The battle for survival between viruses and their host plants
Adnane Boualem, Catherine Dogimont, Abdelhafid Bendahmane

To cite this version:
Adnane Boualem, Catherine Dogimont, Abdelhafid Bendahmane. The battle for survival between viruses and their host plants. Current Opinion in Virology, 2016, 17, pp.32-38. 10.1016/j.coviro.2015.12.001 . hal-02889521

HAL Id: hal-02889521
https://hal.science/hal-02889521
Submitted on 3 Jul 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The battle for survival between viruses and their host plants
Adnane Boualem¹, Catherine Dogimont² and Abdelhafid Bendahmane¹

Evolution has equipped plants with defense mechanisms to counterattack virus infections. However, some viruses have acquired the capacity to escape these defense barriers. In their combats, plants use mechanisms such as antiviral RNA silencing that viruses fight against using silencing-repressors. Plants could also resist by mutating a host factor required by the virus to complete a particular step of its infectious cycle. Another successful mechanism of resistance is the hypersensitive response, where plants engineer R genes that recognize specifically their assailants. The recognition is followed by the triggering of a broad spectrum resistance. New understanding of such resistance mechanisms will probably help to propose new means to enhance plant resistance against viruses.

Addresses
¹ Institute of Plant Sciences Paris-Saclay, IPS2, INRA, CNRS, Univ. Paris-Sud, Univ. d’Evry, Univ. Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Batiment 630, Rue de Noetzlin, Orsay 91405, France
² INRA, UR 1052, Unité de Génétique et d’Amélioration des Fruits et Légumes, BP 94, Montfavet F-84143, France

Corresponding author: Bendahmane, Abdelhafid (bendahm@evry.inra.fr)

This review comes from a themed issue on Viral pathogenesis
Edited by Vicente Pallas and Juan A. García
For a complete overview see the Issue and the Editorial
Available online 19th January 2016
http://dx.doi.org/10.1016/j.coviro.2015.12.001
1879-6257/© 2016 Elsevier B.V. All rights reserved.

Introduction
Plants are constantly challenged by pathogens from all kingdoms like nematodes, fungi, bacteria and viruses. To defend themselves and prevent disease, plants have evolved sophisticated and efficient mechanisms. One of the most common disease defense is the induction of a rapid localized cell death at the point of pathogen infection, called hypersensitive response (HR). The HR can be triggered by a wide variety of pathogens, including viruses, and relies mainly on dominant resistance (R) genes, which recognize pathogen-derived effector proteins. In this short review, we intend to first, provide a brief overview of severe virus-associated plant diseases and their impact on crop production, second, to present the current state of knowledge on vectors for virus transmission, and third, to summarize recent progress in understanding plant resistance against viruses focusing on the R genes mediated dominant resistance.

Viruses and diseases
Viruses are obligate intracellular parasites absolutely dependent on the host cell machinery to multiply and spread. They are nucleic acid-based pathogens with genomes that consist of single-stranded or double-stranded RNAs or DNAs encoding few genes and usually packed into protein envelopes called the capsid. Viruses invade all forms of life and viral infection causes physiological disorders leading to diseases. Viral diseases are undoubtedly one of the most limiting factors that cause significant yield loss and continuously threaten crop production worldwide. Damages range from stunted growth, reduced vigor, decreased market esthetic values of the products and/or total yield loss. Although it’s very complex to put a clear figure on the economic impact of plant diseases in agriculture, it was estimated that 15% of global crop production is lost due to pre-harvest plant disease [1] and viruses account for 47% of the plant diseases [2]. In South-East Asia, viruses such as the tungro viral disease (Rice tungro spherical virus and Rice tungro bacilliform virus), the Rice yellow mottle virus (RYMV) and the Rice stripe virus (RSV) were reported to cause yield losses of 50–100% estimated to an annual economic loss of more than US$1.5 billion [3**]. In East and Central Africa, the African cassava mosaic virus (ACMV), the major constraint for cassava cultivation, was reported to cause yield losses of 47% of the production corresponding to economic loss of more than US$2 billion [4].

