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Abstract 

While endotherms can rely on their insulation to reduce heat loss to adapt to cold 

environments, renewing of fur during molt impairs insulation while they have to perfuse the 

periphery to support epidermal tissues. The southern elephant seal Mirounga leonina 

undertakes an annual catastrophic molt while fasting on land in a wet, windy and cold 

environment. However, southern elephant seals show characteristic aggregation patterns that 

are predicted to reduce high metabolic costs during the molt. Between 2012 and 2016, 59 

female elephant seals were tracked on land during their molt to study their aggregation 

behavior in relation to molt stage, habitat type and local weather conditions. Infrared 

thermography and stomach temperature loggers were used to observe variation in body 

surface and internal temperature in relation to molt stage and aggregation behavior. We found 

that thermal constraints varied during the molt, with a peak in surface temperature during the 

mid-stage of the molt. Wallows (mud pools) appear as favorable habitat to aggregate while 

molting. Indeed, wallows offered a warmer microclimate with greater ground temperature and 

lower wind speed. Moreover, there was a greater proportion of aggregated seals and larger 

group size in wallows. These aggregation patterns in wallows were influenced by local 

weather such that a greater proportion of seals were located in the center of the aggregation, 

and larger group size occurred during days of unfavorable meteorological conditions. We also 

observed a higher proportion of seals at mid-stage of molt amongst aggregated seals 

compared to isolated individuals. This aggregation behavior may reduce the cost of 

thermogenesis as surface body temperature and stomach temperature were cooler by 1.0°C 

and 1.5°C, respectively, in aggregated compared to isolated seals. As a consequence, huddling 

behavior may be thermally advantageous for female southern elephant seals during the molt. 
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Abbreviations 

- Ta air temperature 

- Tg ground (substrate) temperature 

- Tb body surface temperature 

- Tf surface temperature at the insertion point of the lateral flipper 

- Th surface temperature of the aggregation (huddle) 

- Tstom stomach temperature 

- ΔTb = Tb – Ta gradient of body surface temperature 

- ΔTf = Tf – Ta gradient of flipper surface temperature (at the insertion point of the 

lateral flipper) 

- ΔTh = Th – Ta gradient of surface temperature of the aggregation (huddle) 
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1. Introduction 

 In order to maintain a high and relatively constant body temperature, endotherms 

living in a cold environment must increase their insulation to compensate for heat loss. This 

adaptive insulation allows them to have an extended thermoneutral zone, without increasing 

their metabolic rate (Scholander et al., 1950; Schmidt-Nielsen, 1997; Willmer et al., 2005; 

Clarke, 2017). Most Antarctic and Sub-Antarctic birds and mammals forage at sea and breed 

or molt while fasting on land, thereby experiencing contrasting periods of energy use and 

environmental conditions. Living in different physical and thermal environments requires 

morphological, physiological and behavioral adaptations. For example, pinnipeds are adapted 

to heat conservation in a cold environment because of low  surface area to volume ratio, thick 

layer of subcutaneous blubber, and vascular peripheral anastomoses regulating cutaneous 

blood perfusion (Schmidt-Nielsen, 1997; Mauck et al., 2003). However, behavioral 

adaptations to minimize heat loss are also widespread in the wild. Indeed, social 

thermoregulation (huddling), widely used by endotherms, allows metabolic savings by 

reducing thermoregulatory costs (Gilbert et al., 2010). Reducing heat loss by huddling permits 

reallocation of energy savings to other physiological processes (e.g. reproduction or growth). 

However, during the molt, heat loss increases as blood flow to peripheral tissues must be 

maintained to support tissue growth and regeneration. 

Southern elephant seals Mirounga leonina experience an annual ‘catastrophic’ molt 

lasting one month, not only renewing their hair but also their cornified epidermis (Ling, 

1968). During this period, molting elephant seals are likely to be more sensitive to heat loss 

because of their inability to avoid peripheral vascular circulation. The molt is particularly 

costly in this species: molt metabolic rate in southern elephant seals is estimated to be 2-3 

times greater than resting metabolic rate, and appears to be more energetically costly than in 

northern elephant seals (Mirounga angustirostris; Worthy et al., 1992; Boyd et al., 1993). 
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However, decreases in metabolism during the molt have been described in other related 

species when captive during the same period (harbour seals Phoca vitulina: Ashwell-Erickson 

et al., 1986; Rosen and Renouf, 1998). While molting, female body mass loss averages 4-5 kg 

per day in southern elephant seals, mainly fat from blubber metabolism (Boyd et al., 1993; 

Hindell et al., 1994; Carlini et al., 1999; Postma et al., 2013). Paterson et al. (2012) showed 

that heat loss of phocids increases during the molt, with an increase in skin temperature due to 

perfusion by vasodilation through the blubber layer to supply nutrients for epidermis renewal 

(Ashwell-Erickson et al., 1986). Feltz and Fay (1966) demonstrated in vitro that the epidermal 

cells of phocids require a minimum temperature of 17°C, and an optimal temperature of 37°C, 

to grow. The high metabolic rate observed in southern elephant seals while molting could be 

related to the fact that they molt in a cold environment with increased thermoregulatory costs. 

Southern elephant seals aggregate in large groups, mostly in mud pools (wallows), 

while molting on land (Laws, 1956; Boyd et al., 1993; Chaise et al., 2018) and this behavior 

seems to be influenced by local weather conditions (Cruwys and Davis 1995; Chaise et al., 

2018). In California sea lions Zalophus californianus, huddling behavior increases in colder 

weather and allows animals aggregated in the middle of a group to maintain a higher surface 

temperature than the substrate compared to isolated individuals (Liwanag et al., 2014). In the 

same way, huddling individuals of most mammal and bird species maintain a higher and more 

constant core and surface body temperatures than isolated individuals (Gilbert et al., 2010). 

However, a higher gradient between body surface temperature and ambient temperature 

would result in increased heat loss and associated thermoregulatory cost (Canals et al., 1989; 

McCafferty et al., 2011). In contrast, Gilbert et al. (2007) showed that microclimate created 

by huddling (up to 37.5°C within tight huddles) allows male emperor penguins Aptenodytes 

forsteri to save energy during their breeding fast through decreases in core temperature. We 

therefore predict that aggregated adult southern elephant seals benefit from huddling, either 
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by the maintenance of a higher body temperature allowing a more rapid molt, or a lowering of 

thermal gradients between surface and ambient temperature, allowing energy savings during 

the molt. 

