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Abstract—In this experimental paper, we would like to vali-
date a non linear optimal control solver to realize torque control
on actuators embedded in a TALOS humanoid robot. The
targeted application involves high payload, thus, it is necessary
to handle the mechanical limitations of the system. To this
extent, we propose a method to model, identify and control the
TALOS humanoid actuators. The model includes the actuator
drive chain and the corresponding inertial parameters that are
identified at once using two experimental dataset. The identified
model is then used by a Differential Dynamic Programming
(DDP) optimal control solver to take into account the actuator
limits. We demonstrated that the DDP can decrease the quality
of the tracking to avoid physical limits in angular position,
velocity and current in extreme conditions such as carrying large
loads. Because of the solver high computational time, we validate
our method on one actuator of the robot, the elbow joint, using
its main CPU. In the experiments, we charge up to 34 kg on
the arm of the robot at 5cm of the elbow joint, corresponding
to 16 N at the joint level. The proposed implementation is
working on this specific joint at 300µs and provide an effective
solution to a real-world control problem. In the future, we will
implement it over dedicated and embedded electronics board
attached to each actuator.

INTRODUCTION

Having torque control on a humanoid robot is interesting
for safe interaction with the environment and for its potential
impact on cobotic applications. Historically, most of the
humanoid robots are controlled in position and few robots,
such as the TORO robot [3] or the DYROS-JET robot
[14], are torque controlled. Recently, a new generation of
humanoid robots, including the TALOS robot, has shown the
possibility to use their actuators either in position or in torque
control modes [17]. Several whole-body control architectures
have been proposed ([2], [8]) to compute and follow desired
joint torques and PAL Robotics demonstrated, during IROS
2018, an accurate whole-body balancing control on TALOS
[13]1. However regulating joint torques is still an opened
problem, which requires a low level controller able to follow
a desired joint torque. However some humanoid robots do not
provide access to their low level controller. In this situation,
Khatib et al.[9] proposed a controller which takes in input

1The present paper is independent from the work in [13]

a desired torque and provides a desired position to reflect
the desired torque at the actuator. In a similar spirit, Del
Prete et al.[16] implemented a torque control and inverse-
dynamics control on the HRP-2 robot, originally designed
for position control. They estimate the joint torques from the
force sensors and the IMU by using the method proposed for
the iCub robot by Nori et al.[12].

In this paper, we would like to take advantage of the
capabilities of the commercially available TALOS robot. Its
industrial standard EtherCat bus allows to gather numerous
information about the actuators at a very high frequency.
Thus, information related to the drive chain, the motor and
joint positions or the joint torques can be read simultaneously.
We would like to be able to generate extreme but safe
motions, i.e. without breaking the motor. This event may
occur if a large torque is sustained for an extended period of
time or when the robot is carrying a large additional payload.
To avoid it, the current drawn in an actuator can be limited
by adapting its motion. Moreover, the motor current can be
saturated by the joint controller if the desired joint torque is
above its limit.

Ideally, this could be done using a model-based predictive
controller (MPC). The use of a Differential Dynamic Pro-
gramming (DDP) as MPC allows to cope with the actuator
flexibility while meeting the control loop timing constraints.
However, such a controller requires the knowledge of the
inertial parameters of the robot, of the motor drive chain and
to have a well calibrated joint torque sensor. As said before,
these parameters may not be provided by the manufacturer
of the robot or may be inaccurate. Indeed, for TALOS, the
drive chain parameters are not disclosed, to protect indus-
trial conception, and they do not take into account cabling,
glued elements or cover. Fortunately, the literature in system
identification of serial manipulators proposes methods that
allow to identify the joint drive gains and inertial parameters
at once [6, 7].

In this context, the objective of this paper is to push the
TALOS robot to its limits during joint torque control. For that
purpose, we propose to identify the joint drive chain of the
elbow joint and the corresponding inertial parameters and to
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use a Differential Dynamic Programming approach to protect
the system.

