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Abstract

We propose two new simple constructions of hyperbolas with a string
passing through two fixed points (the foci): because of the similarities to
the ellipse case, we call such constructions “gardener’s.” The first con-
struction defines the curve by posing some constraints on the position of
the tracing point, the second by the solution of certain tangent condi-
tions. We also study a vertical transposition of the previous horizontal
constructions.

1 String constructions of hyperbolas

The so-called gardener’s method to draw an ellipse is one of the most known
and elegant examples of geometric constructions beyond ruler and compass.
The required tools are very simple: one just needs a string with its ends fixed
in two points of the plane or, as a little variation, a loop of string put around
two pins. Bifocal conics are defined as the loci satisfying the constant sum
(ellipse) or difference (hyperbola) of the lengths of the rays, where the rays are
the vectors between a point of the curve and the two foci. Back to our gardener,
the taut thread naturally embodies the property of keeping constant the sum of
the two rays lengths (such a sum is the length of the ellipse major axis). Out of
this construction, the string construction of conics (not only ellipses) have been
introduced mainly for optics: such methods to trace hyperbolas with strings are
essentially two.

As introduced by the Persian Ibn Sahl at the end of the 1st millennium [7],
a first way (a printed version taken from [9] is visible in the left of Fig. 1) to
construct a hyperbola of foci C and F consists in introducing a rotating rod
FN and a string connecting N and C. If we consider the point P (not named
in the image, but corresponding to the hand) such that the string NPC is taut,
then |NP | + |PC| is its length and thus is constant, but also |NP | + |PF | is
constant (it’s the length of the string), hence also the difference |PC| − |PF |
has to be constant, making P stay on a hyperbola.1

An alternative way to trace a hyperbola, introduced by Kepler at the be-
ginning of the 17th century [3], comes even more directly from the definition.

1See also https://imaginary.org/film/mathlapse-constructions-by-pin-and-string-conics.
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Figure 1: How to trace a hyperbola with strings. Left: by string and ruler [9,
p. 67]. Right: by two strings to be equally extended [3, Ch. IV, Sec. 4].

Given the foci A,B (right of Fig. 1: even though in the image the letters of
points are lower-case, we use them upper-case) and a point C through which the
hyperbola has to pass, we can attach in A and B two strings making them taut
in C. If we extend the two strings of the same length L (the two strings must
not slide on one another), the point C ′ obtained when the strings are taut lies
on the hyperbola of foci A,B passing through C. Indeed, the difference between
|AC ′| = |AC|+ L and |BC ′| = |BC|+ L is the same as the difference between
|AC| and |BC|. From a practical perspective, while the first method can be
actually performed (however, it requires accuracy and coordination, as you can
try at your own or see in on-line videos), the latter is poorly achievable with
precision in a continuous way, at least if one does not introduce something like
toothed belts, hook-and-loop strips or a zipper instead of the two non-sliding
strings.

2 First new method

Our purpose is to introduce two new simple methods (designed by the first
author) to draw hyperbolas given the foci and a starting point. The allowed
tools in the gardener’s ellipse are simply a string, two pegs to be put on the
foci and something to trace the curve: we want to keep the same “gardening
tools” to trace hyperbolas. Specifically, as a tracing tool, consider a heavy load
which, when dragged, leaves a trail on the ground: in the garden that could
be a full flowerpot, on the desk any small but heavy object (eventually wet or
inked to leave a trace on a paper sheet). Mathematically, we call such a tool
“dragged point:” note that the heaviness is not important to satisfy the gravity
law when falling, but just to be subject to the resistance of the ground/plane
when moving. Furthermore, we also consider the motion of the weight ideally
not subject to any inertia (practically, that means that the weight has to be
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Figure 2: Pictures of a new string construction of hyperbolas. In this specific
realization, the heavy load has a hole in the centre in which we posed a pen to
leave a trace: the string is attached twice to such a pen (the threads coming
both from F and G). In the last picture, we superimposed the hyperbola of foci
F,G passing through P to compare it with the traced curve.

pulled slowly enough).
Let’s begin with the first method (to easily get some pictures we implemented

the desk version): as visible in the first picture of Fig. 2, on a plane hammer
two nails on F and G and attach the two ends of a string to the dragged point.
Then make the string pass on the left of the nails before reaching the right side
of the plane (trivially you can invert all left and right sides). Given an initial
position P of the dragged point, make the string taut by pulling the final loop
of the string to the right so that both strings touch the right nail G, and then
continue pulling the string (by the final loop or in general by keeping the two
strings together).

