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A B S T R A C T

We analytically and numerically study the temporal intensity pattern emerging from the linear or nonlinear
evolutions of a single or double phase jump in an optical fiber. The results are interpreted in terms of inter-
ferences of the well-known diffractive patterns of a straight edge, strip and slit and a complete analytical fra-
mework is derived in terms of Fresnel integrals for the case of purely dispersive evolution. When Kerr non-
linearity affects the propagation, various coherent nonlinear structures emerge according to the regime of
dispersion.

Introduction

Diffraction is among the key effects of wave physics with applica-
tions in a broad range of technological domains spanning from imaging
to spectroscopy, material sciences, mobile communications, test mea-
surements or sensors. Propagation of a plane wave through a sharp edge
is the unavoidable example taught in any physical optics courses to
introduce the concepts and the theoretical tools available to handle
Fresnel’s diffraction [1,2]. But diffraction is not restricted to opaque
screens that partially obstruct light, it is also involved when light is
transmitted through a phase plate, i.e. a transparent medium imprinting
a localized phase jump, leading to strong oscillations of the diffracted
field [3,4].

The well-known free-space evolution of a beam can find analogs in
the temporal domain. Indeed, the parabolic spectral phase induced by
the dispersion of an ultrashort optical pulse is equivalent to the paraxial
diffraction affecting the spatial propagation of a light beam [5–7]. This
space/time duality has already been extremely fruitful and has stimu-
lated numerous new concepts or interpretations in ultrafast optics such
as temporal or spectral lenses [8,9], Fresnel lens [10], super resolution
imaging [11], dispersion gratings [12] or two-wave temporal inter-
ferometers [13], to cite a few. Other studies have established links
between the near-field propagation observed in diffraction and ad-
vanced applications for high repetition-rate sources when initial peri-
odic phase modulation is converted into intensity pattern [14–18] in a
process that can be linked to the Talbot array illuminators in the spatial
domain [19]. However, despite the fact that coherent communications
now heavily rely on the use of phase modulation, no explicit study of

the space / time duality for a single phase step has been clearly reported
so far.

This is the scope of the present paper to fill this gap by providing a
series of analytical and numerical results for a single phase jump
evolving in a single mode optical fiber. We then extend the discussion
to the case of a double phase jump and highlight some significant dif-
ferences with respect to the pattern resulting from the dispersion of a
temporal hole of light. In both cases, we also investigate the con-
sequences of optical Kerr nonlinearity according to the regime of dis-
persion and demonstrate the emergence of coherent structures. Finally,
the impact of the finite bandwidth of temporal modulation is discussed.

Study of a single and ideal temporal phase jump

Situation under study and analytical treatment of the linear propagation

Before discussing our experiments, let us first recall the basis of the
analogy between the spatial evolution of light affected by diffraction
and the temporal changes experienced by light when dispersion is in-
volved. We consider the simple case where a monochromatic plane
wave with wavelength λ and an amplitude a0 illuminates a phase pat-
tern. It can be a light beam transmitted through a transparent plate with
an abrupt change in thickness or refractive index. For a 1D transverse
problem, the longitudinal evolution of light a(x,z) in the scalar paraxial
approximation is ruled by the following differential equation:
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with x and z being the transverse and longitudinal coordinates re-
spectively and k0 = 2π/λ the wavenumber. The goal of the present
paper is to study the temporal equivalent of this configuration. We
therefore consider an initial continuous wave a(t, z = 0) where light
has been modulated by an abrupt phase offset Δφ at t = 0 that follows:

=
= >

a t for t
a t i for t

( , 0) 1 0
( , 0) exp( ) 0 (2)

with t being the temporal coordinate. This shaped temporal waveform
then propagates in a dispersive single mode waveguide, typically an
optical fiber, that ensures that its spatial transverse profile is unaffected
upon propagation. The temporal profile of the light in the approxima-
tion of the slowly varying envelope evolves according to:

=i a
z

a
t

1
2

,2

2

2 (3)

with β2 the second-order dispersion coefficient. We have here con-
sidered a second-order anomalous dispersion β2 = −20 ps2/km typical
of the SMF-28 fiber used for optical telecommunications [20]. As this
second-order dispersion coefficient is much higher than the third-order
dispersion coefficient, it is possible, as a first approximation, to fully
neglect the impact of higher-order dispersive terms. The space-time
duality readily appears in the mathematical structure of equations and
when the transverse space coordinate and time are exchanged, the
waveforms fulfilling the same normalized differential equation [5–7].
Consequently, both diffraction and dispersion imply the development of
a quadratic spectral phase and lead formally to similar consequences. In
order to better understand the evolution of temporally phase-sculpted
waveform subject to dispersion, given the superposition property, it
may be useful to rewrite the initial condition of our problem given by
Eq. (2) as a linear combination of two patterns illustrated in Fig. 1(a) : a
(t,0) = Ψ1(t) + Ψ2(t), with Ψ1(t) = H(-t) (green line) and Ψ2(t) = H(t)
exp(i Δφ) (purple line), H being the Heaviside step distribution that
represents in the 1D spatial domain the equivalent of a straight edge.
Therefore, the pattern that emerges upon linear propagation can be
viewed as the result of the interference between the typical waveforms
linked to the diffraction of two out-of-phase straight edges Ψ of opposite
orientations. Let us remind that the diffraction pattern of an ideal semi-
infinite screen Ψ is among the first examples that are taught to students
when introducing diffraction [1,2,21]. For this case, Fraunhofer ap-
proximations do not hold but the edge problem can be solved analyti-
cally by involving Fresnel’s integrals Cf and Sf and the graphical Cornu’s
spiral plot:
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Expressed in the context of temporal evolution, this leads to:
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The temporal intensity profile of one semi-infinite edge is therefore
characterized by strong oscillations of the plateau as can be seen in
Fig. 1(b) with extrema located at ± texp,m (m 0) given by:

= +t m z2 3
4

| |ext m, 2 (6)

The most pronounced ripple is obtained at tmax = text,0 and has a
maximum equal to 1.37 which is independent of the propagation dis-
tance. It is followed by a local minimum at tmin = text,1.

The temporal phase difference ΔTφ between Ψ1 and Ψ2 can be ex-
pressed as ΔTφ (t,z) = arg(Ψ2(t,z)) - arg(Ψ1(t,z)) = arg(Ψ(t,z)) - arg(Ψ(-
t,z)) + Δφ= δφ+ Δφ with δφ= arg(Ψ(t,z)) - arg(Ψ(-t,z)) plotted with
black line in panel (b2) and that can be analytically derived as :
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f f
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with the normalized coordinate u being =u t t z( ) sgn( ) / | |2 2 . One
can note that δφ is null at t = 0 and is close to an even multiple of π
around tmax. This formula can be closely adjusted around t = 0 by the
following linear fit (black dashed line):
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z

t( , ) sgn( )
2 | |2
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The intensity profile obtained after propagation is given by the
following expression that can be interpreted exploiting Cornu’s spiral
[4,22]:
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One particularly interesting case is when Δφ equals = π (see Fig. 2,
panel (a) and red curve in panel (b)). In this case, ΔTφ (t) equals π
around the central position so that the interference between Ψ2(t) and
Ψ1(t) is destructive around t = 0. As Ψ2(0) and Ψ1(0) have identical
intensities, the destructive interference is complete and the intensity
drops to zero. Therefore, the intensity in the central part is lowered
compared to what would have been expected from the incoherent sum
of the intensities of the two diffraction pattern | Ψ1|2 + | Ψ2|2 (Fig. 2,
black line). On the contrary, around tmax, δφ becomes an odd multiple
of π, so that the interference becomes constructive and the peak in-
tensity is enhanced by 31%. As a consequence, the prediction of Eq. (6)
initially derived for an abrupt intensity edge also applies for a step
phase edge as can be checked in panel 2(a) (see dashed white lines).

Fig. 1. (a) Heaviside functions representing a 1D straight edge on the left-hand
and the righthand sides with an imprinted phase offset of Δφ. (b1) The resulting
intensity distribution of the diffracted light (b1) and the corresponding phase
(b2) obtained after the propagation in 10 km optical fiber with β2 > 0 in the
linear regime. (properties of Ψ1 and Ψ2 are plotted with green and purple lines
respectively). The exact phase difference δφ (black solid line computed from
Eq. (7)) is compared to a theoretical approximation given by Eq. (8) (black
dashed line). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Note that for Δφ = π, the expression of the resulting temporal intensity
pattern becomes analytically extremely simple [23]:

= +a t z C u S u| ( , )| 2[ ( ) ( )],f f
2 2 2 (10)

making it straightforwardly interpreted by the use of the Cornu’s spiral.
The temporal duration ΔT of the central dip [23] then evolves as:

T z2 | | .2 (11)

with = ±a t T z| ( /2, )| 12 and ± /2 so that Ψ1 and Ψ2 do not
interfere (the red and black curves on panel (b) of Fig. 2 have the same
value). This symmetric pattern characterized by a central hole sur-
rounded by two marked oscillating edges that move in opposite direc-
tions should not be confused with the pattern resulting from a binary
intensity modulation of the initial condition as discussed in [24]. In-
deed, in this last configuration, a central spot was progressively
growing at the centre of the light hole due to constructive interference.

One advantage of temporal optics compared to spatial optics (that
requires fine tuning of precision optics [25]) is that it is quite
straightforward to adjust optoelectronic devices to modify Δφ. As an
example, we have considered Δφ = π/2 in panel (b) of Fig. 2 (blue

line). Several features that can be explained once again through the
interference process and δφ. First, the intensity pattern is not symmetric
anymore with respect to t = 0, as can be clearly visible from the value
and position of the maxima. Indeed, when Δφ = π/2, the maxima are
obtained for δφ – π /2 or 3 π /2, i.e., for times that are –18.6 or
41.2 ps after 10 km of propagation (see Fig. 1(b2)). The amplitude of
the ripple is also affected and the temporal fringes that develop on each
side of the dip are not identical: for Δφ = π/2, the peak at t = -35.4 ps
is lowered as the interference process involves a tail of | Ψ1|2 with a
reduced intensity. On the contrary, the bump at t = 24.1 ps, is in-
creased as the tail linked to | Ψ2|2 is more powerful and therefore sti-
mulates a constructive interference with a higher efficiency. We also
note that the intensity does not drop to zero in the central part. The
destructive interference condition is obtained for Δφ = π/2 (i.e. at
t=ΔT/2) so that Ψ2(t) and Ψ1(t) have significantly different values that
lowers the efficiency of the destructive process. Those trends are fully
confirmed by the evolution of the pulse pattern recorded after 10 km of
propagation according to Δφ and summarized in panel (c) of Fig. 2. We
observed the change in the visibility of the central fringe [25] as well as
the continuous shift of the maxima. In order to qualitatively predict the
temporal location tmin of this dip, we can take advantage of the linear
approximation of δφ [Eq. (8)] to propose the following empirical pre-
diction:

t
zsgn( )