Virus-transmitting vectors
An important feature shared by plant viruses is their efficient movement from host to host. This virus transmission is a vital step in the biological cycle of viruses because it ensures their maintenance, survival and spread. The virus transmission cycle involves a continuum of processes, acquisition of the virus when the vector feeds on a virus-infected plant, stable retention and transport of the virus within the vector, and inoculation of the retained virus into a new host plant during a subsequent feeding. Most plant viruses (76%) are transmitted by a diverse array of vectors including insects, nematodes and fungi. Many of these vectors are plant pests, and their association with plants
Mechanisms of plant resistance to viruses makes them ideal agents for efficient local and long-distance virus spread. By far, insects, the most common plant virus vectors, transmit the majority of described plant viruses, and of these, hemipteran insects transmit 55% of the vectored viruses [5]. In most cases, viruses of a given taxon have a specific type of insect vector. For example, viruses of the genus Potyviridae and Begomovirus are solely transmitted by aphids and whiteflies, the most economically important insect vectors, respectively.

Antiviral RNA silencing defense
Once infected, plants rely on elaborate antiviral immune arsenal to defend themselves against the invading viruses.

One of the immediate antiviral defense plant viruses encountered when invading a host is the RNA silencing (Figure 1a) [6]. RNA silencing, also called RNA interference (RNAi), is an evolutionarily conserved and sequence-specific mechanism that directly defends host cells against foreign nucleic acids such as viruses and transposable elements [7]. This defense is triggered by double-stranded RNA molecules (dsRNA). Most plant viruses have RNA genomes that replicate through dsRNA intermediates by viral RNA-dependant RNA polymerases (RDRs) or contain double-stranded secondary structures. These viral dsRNAs are processed by Dicer-like (DCL) enzymes into virus-derived small RNAs (vsRNAs) that

![Figure 1](https://www.sciencedirect.com)
are uploaded into the RNA-induced silencing complex (RISC) and used to guide the silencing of the viral genome [8–10]. The antiviral RNA silencing response acts against all RNA and DNA viruses, but since DNA viruses do not replicate through dsRNA intermediates, precursors of vsRNAs could potentially be formed by antisense transcription, RDR activity or from secondary structures of viral RNAs (Figure 1a) [11,12]. To resist virus infections locally and systemically, plants generate secondary vsRNAs, the mobile silencing signal that spreads from the site of initiation to the surrounding tissues and over long distances via the plasmodesmata and the phloem. This non-cell autonomous process primes RNA silencing in non-infected cells and depends on host RDRs proteins [13,14].

To escape the antiviral RNA silencing defense, almost all types of plant viruses have evolved RNA silencing suppressors (RSSs). Although, RSSs are highly diverse in sequence, structure and involved in a number of basic viral functions (replication, movement and encapsidation), their modes of action can be classified into three classes: first, binding to dsRNA resulting in inhibition of vsRNA production by DCL proteins; second, sequestration of RNA duplexes and interfering with RISC assembly and cell-to-cell movement of vsRNA; and third, direct targeting of effectors or processing factors leading to their inhibition or destabilization (Figure 1a) [15**–19]. Because of the central role of RNA silencing in plant development, defense and adaptation to stress, specific strategies have been developed by the host to neutralize the effects of RSSs and stimulate the defense reactions [10]. Among the counter-counterculture responses, the plant hosts use resistance (R) proteins to guard the integrity of RNA silencing components and to either directly or indirectly recognize RSSs and finally induce hypersensitive response (HR) [20–23].