I. SYSTEM MODELING AND IDENTIFICATION

A. Mechanical Model

Joint torque
sensor
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encoder
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Fig. 1: Scheme of the retained mechanical model.

The inverse dynamics model of the investigated system is
used to calculate the motor torque τm and joint torques τj
as a function of the joint and/or motor positions, velocities
and accelerations. It is usually calculated using Newton-
Euler equations [18]. TALOS actuation chain is composed
of a brushless motor, that can be controlled in current,
connected to a harmonic drive and a torque sensor attached
to its corresponding link. In this study the investigated sub-
system is composed of the actuation chain of a single joint
as represented in Fig. 1. The motor and joint positions are
measured by two high-precision encoders (19 bits or 524,288
counts per revolution) and are considered equal thanks to the
harmonic drive high stiffness. Consequently, the variables q,
q̇ and q̈ will be used to refer to the joint position, velocity
and acceleration, respectively. The total inverse dynamics
equations of the retained model are:

τm = (Im + Ij)q̈ + g
(
MY sin q +MX cos q

)
+ τfm + τfj

τj = Ij q̈ + g
(
MY sin q +MX cos q

)
+ τfj

(1)

and
τfm = Fvmq̇ + Fsmsign(q̇) + offm

τfj = Fvj q̇ + Fsjsign(q̇) + offj
(2)

where Im is the rotor inertia of the motor, Ij is the corre-
sponding link inertia expressed at the joint level, Fvm and
Fsm are the motor viscous and dry frictions, Fvj and Fsj
are the viscous and dry frictions at the joint level, offm and
offj are the offsets of the torque motor and joint, MX and
MY are the first moment of inertia expressed at the joint
level and g is the gravity.

The motor torque τm is related to the current by:

τm = RKmim (3)

where R is the gear ratio, Km is the joint drive of the
manufacturer and im is the input current of the motor. We
can express the simple dynamic of our system as:

q̈ =
1

I

(
RKmim − Fv q̇ − Fssign(q̇) + off)

− (MY sin q +MX cos q)
g

I

(4)

where I = Im + Ij , Fv = Fvm + Fvj , Fs = Fsm + Fsj and
off = offm + offj .

B. Identification of drive chain and segment inertial param-
eters

Usually the segment mass, center of mass and inertia are
provided by the manufacturer of the robot with a relatively
good accuracy, whereas the friction and drive chain param-
eters are unknown. The provided current gain drive Km is
known to have 10 to 15% of inaccuracy [6]. Finally, the joint
torque sensor should be calibrated prior to be used for control
applications. Thus, we propose to use the inverse dynamics
model and a total least square approach [7] to identify the
system described in Fig. 1 and its drive chain at once. To do
so, two experiments were performed with and without using
an additional payload.
When the inertial parameters of the dynamic model are
expressed at the joint level, the model is linear, thus Eq.(1)
becomes:[
τm
τj

]
=

[
RKmim
Kjτjs

]
= WΦ =

[
cos(q) sin(q) D D
cos(q) sin(q) 0 D

]
Φ

(5)
where D = [q̈ q̇ sign(q̇) 1] and W is the so-

called regressor matrix. The vector φ containing the
inertial parameters to be identified is defined as φ =
[MX MY Im Fvm Fsm offm Fvj Fsj offj ].
The TALOS robot embeds motor current and joint torque
sensors, thus the regressor matrix W is full rank and the
parameters can be identified separately.

To identify the current drive and the torque sensor gains,
it is necessary to insert them into the vector φ [7]. To do so,
two regressor matrices that contain observations from two
experiments have to be considered: W0 for the experiment
without payload, and W1 for the one with a known payload
at the end-effector. The Eq.(5) can be reformulated as:
−W0 im 0 0 0
−W0 0 τjs 0 0
−W1 im 0 −Wup −Wkp

−W1 0 τjs −Wup −Wkp




φ
RKm

Kj

φup
φkp

 = 0 (6)

ŴtotΦ̂tot = 0 (7)

where Wup and Wkp are the observation matrices corre-
sponding respectively to the unknown and known payload
inertial parameters.
Ŵtot is the closest rank deficient matrix (Frobenius norm)
from Wtot, calculated using the singular value decomposi-
tion of Wtot = USV T because Wtot is a full rank matrix
[7]. The solution Φ̂tot is given by the last column of V and
is scaled [7] using the known position of the center of mass
of the payload along the Y-axis (see Fig.1).