2
2 | |

( ).min
2 2

(12)

Panel (c) of Fig. 2 confirm the reasonable agreement of Eq. (12)
which is close to linear shift of tmin according to the initial amplitude of
the phase offset. Note that if the regime of dispersion is normal instead
of anomalous, the pattern will be flipped in the temporal domain (see
Fig. 2(b), dashed blue curve). We can note that the amplitude of only
the first central bumps is affected: for larger time, the intensity of the
tails of Ψ1 or Ψ2 becomes negligible so that the influence of the inter-
ference process on the ripple becomes much more negligible.

Nonlinear propagation

We are now interested in the propagation occurring when nonlinear
effects become significant. Indeed, contrary to the usual diffraction in
free space, propagation in a waveguide can also involve nonlinear ef-
fects. In this context, optical fibers represent an ideal testbed: thanks to
a very low level of losses, the Kerr nonlinearity of silica may be accu-
mulated over several kilometers. The temporal evolution of a waveform
in an optical fiber resulting from the interaction between nonlinearity
and dispersion can be taken into account through an additional term
accounting for self-phase modulation in Eq. (3), leading to the well-
known nonlinear Schrödinger equation (NLSE) [26]:

=i a
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2
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2

2
2

(13)

with γ is the Kerr coefficient of the fiber, typically γ = 1.1 /W/km for
the SMF-28 fiber. As a first approximation, we have neglected the im-
pact of the optical losses that are reduced in the telecommunication
spectral window of telecommunication fiber (around 0.2 dB/km) and
can be ideally compensated using Raman distributed amplification
[27]. We solve the scalar NLSE using numerical simulations based on
the well-established split-step Fourier method [26].

The longitudinal evolution of the intensity profile for an initial
power of 290 mW is plotted in Fig. 3(a1) for an initial phase offset of π,
with details of the intensity profiles recorded after 10 km of propaga-
tion in SMF-28 fiber given in panel (b1). When compared to the linear
propagation (see Fig. 2(a) and blue dashed line of Fig. 3(b1)), the im-
pact of the nonlinearity is readily visible. Whereas the position of the
maximum is still close to tmax predicted by Eq. (6), the central gap
broadens and the ripples are dramatically compressed. The most

Fig. 2. (a) Evolution of the temporal intensity profile in an optical fiber of light
passed through a temporal single-step phase pattern with an offset of Δφ = π.
The white dashed lines mark the position of the first four extrema given by Eq.
(6). (b) The resulting intensity distribution at the output of 10 km fiber for
Δφ = π and Δφ = π/2 in the anomalous dispersion regime (red and blue solid
lines, respectively) and for Δφ = π/2 in the normal dispersion regimes (blue
dashed line). Black line depicts a sum of intensity profiles | Ψ1|2 + | Ψ2|2. (c)
Intensity profiles at the end of anomalously dispersive fiber recorded at dif-
ferent values of the phase offset Δφ. Black dashed line marks position of the dip
approximated by Eq. (12). All intensity patterns computed numerically are in
an perfect agreement with Eqs. (9) and (10). (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article.)
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compressed structures appear first on the edges of the central gap where
the initial high-intensity fluctuations trigger the nonlinear effects.
These coherent structures become narrower and narrower and lie on a
zero background. They also have a peak intensity that is strengthened,
with a maximum value of 1.8 in the linear regime of propagation that
now exceeds 4 times the input average value in the nonlinear propa-
gation. Such a behavior qualitatively recalls the experimental ob-
servations made in the spatial domain for the nonlinear Fresnel dif-
fraction [28]. This dynamic is ascribed to the focusing nature of the
nonlinearity in the anomalous regime of propagation which has been
recently the subject of many investigations exploring the nature of the
solitonic or breathing structures that may develop upon propagation.
Those works have emphasized the universal impact of modulation in-
stability and may have proposed mathematical methods [29–32] such
as the nonlinear Fourier transform to identify and interpret the fine
details of the coherent nonlinear structures. However, the

configurations that have been treated have often been restricted to the
semi-classical limit of the NLSE and they have essentially considered
the case of an initial perturbation of the intensity profile that then
translates into large fluctuations amplified by modulation instability
process [33–37]. In order to get insights on the nature of the first most
intense structure, we can stress that the intensity profile is in excellent
agreement with the shape of a fundamental bright soliton ΨS(t) (with
here a term of longitudinal phase offset omitted):

=t P t
T

( ) sech ,S S
S (14)

with TS and PS the temporal duration and peak-power of the funda-
mental soliton linked by =T P( / ) .S S2

1/2 The left part of Fig. 3(c1)
summarizes the evolution of the pattern for a fixed propagation length
of 10 km and stresses the gradual transition from a linear propagation
to a nonlinear dynamics. We can note that the width of the coherent
structures that surround the central gap is also affected by the input
power with the degree of compression increasing with the initial power.
The pattern seems to asymptotically tend to a modulated soliton train
with unequal temporal spacing and with a peak power close to four
times the initial average power, as predicted for other initial conditions
in [32,35]. The temporal location of those soliton-like peaks is also
affected by the peak power (see also horizontal dashed white lines that
recall the location of the extrema as predicted in the linear propagation
regime by Eq. (6)). Whereas the temporal shift induced by nonlinearity
is quite limited on the most central solitons, the temporal location of
other bright structures emerging from secondary ripples is much more
power-dependent (see also dashed white lines in panel (a1)).