The aim of this study was therefore to evaluate thermal consequences of aggregation 

in molting females, using infrared thermography as a non-invasive technique to measure body 

surface temperature, concurrently with the recording of internal temperature, of free-ranging 

pinnipeds (Mauck et al., 2003; McCafferty et al., 2005; Norris et al., 2010; Paterson et al., 

2012; Liwanag et al., 2014; Codde et al., 2016). We expect aggregation behavior to be more 

intense in wallows, where elephant seals have been observed aggregating (Laws, 1956; Boyd 

et al., 1993; Chaise et al., 2018), compared to other habitats (grass and rocky beach), as 

wallows could be a warmer habitat for molting. We also expect that aggregation behavior 

increases in the middle of the molt (corresponding to a peak in surface temperature; Paterson 

et al., 2012) and when weather conditions are deteriorating (Liwanag et al., 2014). We 

therefore predict that aggregation allows elephant seals to modulate their internal and surface 

temperatures to reduce the cost of thermoregulation and increase their rate of molt in order to 

minimize mass loss during the molting fast. 
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2. Material and methods 

2.1.Data collection 

2.1.1. Study site  

Field work took place during four molting seasons of adult female elephant seals in 

2012 and 2014-16 (Table 1), at the colony of Pointe Suzanne (49°26’S, 70°26’E) in 

Kerguelen Island (French Southern and Antarctic Lands). Based on the assumption that 

different areas would offer different thermal environments, the study site was divided into 

three different habitats based on substrate type and topography: stony beach, grassland and 

wallows (mud pools without vegetation created by aggregation of molting elephant seals 

within grassland). 

Years 

Number of 

transects 

scans 

(grass/beach) 

Number of 

quadrat 

scans 

(wallows) 

Number of 

tracked/recaptured 

[equipped] females 

Number of 

observations 

Tracking 

duration 

(days) 

18 Jan to 

19 Feb 

2012 

30/30 14 15/12 [0] 5.7 ± 3.3 13.7 ± 3.8 

29 Dec 

2013 to 1 

Mar 

2014 

39/40 33 25/21 [3] 5.2 ± 2.9 8.6 ± 3.3 

23 Dec 

2014 to 

15 Jan 

11/11 12 7/7 [2] 1.3 ± 0.5 4.1 ± 1.0 
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2015 

22 Jan to 

27 Feb 

2016 

/ / 12/13 [4] 4.5 ± 1.6 6.1 ± 1.9 

Table 1 Dates of transects and quadrat scans, number of female elephant seals recaptured, 

tracked and equipped with stomach temperature pills, mean number of observations and 

tracking duration (days). 
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2.1.2. Population surveys 

These data are based on daily observations of unidentified female elephant seals in 

defined areas. Two strip transects on beach habitat (49°26’02’’S, 70°26’23’’E - 49°25’59’’S, 

70°26’17’’E; 150 m long; ± 10 m from the line transect) and grass habitat (49°26’00’’S, 

70°26’16’’E - 49°26’03’’S, 70°26’22’’E; 150 m long; ± 10 m from the line transect) and one 

quadrat in wallow habitat (49°26’16’’S, 70°25’59’’E - 49°26’20’’S, 70°25’45’’E - 

49°26’32’’S, 70°25’46’’E - 49°26’26’’S, 70°26’09’’E; 0.14 km²) were defined to study the 

influence of habitat type and local meteorological parameters on elephant seal aggregation 

behavior during the molt. The transects and quadrat were scanned daily for a total of 220 

scans between 2012 and 2014-15 (Table 1). At the start of each scan, meteorological 

variables, including air temperature (Ta, °C), ground temperature (Tg, °C; 5 cm depth; from 

2014), relative humidity (%), wind speed (m.s
-1

) and solar radiation (W.m
-
²), were measured 

using hand-held devices (Kestrel 3000 Pocket Weather Meter; pyranometer SKS111, Skye 

Instruments Ltd, Llandrindod Wells, UK). During each scan, we recorded the molt stage of 

each seal observed (mainly adult females, with possible presence of few juveniles and males). 

We defined three molt stages, assessed by the percentage of old hair/skin shed (0 %: no old 

hair shed to 100 %: all old hair shed; ± 10 %; Fig.1): this was then divided into initial stage 

(0-40 % of old hair shed; still largely covered with old hair), mid-stage (50-80 %; most of old 

hair shed and new hair still not grown) and final stage (90-100 %; new hair growing).  We 

recorded whether the observed seal was aggregated or isolated, where an aggregation was 

defined when at least two elephant seals were in physical contact. In an aggregation, an 

elephant seal was considered in a peripheral position (P) when only one of its sides was in 

physical contact with others, otherwise it was recorded as in a central position (C). We also 

calculated an aggregation score (number of aggregated seals/total number of seals) for each 

transect and quadrat, the size of each aggregation (number of aggregated seals) and the C/P 
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ratio of the aggregation (number of central seals/number of peripheral seals). Thermal (± 

0.1°C) and visual images were taken (ThermaCAM® P25, FLIR Systems, accuracy ±2°C; 

Lumix DMC-FS35 EF-K, Panasonic; TG-4, Olympus) for each aggregation or isolated 

female.  

 

Figure 1 Molting female southern elephant seals shedding old skin and hair: initial stage (A), 

mid-stage (B) and final stage of molt (C). 

 

2.1.3. Individual data 

Between 2012 and 2016, 59 adult females were captured at the initial stage of molt, 

then tracked during 4.7 ± 2.9 days (range 1-13 daily observations), and 53 were recaptured at 

the final stage of molt (Table 1), 8.6 ± 4.3 days after their first capture (range 3-20 days). 

Elephant seals were captured on the colony, anaesthetized using tiletamine and zolazepam 

(McMahon et al., 2000; Chaise et al., 2017) and tagged on one hind flipper with plastic 

identification tag (Dalton Tags, UK). Females were weighed at capture and recapture (HST 

Mini-Weigher, 0-1000 kg ± 0.5 kg, HST Scales UK Ltd) to calculate body mass loss (kg.d
-1

). 