The success of the inertial parameters identification relies
on maintaining them excited. Thus, an exciting joint trajec-
tory is defined using a double S-curve spanning the whole
range of motion of the elbow joint. The duration of each
phase (acceleration, constant velocity and deceleration) of the
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S-curve is set to be equal. The velocity plateau is increased
by steps of 20% up to its maximal value. Joint derivatives
are obtained to fulfill the regressor matrix using centered dif-
ferences from the measured joint positions. All the recorded
data are low-pass filtered at 5Hz (Butterworth filter, zero-
phase lag order 5) and the number of sample is decimated
to reduce the noise influence [5]. The S-curve motions are
considered exciting since the condition number of the base
parameter regressor matrix is low (cond(Wb) = 36).

II. DIFFERENTIAL DYNAMIC PROGRAMMING OPTIMAL
CONTROL SCHEME

This section presents the optimal control scheme used to
find the control sequences required to perform the desired
motion. In this paper we use the formulation given in [10, 4],
which maximizes the performance of the desired motion with
respect to the control under the actuator physical limitations
constraints.

A. DDP State space representation
In state space, we denote the state vector x = [q, q̇] and

the command vector u = [im]. We then represent the direct
dynamics model (Eq.(4)) as the following:

ẋ = f(x, u) = f(q, q̇, im) =
q̇

1

I

(
RKmim − Fv q̇ − Fssign(q̇) + off)

− (MY sin q +MX cos q)
g

I

 (8)

B. Treatment of Constraints
In comparison to the work achieved in [4], we do not solve

a box QP problem to bound the command vector. Instead such
as the work in [10], we have introduced the joint and actuator
mechanical limits as constraints on the state and control space
in the cost function formulation. The retained constraints
functions are expressed by the following equations, referred
as ’exponential barrier’, at each time-step t:

max(ct) = 1− λ(cmax − ct)
min(ct) = 1− λ(ct − cmin)

Cs(ct) = eλmax(ct) + eλmin(ct)

(9)

where cmin, cmax are the corresponding lower and upper
mechanical limits on angular position, velocity and torque,
i.e. ct ∈ {x(t), u(t)}. λ is a positive constant which defines
the smoothness of the function. The higher it is, the quicker
the cost will increase when approaching the limits (depending
on the difference between the limit and the current state).

With these constraints, the total cost function will increase
and reach a very high cost near the limits, keeping the system
safe, in its mechanical bounds.

C. Iterative Linear Quadratic Regulator (iLQR)
To mitigate the DDP computational time it is possible to

linearize the dynamics and approximate the cost function to
quadratic form along the x trajectory. This method is called
the iterative LQR (iLQR) approach [11] and we use the same
formulation as in [10].

D. State space partial derivatives
This section details the state space partial derivatives

needed by the iLQR algorithm, obtained from eq. (8). The
sign() function is not differentiable in 0, therefore we have
chosen to approximate the sign(q̇) term by an hyperbolic
tangent: tanh (µq̇), where µ = 1000. We obtain the following
new equation for the dynamic of the system:

f(x, u) =


q̇

1

I

(
RKmim − Fv q̇ − Fs tanh (µq̇) + off)

− (MY sin q +MX cos q)
g

I


(10)

The partial derivative in u can be directly computed
because the function is linearly dependent in im:

fu =

[
0.0

1

I
RKm

]T
(11)

Concerning the derivative in x, we have non-linear de-
pendencies between q̈ and q̇, and q̈ and q. Moreover the
relationship between q̇ and q is not explicit. Therefore we
use the spatial finite difference discretization of the equation
to obtain fx at each iteration i:

xi+1 = f(xi, ui) (12)

fx =


f(

[
qi + h/2

q̇i

]
, ui)− f(

[
qi − h/2

q̇i

]
, ui)

h

f(

[
qi

q̇i + h/2

]
, ui)− f(

[
qi

q̇i − h/2

]
, ui)

h


(13)

