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Résumé

Le calcul de l’acceptabilité dans les systèmes d’argu-
mentation reçoit une attention croissante. Dans les systèmes
de grande envergure, avec une structure en clusters, ce calcul
se montre particulièrement difficile. Cet article présente un
algorithme distribué, AFDivider, qui énumère les ensembles
acceptables sous plusieurs sémantiques, en commençant par
découper le système d’argumentation en clusters grâce à
une méthode de partitionnement spectral, avant de calcu-
ler simultanément dans chaque partition des parties des en-
sembles acceptables. Cet algorithme est prouvé correct et
complet pour les sémantiques stable, complète et préférée,
et des résultats empiriques sont présentés.

Abstract

Computing acceptability semantics of abstract argu-
mentation frameworks is receiving increasing attention.
Large-scale instances, with a clustered structure, have
shown particularly difficult to compute. This paper presents
a distributed algorithm, AFDivider, that enumerates the ac-
ceptable sets under several labelling-based semantics. This
algorithm starts with cutting the argumentation framework
into clusters thanks to a spectral clustering method, before
computing simultaneously in each cluster parts of the label-
lings. This algorithm is proven to be sound and complete for
the stable, complete and preferred semantics, and empirical
results are presented.

1 Introduction

Argumentation is a reasoning model which has been of
application in multi-agent systems for years (see [16] for an
overview). The development of argumentation techniques
and of their computation drives such applications.

Among the various argumentation models, the one that
is considered in this paper has been defined by Dung [24] :

*This work was accepted and published in the proceedings of the In-
ternational Conference on Principles and Practice of Multi-Agent Systems
(PRIMA 2019) [23].

an abstract argumentation framework (AF) considers argu-
ments as abstract entities, and focuses on their attack re-
lationships, hence representing arguments and their under-
lying conflicts by a directed graph. Which arguments can
be accepted is defined by [24] as a collective notion, by a
semantics : a set of arguments is collectively acceptable un-
der the semantics. Four semantics (grounded, stable, com-

plete and preferred) were defined by Dung, and a variety
of other semantics have followed (see [7] for an overview).
Several enrichments of the argumentation framework have
also been proposed (e.g. [8, 17]).

The enumeration of all the acceptable sets of an AF un-
der a given semantics is a problem that has received a lot of
attention (see [21] for an overview). This problem has been
shown to be computationally intractable for some of the
above-mentioned semantics [26]. A competition, ICCMA,
that compares argumentation solvers on their ability to
solve this problem (and other decision problems) was crea-
ted a few years ago. 1 The last editions of this competition
have been analyzed : [12, 36] highlight that some AF ins-
tances have been particularly hard to solve, and that others
were not solved at all, considering the preferred semantics
notably. Many of these instances are of Barabási–Albert
(BA) type [1], which is a structure found in several large-
scale natural and human-made systems, such as the World
Wide Web and some social networks [4]. More generally,
these hard graphs are non-dense, but contain parts which
are dense : 2 such graphs have a clustered structure.

Recent algorithms, proposed for an efficient enumera-
tion of the acceptable sets, are based on a cutting of the
AF [18, 25, 28], along with, for some of them, the use of
distributed, parallel computation in each part, to construct

1. International Competition on Computational Models of Argumen-
tation (ICCMA) http://argumentationcompetition.org/.

2. The density in an argumentation graph is the ratio “number of exis-
ting attacks” over “number of potential attacks” (this last number is equal
to n2 with n being the number of arguments).



the acceptable sets [19]. In this research line, our paper
presents a new “cutting and distributed computing” algo-
rithm, called AFDivider, for the enumeration of the accep-
table sets of an AF, under the stable, preferred and com-

plete labelling semantics. The cutting of the AF is done in
a new way, using spectral clustering methods. Compared
to the existing approaches, the added value of AFDivider

is its way to split the AF and thus to distribute the solving
hardness of the whole AF into smaller parts, the reunifying
process requiring less checks than the construction of the
labellings over the whole AF. AFDivider is shown to be
sound and complete. The algorithm has been empirically
tested, and the results have been compared to those of two
solvers of the ICCMA 2017 edition, Pyglaf [3] and Arg-

SemSAT [20].

The paper starts with presenting the background of this
work (Section 2), before describing the algorithm (Sec-
tion 3). Soundness and completeness of the algorithm are
proven in Section 4. A preliminary empirical analysis is
conducted (Section 5). Related works are presented in Sec-
tion 6. Perspectives for future work are then opened.

2 Background

2.1 Abstract Argumentation

According to [24], an abstract argumentation framework
consists of a set of arguments and of a binary attack relation
between them.

Definition 1 (AF) An argumentation framework (AF) is a

pair Γ = 〈A,R〉 where A is a finite 3 set of abstract argu-

ments and R ⊆ A×A is a binary relation on A, called the

attack relation : (a,b) ∈ R means that a attacks b.

Hence, an argumentation framework can be represented
by a directed graph with arguments as vertices and attacks
as edges. Figure 1 shows an example of an AF.
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FIGURE 1 – Example of an argumentation framework AF .

Acceptability semantics can be defined in terms of label-
lings [7, 15].