The picture gets very different when normal dispersion is involved
(panel (a2), β2 = 20 ps2/km). Instead of a central gap broadening with
propagation distance according to Eq. (11), we observe a dip that
evolves with its temporal duration unaffected, while its minimum goes
down to a null intensity. In this context, predictions of the extrema
based on Eq. (6) are not relevant anymore. The details of the intensity
profiles plotted in Fig. 3(b2) for a propagation distance of 5 and 10 km
stress that the width of the central part does not evolve and is good
agreement with a black soliton ΨBS(t), which is characterized by a full
hole of light and a phase offset of π at its center [38], with an analytical
expression provided by:

=t P t
T

( ) tanh ,BS BS
BS (15)

with TBS the temporal duration of the black soliton and PBS the power of
the continuous background linked by =T P( / ) .BS BS2

1/2 Due to the
imperfect initial profiles, this dark soliton is surrounded by radiative
waves that progressively move away from the central part. Conse-
quently, it confirms that imprinting an initial temporal phase singu-
larity of π is a possible approach to generate black solitons [39], which
contrasts with the others technics that have focused on the advanced
shaping of the temporal intensity and phase profile [40,41] or on the
nonlinear interaction of a pair of delayed pulses [42,43]. The right part
of Fig. 3(c1) points out that the balance between normal dispersion and
Kerr nonlinearity lead to black solitons having a central gap that gets
narrower and narrower when increasing power, which is fully con-
sistent with the scaling laws of the parameters of Eq. (15).

The depth of the initial phase jump influences the symmetry of the
resulting pattern as outlined in panel (c2) of Fig. 3 that summarizes the
nonlinear evolution of a π/2 phase step. In the normal regime of dis-
persion, the initial non-vanishing dip that appears upon linear propa-
gation is converted into a grey soliton-like structure that has a reduced
contrast. Both the reduced initial phase offset as well as the reduced
depth of the main dip induced by dispersion contribute to generate a
grey soliton with a reduced greyness [26]. Note that the grey soliton has
a non-zero velocity, as also stressed in spatial optics [44]. Regarding the
evolution recorded in the anomalous dispersion regime for Δφ = π /2,

Fig. 3. (a) Longitudinal nonlinear evolution of temporal intensity profile of the
CW modulated by a single phase-jump profile with an offset of π in anomalous
(a1) and normal (a2) dispersion regimes (β2 =±20 ps2 km−1, γ = 1.1 W−1

km−1, Pav = 0.29 W). (b1) Details of the intensity profiles at the output of
10 km fiber with anomalous dispersion at the linear and nonlinear regimes
(dashed blue and solid black lines respectively). Red line shows fit by a bright
soliton given by Eq. (14). (b2) Close-up of the intensity profiles in normally
dispersive fiber obtained after 6 and 10 km propagation distance (dashed and
solid black lines respectively). The middle part of the structures is well de-
scribed by the black solution, Eq. (15) (red line). (c) Intensity distribution after
a 10 km propagation with respect to the input power level for the phase offset
Δφ of π and π/2 (panels 1 and 2 respectively). The vertical green dashed lines
highlight the results used in panels (b). In panels (a) and (c1), the white dashed
lines mark the position of the first four extrema given by Eq. (6). Note that in
order to better highlight the gradual transition from a linear to a nonlinear
propagation regime, the horizontal axis of panel (c) is not linear. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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we note that the fluctuations of the peak power and widths of the lo-
calized ultrashort structures according to the input power becomes
pronounced. This breathing behavior is dominated by solitons over fi-
nite background such as Akhmediev breathers, Kutnetsov-Ma solutions
or superregular structures [45] that may exist both in temporal optics
[46] but also in spatial optics [47]. It is worthy to note that the highest
peak power is not always achieved for negative times as we could have
expected from the asymmetry existing in the linear propagation.