Hypersensitive response

One common feature of the host immune resistance is the rapid induction of programmed cell death at the site of pathogen invasion and at the immediately surrounding cells. This symptomatic manifestation is called Hypersensitive Response (HR) [24]. The HR is triggered by a wide variety of pathogens, including viruses, to prevent pathogen spread in the plant [24]. Hypersensitive reactions are initiated by the recognition of the pathogen-encoded avirulence factor (Avr) by the plant host R genes (Figure 1b) [25**]. The Avr/R protein interactions may trigger a mitogen-activated protein kinase (MAPK) signaling cascade and lead to a fast accumulation of reactive oxygen species (ROS) and defense hormones, salicylic acid (SA) and jasmonic acid (JA). At the cellular level, HR is associated with calcium ion influx, callose deposition at the plasmodesmata, modification of the membrane permeability and a drastic transcriptional reprogramming leading to the expression of Pathogenesis Related (PR) genes [26–29].

Although, the HR cell death and the resistance response are closely associated, increasing evidence shows that these two defense components can be physiologically, genetically and temporally uncoupled. Among the supporting examples, the interaction of the potato Rx1 resistance gene with the Potato virus X (PVX) capsid protein (CP) inhibits PVX replication independently of the CP-triggered HR cell death [30**].

The vast majority of the cloned dominant R genes encode nucleotide-binding leucine-rich repeat (NB-LRRs or NLRs) proteins that recognize the Avr factor through a ‘gene-for-gene’ interaction (Table 1) [31]. NLR genes usually confer narrow resistance spectrum, restricted to a single pathogen and usually to a limited number of strains. Irrespective of the pathogen they perceive, canonical plant NLRs proteins consist of trimodular domains: first, the N-terminal Toll-interleukine-1 receptor (TIR) or coiled-coil (CC) domains that define the two main classes of R proteins: TIR-NLRs or CC-NLRs, (ii) the central nucleotide binding (NB) domain and (iii) the leucine-rich repeat (LRR) domain at the C-terminal end [25**,32,33**,34]. Strong genetic evidence supports that the LRR domain determines the pathogen recognition specificity and that this domain is under diversifying selection pressure to evolve new pathogen recognition specificity [33**,35**,36].

NLRs proteins function as molecular switches, shifting between a constitutively inactive ‘off’ conformation and an active ‘on’ state after the recognition of the pathogen. To prevent unnecessary activation of the NLR-mediated responses, intramolecular interactions between the LRR domain folded back across the NB domain and the N-terminal dimerization, TIR or CC, domain maintain the NLRs proteins into the inactive ‘off’ mode [37**]. Recent studies on the potato Rx1 gene that encodes a CC-NB-LRR protein and mediates resistance to PVX demonstrate that intramolecular CC-NB and NB-LRR domain interactions keep Rx1 protein in an inactive state [38**,39–41].

The translation of the pathogen recognition into an efficient resistance response is attributed to the NB domain [42]. Within this domain, the P-loop and the MHD motifs are essential for the NLR function. Substitutions in the P-loop inactivate the NLRs proteins whereas mutations of the aspartic acid (D) in the MHD motif render many NLRs proteins autoactive initiating the resistance response in the absence of pathogen or avirulence protein [38**,43].

R gene-mediated resistance to aphid infestation and aphid-transmitted viruses

Aphids are the major virus-transmitting pests of plants. Besides vectoring numerous devastating viruses, aphids
also affect plant health by directly feeding on phloem sap [5,44]. Recently, the isolation of the dominant Virus aphid transmission (Vat) gene from melon, Cucumis melo, provides novel insights into the double resistance to the aphid, *Aphis gossypii*, infestation and *A. gossypii*-vectored viruses [33**]. The Vat gene encodes a NLR protein with an unusual conserved LRR repeat [33**]. Vat confers resistance to the aphid-transmitted *Cucumber mosaic virus* (CMV) and to several aphid-transmitted potyviruses, although these viruses have very distinct infection strategies [45]. These viruses are vectored within the saliva of *A. gossypii* and the Vat-mediated virus resistance is observed only if host plants harboring Vat gene are infected by an avirulent strain of *A. gossypii*. When plants are infected mechanically or by another aphid species, virus infection occurs on either the Vat resistant and non-Vat susceptible plants [33**]. The Vat gene example is an elegant illustration of the two-steps process, a specific recognition of an aphid, *A. gossypii*, and a triggered broad-spectrum resistance that blocks virus infection (Figure 1c). However, questions regarding the identity of the aphid avirulence factors necessary to induce the Vat-mediated resistance still unresolved.