All captured seals were equipped with VHF transmitters (Series MM300 Marine Mammal 

Headmount, model MM340B, 7.1 x 3.5 x 2.1 cm; 92 g, Advanced Telemetry Systems, USA) 

to track them on land, and nine individuals were equipped with stomach temperature pills and 
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time-depth recorders (TDR-STP-207D; MK10-L/SPLASH10-309, 76 x 56 x 32 mm, 125 g, 

Wildlife Computers, USA) between 2014 and 2016. Stomach temperature pills were placed in 

the stomach under anesthesia using a lubricated flexible tube, and recorder tags were fixed on 

the head with epoxy bi-composed glue Araldite®. Stomach pills were set up to record 

stomach temperature (Tstom) every 10 s. Temperature was recorded during 4.9 ± 2.7 days 

(range 1-10 days) before the signal was lost, due to natural passage of pill through the gut. For 

each observation of a tracked elephant seal, digital and thermal images were taken, and molt 

stage and aggregation status (aggregated or isolated) were determined. In order to compare 

stomach temperatures between aggregated and isolated individuals, we selected stomach 

temperature data at the time when individuals were observed and photographed (six 

individuals out of nine equipped). As we recorded paired data (in both positions: aggregated 

vs. isolated) for very few individuals (half of our stomach temperature data were unpaired) we 

assumed independence for statistical analyses. We calculated the individual aggregation rate 

(number of observations in aggregation/total number of observations). We also recorded 

meteorological variables (air and ground temperature, relative humidity, wind speed and solar 

radiation) close to the seal.  

 

2.2.Data analyses 

2.2.1. Thermal images 

Thermal images were analyzed using the software ThermaCAM® Researcher Pro 2.10 

(FLIR Systems, USA). For each image, we specified air temperature (i.e. measured air 

temperature Ta, 
o
C), relative humidity (%), distance (m) and mammal pelage emissivity of 

0.98 (Humes et al., 1994; Norris et al. 2010; McCafferty et al., 2011). For measurements on 

caught individuals, mean body surface temperature Tb (
o
C) was determined by fitting a 
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polygon around the visible body of the seal, and by measuring mean fore flipper surface 

temperature Tf (
o
C) from spot measurement at the axillary, as this is an important thermal 

window (Mauck et al., 2003; Nienaber et al., 2010) (Fig.2A). For transects and quadrat data, 

mean surface temperature of the aggregation Th (
o
C) was determined by fitting a polygon 

around all visible bodies of aggregated seals and Tf from spot measurement from visible 

axillary of each seal (Fig.2B). Obvious wet seals and images out of focus were discarded from 

analysis. We used thermal gradients (ΔTb,f,h = Tb,f,h - Ta(°C)) for thermal analysis of surface 

temperatures. 
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Figure 2 Analyses of thermal images from observations of tracked individuals (A) and daily 

transects or quadrat scans (B). In A, body surface temperature (Tb) is the average temperature 
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of the dotted polygon (outline of the body) and fore flipper surface temperature (Tf) is the 

pixel temperature of the cross point. In B, surface temperature of the huddle (Th) is the 

average temperature of the dotted polygon (outline of the aggregation) and fore flipper surface 

temperatures of visible aggregated seals (Tf) are pixel temperatures of the respective cross 

points (ThermaCAM® Researcher Pro 2.10; FLIR Systems, USA). 

 

2.2.2. Surface body temperature of population surveys data 

Correlation between Tb and Tf of individuals in 2012 and 2014 was analyzed using a 

linear model (R² = 0.74, F = 247.2, df = 87, P < 0.0001) after normality and equality of 

variances were verified. We therefore used the linear regression for individuals (Tb = 4.59 + 

0.81 * Tf (°C)) to estimate body surface temperature (Tb) from lateral flipper surface 

temperature (Tf) recorded in seals observed during transects and quadrat scans. 

 

2.2.3. Weather index 

A temporary automatic weather station (MiniMet, Skye Instruments Ltd) located at Pointe 

Suzanne (49°26’18’’S, 70°26’31’’E) recorded air temperature (°C), relative humidity (%), 

wind speed (m.s
-1

), solar radiation (W.m
-
²) and precipitation (mm) every 30 min during field 

seasons and summarized to give daily averages and daily rainfall. We used a centered-scale 

Principal Component Analysis (PCA) to determine an integrated weather index (from air 

temperature, relative humidity, wind speed, solar radiation, and precipitation) in order to 

examine effects of weather on aggregation behavior (dudi.pca in ade4 package; 

Supplementary material S1). The first component (PC1) accounted for 39 % of the variation, 

the second (PC2) for 23 % and the third (PC3) for 19 %. PC1 received major positive 

loadings from relative humidity and precipitation and a major negative loading from solar 
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radiation. PC2 received a major positive loading from air temperature. PC3 received a major 

positive loading from wind speed (Supplementary material S1). Principal components were 

then transformed to binary factors, based on their respective median values, to distinguish 

days of ‘bad weather’ (for days with PC1 value > PC1 median value, PC2 value < PC2 

median and PC3 value > PC3 median; high relative humidity, low solar radiation, low air 

temperature and high wind speed) from days of ‘good weather’ (for days with PC1 value < 

PC1 median value, PC2 value > PC2 median and PC3 value < PC3 median; low relative 

humidity, high solar radiation, high air temperature and low wind speed). For 11 % of data 

(11 days), variations of PC2 or PC3 differed from PC1 (e.g. days with PC1 value < PC1 

median value, PC2 value < PC2 median and PC3 value < PC3 median; or days with PC1 

value < PC1 median value, PC2 value > PC2 median and PC3 value > PC3 median; or days 

with PC1 value > PC1 median value, PC2 value < PC2 median and PC3 value < PC3 

median). In those cases, classification of weather index was based on PC1 value (accounting 

for 39 % of the global weather variation). 

 

2.2.4. Statistical analysis 

Generalized linear mixed models (GLMMs) were used to analyze aggregation behavior of 

elephant seals in transects and quadrat (aggregation rate, aggregation size and C/P ratio) in 

relation to habitat type (grass, beach, wallow) and weather index (“good weather” and “bad 

weather” days) as fixed effects (with size of aggregations as covariate for C/P ratio of 

aggregations), and with date as random effect. A similar model was used afterwards to 

analyze, for each habitat separately, the effect of meteorological parameters (air temperature, 

relative humidity, solar radiation and wind speed) on aggregation behavior. GLMMs were 

also used to analyze the effect of aggregation behavior (aggregated vs. isolated, and central 

vs. peripheral individuals) on the gradient of flipper surface temperature (ΔTf), the effect of 
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aggregation size on surface temperature of aggregated individuals (ΔTh), and the effect of 

stages of molt on body surface temperature (ΔTb). Analyses of aggregation effect on surface 

temperatures included meteorological variables (relative humidity, solar radiation and wind 

speed) as covariates, and date as a random effect. Aggregation identity number was added as a 

random effect for ΔTf analyses, and aggregation size was added as a covariate for comparison 

of ΔTf between central and peripheral individuals. Models were fitted with a Poisson 

distribution and final GLMMs were selected based on Akaike Information Criterion (AIC) for 

removal of non-significant effects and interactions. We used Wilcoxon tests to compare 

stomach temperature (Tstom) between aggregated or isolated, and central or peripheral elephant 

seals. Local meteorological variables between habitats were compared using Kruskal-Wallis 

rank sum tests followed by a multiple comparison test when significant (adjusted pairwise 

comparisons; kruskalmc in pgirmess package). We used a Kolmogorov-Smirnov test to 

compare distribution of molt stages between aggregated and isolated elephant seals during 

transects and quadrat scans. Spearman’s rank coefficient tests were used to analyze 

correlations between body condition variations (initial body mass and daily body mass loss), 

molt rate, and aggregation behavior (individual relative aggregation rate). Results were 

expressed as mean ± standard deviation (SD). All statistical analyses were performed with R 

statistical software (R Development Core Team, version 3.5.1; RStudio Inc., version 1.1.456) 

and statistical significance was accepted at P < 0.05. 