Study of the double phase jump

Situation under study and dispersive propagation

The diffraction of 2D transparent phase objects such as square or
circular samples have been the subject of past investigations in spatial
wave optics, with applications to metrology [4]. We now consider the
case where the temporal phase shift imprinted on the continuous wave
Δφ is limited to a duration T0. The spatial analog of this initial condition
is a 1D is a transparent stripe of width x0 with a height leading to a
phase offset Δφ. This stripe has two abrupt edges and is illuminated in
normal incidence. Our ideal temporal object can be analytically de-
scribed as:

=
= <

a t for t T
a t i for t T

( , 0) 1 | | /2
( , 0) exp( ) | | /2

.0

0 (16)

Once again, we can take advantage of the superposition principle to
facilitate the discussion of the dispersion phenomena and the analytical
calculations [25,48]. Indeed, there are various ways to rewrite Eq. (16).
One can see this problem as the temporal coherent addition of two
abrupt phase jumps of similar amplitude but with opposite temporal
orientations overlapping by the duration T0. Another way to interpret
the initial condition is illustrated in Fig. 4(a). It is convenient to rewrite
this initial condition as the sum of three elements: a
(t,0) = Ψ'1(t) + Ψ'2(t) + Ψ3(t), with Ψ'1(t) = H(-t + T0/2), Ψ'2(t) = H
(t-T0/2) and Ψ3(t) = rect(t/T0) exp(i Δφ), rect being the rectangular
function of width 1 (purple curve). The pattern made by
ΨA(t) = Ψ'1(t) + Ψ'2(t) (green curve) corresponds to an opaque light
hole of width T0. This temporal analogue of an opaque stripe of con-
stant width [49–51] has been the subject of our recent paper dealing
with the observation of the temporal Arago spot in optical fibers [24].
Therefore, our problem resumes to the coherent superposition of the
temporal Arago pattern and the temporal pattern induced by an aper-
ture of width T0 with a phase offset of Δφ. The intensity profiles linked
to both waves can be analytically derived [48] and are plotted on
Fig. 4(b1) for a propagation distance of 10 km. We observe the central
intensity bump typical of the Arago spot that will interfere with the
temporally broadened pattern induced by the rectangular phase offset.
The problem can be solved analytically and the temporal profile can be
once again predicted using a combination of Fresnel integrals:
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+ +

+ +

+
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C u C u C u C u

S u S u S u S u
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f f f f

2

1 2 1 2
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with =u t t T z( ) sgn( ) ( /2)/ | |1 2 0 2 and =u t( )2

+t T zsgn( ) ( /2)/ | |2 0 2 .
This can be further simplified in the case of = to:
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The phase difference δφ’ = arg(Ψ3(t)) - arg(ΨA (t)) - Δφ can be
analytically predicted as (see Fig. 4(b2), black curve):
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The linear evolution for an initial phase offset of π and a duration T0
of 40 ps is provided in Fig. 5(a1) and is compared with the temporal
Arago spot (panel 5(a2)). We can note several features that are directly
linked to the interference process that may exist between ΨA and Ψ3.
First, due to constructive interference (δφ’ being close to π), the tem-
poral fluctuations that emerge on each side of the central area are
significantly enhanced (see also Fig. 6(a) where an increase by 28% of
the peak power can be observed). Then the behavior in the central part
is radically different, as displayed in panel 5(b1) where the longitudinal
evolution of the intensity at t = 0 is summarized. Indeed, putting

=Z T z/( | |)0
2

2 , the central intensity is given by :

= +a Z C Z S Z| (0, )| 8 ( ) 1
4

( ) 1
4

,f f
2

2 2

(20)

which should be compared with the central intensities of the considered
aperture and the 1D Arago spot (purple and green lines respectively)
that are given by [12]:

= +Z C Z S Z| (0, )| 2 [ ( ) ( )],f f3
2 2 2 (21)

= +Z C Z S Z| (0, )| 2 ( ) 1
2

( ) 1
2

.A f f
2

2 2

(22)

Fig. 4. (a) Combination of two Heaviside functions as in Fig. 1(a) each shifted
by ± 20 ps (ΨA (t), green) and a rectangular profile of width of 40 ps (Ψ3 (t),
purple) which has a phase offset of Δφ. (b) The corresponding intensity and
phase profiles after a propagation in 10 km anomalously dispersive fiber (panels
1 and 2 respectively). Black line shows the a phase difference δφ’ obtained from
Eq. (19). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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All these quantities can be easily graphically predicted using the
Cornu’s spiral as directly linked to the distance between the point of
curvilinear coordinate Z and the fixed point (1/4, 1/4) for a| |2, (0, 0)
for | |3

2 and (1/2, 1/2) for | |A
2. Whereas the Arago spot has an am-

plitude that monotonously increases with propagation distance, the
intensity observed at the center for the phase pattern experiences very
strong fluctuations in the early stages of propagation that is a signature
of the diffraction pattern of a rectangular pattern in the Fresnel regime
(compare green and purple lines in panel b). The intensity at the center
can be up to 2.8 times the average power of the illumining light, which
is 58% higher than the maximum of | Ψ3(0)|2 taken alone. Propagation
distance zc at which this maximum appears can be well predicted by a
crossing point of two extrema located at ± T0/2 ± tmax which are
given by Eq. (6), leading to:

=z T
6 | |

.c
0
2

2 (23)

This observation provides scaling properties of the resulting pattern
meaning that we can tailor the position of the maximum by carefully
choosing the temporal extend of the initial phase jump. Note that the

constructive interference process between Ψ3 and ΨA is not optimally
efficient due to the very different intensity levels of the two waves.
Moreover, the phase difference δ’φ (0) that can be derived analytically
as:

= =

+

t( 0)

tan C Z S Z
C Z C Z S Z S Z

1 1 / 2 ( ) 1 / 2 ( )
( ) 1 / 2 sgn( ) ( ) ( ) 1 / 2 sgn( ) ( )

f f

f f f f2 2 2 2 (24)

is not an odd multiple of π (see Fig. 5(b2) as well as Fig. 4(b2)). For
asymptotic propagation distance and similarly to the Arago spot, the
central intensity tends to 1. Regarding the first ripples that surround the
central peaks (see Fig. 6(a), red line), we note that their intensity is
enhanced compared to |Ψ3|2 + |ΨA|2 (black line). Indeed, for the po-
sition of the lateral maxima at tmax + T0/2, the interference between Ψ3

and ΨA is constructive, δ’ φ being an odd multiple of π after 10 km of
linear propagation (see Fig. 4(b2)).