E. Cost function
This section presents the cost function used in our system

and the cost partial derivatives needed by the iLQR algorithm,
obtained from the equation (8). Considering the actual state
vector x, the desired state vector x∗, the actual command
vector u and the actual torque on the elbow motor τm, we
use the following cost function:

J = (x− x∗)TQ (x− x∗) + uTR u
+CTs (x)W Cs(x) + CTs (τm) P Cs(τm)

(14)

Q =

[
40.0 0.0
0.0 0.01

]
R = 0.0001

W =

[
1.0 0.0
0.0 0.1

]
P = 10.0

(15)
The weighting matrix Q,W,R and P have been chosen

to give a hierarchy from the most important error to control
to the lesser one. Using the lexicographical order we have:
q �� τm, τm �� q, q �� q̇, q̇ �� q̇ �� u. Where c, c are
the corresponding lower and upper mechanical limits. The
tracking of the trajectory (in position) is the prioritized task,
followed by the one controlling the torque bounds.
We obtain the following cost partial derivatives lu = ∂J(x,u)

∂u ,
luu = ∂2J(x,u)

∂u2 , lx = ∂J(x,u)
∂x , lxx = ∂2J(x,u)

∂x2 , lxu =
∂2J(x,u)
∂x∂u :

lu = 2Ru+ 2
dCs(τm)T

du
WCs(τm) (16)
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luu = 2R+ 2

[
d2Cs(τm)T

du2
WCs +

dCs(τm)T

du
W
dCs(τm)

du

]
(17)

dCs(τm)

du
= λ(τm)2 RKm

(
eλ(τm)max(τm) − eλ(τm)min(τm)

)
(18)

d2Cs(τm)

du2
= λ(τm)4 (RKm)2 Cs(τm) (19)

lx = 2Q (x− x∗) + 2
dCs(x)

T

dx
WCs (20)

lxx = 2Q+ 2

[
d2Cs(x)

T

dx2
Cs +

dCs(x)
T

dx
W
dCs(x)

dx

]
(21)

dCs(x)

dx
= diag

([ λ(q)2
[
eλmax(q) − eλmin(q)

)
λ(q̇)2

(
eλmax(q̇) − eλmin(q̇)

) ] ) (22)

d2Cs(x)

dx2
=


[
λ(q)4 Cs(q) 0.0

0.0 0.0

]
[

0.0 0.0
0.0 λ(q̇)4 Cs(q̇)

]
 (23)

with λ(τm) = 0.5, λ(q) = 10 and λ(q̇) = 1. These
parameters have been chosen accordingly to the explanation
on the λ of the section II-B. The ’exponential barrier’ on the
position bounds will be sharper than the two others. It also
depends on the difference between the limit and the current
state. For instance the maximal difference in torque is 12A
whereas the one in position is 2.35rad, then the λ(τm) do
not need to be as big as the λ(q).

III. SIMULATION AND EXPERIMENTS

A. Identifying the drive chain and inertial parameters

Fig. 2 shows the results of the least square identification. It
shows the fitting of the measured motor and joint torque when
no payload was used. The corresponding Root Mean Square
Difference (RMSD) was 0.6 N.m showing an excellent fitting.
Fig. 3.c shows the estimate of joint torque from the current
of the motor that is of importance for the proposed dynamic
controller.
Table 1 details the comparison between the identified param-
eters and their values as provided by the manufacturer.

TABLE I: Results of the identification process and compari-
son with manufacturer data.