Proposition 1. The curve traced by the first method is a part of the hyperbola
of foci F,G passing through the initial position P .

Proof. While pulling, named P ′ the new position of the weight, we have that
|FP ′| − |FP | = |GP ′| − |GP | (we pull the same length on both string compo-
nents), thus |FP ′| − |GP ′| is kept constant. Therefore, the thesis follows.
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For this method traces only the branch of hyperbola comprised between the
initial position and the axis of symmetry through the foci, to trace symmetrically
the two branches of hyperbola it is necessary to construct four starting point
(by symmetry, top and bottom for any branch).

3 Second new method

After the first method, a curious gardener should be interested in exploring pos-
sible variations. We can note that, in the proposed construction, both ends of
the string have to be attached to the tracing point in order to directly embody
the definition of a hyperbola (constant difference of rays lengths). What hap-
pens if, given a string passing through the foci, we simply make it pull the heavy
tracing point? From a material perspective, assuming that the weight can freely
slide along the string, it is no longer necessary to pull both string extremities:
we can nail one of them in a focus and pull only one extremity over the other
focus, as visible in Fig. 3. As we are going to observe, this time the condition
is no longer directly posed on the length of the rays, but on the direction that
the weight has to follow. Maintaining the already introduced notation, let F,G
be the fixed points through which the string passes. Furthermore, let W be the
position of the dragged point (W is not a fixed point, but moves according to
the string constraint).

We can establish the nature of the curve traced by W thanks to some phys-
ical remarks2. Thanks to the friction of the weight on the plane, if we pull
the free string extremity slowly enough we can guarantee negligible inertia. On
such a condition, in any moment W has to move in the direction of the resultant
forces according to Newton’s second law of mechanics. The force applied to the

pulled string extremity is transmitted to W with direction
−−→
WG, we call it p,

thus we have p =
−−→
WG

‖
−−→
WG‖

p. The string, being fixed in the motionless F , generates

on W also a force r resisting to the pulling along
−−→
WF ; we have r =

−−→
WF

‖
−−→
WF‖

r.

Assuming the string to be frictionless on W , r = p; the resulting force in W ,

p + r, has the direction of the bisector of the angle F̂WG. Therefore, the di-
rection of the weight has to be the bisector of the rays: it is well known that
the only curve satisfying such direction condition is the hyperbola of foci F and
G. This is not the only method to trace hyperbolas thanks to this condition.
In [6], authors present a mathematical machine tracing conics by the property
that the tangent has to bisect the rays (internal for hyperbolas and external for
ellipses).

However, we pretend that there exists a “purely geometrical” proof of this be-
havior. We express this idea enunciating a principle which does not involve any

2We thank Massimo Salvi, Alfrédéric Josse and Jean-Philippe Jay for their ideas and inputs
in this matter.
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Figure 3: Another construction of a hyperbola (even though the string should
pass through the centre of the weight, not along its perimeter). This time the
curve is traced for its tangent condition (the string imposes the weight to move
along the bisector of the rays).

of the mechanical concepts used above but asserts how the point W moves under
the traction exerted on it. This principle is meant to become a postulate, basis
of a geometry of the dragged motion: the dragged point moves minimizing in a
certain way its displacement. We now precise our statement.

Our dragged point W has to behave as a non-inertial body: it moves only
when subject to a force, and when the force stops, no inertial velocity is kept. To
rephrase such a concept avoiding velocities and forces, we can use a parameter
whose variation determines the displacement of W : by introducing the length
k of the string between the points F and G, we can formally consider the
geometric condition of pulling the string up to a certain level. Indeed, for any
k, the dragged point is in the ellipse E(k) of foci F,G and major axis of length
k (because |FW | + |WG| = k). Subject to the constrain k (i.e. we pull the
string), the dragged point, being non-inertial, has to avoid any unnecessary
displacement. More precisely, considering the resistance of the dragged point,
we propose the following:

Postulate (Dragged-point principle). The dragged point W has to locally min-
imize its displacement while staying on E(k) (at the changes of k).