Conclusions and perspectives

Nowadays, virus disease management consists mainly in agricultural practices such as the destruction of infected plants, the eradication of plants reservoir and the use of pesticide to limit the population of vectors. Another powerful mean to control virus infection is the use of disease resistant genes in breeding programs. Unfortunately R genes do not exist against all the devastating viruses and when available their introgression in high yielding varieties is tedious. Among the hurdles, the difficulty to cross elite lines with non-cultivated plants and the linkage drag of unwanted loci that reduce the agronomic fitness of the crop. Moreover, R genes are in many cases overcome by resistant breaking strains.

In the post genomic era, one would expect to use gene editing tools to design a resistance gene against an important viral function. Such function should have stringent constraint so that its mutation probably affects the fitness of the virus. Until recently this was a dream. The development of tools such as the TALENs (Transcription Activator-Like Effector Nucleases) and the CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats) have opened wide the possibility to engineer a new generation of resistance genes. In this scenario, plant virologist will bring new insight on how the virus highjacks the plant machinery to identify key viral protein domains that the virus can not easily modify. In the case of active resistance, molecular biologist will modify existing R genes so that new virus variant will be recognized by the host plant and eradicated by the plant immune system. In the case of passive resistance,
induced mutation in a plant gene will create plant protein that will not penalize the plant growth but in the same time is not recognized by the virus as a host factor.

The current progress in gene editing will no doubt boost the development of genetic engineering of R genes. If we succeed in engineering such R genes, such approach is likely to provide a high level of protection, and because they are on the basis of a plant’s own defense arsenal, they are likely to provide durable resistance as well. The pioneer work on in artificial evolution of R genes in the pathosystem Rx-Potex virus has set the ground for such work. Rx mutants, with enhanced recognition of Rx-resistant breaking strains of PVX or other viruses such as Poplar mosaic virus (PopMV) [46**,47*], were identified. Similarly, for recessive resistance, induced mutations in translational initiation factor such as eIF4E have led to Potato virus Y (PVY) resistance in tomato [48*].

Acknowledgements
We thank the editors for the invitation to write this review. We also thank Judit Szecsi, Mohammed Bendahmane and Victoria Gomez-Roldan for comments and careful reading of the manuscript. This work was supported by the Plant Biology and Breeding department in INRA, the grants Program Saclay Plant Sciences (SPS, ANR-10-LABX-40), IDEX Paris-Saclay (Ladex-3P, ANR-11-IDEX-0003-02) and the European Research Council (ERC-SEXYPATH).

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as: ■ of special interest ■ of special interest

■ Essential text book in plant virology

Excellent review describing how viruses use repressors of gene silencing to fight against antiviral RNA silencing mechanisms.

The authors show that R genes can lead to resistance without cell death and that cell death and virus arrest are separate disease resistance responses in plants.

The paper shows that R genes mediated resistance could be divided on two phases, recognition and response. The recognition phase involves the interaction of an elicitor molecule from the aphid and Vat from plant. The response phase is not specific and blocks both aphid infestation and virus infection.

Excellent review describing, through the zigzag model, the quantitative and the qualitative output of the plant immune system.

Excellent review about how NB-LRRs mediate recognition of pathogen-derived effectors molecules and subsequently activate host defense.

This paper shows how R genes can lead to cell death in the absence of elicitors.

One of the first examples of engineering of broader spectrum of disease-resistance specificity by mutagenesis.

The work describes artificial evolution of NB-LRR disease resistance genes. The engineered alleles enhanced the activation sensitivity rather than the recognition phase of a NB-LRR, Rx, which led to broad-spectrum resistance against PVX strains and PopMV.

A good example of engineered resistant plant by knocking a host factor, in this case required for translation of viral RNA.

The first cloned virus resistance gene.