Definition 2 (Labelling) Let Γ = 〈A,R〉 be an AF, and

S ⊆ A. A labelling of S is a total function ℓ : S →
{in,out,und}. The set of all labellings of S is denoted

as L (S). A labelling of Γ is a labelling of A. The set of all

labellings of Γ is denoted as L (Γ).

3. According to [24], the set of arguments is not necessarily finite.
Nevertheless, in this paper, it is reasonable to assume that it is finite.

We write in(ℓ) for {a|ℓ(a) = in}, out(ℓ) for

{a|ℓ(a) = out} and und(ℓ) for {a|ℓ(a) = und}.

Definition 3 (Legally labelled arguments, valid labelling)

An in-labelled argument is said to be legally in iff all

its attackers are labelled out. An out-labelled argument

is said to be legally out iff at least one of its attackers

is labelled in. An und-labelled argument is said to be

legally und iff it does not have any attacker that is labelled

in and one of its attackers is not labelled out.

A valid labelling is a labelling in which all arguments are

legally labelled.

Let Γ = 〈A,R〉 be an AF, and ℓ ∈L (Γ) be a labelling.
Different kinds of labelling can be defined :

Definition 4 Admissible, complete, grounded, prefer-

red, stable ℓ is an admissible labelling of Γ iff for any

argument a ∈ A such that ℓ(a) = in or ℓ(a) = out, a is

legally labelled. ℓ is a complete labelling of Γ iff for any

argument a ∈ A, a is legally labelled. ℓ is the grounded
labelling of Γ iff it is the complete labelling of Γ that mi-

nimizes (w.r.t ⊆) the set of in-labelled arguments. ℓ is a

preferred labelling of Γ iff it is a complete labelling of Γ

that maximizes (w.r.t ⊆) the set of in-labelled arguments.

ℓ is a stable labelling of Γ iff it is a complete labelling of

Γ which has no und-labelled argument.

Note that each complete labelling includes the grounded
labelling. This property will be used by the algorithm pre-
sented in Section 3 in order to compute the AF labellings
in a distributed way. Let Γ = 〈A,R〉 be an AF, and L (Γ)
be its set of labellings, semantics can be defined.

Definition 5 (Semantics) A semantics σ is a total func-

tion σ that associates to Γ a subset of L (Γ). The set of

labellings under semantics σ , with σ being either the com-

plete (co), the grounded (gr), the stable (st) or the preferred

(pr) semantics, is denoted by Lσ (Γ). A labelling ℓ is a σ -

labelling iff ℓ ∈Lσ (Γ).

Example 1 Let us consider the AF given in Figure 1.

Table 1 shows the labellings corresponding to the different

semantics (the other possible labellings are not given).

Note that this AF has no stable labelling.

2.2 Clustering Methods

A cluster in a graph can be defined as a connected sub-
graph. Finding clusters is a subject that has been widely
studied (see [33, 37]). The clustering approach implemen-
ted in our algorithm is based on a spectral analysis of a
defined similarity matrix of the graph. We chose this clus-
tering method as it is well suited for a non-dense graph (see
Sections 3.1 and 3.2 for more explanation). We give here a
succinct description of this approach (for details, see [38]) :



Computation of a similarity matrix of the graph. In
this squared matrix, the values represent how much
two nodes are similar according to a given similarity
criterion 4, and the rows may be seen as the coordi-
nates of the graph nodes in a similarity space.

Computation of the Laplacian matrix of this similarity
matrix. The rows of this Laplacian matrix represent
how much a node is similar to the others and how
much each of its neighbours contributes to its global
similarity with its neighbourhood.

Computation of the eigenvectors (see [35]) of the La-
placian matrix with their associated eigenvalues.

These eigenvalues are sorted by increasing order. A
number n of them is kept with their associated eigen-
vectors. 5

A matrix whose columns are the remaining eigenvec-
tors is built. Its rows represent the new node coordi-
nates in a space that maximizes the proximity between
similar nodes. In that space, the euclidean distance
between two nodes shows how much a node is similar
to another.

Then a simple algorithm of clustering such as KMeans

is applied to that new data set, seeking for a partition
into n parts, based on the coordinates of the nodes (see
[31] for more information about KMeans algorithm).

An illustration of this method on the running example is
given in Section 3.2 while the similarity criterion used is
explicited in Section 3.1.

3 The Algorithm

This section presents the AFDivider algorithm designed
for the complete, stable and preferred semantics (denoted
by σ ). It computes the semantics labellings of an AF by
first removing trivial parts of the AF (the grounded label-
ling, as done in [18]), then cutting the AF into clusters and
computing simultaneously in each cluster labelling parts,
before finally reunifying compatible parts to get the σ -
labellings of the whole AF. Each of these steps will be pre-
sented and then illustrated on the running example.

3.1 Description

Given an argumentation framework Γ = 〈A,R〉, the
AFDivider algorithm (Alg. 1) starts with computing the

4. Similarity here reflects how much connected two arguments are ; it
does not compare anyhow the arguments themselves. The more connected
two arguments are, the more we want them to not be in different clusters.

5. Sorted in ascending order, the eigenvalue sequence represents how
the similarity within clusters increases as the number of clusters grows.
Obviously, the more clusters, the more homogeneous they will get, but
also, the more cases to compute. A compromise between the number of
clusters and homogeneity is needed. A heuristic (called “elbow heuristic”)
to find the appropriate number of dimensions to keep, consists in detecting
the jump in the eigenvalues sequence.