 

3. Results 

3.1.Thermal environment of molting elephant seals: habitats and stage of molt 

When we compared meteorological variables between transects and quadrat in 2012 

and 2014-15, we observed that the difference between ground temperature and air temperature 

(Tg - Ta) was greater in wallows compared to beach and grass habitats, while no difference 
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was found between grass and beach habitats (N = 73, χ² = 24.92, df = 2, P < 0.0001; Table 2). 

Differences in ground temperature were found between all three habitats, wallows being the 

warmest (N = 73, χ² = 35.19, df = 2, P < 0.0001) while air temperature was not different 

between the three habitats (N = 147, χ² = 0.33, df = 2, P = 0.85; Table 2). Wind speed was 

lower in wallows compared to grass habitat (N = 145, χ² = 6.24, df = 2, P = 0.04; Table 2) but 

not when compared to beach habitat. Relative humidity and solar radiation were similar 

between all three habitats (N = 144, χ² = 0.03, df = 2, P = 0.99; N = 139, χ² = 2.4, df = 2, 

P = 0.31). 

 

Habitat 

Scans 

(days) 

Air 

Temp. 

Ta (°C) 

Ground 

Temp. Tg 

(°C) 

Ts - Ta 

(°C) 

Relative 

Humidity 

(%) 

Wind 

speed  

(m.s
-1

) 

Solar 

radiation 

(W.m
-
²) 

Grass 54 9.0 ± 3.0 7.6 ± 1.5 
a
 

-0.9 ± 2.3 

a 
71 ± 14 4.8 ± 2.9 

a 
569 ± 363 

Beach 54 9.4 ± 3.1 9.9 ± 2.7 
b 

0.5 ± 2.8 
a 

73 ± 26 

4.6 ± 3.1 
a, 

b 
555 ± 387 

Wallows 39 9.2 ± 2.9 14.1 ± 5.1 
c 

5.4 ± 5.6 
b 

70 ± 13 3.4 ± 2.3 
b
 464 ± 366 

Table 2 Local meteorological variables (mean ± SD) recorded at the start of daily transects 

and quadrat scans (2012 and 2014-15) for each habitat type and significant differences (post-

hoc test: P < 0.05). We recorded a mean of 5 ± 2 rainy days per year during scans over the 

field session. 

 

 We compared body surface temperature between the three stages of molt for 

individual (2012 and 2014, N = 134) and population surveys data (2012 and 2014-15, N = 
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708). The thermal gradient of body surface temperature was greatest by 2.0 ± 3.6°C during 

mid-stage compared to initial (estimate ± SD = 0.12 ± 0.06, z = 2.18, P = 0.03) and final 

stages (estimate ± SD = 0.12 ± 0.05, z = 2.55, P = 0.01) but no significant difference was 

found between initial and final stage of molt (estimate ± SD = 0.006 ± 0.04, z = 0.17, P = 

0.87; Fig.3). 

 

Figure 3 Body surface temperature (ΔTb) gradient between body surface temperature (Tb) and 

air temperature (Ta) during the molt from individual data (2012 and 2014) and population 

surveys data (from strip transects and quadrat counts; 2012 and 2014-15; bold lines: medians; 

box lengths: interquartile ranges between first and third quartiles IQR = (Q3-Q1); whiskers: 

Q1-1.5*IQR and Q3+1.5*IQR). Mean Ta = 9.7°C (N = 842).  

 

3.2.Influence of molt, habitat and weather on aggregation behavior 

Distribution of molt stages varied between aggregated and isolated seals observed on 

transects and the quadrat (D = 0.18, P < 0.0001). We observed a higher proportion of seals at 
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mid-stage of molt amongst aggregated seals compared to isolated seals, and mainly seals at 

initial or final stage of molt amongst isolated seals (Fig.4). 

 

Figure 4 Distribution of molt stages amongst aggregated seals (A) and isolated seals (B) 

expressed as a proportion of the total number of observed seals during transects and quadrat 

scans between 2012 and 2015. 
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Huddling behavior of molting female elephant seals (population based-data) was 

influenced by habitat type and local weather conditions. The proportion of aggregated seals 

(i.e. aggregation rate, N = 176; Fig.5A) was less in grass (mean ± SD = 0.5 ± 0.2; estimate ± 

SD = -0.58 ± 0.08, z = -7.41, P < 0.0001) and beach habitats (0.6 ± 0.2; estimate ± SD = -0.41 

± 0.07, z = -5.74, P < 0.0001) compared to wallows (0.9 ± 0.2), and less in grass compared to 

beach habitats (estimate ± SD = -0.16 ± 0.06, z = - 2.63, P = 0.009; Fig.5A). The model also 

estimated that aggregation rate was marginally higher during days of “bad weather” compared 

to days of “good weather”, for all habitats (estimate ± SD = 0.12 ± 0.07, z = -1.88, P = 0.06) 

but this result was non-significant. When we compared aggregation rate with weather index 

for each habitat, we observed that seals aggregated more in grass habitat during “bad weather” 

days (estimate ± SD = 0.24 ± 0,11, z = 2.15, P = 0.03; Fig.5A). Indeed, when we analyzed the 

effect of meteorological parameters, we observed that seals aggregate more in grass habitat 

with increased wind speed (estimate ± SD = 0.05 ± 0.02, z = 2.30, P = 0.02) and less with 

increased solar radiation (estimate ± SD = -0.0004 ± 0.0002, z = -2.49, P = 0.01). In the same 

way, our results showed that elephant seals aggregate less in beach habitat with increased 

solar radiation (estimate ± SD = - 0.0003 ± 0.0001, z = -1.97, P = 0.049) and more in wallows 

with increased relative humidity (estimate ± SD = 0.005 ± 0.002, z = 2.18, P = 0.03). 