CAD ID σ%

MX -0.08 -0.11 2.1
MY 1.1 1.1 0.2
Ij 0.34 0.33 9.9
FSj 0 0.55 1.3
FV j 0 0.47 10.3
Offj 0 -0.27 3.4
Im 0.21 0.45 9.5
FSm 0 4.0 0.1
FV m 0 5.1 0.7
Offm 0 0.86 7.9

Time [s]0 230

measured estimated

5
-2

0
To

rq
ue

s 
[N

.m
]

Motor torque Joint torque

Fig. 2: Results of the fitting of motor and joint torques used
for the identification process.

Overall the identified segment inertial parameters are
similar to the ones provided by the manufacturer. These
parameters can be considered well identified due to their
relatively low standard deviation σ%. The relative standard
deviation gives in % a confidence index on the reliability of
the identification of each parameter. See [15] for the detail of
σ% calculation. The joint torque sensor was well calibrated
since its identified gain was Kj =1.015. The total joint drive
gain RKm value is not disclosed, because of a confidentiality
agreement with the robot manufacturer, but a difference of
16% with the value provided by the manufacturer was found.

B. Controlling the actuator

The iLQR is implemented as described in [4] and com-
pleted by the ’exponential barrier’ constraints in the cost
function. The cost functions and model dynamics are evalu-
ated using the identified parameters (Table.I). This implemen-
tation is first validated in simulation with the use of Gazebo
and then tested on the real TALOS robot. The noticeable
contribution of this paper compared to [4] remains in this
last point, the torque control is implemented on the robot and
achieve a satisfying real time control (with more protections
on the mechanical limits of the robot).

The experimental setup is the following: the robot is
controlled in torque with high gains except for the elbow
actuator. A sinusoidal command for the elbow actuator is
sent to the DDP algorithm which computes a resulting signal
respecting the limits. This signal is then sent to the robot. A
heavy charge is finally put incrementally on the arm of the
robot, at 5cm of the elbow joint, until reaching 34kg (see
Fig.4). The load moment arm when the load is perpendicular
to the robot arm is equal to 16.67 N.m. Otherwise it is
expressed similarly to the mass of the arm at the center of
mass (see Eq.(8)): LY sin q + LX cos q with LY and LX
the first moment of inertia of the load.

The DDP algorithm is executed on the robot with a
15ms preview window, a 3.3ms discretization and has an
execution time of 300µs (using an Intel CPU i7-3612QE
@ 2.1 GHz). On a standard laptop such as an Intel CPU
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Fig. 3: (a) Velocity profile used to excite the dynamics
system. (b) Estimate of the joint torques from motor current
and the identified model. (c) Estimation of the difference
between the joint and motor torque.

i7-8850H @ 2.6 GHz it can be executed with a longer
preview window (100ms) and with a faster control frequency
(1ms discretization) in a smaller execution time (200µs).

1) Simulation: Fig.5 presents the action of the exponential
barriers on the position joint limits (see Eq.9). A sinusoidal
desired trajectory is given to track, but reaches the lower
angular position limit: −2.35rad. The computed trajectory
shows a plateau before reaching the limit, demonstrating the
activation of the protection in the DDP. We can notice the
small oscillations at the top of the sinusoide, due to the dry
frictions when the angular velocity reaches zero (see Fig.9).
This causes a small delay in the computed trajectory.

Fig.6 depicts the tracking results on two cases: first without
additional load and second by adding a 30 kg load to the
forearm. In the first case, the trajectory follows the desired
one with a small delay (∼0.1s), which may be causes by the
dry friction as explain above. This bias can be removed by
increasing the state constraint gains but the system will loose
compliance. In the second case, the delay with the desired
trajectory increases, in particular during the ascending phase
of the sinusoidal command (the robot raises its arm and
the load). Indeed, to match the desired trajectory quicker,

Fig. 4: Experiment where TALOS is holding 34kg at 5 cm
of the elbow joint.

the torques needed are high and the DDP algorithm limits
them. Nevertheless, in both cases the overall motion shape is
respected.

Fig. 5: Simulated state trajectory illustrating the angular
exponential barrier.

Fig. 6: Comparison between simulated trajectories with and
without load.