Algorithm 1: AFDivider algorithm.

Data: Let Γ = 〈A,R〉 be an AF and σ be a semantics
Result: Lσ ∈ 2L (Γ) : the set of the σ -labellings of

Γ

1 ℓgr←ComputeGroundedLabelling(Γ)
2 CCSet← SplitConnectedComponents(Γ,ℓgr)
3 for all γi ∈CCSet do in parallel

4 ClustSet←ComputeClusters(γi)

5 L
γi

σ ←ComputeCompLabs(σ ,ClustSet)

6 Lσ ←∅

7 if ∄γi ∈CCSet s.t. L
γi

σ =∅ then

Lσ ←{ℓgr}×∏γi∈CCSet L
γi

σ

8 return Lσ

grounded labelling of Γ (line 1). Indeed in each of the se-
mantics σ we are interested in, the arguments labelled in
or out in the grounded labelling are labelled in the same
way in all the σ -labellings. It is a fixed part. Note that the
function ComputeGroundedLabelling(Γ) returns a partial
labelling of Γ in which the arguments are labelled in or
out. The und-labelled arguments according to the groun-
ded semantics do not belong to ℓgr.

Γ is then split into disjoint sub-AFs obtained after re-
moving the arguments labelled in or out in the grounded
labelling (line 2). The CCSet variable is the set of connec-
ted components computed.

Given that there is no relation between them, the label-
ling computation of those connected components can be
made in a simultaneous way (line 3) according to the cho-
sen semantics.

For each of these connected components, a clustering is
made (line 4) using the spectral clustering method presen-
ted in Section 2.2. The similarity matrix on which the spec-
tral analysis relies is a kind of adjacency matrix where the
directionality of edges is omitted and where the matrix va-
lues are the number of edges between two arguments. Ba-
sically, the more an argument will be related to another, the
more similar the two arguments will be considered.

This similarity criterion is particularly relevant for non-
dense graphs with a clustered structure. Indeed, it produces
sparse matrices and as a consequence the eigenvector equa-
tion system to solve will be simplified as there will be many
zero values. This is what motivated our choice for the spec-
tral clustering method.

After this clustering process, ComputeCompLabs

(Alg. 2) is called to compute in a distributed way all the
labellings of the connected component according to σ (line
5).

Finally, given that ℓgr is a fixed part of all σ -labellings
of Γ and that all the connected components are completely
independent, to construct the σ -labellings of the whole AF,
a simple Cartesian product is made (line 7) between the
labellings of all the components and the grounded one.



If one of the components has no labelling then the whole
AF has no labelling (so Lσ =∅).

Consider now Alg. 2 that computes the component label-
lings in a distributed way, relying on the clustering made.
The σ -labellings of each cluster are computed simulta-
neously (line 1). Unlike the case of connected components
used in Alg. 1, there exist attacks between clusters. In order
to compute all the possible σ -labellings of a given cluster,
every case concerning its inward attacks (attacks whose tar-
get is in the current cluster but the source is from another
cluster) have to be considered. Given that the sources of an
inward attack could be labelled in, out or und in their
own cluster, the σ -labellings of the current cluster have to
be computed for all the labelling combinations of inward
attack sources.

Algorithm 2: ComputeCompLabs algorithm.

Data: Let ClustSet be a set of cluster structures for
a component γ , σ be a semantics

Result: Lσ ∈ 2L (γ) : the set of the σ -labellings of γ

1 for all κ j ∈ClustSet do in parallel

L
κ j

σ ←ComputeClustLabs(σ ,κ j)
2 Lσ ←

Reuni f yCompLabs(
⋃

κ j∈ClustSet L
κ j

σ ,ClustSet)

3 if σ = pr then Lσ ←{ℓ |ℓ ∈Lσ s.t. ∄ℓ ′ ∈
Lσ s.t. in(ℓ)⊂ in(ℓ ′)}

4 return Lσ

Note that having “well shaped” clusters (i.e. clusters
with few inter cluster attacks) reduces considerably the
number of cases to compute, as there are few edges cut.
Thus this algorithm is well suited for clustered non-dense
graphs.

Once that, for all clusters, the ComputeClustLabs func-
tion has computed the σ -labellings for all the possible
cases (this is done by calling any sound and com-
plete procedure computing the semantics labellings), the
Reuni f yCompLabs function is called in order to reunify
compatible labelling parts. Labelling parts are said to be
compatible together when all the targets of the inter cluster
attacks are legally labelled in the resulting reunified label-
ling.

A special step has to be done for the preferred semantics
as this reunifying process does not ensure the maximality
(w.r.t ⊆) of the set of in-labelled arguments (so not all
of the labellings produced in line 2 are preferred ones). A
maximality check is done (line 3) in order to keep only the
wanted labellings.

Note that, when computing the stable semantics,
the set of labellings Lσ returned by the function
Reuni f yCompLabs may be empty. It happens when one of
the component clusters has no stable labelling.

3.2 An Illustrating Example

In this section, the behaviour of our algorithms is illus-
trated on the AF given in Figure 1 for the preferred se-
mantics, as it is the most complex semantics of the three
targeted ones.

The first step consists in computing the grounded la-
belling in order to eventually split the AF into sub-
AFs. The grounded labelling of the AF restricted only to
the in-labelled and out-labelled arguments is : ℓgr =
{(a,in),(b,out),(c,out)}.