 The number of elephant seals per aggregation (i.e. aggregation size, N = 754) was less 

in grass (mean ± SD = 3.1 ± 1.5; estimate ± SD = -1.03 ± 0.15, z = -6.66, P < 0.0001) and 

beach habitats (4.8 ± 6.9; estimate ± SD = -0.78 ± 0.15, z = -5.36, P < 0.0001) compared to 

wallows (9.4 ± 8.7), and less in grass compared to beach habitats (estimate ± SD = -0.25 ± 

0.10, z = -2.44, P = 0.02; Fig.5B). The model also estimated that aggregation size was greater 

during “bad weather” days compared to “good weather” days, regardless of habitat types 

(estimate ± SD = 0.32 ± 0.16, z = 2.05, P = 0.04). Moreover, the model estimated that the 

difference in aggregation size between wallows and grass habitat was increased during days 
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of “bad weather”. Indeed, when we analyzed the effect of the weather for each habitat, 

aggregation size increased in wallows with increased relative humidity (estimate ± SD = 0.01 

± 0.006, z = 2.33, P < 0.05; Fig.5B) and the same tendency was observed in beach habitat 

(estimate ± SD = 0.01 ± 0.006, z = 1.95, P = 0.05). In comparison, aggregation size in grass 

habitat marginally increased with increased wind speed (estimate ± SD = 0.02 ± 0.01, z = 

1.85, P = 0.06), but this result was non-significant. 

To study the influence of habitat and weather on C/P ratio, we considered aggregation 

size as a covariate in the model, since the C/P ratio increased with aggregation size (estimate 

± SD = 0.07 ± 0.005, z = 13.90, P < 0.0001; N = 689). The model estimated that there were 

less seals in a central position compared to peripheral positions in wallows compared to grass 

habitat (estimate ± SD = -1.82 ± 0.23, z = -8.03, P < 0.0001) and beach habitat (estimate ± SD 

= -0.42 ± 0.17, z = -2.45, P = 0.01) but no difference between grass and beach habitats 

(estimate ± SD = 0.09 ± 0.13, z = 0.71, P = 0.48). Moreover, the difference in C/P ratio 

between wallows and grass habitat increased with increased aggregation size (estimate ± SD = 

0.29 ± 0.03, z = 8.27, P < 0.0001). There was no general effect of weather index on 

aggregation C/P ratio (estimate ± SD = 0.03 ± 0.13, z = 0.20, P = 0.84). However, when 

analyzed per habitat, aggregation C/P ratio increased in grass habitat with increased relative 

humidity (estimate ± SD = 0.02 ± 0.006, z = 2.38, P = 0.02), and this effect was more 

important when aggregation size increased (estimate ± SD = 0.006 ± 0.002, z = 2.34, P = 

0.02). In comparison, C/P ratio marginally increased in wallows, but non-significantly, with 

increased wind speed (estimate ± SD = 0.05 ± 0.03, z = 1.77, P = 0.08), and there was no 

effect of weather in beach habitat. 
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Figure 5 Variation in aggregation rate (number of aggregated seals / total number of seals; A) 

and aggregation size (number of aggregated seals; B) between habitats (statistical significance 

P < 0.05: black asterisk) and influence of weather conditions (i.e. weather index or 

meteorological variables) per habitat (statistical significance P < 0.05: grey asterisk) 

(population surveys data from 2012 and 2014-15). 

 

 

3.3.Aggregation behavior and body temperature 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

24 
 

In wallows, gradient of body surface temperature of aggregated individuals (ΔTh = Th - 

Ta; 15.2 ± 3.4°C) decreased with aggregation size (estimate ± SD = -0.006 ± 0.003, z = -2.01, 

P = 0.045). In comparison, no significant relationship was found between gradient and 

aggregation size in grass (estimate ± SD = -0.003 ± 0.02, z = -0.19, P = 0.85) and beach 

(estimate ± SD = -0.002 ± 0.007, z = -0.31, P = 0.75) habitats. 

 

 In grass habitat, gradient of surface flipper temperature of aggregated elephant seals 

(15.8 ± 4.3°C) observed during transects scans was lower than gradient of isolated seals (17.2 

± 4.5°C; estimate ± SD = -0.08 ± 0.03, z = -2.40, P = 0.02; N = 376). But no difference of 

temperature was revealed between aggregated and isolated animals in beach habitat 

(aggregated: 15.5 ± 4.3°C; isolated: 16.2 ± 3.8°C; estimate ± SD = -0.003 ± 0.03, z = -0.10, 

P = 0.92; N = 419) or wallows (aggregated: 17.6 ± 4.1°C; isolated: 17.7 ± 3.7°C; estimate ± 

SD = 0.01 ± 0.05, z = 0.24, P = 0.81; N = 189). 

 No significant difference was found in gradient of flipper surface temperature between 

central and peripheral seals observed in aggregations (grass: central: 15.6 ± 3.6°C, peripheral: 

15.7 ± 4.4°C, estimate ± SD = 0.03 ± 0.08, z = 0.36, P = 0.72, N = 103; beach: central: 16.6 ± 

3.4°C, peripheral: 15.3 ± 4.5°C, estimate ± SD = -0.06 ± 0.07, z = -0.90, P = 0.37, N = 134; 

wallows: central: 17.6 ± 4.3°C, peripheral: 17.7 ± 4.1°C, estimate ± SD = 0.002 ± 0.04, z = 

0.05, P = 0.96, N = 156). 

 

 Stomach temperatures averaged 36.6 ± 0.5°C (range 30.3-39.9°C). We did not observe 

major or constant variations in average or extreme values over time before the signal was lost. 

Stomach temperatures recorded for individuals observed in aggregation were lower than 
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stomach temperatures recorded for isolated individuals (N = 12, W = 3, P = 0.02). Both 

aggregated and isolated individuals were observed in wallows or grass habitat. 

 

3.4.Aggregation, body mass and molt 

 Females at first capture weighed 316.2 ± 34.4 kg (range 259-410 kg) and their body 

mass loss during the molt averaged 3.3 ± 0.9 kg.d
-1

 (range 1.7-6.7 kg.d
-1

). Mean relative 

individual aggregation rate (number of observations in aggregation / total number of 

observations) was 0.69 ± 0.21 and molt rate averaged 10.0 ± 3.7 %.d
-1

 (range 2.0-17.5 %.d
-1

). 