In another context, such a postulate reminds Fermat’s principle for optics:
a light ray moves from a point to another on trajectories that locally minimize
the traversing time (Fermat’s formulation is not physically exact, one should
consider “stationary” and not only “minimal” trajectories). However, assuming
the postulate, we can geometrically analyse the trajectory of the weight.

Proposition 2. The curve traced by the second method is a part of the hyperbola
of foci F,G passing through the initial position P .

Proof. In a generic point P on E(k0) with k0 > |FG|, for the introduced pos-
tulate, the direction of the dragged point has to minimize its displacement
while staying on E(k) (with k = k0 − δk decreasing, so δk > 0). To find
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Figure 4: Named Pδk the closest point to P on E(k), the line PPδk is normal
to E(k). The limit direction of PPδk (dashed case) when E(k) tends to be the
ellipse of P has be normal to E(k0). The trajectory of P follows the dotted
branch of hyperbola: note that the trajectory does not have to pass through
the various Pδk.

such a direction, for any k consider Pδk the closest point of E(k) to P , i.e.
|PPδk| = min{|PQ| : Q ∈ E(k)}. Such a minimum exists because E(k) is a
closed set in R2, and is unique because E(k) is convex.

Fixed any Cartesian reference frame, we can consider the direction function
α : R2 → R/[0, π[ s.t. α (r cos θ, r sin θ) = [θ] (the latter being an equivalence
class on R/[0, π[). Adopting such a notation, the direction of P is

αP = lim
δk→0+

α
(−−−→
PPδk

)
.

Now we want to prove that, called in general −→nδk the unit-vector normal to
E(k) in Pδk oriented toward the interior of the ellipse, and in particular −→n the
normal to E(k0) in P , αP = α(−→n ).

As visible in Fig. 4, to minimize the distance to P , a point Pδk on E(k) has
to satisfy the property that the tangent to the border of E(k) in Pδk has to be
perpendicular to the line PPδk (this condition is verified also by the maximum).

That means that, for every δk > 0, it holds α
(−−−→
PPδk

)
= α(−→nδk). Considering

the limit δk → 0+, we have that Pδk → P and −→nδk → −→n , thus αP = α(−→n ), as
sought.

Keeping in mind that confocal ellipses and hyperbolas cut each other orthog-
onally, the only curve satisfying the tangent condition imposed by the pulling
of the string is the hyperbola of foci F,G (P is a general point of the plane out
along the segment between F and G).
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4 Other methods by weights

Beyond the classic constructions of Section 1 that involve only strings and even-
tually rods, there are several interesting mechanical methods to construct hy-
perbolas. Some of such methods use our tools, i.e. weights, but to what extent
do similar implementations realize the same curves?

For instance, in [8, pp. 161–163] we find the following problem (see right of
Fig. 5).

On a vertical plane, let P be a weight free to slide along the string
fixed in F and passing through the pulley G: what is the the locus
of P by the pulling of the string beyond G?

Such a problem can be interpreted as the vertical transposition of our second
method (Section 3). In the previous sections we considered constructions on a
horizontal plane; however, with some very little modifications, we can consider
them on a vertical plane. In these cases, assuming the strings to have negligible
weight, it is important to consider the direction of the gravity force for the
heavy point. A simple example of curve obtained on a vertical plane by a heavy
point is the one described by an acrobat walking along a rope: considering the
(not taut) rope fixed in its extremities and assuming the weight of the tightrope
walker to make the string taut, his/her feet move along an ellipse.

Back to our problem, the point P has to be in an equilibrium position for any
length of the string between F and G, thus the direction of the gravity force in

P has to bisect F̂PG. As also visible online3, introducing O the middle point of
FG, the resulting curve is a branch of the rectangular hyperbola passing through
F and G and with asymptotes passing through O with directions parallel and
perpendicular to the gravity force. Note that, if F and G have the same height,
the rectangular hyperbola degenerates in a line.

We can easily construct a vertical version also for our first method (Section
2): instead of two nails on a horizontal plane, let F and G be two pulleys (cf.
left of Fig. 5). Attaching the weight P to two pieces of string passing respec-
tively through F and G, we can pull together the two threads as done in Fig.
2. The string, the weight and the pulleys stay in the same vertical plane during
the pulling. In this case the curve described by P is a branch of hyperbola with
F and G as foci: the weight force in P imposes the point to stay in the bot-
tom position and so makes the strings taut (this time without any resistance of
the plane). Therefore, the hyperbola can be described by a “real” heavy point
without any reference to the traction of the point on the plane4.