Removing arguments a, b and c from the AF produces
two connected components, as illustrated in Figure 2.
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(b) Component 2 : γ2.

FIGURE 2 – Connected components resulting from the
grounded removal pre-processing.

Then simultaneously γ1 and γ2 are clustered using the
spectral clustering method This is done by several steps.
First, we consider the similarity matrices of γ1 and γ2 ac-
cording to our criterion, i.e. the number of attacks between
arguments. They may also be seen as the adjacency ma-
trices of the weighted non-directed graphs obtained from
γ1 and γ2 (see Figure 3). Given that the AF relation density
is low, the matrices are rather sparse.
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(a) Component 1 : γ1.
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(b) Component 2 : γ2.

M
γ1
a =

















d e f g h i

d 0 2 0 1 0 0

e 2 0 1 0 0 0

f 0 1 0 2 0 0

g 1 0 2 0 1 0

h 0 0 0 1 0 1
i 0 0 0 0 1 0

















(c) Similarity matrix of γ1.

M
γ2
a =













j k l m n

j 0 1 1 0 0

k 1 0 1 0 0

l 1 1 0 1 0

m 0 0 1 0 2
n 0 0 0 2 0













(d) Similarity matrix of γ2.

FIGURE 3 – Step 1 of the spectral clustering.



M
γ2
d =













j k l m n

j 2 0 0 0 0
k 0 2 0 0 0
l 0 0 3 0 0
m 0 0 0 3 0
n 0 0 0 0 2













(a) Degree matrix of γ2.

M
γ2
d −M

γ2
a = M

γ2
l =













j k l m n

j 2 −1 −1 0 0
k −1 2 −1 0 0
l −1 −1 3 −1 0
m 0 0 −1 3 −2
n 0 0 0 −2 2













(b) Laplacian matrix of γ2.

FIGURE 4 – Step 2 of the spectral clustering for γ2.

Once the AF similarity matrix is constructed, data are
projected in a new space in which similarity is maximi-
sed. If a certain structure exists in the data set, we will see
in that space some agglomerates appear, corresponding to
the node clusters. To do this projection, we compute the
n smallest eigenvalues 6 of the Laplacian matrix obtained
from the similarity matrix and the vectors associated with
them (this n is an arbitrary parameter ; in this example we
have chosen to keep all the vectors, i.e. n = 5). Indeed, the
eigenvectors found will correspond to the basis of that si-
milarity space and the eigenvalues to the variance on the
corresponding axes. Given that we are looking for homo-
geneous groups, we will consider only the axis on which
the variance is low, and so the eigenvectors that have small
eigenvalues. The space whose basis is the n selected ei-
genvectors (corresponding to the n smallest eigenvalues) is
then a compression of similarity space (i.e. we keep only
the dimension useful for a clustering).

Let us take as an example the case of γ2. Its degree matrix
M

γ2
d and its Laplacian matrix M

γ2
l are given in Figure 4.

The eigenvalues of M
γ2
l sorted in ascending order are :

[

λ1 λ2 λ3 λ4 λ5

2.476651×10−16 5.857864×10−1 3.000000 3.414214 5.000000
]

and their associated eigenvectors are :













v1 v2 v3 v4 v5

−0.4472136 0.4397326 7.071068×10−1 0.3038906 0.1195229
−0.4472136 0.4397326 −7.071068×10−1 0.3038906 0.1195229
−0.4472136 0.1821432 −5.551115×10−17 −0.7336569 −0.4780914
−0.4472136 −0.4397326 −2.775558×10−16 −0.3038906 0.7171372
−0.4472136 −0.6218758 −1.665335×10−16 0.4297663 −0.4780914













Now that the similarity space is found, the following
step is to find how many groups we have in that space.
This number can be founded using the eigenvalue sequence
sorted in ascending order and identifying in this sequence
the “best elbow” (i.e. the point that corresponds to a quick

6. There exist algorithms, such as Krylov-Schur method, able to com-
pute eigenvectors from smallest to greatest eigenvalue and to stop at any
wanted step (e.g. the number of vectors found). With such an algorithm it
is not necessary to find all the solutions as we are interested only in the
small eigenvalues.

growth of the variance, see Figure 5). To compute that
“best elbow”, in Figure 5, we consider the second deriva-
tive (green line with triangles) of the ascending order se-
quence. As the second derivative represents the concavity
of the eigenvalue sequence, we can take the first value of
the second derivative above a certain threshold (red line
without symbol) determined experimentally (i.e. the first
position where the eigenvalue sequence is enough convex).
The first point of the second derivative, corresponding to
the concavity formed by the first three eigenvalues, is the
first value above the threshold ; so we determine that the
“best elbow” is in position 2.

In our example, the number of clusters determined by
that heuristic is thus 2.

λ1 λ2 λ3 λ4 λ5

−2

0

2

4

FIGURE 5 – Step 3 of the spectral clustering.

Once the number of clusters is chosen, we must to find
the partition of the set of arguments. This is done using a
KMeans type algorithm [32] 7 applied on the kept eigen-
vectors following the chosen number of clusters.