The influence of Δφ is illustrated in Fig. 6 for a dispersive propa-
gation distance of 10 km and we compare the pattern achieved for
Δφ = π (red line) and Δφ = 1.37 π (blue line). The initial phase offset
significantly impacts the visibility of the fringes as well as the ampli-
tude of the maximum of the oscillations. A more systematic study of the
influence of Δφ is provided in panel (b). The temporal intensity pattern
is fully symmetric, whatever Δφ is. We can make out that, after 10 km
of propagation, the most pronounced dips surrounding the central peak
are not achieved for Δφ = π but for Δφ = 1.37 π. The intensity of the
central part is also strongly influenced by Δφ as can also be seen in
panel (b2) where we can make out that the peak intensity at t = 0
follows a sinusoidal evolution typical of a two wave interference pro-
cess. Once again, δφ’ helps us to understand why Δφ = π is not the
optimum value to achieve the highest central peak-power. The op-
timum interference is obtained when ΔTφ(0) = 2π n (with
n = 0,±1,± 2 …), i.e. when Δφ = 2π-δφ’(0) = 4.3 rad. On the

Fig. 5. Longitudinal evolution of the temporal intensity profile of the CW
modulated by the double phase-jump (a1) is compared to the temporal Arago
spot (a2). Grey dotted lines mark positions of the imprinted patterns – phase or
intensity jumps, respectively. White dashed lines represents position of the first
maxima given by Eq. (6). (b1) Variation of the intensity and the phase δφ’(0)
(panels 1 and 2, respectively) at the center of the double phase-jump pattern.
Intensity profiles are recorded for: | ΨA(t)|2, | Ψ3(t)|2 and their sum (green,
purple and black lines respectively) propagating in a linear regime with
β2 > 0; double phase-jump modulated wave propagating in fiber with β2 > 0
at linear (red dashed line) and nonlinear (red solid line) regimes; the nonlinear
evolution of the wave under the same conditions but with β2 < 0 (blue solid
line). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 6. (a) Intensity distribution after the 10 km propagation in the anom-
alously dispersive fiber in the linear regime for the sum | ΨA (t)|2 + | Ψ3 (t)|2

(black), CW passed through the pattern with Δφ = π (red) and Δφ = 1.37π
(blue). (b1) Intensity patterns simulated with the same fiber with varying phase
offset. The presented waveforms are consistent with the theoretical predictions
given by Eqs. (17) and (18) (b2) Evolution of the intensity at t = 0. (For in-
terpretation of the references to colour in this figure legend, the reader is re-
ferred to the web version of this article.)
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contrary, destructive interference is obtained for Δφ = −δφ’(0) + 2
π(2n-1), explaining the dip that tends to appear for 0 < Δφ < 0.4π.

Nonlinear propagation

We next investigate the impact of nonlinearity on the pulse profile
in presence of anomalous dispersion. Fig. 7(a1) illustrates the long-
itudinal evolution of the intensity profile for an initial central shift of π
and an average power of 290 mW. The ripples existing for linear pro-
pagation have turned into well-isolated coherent structure reaching a
peak power that can be as high as 6.1 times the average power after a
propagation distance of 5.25 km. The amplitude of the peaks neigh-
boring the central part is also enhanced by the focusing nonlinearity in
the anomalous regime of dispersion. We note that the distance for
which the strong temporal compression occurs derived from the linear
analysis (using the crossing of the two first maxima as predicted by Eq.
(23)) still provides an interesting approximation in the nonlinear case.
Similarly, the linear analysis also gives a good estimate of the extend of
the central part of the pattern (see dashed white lines). The details of

the longitudinal evolution of the power at t = 0 are provided in panel
(b1) of Fig. 5 (red solid line). Contrary to the evolution experimentally
recorded in [24] where combination of higher power with anomalous
dispersion lowered the intensity of the temporal Arago spot, the peak-
power of the central peak is significantly increased after 3 km of pro-
pagation and can be here nearly doubled in presence of focusing non-
linearity. Details of the temporal intensity profile obtained at the point
of maximum focusing, i.e. after 5.25 km, are provided in panel (b1) of
Fig. 7. We can make out that the strong compression experienced by the
central maxima of the structure whereas the temporal location is
moderately affected (see blue dashed curve for the linear case). The
central part of the nonlinear pattern is well described by the shape of a
Peregrine breather [52] (red dashed line):

=
+

t
P

t T
( )

3
1 4

1 4( / )
,PS

PS

PS
2 (25)

with TPS the temporal duration of the Peregrine soliton and PPS its
peak power linked by =T P( / ) .PS PS2

1/2 Details of the phase profile at
the point of maximum focusing (Fig. 7(c1)) also confirms the presence
of typical phase shift of π in the pedestals of the structure [53]. This
once again stresses the intimate connection that exists between solitons
over finite background structure of complex nonlinear dynamics and
compression processes [54]. Note that the first lateral breathing struc-
tures that also experience growth and decay features can similarly have
their central part adjusted at their point of maximum focusing (after
8.6 km of propagation) by the shape of a Peregrine breather.