To sum up, the first method and its vertical variation allow to construct the
same curve whereas the second methods, horizontal and vertical, do not (in our

3Cf. the curve of the bucket, https://www.mathcurve.com/courbes2d.gb/hyperbole/

hyperboleequilatere.shtml.
4For such an idea, we are grateful to Robert Ferréol, creator of the website “Encyclopédie

des formes mathématiques remarquables,” https://www.mathcurve.com/.

7

https://www.mathcurve.com/courbes2d.gb/hyperbole/hyperboleequilatere.shtml
https://www.mathcurve.com/courbes2d.gb/hyperbole/hyperboleequilatere.shtml
https://www.mathcurve.com/


Figure 5: Vertical transposition of the proposed constructions.
[Left] The weight is attached to two strings (toward the pulleys F and G), and
the two strings are pulled together. Even in this case the curve described by
the weight is a branch of hyperbola of foci F and G (however, according to the
gravity, the traceable branch is comprised in the strip under the segment FG).
[Right] The weight can freely slide along the string that is attached in F and
passes through the pulley G. The curve described by the weight is different
from the horizontal counterpart: even though it is still a hyperbola, it has to
be a rectangular one, and F and G are no longer the foci.

horizontal version, we can construct any hyperbola, not only rectangular, and
F,G are the foci, not passage points). An analysis of the implementations shows
that in the first methods, only distances are imposed (the length of the rays is
directly given by the string, thus determining the locus of the weight). On the
contrary, in the second methods, the constraint is about direction. However, it
applies in quite a different way: in the vertical case, the rays bisector has to
keep constant direction (that of the gravity) while in the horizontal case, the
direction changes according to the friction on the plane.

5 Conclusions

In this work we introduced some new methods to construct hyperbolas by strings
given the foci. It is interesting to compare them with the ones of Section 1:
differently from the classic Ibn Sahl construction, in the newly proposed methods
the total length of the string does not determine the shape of the hyperbola.
Indeed, as in Kepler’s method, the curve is defined by the passage through an
initial point. Furthermore, the origin of the motion is the free pulling of a
hand: our hand does not have to follow a predetermined path, we just have to
take care that the string always has to pass through the focus (e.g. G of Fig.
2). These differences with the classic use of the string could elucidate why our
constructions, although very simple, were unknown.

To conclude, we need a remark on string-and-weight constructions. On a
horizontal plane, a draggable point (idealization of a weight making a great
resistance with the plane) has 2 d.o.f. (degrees of freedom): if, as in our first
method of Section 2, we attach to the dragged point two strings of well-defined
length connected to two points, the weight imposes the strings to be taut under
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the pulling and so its position is determined as the dynamic intersection of two
circles (if at a certain point one of the strings is not taut, the weight simply
moves in a straight line along the taut thread). This behavior does not change
if we convert the construction from horizontal to vertical (Section 4).

However, if the length of the string imposes only one d.o.f., the second
d.o.f. (the pulling of the string) is guided by the conditions on the direction
of the motion. That means to solve an inverse tangent problem (to construct
a curve given its tangent properties): this is at the basis of the construction
of the tractrix (the curve defined by a fixed-length string with as its extremes
a dragged point and a point moving along a line, e.g. cf. [2]). The motion
determined by the traction of a dragged point got named tractional motion,
a general method to construct curves beyond the algebraic limits. Out of the
historical interest (cf. [1] or, for a more extended text, [10]), this topic is also
studied from epistemological [4] and foundational [5] perspectives.

As for practical considerations, being generated by imposing tangent con-
ditions, tractional constructions require more attention during the execution
than constructions involving only distance conditions. However, even though
the trace of the hyperbola obtained by the method of Section 3 is probably
less precise than the one of Section 2, it is particularly interesting not only for
its simplicity but also because (according to the authors’ knowledge) this is a
first example of tractional motion generated by a folded string: historically the
tractional motion concerns the traction of a direct string, as for the tractrix.
Future works are expected to deepen the geometry of planar constructions with
a dragged point in general cases.
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de mathématiques : journal des candidats aux écoles polytechnique et nor-
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