The matrix composed by the kept eigenvectors (the two

first eigenvectors, 2 being the number of clusters) is :













v1 v2

j −0.4472136 0.4397326
k −0.4472136 0.4397326
l −0.4472136 0.1821432
m −0.4472136 −0.4397326
n −0.4472136 −0.6218758













The lines of this matrix correspond to the coordinates
of the nodes in the compressed similarity space. With a
KMeans algorithm we can find groups of datapoint in that
space and so have the partition of arguments we wanted
(here { j,k, l} and {m,n}) as indicated on Figure 6.

The complete result given by the spectral clustering is
shown in Figure 7. κ1 and κ2 are the clusters determined
from γ1, and κ3 and κ4 are the ones from γ2.

After the clustering, the next step of our algorithm is
the computation of preferred labellings. This computation
is made simultaneously in the different clusters using an
external solver (one of the best solvers identified in the
ICCMA competition, see [36]). Recall that, for each clus-
ter, every case concerning its inward attacks (attacks whose
target is in the current cluster but the source is from another

7. Given n observations, a KMeans algorithm aims to partition the n

observations into k subsets such that the distance between the elements
inside each subset is minimized. Here we have n = 5 and k = 2.
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FIGURE 6 – Step 4 of the spectral clustering.
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FIGURE 7 – Identified clusters.

cluster) have to be considered. Given that the sources of an
inward attack could be labelled in, out or und in their
own cluster, the σ -labellings of the current cluster have to
be computed for all the labelling combinations of inward
attack sources. For instance, for κ1 (resp. κ4), three cases
for h and so for i (resp. for m and so for n) must be consi-
dered. Whereas for κ2 and κ3, there is no inward attack, the
computed labellings only depend on the content of the clus-
ter. The tables in Figure 8(a) show the computed labelling
parts for each cluster. Notice that although three cases are
computed for κ4, only two labellings are obtained. This is
due to the maximality of the preferred semantics. Indeed,
even though m is attacked by an und-labelled argument,
n may be labelled in as it defends itself against m. As a
consequence, m would be labelled out.

The last step of our algorithm is the reunifying phase
(line 2, Alg. 2). In this step, the constructed labellings are
those in which all the target arguments are legally label-
led. As an example, ℓκ1

1 cannot be reunified with ℓκ2
2 as

h would be illegally out-labelled. Figure 8(b) shows the
valid reunified labellings for each component.

In that particular example all the reunified labellings are
maximal w.r.t⊆ of the set of in-labelled arguments, so the
maximality check (line 3, Alg. 2) does not change the set
of labellings. 8

Finally, the preferred labellings of the whole AF are
constructed by performing a Cartesian product of the com-
ponent labellings and of the grounded one. See the final
computed preferred labellings in Table 1, Section 2.1 (la-
bellings ℓ1 and ℓ2).

8. To highlight the necessity of the maximality check, let us take as
minimal example the AF defined by 〈{a,b},{(a,b),(b,a)}〉 and a parti-
tion of it in which each argument is in a different cluster. For each cluster,
we will have three possible labellings as the inward attack source may be
labelled in, out or und in the other cluster. The reunifying phase will
thus admit the labelling {(a,und),(b,und)} which is not a preferred la-
belling.

κ1 κ2

ℓκ1
1 ℓκ1

2 ℓκ1
3

h out in und

i in out und

ℓκ2
1 ℓκ2

2

d out in

e in out

f out in

g in out

κ3 κ4

ℓκ3
1

j und

k und

l und

ℓκ4
1 ℓκ4

2

m out in

n in out

(a) Cluster labellings.

γ1 γ2

ℓ γ1
1 ℓ γ1

2

d out in

e in out

f out in

g in out

h out in

i in out

ℓ γ2
1

j und

k und

l und

m out

n in

(b) Component labellings.

FIGURE 8 – Labellings computed using our algorithm.

4 Soundness and Completeness

This section presents formal properties of AFDivider :
soundness and completeness for the complete, the stable

and the preferred semantics. Let σ be one of these three
semantics. To be sound for σ means that the algorithm pro-
duces only σ -labellings. To be complete for σ means that
the algorithm produces all the σ -labellings. In other words,
given σ , AFDivider produces only and all the σ -labellings.

In order to prove these properties, we rely on the notions
of top-down and bottom-up semantics decomposability in-
troduced in [5] and then developed in [6]. In a few words,
a semantics σ is said to be top-down decomposable if, for
all AF Γ and for all its partitions into sub-AFs, the set of
σ -labellings of Γ is included in the set of valid labellings
obtained by reunifying the σ -labellings of its sub-AFs. A
semantics σ is said to be bottom-up decomposable if, for
all AF Γ and for all its partitions into sub-AFs, the set of
valid labellings obtained by reunifying the σ -labellings of
its sub-AFs is included in the set of σ -labellings of Γ. A
semantics is said to be fully decomposable if it is top-down

and bottom-up decomposable. These notions of top-down

and bottom-up semantics decomposability can also be defi-
ned w.r.t. a specific type of partition. For instance, the par-
tition selector denoted by SUSCC only produces partitions
in which SCCs (Strongly Connected Components) are not
split into different parts. In [6] it has been proven that :

The stable and complete semantics are fully decompo-
sable.

The preferred semantics is top-down decomposable.

The preferred semantics is fully decomposable w.r.t.



SUSCC.

Proposition 1 AFDivider is sound and complete for the

complete and the stable semantics.