The nonlinear evolution in the normal regime of propagation
(Fig. 7(a2)) is very different. Indeed, contrary to the emergence of a
strong localized structure, we observe the generation of a pair of
identical black solitons. Here, predictions derived from the linear ana-
lysis are less helpful. The intensity evolves towards a constant level (see
also panel (b) of Fig. 5, blue solid line) tending to the power of the
initial continuous wave. In the case of attenuation-free propagation, the
phase and intensity profiles asymptotically reshape towards an ideal
black soliton in perfect agreement with Eq. (15) as can be seen from
Fig. 7(b2) for propagation distance of 10, 20 and 40 km. The phase
profile is also marked by a typical phase shift of π at the minimum of
the dark soliton. One can note that the centers of the black solitons are
not exactly located at t =± T0/2 indicating that the structures have in
their initial stage of reshaping a slight velocity. Once formed, in ab-
sence of perturbation and attenuation, the pair of dark solitons is stable
(see the two dark parallel stripes in Fig. 7(b2)).

The influence of the initial average power on the resulting pattern is
summarized in Fig. 8(a) for anomalous and normal dispersion. Com-
pared to the results discussed in section 2.2 (see Fig. 3), we can note
several differences regarding the evolution in the anomalous dispersion
regime. First of all, we note that, contrary to the peak intensity of the
lateral peaks that remains more or less constant with the input average
power in the case of a single phase jump, we observe here some sig-
nificant fluctuations in the peak power, denoting a breathing behavior.
The temporal position of these structures is affected by the power,
higher the power is, closer the structures are from the initial abrupt
phase jumps and the more they deviate from the prediction of the
purely linear analysis (see white dashed line). Regarding the pattern in
the central part, contrary to [24], the evolution is not monotonic with
power. We observe that a well-defined double peak structure appears
for a well-chosen power (around 0.9 W), which is reminiscent from the
recent investigation of the generation of a pair of pulses from an initial
super-Gaussian pulse [55]. We can expect the initial temporal duration
T0 to be an efficient mean to control the number of structures in this
central part [56] and that more complex interactions could be observed
for longer durations [57]. On the contrary, in the normal regime of
propagation, two black solitons are visible with temporal location in the
vicinity of the initial phase offsets and a normalized intensity equals to
1 between these two phase shifts.

Fig. 7. (a) Longitudinal nonlinear evolution of the intensity of the CW that is
modulated by the double phase-jump with an offset of π propagating in a fiber
with anomalous and normal dispersion (panels 1 and 2 respectively) in the
nonlinear regime. Red dotted lines mark positions of the imprinted phase jump.
White dashed lines represent position of the first maxima given by Eq. (6). (b1)
Waveform at a point of the maximum compression of panel (a1) (black line) is
fitted by a Peregrine breather, Eq. (25) (red dashed line) and is compared with
the result achieved in linear propagation (blue dashed line). Panel (c1) re-
presents the corresponding phase profile of the resulting field. (b2) Intensity
profiles obtained under the same conditions as in panel (a2) at different pro-
pagation lengths: after 10, 20 and 40 km of propagation (black dotted, dashed
and solid lines respectively). Red dashed line shows a fit by the black soliton,
Eq. (15). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

A. Sheveleva and C. Finot Results in Physics 19 (2020) 103344

7



The pattern achieved for Δφ = π /2 is also provided in panel (b).
Quite remarkably, the differences that were very pronounced in the
case of a single phase jump are here attenuated in the anomalous re-
gime of dispersion so that we retrieve, at least qualitatively, the dif-
ferent features we previously discussed for panel (a). However, in the
normal regime of dispersion, we can note, that the dark solitons that
emerge are not black and move one away from each other with an
intensity pattern that is symmetric.

Influence of the finite modulation bandwidth

In order to end this discussion and to get perspectives on potential
experimental demonstration, we take into account the finite bandwidth
of the initial phase modulation. Indeed, whereas in spatial optics, use of
very straight edges is technically feasible, temporal optics faces the
practical limitations of the optoelectronics that will ultimately limit the
steepness of the fronts applied on the initial continuous wave. In the
article investigating the temporal Arago spot, we have shown that using
super-Gaussian intensity profiles instead of ideal rectangular one has
only limited impact on the resulting temporal pattern. As a first ap-
proximation, we consider here that the bandwidth limitations affecting
the generation of the phase profile can be modelled by Gaussian filter
with a full width at half maximum of 80 GHz. The smoothened phase
profile is shown in Fig. 9(a) for a modulation of π and – π(red solid and
dashed lines respectively). The pattern observed after a propagation
distance of 10 km is plotted in Fig. 9(b) where we note that major
differences affect the linear propagation. Indeed, given the strong in-
terference process that occurs near the phase jumps, any change in the
phase profile severely impacts the emergence of the features we have
previously identified. We also note that the pattern induced by a sof-
tened phase shift of πstrongly differs from the one emerging from a
softened phase shift of – π, which can be explained by the impact of the
temporal gradient present in the transition region. Once again, the

exact identification of the nature of the coherent structures is challen-
ging and requires dedicated analytical tools.