The control trajectories depicted in Fig.7 show how the
limitation of 6A (set a-priori) is implemented with the expo-
nential barrier given by Eq.9. The cyan trajectory represents
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the current command when there is no additional load and
it does not reach the limit. The green trajectory represents
the current command when the robot carries a 30kg load,
it shows that the command reaches a plateau (around -5.6A)
before the limit. It explains the delay of the computed angular
trajectory of Fig.6, the tracking of the desired joint trajectory
is degraded because the current is limited. This is due to
the DDP action to preserve the actuator, i.e. the exponential
barrier is activated by the DDP algorithm.

Fig. 7: Simulated control trajectories with and without an
additional load.

In comparison, Fig.8-bottom depicts the control going
over the current limit in the loaded case when the current
exponential barrier is not enabled in simulation. In this
configuration the joint position tracking is better, as shown
in Fig.8-up, but the actuator reaches its current limit.

Fig. 8: Simulated state and control trajectories in loaded case
but without control input limitation.

2) Experiments: Fig.9 presents the action of the exponen-
tial barriers on the position joint limits on the real robot.
As in simulation, the desired trajectory reaches the lower
angular position limit: −2.35rad. The computed trajectory
shows a plateau before reaching the limit, demonstrating the
efficiency of the protection in the DDP. Notice the oscillations
at the beginning of the sinusoidal movement (when the arm
is raising), the arm of the robot has difficulties to perform a
smooth trajectory. As thought in the simulations, this is the
consequence of the dry frictions, when the angular velocity q̇

is approaching zero, the dry coefficient Fs increases to reach
the Breakaway friction value (the sum of the Coulomb and
static frictions). This behaviour can create the delay noticed
in the simulations. This is not currently taken into account
in our model but would be in the future.

Fig.10 shows a comparison between the desired joint
trajectory and the ones obtained without and with a 34kg load
(we increase the load to have a better demonstration of the
activation of the current exponential barrier). As expected, the
trajectory without any load has a small delay and oscillates
when the angular velocity is around zero. The trajectory
obtained when the robot is carrying the additional 34 kg
displays greater oscillations due to the load movements. It
also presents a bigger degradation of the trajectory than
in simulation, the sinusoidal movement is reduced (stopped
at −1.7rad instead of −1.9rad) because large torques are
necessary to achieve it (but are prohibited by the DDP
algorithm, see Fig.11).

Fig. 9: Experiments - State trajectory illustrating the angular
exponential barrier.

Fig. 10: Experiments - State trajectories with and without a
34kg load.

The Fig.11 presents the control trajectories computed by
the DDP without and with the load. In the first case (cyan
line), the command is far from the limit and do not activate
the barrier. In the second case (green line), as in simulation,
the command reaches a plateau before the limit, around −5.3
to −5.6A. The current is more reduced than in simulation,
inducing a more degraded state trajectory in Fig.10. The
plateau is not as smooth as in the simulation, due to the
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computation time which is quite high, leading to picks in
the calculation. Indeed, in these experiments the computation
time of the overall control system is around 1 to 1.5ms.
Compared to the control frequency of the robot, which is
1kHz, this duration is large.

A video describing the experiments on the
robot can be found at the following location:
https://youtu.be/YNoSnU7w4FY.

Fig. 11: Experiments - Control trajectories with and without
a 34kg load.

IV. CONCLUSION

In this paper we presented the actuator model, the identifi-
cation and the control of the TALOS robot elbow joint. The
identification results of the drive chain and of the inertial
parameters at once proved to be accurate with low standard
deviation and physical consistency of the parameters. Using
the identified model and a DDP approach to avoid reaching
its limits, we have demonstrated that the robot is able to carry
a load up to 34 kg with a sinusoidal motion at low speed.
As expected, it is not possible to use this algorithm in the
main CPU as it takes 300µs for one actuator, nevertheless,
we validated the efficiency of the solution. The extension
of this work would be to identify all the actuators of the
robot and to implement the solution over high-performance
dedicated and embedded electronics board attached to each
actuator. For a short term solution on the TALOS robot, we
will use state-of-the-art and less computationally expensive
techniques [1].
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