 We found no significant correlation between individual aggregation rate and initial 

body mass (N = 35, r = -0.17, S = 8342.7.1, P = 0.33) or body mass loss per day (N = 33, r = 

0.11, S = 5356.6, P = 0.56) or with individual molt rate (N = 41, r = 0.29, S = 5039.2, P = 

0.09). 

 

4. Discussion and conclusion 

We found an increase in surface body temperature in molting elephant seals during the 

mid-stage of molt in agreement with previous data on harbor seals (Paterson et al., 2012). 

Thus, thermal constraints of elephant seals depend on molt stage and heat loss is greatest 

during the mid-stage of molt. Moreover, our results showed that aggregation behavior 

depends on habitat type. Indeed, the proportion of aggregated seals was greatest and seals 

formed larger aggregations in wallows compared to beach and grass habitats. Laws (1956) 

and Boyd et al. (1993) already described that elephant seals prefer to aggregate in muddy 

wallows at South Georgia. This aggregation behavior in mud is not colony-specific, but 

common for this species, as long as the substrate of the site allows wallow formation. We 
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observed at Pointe Suzanne that wallows are created by seal aggregations within grass habitat, 

the weight of the animal and movement destroying the vegetation after a period of time. The 

grass does not grow back where wallows are formed and the same wallows are used year after 

year (the same wallows were observed in the quadrat since 2012). Empty wallows dry off but 

every season molting elephant seals move hundreds of meters from the shore to join a wallow, 

preferably choosing one already occupied (Chaise et al., 2018). Mud is likely to contain a 

mixture of soil, feces, urine and replenished by rainfall and may be influenced by heat 

generated from seals.  

Elephant seals appear to aggregate in wallows either in search of a warmer 

environment or increase the temperature of the environment through local heating from 

metabolic heat production. Indeed, this study showed that ground temperature is higher in 

wallows compared to other habitats, so seals would lose less heat by conduction with the 

substrate in wallows compared to grass and beach habitats. Moreover, wallows are less 

exposed to wind than grass and beach habitats, reducing heat loss by forced convection. Our 

previous work found that wallows were preferably selected at initial and mid-stages of the 

molt (Chaise et al., 2018) when seals are shedding their old hair and skin but new hair has not 

yet grown. Thus, molting females experience a warmer habitat (i.e. wallows) when 

aggregating when heat loss is greatest (Paterson et al., 2012). The loss of old skin and hair and 

increased peripheral blood flow for cell growth are two mechanisms that increase heat loss 

during molt (Paterson et al., 2012). The role of fur as insulation in seals compared to blubber, 

is questionable but may have some value in air, mainly for pups and less for adults, but 

negligible in water (Kvadsheim and Aarseth, 2002; Paterson et al., 2012). The fact that 

elephant seals spend most of their lifetime at sea has resulted in the evolution of a diving-

specialized hair structure or to provide mechanical protection of the skin surface, suggesting 

that fur is not an important part of their insulation (Ling 1968, 1970). However, molt stages 
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described in our study are based on the percentage of old hair shed (i.e. bare-skin exposed to 

air until new hair growth), and thus correspond to the visible part of the molting process 

(Boyd et al., 1993). The fact that aggregation behavior is less developed in grass habitat could 

be related to the use of grass as a transition habitat between beach and wallows, depending on 

molt stage and weather (Chaise et al., 2018). The variation of aggregation behavior between 

habitat types could be linked to the use of habitat depending on molt stage and to the 

sensitivity to weather conditions (i.e. heat loss) during the molting process (Chaise et al., 

2018). 

 Wallows appear to be a specific and favorable habitat to molt and aggregate and 

aggregation behavior of molting females in this habitat was influenced by weather. Indeed, in 

accordance with observations of Liwanag et al. (2014) in hauled-out California sea lions, our 

results showed that the proportion of aggregated elephant seals (in all three habitats) and the 

aggregation size (in wallows) increase when weather is deteriorating. We also observed that 

elephant seals aggregate more during the mid-stage of molt, when cost of thermoregulation is 

greatest. Thus, aggregation behavior in female elephant seals appears to correspond to social 

thermoregulation (i.e. increase of huddling during unfavorable climatic conditions; Gilbert et 

al., 2010). Molting in wallows may also facilitate shedding of skin through physical 

contact/abrasion with other seals and may be an additional benefit of wallow habitats for 

elephant seals. 

Flipper surface temperature (correlated with body surface temperature), and stomach 

temperature, were greater in isolated individuals compared to aggregated seals. These results 

suggest that huddling while molting decreases thermoregulatory costs by reducing heat loss 

through warming of surrounding microclimate and by decreasing body surface area exposed 

to air, allowing females to reduce their internal thermal set-point and corresponding metabolic 

heat production (Gilbert et al. 2010). However, we did not find body surface temperature 
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differences between peripheral and central individuals (central individuals being less exposed 

to heat loss). Identification of positions in the aggregation may not have been precise enough 

to observe an effect of reduced body surface area, or that the thermal benefits of being in the 

center of an aggregation are related to the aggregation’s geometry (Gilbert et al., 2010). 

Indeed, we found that the number of central positions compared to peripheral ones (C/P ratio) 

increased with aggregation size, and that surface temperature of aggregated seals decreased 

with aggregation size in wallows, where mean aggregation size was greater than beach or 

grass habitats. Moreover, in grass habitat, we showed that C/P ratio of aggregations increases 

when weather is deteriorating, independently of an increase in aggregation size. Based on 

these results, it would be interesting to study in greater detail the dynamics of huddling in 

wallows to determine if elephant seals try to reach the center depending on their molt stage, 

body condition, dominance or variation in local weather (Cruwys and Davis, 1995; Gilbert et 

al., 2010). We observed that there were more seals in a central position than in the periphery 

in grass and beach habitats compared to wallows and that this difference increased with 

aggregation size between wallows and grass habitat. This could be related to the fact that on 

non-wallow habitats (i.e. open area of habitats), seals gather in long linear aggregations 

resulting in several animals located in the center. In contrast in wallows, seals follow the 

edges of the muddy hollow, creating a more ellipsoidal huddle.  

 We expected that aggregation behavior would lead to faster molt in female elephant 

seals. If elephant seals could renew their hair faster, they could then spend less time fasting on 

land and save energy (i.e. blubber reserves). However, we found no correlation between 

aggregation rate and rate of molt. A possible explanation for this may be related to the 

difficulty of assessing stage of molt and molt completion (Ling, 2012). Molt involves not only 

the shedding of skin and hair but also the regrowth of new hair (Ling, 2012). We observed 

only the first process and therefore may not have been able to fully assess differences in molt 
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completion by different individuals. Measurement of the rate of growth of new hair may 

therefore provide more precise estimates of molt completion in relation to aggregation 

behavior of females. 