The changes are also significant when considering the propagation
in presence of nonlinearity, as stressed by panel (c1) of Fig. 9 that
should be compared to Fig. 8(a). In the anomalous regime of propa-
gation, we do not observe the central doublet that was generated in the
ideal case for a power around 1 W. The differences are even more
striking when considering the nonlinear propagation in the normal
regime of dispersion. Whereas the ideal π -phase step leads to the
generation of two black solitons, taking the bandwidth limitations, the
dark solitons are now grey. They have a non-null velocity and move
away from each other. Note that such a pattern may, to some extent,
qualitatively recall the trends observed in linearly frequency modulated
signal as analyzed in nonlinear optics [36,58] based on Witham ap-
proaches initially used in fluids [59].

The nonlinear dynamics gets very different when considering a
phase step of – π. Given the initial temporal chirp, the two grey solitons
tend to move towards each other’s and collide after 10 km for an initial
power of 0.38 W. Taking advantage of the finite bandwidth could
therefore be a simple but efficient mean to generate experimentally a
doublet of dark solitons with opposite velocities that could then collide
[60]. The pattern observed in the central region for anomalous propa-
gation is also drastically impacted by the sign of the phase offset. The
initial perturbation turns into an expanding nonlinear oscillatory
structure with a higher number of coherent structures being present in

Fig. 8. Temporal intensity profiles with respect to the initial power level of the
CW modulated by the double phase-jump with an offset of π and π/2 (panels (a)
and (b) respectively) at the output of 10 km fiber. Red dotted lines mark po-
sitions of the imprinted phase jump. White dashed line represents position of
the first lateral maximum given by Eq. (6). The vertical green dashed line
highlights the result used in panels (b2) of Fig. 7. Note that in order to better
highlight the gradual transition from a linear to a nonlinear propagation re-
gime, the horizontal axis is not linear. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 9. (a) Phase offset profiles: ideal double phase-jump (black line), shapes
whose bandwidth is limited by a Gaussian profile with 80 GHz width with a
depth of π and -π (red solid and dashed lines respectively). (b) The resulting
intensity profiles recorded at the output of 10 km fiber with anomalous dis-
persion in the linear regime for the respected profiles in the panel (a). (c)
Intensity mapped regarding the input power level for the phase profiles with a
depth of π and -π (panels 1 and 2 respectively). Note that in order to better
highlight the gradual transition from a linear to a nonlinear propagation re-
gime, the horizontal axis is not linear. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)
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the central part and experiencing growth and decay cycles.

Conclusion

To conclude, we have studied the temporal intensity pattern
emerging from the linear or nonlinear evolution of a single or double
phase jump. We have provided an interpretation of the pattern in terms
of interferences of the well-known diffractive patterns of a straight
edge, strip and slit. A complete analytical framework has been provided
in terms of Fresnel integrals for the case of purely dispersive evolution.
This has enabled us to stress the similarity as well as the differences that
exist in the pattern resulting from a phase shift and from an intensity
modulation.

We have extended our study of the propagation to the case where
Kerr nonlinearity impairs the nonlinear pattern. Various coherent
nonlinear structures emerge from the pattern according to the regime of
dispersion. Whereas dark solitons appear in normally dispersive fibers,
the evolution in the anomalous regime of dispersion involves ultrashort
breathing structures that may require the use of more advanced tools to
be fully identified. Our results stress that phase jump can be extremely
efficient to seed modulation-instability driven processes and should
therefore stimulate new theoretical and experimental developments in
the field of optical rogue waves. We have shown that, in this context,
the analytical understanding of the dispersive evolution could provide
some interesting clues and can benefit from the integrability properties
of the focusing nonlinear Schrodinger equation. We believe that in-
volving advanced tools such as nonlinear Fourier transform [30,61] will
enable to better identify the exact nature of the coherent structures that
emerge.

The present work can be extended in many aspects. First, the initial
wave is not restricted to a continuous fully coherent wave. Similarly to
the spatial case, we can indeed consider the impact of a temporal phase
shift imprinted on an initial pulse [23,62,63], on a wave that has an
initial chirp [64,65] or a wave that is only partially coherent [3]. With
the progress of coherent transmissions, it is also possible to combine
intensity and phase modulation, therefore mimicking a partially
transparent phase object [22,48,66]. Moreover, it is possible to benefit
from the vectorial properties of light in fibers to explore new degrees of
freedom and other coherent structures that may benefit from nonlinear
couplings such as cross-phase modulation between the two various
polarizations [67]. We also believe that the present discussion can be of
help to better understand the evolution of the vectorial shock waves we
recently described [68] and to catch the way cross-phase modulation
may affect through dispersion the temporal pattern of a continuous
wave [69].

As the NLSE is a universal mathematical model that also accurate to
describe wave propagation in other fields of physics such as Bose-
Einstein condensates [70] or hydrodynamics [71], our conclusions
dealing with the impact of phase jumps can be extended to the non-
linear evolution of water waves. Indeed, in recent years, the link be-
tween temporal optics and hydrodynamics has been a fruitful driving
force in stimulating the understanding of coherent structures in fo-
cusing and defocusing regimes of nonlinear propagation [45,53,72,73].
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