SKETCH OF PROOF. Let σ be a fully decomposable seman-

tics. Let Γ = 〈A,R〉 be an AF. Let ℓgr be the grounded labelling of

Γ restricted to the in-labelled and out-labelled arguments. Let

Ω = {ωgr, ω1
1 , . . ., ω1

n1
, . . ., ωk

1 , . . ., ωk
nk
} be a partition of A such

that ωgr is the set of arguments labelled in ℓgr and such that for

all i and j, ω
j

i is the set of arguments corresponding to the clus-

ter j of the component i determined by the component clustering

performed by AFDivider.
Given that for all clusters, the labellings are computed for all

possible labellings of the cluster inward attack sources, and given

that σ is fully decomposable, the set of valid reunified labellings

produced by AFDivider is equal to Lσ (Γ).

And so AFDivider is sound and complete for the complete and

the stable semantics. �

Proposition 2 AFDivider is sound and complete for the

preferred semantics.

SKETCH OF PROOF. Let σ be the preferred semantics. Let Γ=
〈A,R〉 be an AF. Let ℓgr be the grounded labelling of Γ restricted

to the in-labelled and out-labelled arguments. Let {γ1, . . . ,γk}
be the set of all connected components obtained by AFDivider
after removing ℓgr. Let Ω = {ωgr, ω1

1 , . . ., ω1
n1

, . . ., ωk
1 , . . ., ωk

nk
}

be a partition of A such that ωgr is the set of arguments labelled

in ℓgr and such that for all i and j, ω
j

i is the set of arguments

corresponding to the cluster j of the component γi determined by

the component clustering performed by AFDivider.
Given that the preferred semantics is top-down decomposable,

and given that for all clusters, the labellings are computed for all

possible labellings of the cluster inward attack sources, then for

each component γi, Lpr(γi) is included in the set of valid reunified

labellings produced by the function Reuni f yCompLabs (Alg. 2,

line 2). The maximality check (line 3) makes Alg. 2 sound and

complete for the preferred semantics.

Let Ω′ = {ωgr,ω
1, . . . ,ωk} be a partition of A such that ωgr

is the set of arguments labelled in ℓgr and such that for all i :

ω i =
⋃ni

j=1(ω
i
j). Let S = {(a,b)|∃i s.t. (a,b) ∈ (ωgr×ω i)∩R} be

the set of all attacks going from an argument labelled in ℓgr to

an argument non present in ℓgr. Note that all the sources of these

attacks are out-labelled in ℓgr. Let Γ′ = 〈A,R′〉 with R′ = R\S,

be the AF obtained from Γ when removing the attacks in S. Given

that the sources of attacks removed to obtained Γ′ from Γ are all

out-labelled arguments, we have Lσ (Γ
′) = Lσ (Γ). Note that

Ω′ ∈ SUSCC(Γ
′). Indeed, for all i, (ωgr ×ω i)∩R′ = ∅ and for

all j , i, (ω j×ω i)∩R′ =∅.

Given that the preferred semantics is fully decomposable w.r.t.

SUSCC then the set of valid labellings obtained by reunifying

the σ -labellings of the sub-AFs corresponding to Ω′ equal to

Lσ (Γ
′). Given that Alg. 2 is sound and complete for the prefer-

red semantics, the Cartesian product made in Alg. 1 (line 7) com-

putes exactly Lσ (Γ
′). As a consequence, Alg. 1 computes exactly

Lσ (Γ). AFDivider is thus sound and complete for the preferred
semantics. �

5 Experimental Results

In this section we present some experimental results
conducted with the AFDivider algorithm. The experiments
have been made on some hard instances of the ICCMA
competition, which are mostly of Barabási–Albert (BA)
type. They all are non-dense and have a clustered structure.

To compute the labellings of a cluster given a particu-
lar labelling of its inward attack sources, we have used an
already existing solver called “Pyglaf ”, one of the best sol-
vers at the ICCMA 2017 session, which transforms the AF
labelling problem into a SAT problem [3]. In this paper, we
compare our algorithm (using Pyglaf ) with Pyglaf itself,
and with ArgSemSAT [20], for the preferred, the complete
and the stable semantics.

For each experiment, we used 6 cores of a Intel Xeon
Gold 6136 processor, each core having a frequency of 3
GHz. The RAM size was 45GB. As at least two of the
three used solvers are multithreaded (Pyglaf and AFDivi-

der), we have chosen to compare them using both CPU
and real time (the CPU time includes the user and the sys-
tem times). Note that, for our algorithm, the durations cover
both the clustering time and the computation of labellings
time. The timeout has been set to 1 hour for the real time.

Table 2 gives the obtained results on 8 si-
gnificant instances : 9 i1 to i8 for respecti-
vely BA_120_70_1.apx, BA_100_60_2.apx,
BA_120_80_2.apx, BA_180_60_4.apx, basin-
or-us.gml.20.apx, BA_100_80_3.apx, amador-
transit_20151216_1706.gml.80.apx and BA_-
200_70_4.apx. Note that these instances have a number of
labellings under the preferred and stable semantics that
is particularly large (more than a hundred thousand), and
even larger for the complete semantics.

