is a pos-
sible to compute the eigenvalues v;(c, -) by using a short Python script, see the figures
below. These simulations are consistent with all our theoretical results.

24 1z

10
23
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(B) Functions v;(2, -) and the function £ —
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C.4. On the function v. We recall that v is defined in (1.11).

Proposition C.7. The function v is non-negative on [0, +00), concave and it satisfies
v(0)=0, v(+oo)=2, liminfM >0.

c—0t C

In particular, the equation v(c) = ¢* has a unique positive solution co and co € (0,/2).
Remark C.8. Numerical calculations suggest that ¢y is approximately equal to 1.31236.

Proof. The function v is concave as an infimum of linear functions. The equality v(0) =
0 follows by considering the zero modes?, and v(+oc) = 2 comes from the fact that,
when ¢ — +00, v(c) converges to the groundstate energy on the half-space with Dirichlet
boundary condition. Then, the concavity implies that

lim inf 4C) >0. (C.7)

c—0t C

Let us explain why v is a smooth function on (0,400). Let us recall that
V<C) = rgnel]lg 1/1(07 5) = Vl(ca gc) )
and that, for all ¢ > 0, & > 0 is the unique solution of
Oen(c,€) =0. (C.8)

For all ¢ > 0, we have agyl(c, &) > 0, and thus the analytic implicit function theorem
applied to (C.8) implies that ¢ +— &, is analytic. Since v is analytic, we deduce that
c — v(c) is analytic. We notice that

V/(C) = acl/l (Ca gc) + 851/1 (Ca fc)% - 8CV1 (Ca 5(:) .

2We can also check that v is right continuous at 0.
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Thanks to Lemma C.3, we get
V'(c) = ul, (0). (C.9)

Let us now consider the function

fle) =v(e) = .
From (C.7), we see that f is positive on some interval (0,a) with a > 0. Then, by
v(4+00) = 2, we see that f is negative on some interval (b, +00). By the Intermediate
Value Theorem, we deduce that f has at least one zero in (0, +00). Let us prove that
there is only one zero. Consider ¢ > 0 such that f(c) = 0. We have f'(c) = v/(¢) — 2c.
Due to (C.3), we have £, = ¢, and with Lemma C.2, we get

+00
2 — 12 (0) = /0 fu2 (1)t > 0.

This, with (C.9), implies that f'(c) < 0. We deduce that f has at most one positive
zero (and thus exactly one, denoted by ).
Let us now prove that ¢y € (0,4/2). Let us recall (C.1). From (C.5) and Corollary
C.5, we have v(cy) = vi(co, &) < 2. Thus, ¢2 = v(cy) < 2. This shows that ¢y < v/2.
U

Remark C.9. Actually, one could have avoided our asymptotic analysis to prove that
co < V2 by using the knowledge of the de Gennes function. Consider ¢ = ¢ > 0. Then,

vie,c) = ule) +1,

where p is the celebrated de Gennes function. We know that, on R, p < 1. Thus, for
all ¢ > 0,

vic) < ple)+1<2=(vV2)>2.
Nevertheless, the dispersion curves play a very important role in the description of the
subprincipal terms of Theorem 1.11.
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