 We did not find any correlation between individual aggregation rate and body mass 

loss during the molt (i.e. energy expenditure). The link between aggregation and energy-

saving could be a more complex process (multifactorial) than the model proposes in this 

study. Energy-saving from thermal benefits in aggregations could be balanced with other 

processes such as requirements for cell growth and synthesis of new skin/hair or may be 

costly in terms of energy expenditure when active in huddles. The individual aggregation rate 

defined in this study was based on observations usually once per day which may not have 

been representative of individual aggregation behavior. Aggregation behavior may not be 

only driven by perceived cooling of the body but also by social factors. Elephant seals show 

high fidelity to breeding and molting sites (Laws, 1956) and we do not yet understand how 

aggregation behavior may be influenced by relatedness and other social aspects of 

conspecifics. We also measured body mass loss as an indirect measure of total energy 

expenditure during the molt as elephant seals were supposed fasting while on land (Crocker 

and Costa, 2002). However, some studies have questioned the possibility of fast-breaking 

during the molt (Boyd et al., 1993; Chaise et al., 2018). Other heart rate measurements, 

accelerometry or doubly labelled water may therefore further complement body mass loss for 

estimating energy use related to aggregation behavior during the molt. 

 In conclusion, aggregation behavior in female elephant seals was found to be 

influenced by environmental factors resulting mainly in differences in surface body 

temperature which corresponds to previously reported behavioral and physiological aspects of 

social thermoregulation. The thermal advantages from aggregation mainly occur in wallows 

that are selected as a specific social habitat where seals can benefit from huddling at the peak 
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of molt, when thermoregulatory costs are greatest. However, it is not clear if female southern 

elephant seals express huddling as an individual strategy in order to save energy during the 

molt. The relationship between behavioral and physiological thermoregulatory mechanisms 

seems more complex as body temperature and heat loss of molting elephant seals change 

during the molting process in association with their behavior on land. Future studies 

estimating the metabolic rate of animals may reveal further insights into energy savings 

associated with aggregation behavior during the molt, which is a relatively understudied phase 

of the elephant seal lifecycle. 
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7. Supplementary material 

S1 Contribution to the principal components and scatter diagram of the correlation circle 

(visualization of the variables on the factor map; fviz_pca_var in factoextra package).  

 

Variable PC1 PC2 PC3 

Air Temperature 

(°C) 

-0.01 0.91 0.31 

Relative Humidity 

(%) 

0.78 0.33 0.12 

Solar Radiation 

(W.m
-
²) 

-0.76 0.32 -0.15 

Wind Speed (m.s
-1

) -0.34 -0.29 0.89 

Precipitation (mm) 0.81 -0.13 0.13 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

33 
 

 

 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

34 
 

8. References 

Ashwell-Erickson, S., Fay, F.H., Elsner, R., Wartzok, D., 1986. Metabolic and hormonal 

correlates of molting and regeneration of pelage in Alaskan harbor and spotted seals 

(Phoca vitulina and Phoca largha). Can. J. Zool. 64, 1086–1094. doi:10.1139/z86-163 

Boyd, I., Arnbom, T., Fedak, M., 1993. Water flux, body composition, and metabolic rate 

during molt in female southern elephant seals (Mirounga leonina). Physiol. Zool. 66, 43-

60. 

Canals, M., Rosenmann, M., Bozinovic, F., 1989. Energetics and Geometry of Huddling in 

Small Mammals. J. Theor. Biol. 141, 181-189. doi:10.1016/S0022-5193(89)80016-5 

Carlini, A.R., Marquez, M.E.I., Daneri, G.A., Poljak, S., 1999. Mass changes during their 

annual cycle in females of southern elephant seals at King George Island. Polar Biol. 21, 

234-239. doi:10.1007/s003000050358 

Chaise, L.L., Paterson, W., Laske, T.G., Gallon, S.L., McCafferty, D.J., Théry, M., Ancel, A., 

Gilbert, C., 2017. Implantation of subcutaneous heart rate data loggers in southern 

elephant seals (Mirounga leonina). Polar Biol. doi:10.1007/s00300-017-2144-x 

Chaise, L.L., Prinet, I., Toscani, C., Gallon, S.L., Paterson, W., McCafferty, D.J., Théry, M., 

Ancel, A., Gilbert, C., 2018. Local weather and body condition influence habitat use 

and movements on land of molting female southern elephant seals (Mirounga 

leonina). Ecol. Evol. doi: 10.1002/ece3.4049 

Clarke, A., 2017. Principles of Thermal Ecology: Temperature, Energy, and Life, First. 

Oxford University Press, Oxford. 

Codde, S.A., Allen, S.G., Houser, D.S., Crocker, D.E., 2016. Effects of environmental 

variables on surface temperature of breeding adult female northern elephant seals, 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

35 
 

Mirounga angustirostris, and pups. J. Therm. Biol. 61, 98-105. 

doi:10.1016/j.jtherbio.2016.09.001 

Crocker, D.E., Costa, D.P., 2002. Pinniped physiology, in: Perrin, W.F., Würsig, B.G., 

Thewissen, J.G.M. (Eds.), Encyclopedia of Marine Mammals. Academic Press, San 

Diego 

Cruwys, E., Davies, P., 1995. The effect of local weather conditions on the behavior of 

molting southern elephant seals, Mirounga leonina (L). Polar Rec. 31, 427-430. 

doi:10.1017/S003224740002742X  

Feltz, E.T., Fay, F.H., 1966. Thermal requirements in vitro of epidermal cells from seals. 

Cryobiology. 3, 261-265. doi:10.1016/S0011-2240(66)80020-2 

Gilbert, C., Le Maho, Y., Perret, M., Ancel, A., 2007. Body temperature changes induced by 

huddling in breeding male emperor penguins. Am. J. Physiol. 292, 176-185. 

doi:10.1152/ajpregu.00912.2005. 

Gilbert, C., McCafferty, D., Le Maho, Y., Martrette, J.M., Giroud, S., Blanc, S., Ancel, A., 

2010. One for all and all for one: The energetic benefits of huddling in endotherms. Biol. 

Rev. 85, 545-569. doi:10.1111/j.1469-185X.2009.00115.x 

Hindell, M. A., Slip, D. J., Burton H. R., 1994. Body mass loss of moulting female southern 

elephant seals, Mirounga leonine, at Macquarie Island. Polar Biol. 14, 275-278. doi: 

10.1007/BF00239176 

Humes, K. S., Kusta, W. P., Moran,  M. S., Nichols, W. D., Weltz, M. A., 1994. Variability of 

emissivity and surface temperature over a sparsely vegetated surface. Water Resour. Res. 