In Table 2, it is worth noting that, first, none of the cho-
sen instances is solved by ArgSemSAT ; second, that none
of the three solvers can provide results for the complete se-
mantics ; third, that our algorithm is far better than Pyglaf

on those instances for the preferred semantics. 10 Actually,
we can observe a real order of magnitude change which
increases with the hardness of the instances : from 39 se-
conds to 5 seconds for i1 and from almost one hour to 31
seconds for i5 (i6 to i8 being unsolved by Pyglaf in less
than one hour). The last chosen instance (i8), with its more
than ten billion preferred labellings, presents a memory re-
presentation challenge ; a compressed representation of the
labellings is to be found to tackle such instances. This is
also the case for the complete semantics. Finally, concer-

9. amador-transit_20151216_1706.gml.80.apx and basin-or-

us.gml.20.apx are instances which come from real data of the traffic
domain.
10. Note that Pyglaf is also multi-core. Moreover, when we compare

Pyglaf and AFDivider, we use a computer with the same number of cores.
So the fact that there is a more important parallelization in AFDivider

(so more threads) is not what explains the difference in runtime for the
preferred semantics.



ning the stable semantics, Pyglaf and AFDivider give simi-
lar results : in term of real time, Pyglaf is slightly better
except on i7. Nevertheless, it is worth noting that, in term
of CPU time, AFDivider is generally better than Pyglaf ;
this last point needs further studies.

Overall, these preliminary experimental results show
that the AF clustering approach brings a real added value
in terms of resolution time in the case of the preferred se-
mantics, and that an additional analysis will be necessary
for identifying how to improve the results for the other se-
mantics.

Moreover, the algorithm is being tested on other ins-
tances of the ICCMA competition, with a structure which
may be dense or non clustered. The use of other kinds of
clustering methods is also under study.

6 Related Work

There exist many approaches for enumerating semantics
labellings, but most of them are non-direct, in the sense that
they reduce the semantics computation to other problems
(most of the time to the SAT problem). Such non-direct ap-
proaches may use some kind of cutting process and even
distributed computation (it is the case of Pyglaf [3]). Di-
rect approaches, such as AFDivider, are less common. It is
with the existing direct approaches that we compare in this
section the AFDivider algorithm.

Here are some direct approach algorithms which use
some kind of cutting techniques : 11 [25], that presents an
algorithm based on a dynamic analysis of an argumenta-
tion framework ; [28], where the algorithm computes the
labellings of an AF following its SCC decomposition ; [18],
where the R-PREF algorithm is based on [28]’s approach,
with the addition of applying the decomposition process re-
cursively when the labellings under construction break the
SCCs ; [19], where the P-SCC-REC algorithm, inspired by
notions introduced in [5, 9, 29, 30], is the parallelized ver-
sion of R-PREF ; [11], where the algorithm splits the AF in
two parts (without breaking SCCs), and computes their la-
belling before reunifying them. Let us compare AFDivider

with these approaches in two respects.

First, on their ability to break SCCs : [28] and [11]
do not do so ; [18] and [19] can do so, given a cur-
rent SCC and an ancestor labelling, but only when
the ancestor labelling has some particular effects on
the current SCC; [25] always breaks SCCs as at each
step at most one argument is added or removed from
the considered sub-AF. Nevertheless, this way of up-
dating argument after argument in [25] generates a lot
of computations and uses a lot of memory. AFDivider,
and this is one of its advantages, breaks SCCs whene-
ver it is well suited to have well shaped clusters.

11. For an overview on the different AF splitting possibilities see [10].

Second, on their ability to compute the labellings in
a distributed way : [11, 18, 25, 28] are fully sequen-
tial. AFDivider and [19] use distributed computation,
but in [19], the computation of one labelling is mainly
sequential (it is very unlikely that the greedy phase
suffices to generate a labelling). Furthermore paralle-
lizing following labellings could overload the CPUs
as the number of solutions in hard AF problems may
be huge.

To conclude, what distinguishes best AFDivider from
the other ones is that cutting the AF into clusters limits the
combinatorial effect due to the number of labellings, to the
cluster. The other approaches propagate this effect to the
whole AF. This property makes AFDivider well suited for
non-dense AF with a clustered structure. Indeed, in such a
structure, the reunifying phase will be less expensive than
exploring the whole AF to construct each of the labellings.

An incremental algorithm that computes labellings has
been proposed in [2] but it does not concern the enumera-
tion problem. Other works such as [14, 22, 39] might be
related to our approach as they analyze some kind of AF
matrices ; however, it is not done in order to cluster the AF.

7 Conclusion

AFDivider is the first algorithm that uses spectral clus-
tering methods to compute semantics labellings. After re-
moving the trivial part of the AF (grounded labelling), the
algorithm cuts the AF into small pieces (the identified clus-
ters), then it computes simultaneously (in each cluster) la-
belling parts of the AF, before reunifying compatible parts
to get the whole AF labellings. Soundness and complete-
ness of this algorithm are proven for the stable, the com-

plete and the preferred semantics.
We compared the behaviour of our algorithm with other

ones that also use some kind of clustering. Among the va-
rious advantages of our method (its ability to break SCCs
and to compute the labellings in a distributed way), we
highlighted the fact that cutting the AF into clusters has
the great advantage of limiting the solving hardness to
the clusters. This algorithm is particularly well suited for
non-dense AFs with a clustered structure, such as the ones
which are among the hardest instances of the ICCMA com-
petition.