30, 1299-1310. doi: 10.1029/93WR03065 

Kvadsheim, P. H., Aarseth, J. J., 2002. Thermal function of phocid seal fur. Mar. Mamm. Sci. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

36 
 

18, 952-962. doi: 10.1111/j.1748-7692.2002.tb01084.x 

Laws, R. M., 1956. The elephant seal (Mirounga leonina Linn.) II. General, social and 

reproductive behavior. Falkland Islands Dependencies Survey, Scientific Reports. 13, 1-

66. 

Ling, J. K., 1968. The skin and hair of the southern elephant seal, Mirounga leonina (L.): III. 

Morphology of the adult integument. Aust. J. Zool. 16, 629-645. 

doi:10.1071/ZO9680629 

Ling, J. K., 1970. Pelage and Molting in Wild Mammals with Special Reference to Aquatic 

Forms. Q. Rev. Biol. 45, 16-54. doi: 10.1086/406361 

Ling, J. K., 2012. The skin and hair of the southern elephant seal, Mirounga leonina (Linn.). 

IV. Annual cycle of pelage follicle activity and molt. Aust. J. Zool. 60, 259-271. 

doi:10.1071/ZO12049 

Liwanag, H. E. M., Oraze, J., Costa, D. P., Williams, T. M., 2014. Thermal benefits of 

aggregation in a large marine endotherm : huddling in California sea lions. J. Zool. 293, 

152-159. doi:10.1111/jzo.1213 

Mauck, B., Bilgmann, K., Jones, D. D., Eysel, U., Dehnhardt, G., 2003. Thermal windows on 

the trunk of hauled-out seals: hot spots for thermoregulatory evaporation? J. Exp. Biol. 

206, 1727-1738. doi:10.1242/jeb.00348 

McCafferty, D.J., 2007. The value of infrared thermography for research on mammals : 

previous applications and future directions. Mamm. Rev. 37, 207-223. 

doi:10.1111/j.1365-2907.2007.00111.x 

McCafferty, D.J., Moss, S., Bennett, K., Pomeroy, P.P., 2005. Factors influencing the 

radiative surface temperature of grey seal (Halichoerus grypus) pups during early and 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

37 
 

late lactation. J. Comp. Physiol. B. 175, 423-431. doi:10.1007/s00360-005-0004-4 

McCafferty, D.J., Gilbert, C., Paterson, W., Pomeroy, P., Thompson, D., Currie, J.I., Ancel, 

A., 2011. Estimating metabolic heat loss in birds and mammals by combining infrared 

thermography with biophysical modelling. Comp. Biochem. Physiol. - A Mol. Integr. 

Physiol. 158, 337-345. doi:10.1016/j.cbpa.2010.09.012 

McMahon, C.R., Burton, H., Slip, D., McLean, S., Bester, M., 2000. Field immobilisation of 

southern elephant seals with intravenous tiletamine and zolazepam. Vet. Rec. 146, 251-

254. doi:10.1136/vr.146.9.251 

Nienaber, J., Thomton, J., Horning, M., Polasek, L., Mellish, J.-A., 2010. Surface temperature 

patterns in seals and sea lions: a validation of temporal and spatial consistency. J. Therm. 

Biol. 35, 435-440. doi:10.1016/j.jtherbio.2010.09.005 

Norris, A. L., Houser, D. S., Crocker, D. E., 2010. Environment and activity affect skin 

temperature in breeding adult male elephant seals (Mirounga angustirostris). J. Exp. 

Biol. 213, 4205-4212. doi: 10.1242/jeb.042135 

Paterson, W., Sparling, C.E., Thompson, D., Pomeroy, P.P., Currie, J.I., McCafferty, D.J., 

2012. Seals like it hot: Changes in surface temperature of harbour seals (Phoca vitulina) 

from late pregnancy to molt. J. Therm. Biol. 37, 454-461. 

doi:10.1016/j.jtherbio.2012.03.004 

Postma, M., Bester, M.N., De Bruyn, P.J.N., 2013. Spatial variation in female southern 

elephant seal mass change assessed by an accurate non-invasive photogrammetry 

method. Antarct. Sci. 25, 731-740. doi:10.1017/S0954102013000059 

Rosen, D.A.S., Renouf, D., 1998. Correlates of seasonal changes in metabolism in Atlantic 

harbour seals (Phoca vitulina concolor). Can. J. Zool. Rev. Can. Zool. 76, 1520-1528. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

38 
 

doi:10.1139/z98-080 

Sauvé, C.C., Van de Walle, J., Hammill, M.O., Arnould, J.P.Y., Beauplet, G., 2014. Stomach 

Temperature Records Reveal Nursing Behavior and Transition to Solid Food 

Consumption in an Unweaned Mammal , the Harbour Seal Pup (Phoca vitulina). Plos 

One. 9. doi:10.1371/journal.pone.0090329 

Schmidt-Nielsen, K., 1997. Animal Physiology: Adaptation and Environment (5th ed.). 

Cambridge: University Press. 

Scholander, P.F. , Hock, R., Walters, V., Irving, L., 1950. Adaptation to Cold in Arctic and 

Tropical Mammals and Birds in Relation to Body Temperature , Insulation , and Basal 

Metabolic Rate. Biol. Bull. 99, 259-271. doi:10.2307/1538742 

Willmer, P., Stone, G., Johnston, I., 2005. Environmental Physiology of Animals, Second. 

Blackwell Publishing Ltd, Oxford. 

Worthy, G.A.J., Morris, P.A., Costa, D.P., Boeuf, B.J. Le, 1992. Molt energetics of the 

northern elephant seal (Mirounga angustirostris). J. Zool. 227, 257-265. 

doi:10.1111/j.1469-7998.1992.tb04821.x 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

39 
 

Environmental and physiological determinants of huddling behavior of molting female 

southern elephant seals (Mirounga leonina) 
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Highlights : 

- Wallows (mud pools) offer a warm and sheltered habitat. 

- Heat loss of female elephant seals increases at the peak of the molt. 

- A higher proportion of female elephant seals at the peak of their molt was observed 

amongst aggregated compared to isolated seals. 

- Proportion of aggregated female elephant seals, and number of females per 

aggregation, are greater in wallows compared to open habitat types, and increase when 

weather is deteriorating. 

- Gradient of surface temperature and stomach temperature are cooler in aggregated 

compared to isolated female elephant seals. 
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