An empirical analysis of AFDivider on the benchmarks
of the competition is underway and some preliminary re-
sults are presented in this paper. Nevertheless, more ex-
haustive experiments are planned, in particular :

an analysis of the impact of the partition on the sol-
ving time, from a random one to a clustered one ; dif-
ferent clustering methods may also be compared ;

a complete comparison with the other existing solvers
used in ICCMA competition including the 2019 edi-
tion (for instance, CoquiAAS [27], or µ-toksia [34],



which is the winner of the 2019 edition) ;

and finally the use of AFDivider for the other tasks,
on the other semantics, of the competition (see [13]).

Another interesting question to answer is how to know in a
reasonable time if an AF is well suited for the AFDivider

algorithm. In fact, this is a double question : “what is a
theoretical characterization of such an AF?” and “given an
AF, what is the computational cost for checking whether it
respects this characterization?”.

Moreover, among future works, this approach may be
extended to enriched argumentation frameworks (e.g. with
a support relation or with higher-order interactions), and to
other acceptability semantics.

8 Acknowledgements

This work was supported by the ANR-11-LABEX-
0040-CIMI project of the CIMI International Centre for
Mathematics and Computer Science in Toulouse.

Références

[1] Albert, R. et A. L. Barabási: Statistical mechanics

of complex networks. Reviews of modern physics,
74(1) :47, 2002.

[2] Alfano, G., S. Greco et F. Parisi: Efficient Computa-

tion of Extensions for Dynamic Abstract Argumenta-

tion Frameworks : An Incremental Approach. Dans
IJCAI, pages 49–55, 2017.

[3] Alviano, M.: The pyglaf argumentation reasoner.
Dans OASIcs-OpenAccess Series in Informatics,
tome 58, 2018.

[4] Barabási, A.-L et al.: Network science. Cambridge
university press, 2016.

[5] Baroni, P., G. Boella, F. Cerutti, M. Giacomin, L. W.
N. van der Torre et S. Villata: On Input/Output Argu-

mentation Frameworks. Dans COMMA, pages 358–
365, 2012.

[6] Baroni, P., G. Boella, F. Cerutti, M. Giacomin, L. Van
Der Torre et S. Villata: On the input/output behavior

of argumentation frameworks. Artificial Intelligence,
217 :144–197, 2014.

[7] Baroni, P., M. Caminada et M. Giacomin: An intro-

duction to argumentation semantics. Knowledge Eng.
Review, 26(4) :365–410, 2011.

[8] Baroni, P., F. Cerutti, M. Giacomin et G. Guida:
AFRA : Argumentation framework with recursive at-

tacks. International Journal of Approximate Reaso-
ning, 52(1) :19–37, 2011.

[9] Baroni, P., M. Giacomin et B. Liao: On topology-

related properties of abstract argumentation seman-

tics. A correction and extension to dynamics of argu-

mentation systems : A division-based method. Artifi-
cial Intelligence, 212 :104–115, 2014.

[10] Baroni, P., M. Giacomin et B. Liao: Locality and mo-

dularity in abstract argumentation. Dans Handbook

of formal argumentation, pages 937–979. College Pu-
blication, 2018.

[11] Baumann, R., G. Brewka et R. Wong: Splitting ar-

gumentation frameworks : An empirical evaluation.
Dans TAFA workshop, pages 17–31. Springer, 2011.

[12] Bistarelli, S., F. Rossi et F. Santini: Not only size, but

also shape counts : abstract argumentation solvers

are benchmark-sensitive. J. Log. Comput., 28(1) :85–
117, 2018.

[13] Bistarelli, S., F. Santini, L. Kotthoff, Th. Mantade-
lis et C. Taticchi: Int. Competition on Computatio-

nal Models of Argumentation, 2019. https://www.
iccma2019.dmi.unipg.it/.

[14] Butterworth, J. et P.E. Dunne: Spectral Techniques

in Argumentation Framework Analysis. COMMA,
287 :167, 2016.

[15] Caminada, M.: On the Issue of Reinstatement in Ar-

gumentation. Dans JELIA, pages 111–123, 2006.

[16] Carrera, Álvaro et Carlos A Iglesias: A systematic

review of argumentation techniques for multi-agent

systems research. Artificial Intelligence Review,
44(4) :509–535, 2015.

[17] Cayrol, C. et M C. Lagasquie-Schiex: On the accep-

tability of arguments in bipolar argumentation frame-

works. Dans Godo, L. (rédacteur) : ECSQARU, pages
378–389, 2005.

[18] Cerutti, F., M. Giacomin, M. Vallati et M. Zanella: An

SCC recursive meta-algorithm for computing prefer-

red labellings in abstract argumentation. Dans KR,
2014.

[19] Cerutti, F., I. Tachmazidis, M. Vallati, S. Batsakis,
M. Giacomin et G. Antoniou: Exploiting Parallelism

for Hard Problems in Abstract Argumentation. Dans
AAAI, pages 1475–1481, 2015.

[20] Cerutti, F., M. Vallati, M. Giacomin et T. Zanetti:
ArgSemSAT-2017, 2017.
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arguments σ
a b c d e f g h i j k l m n gr co pr st

ℓ1 in out out out in out in out in und und und out in ××× ×××

ℓ2 in out out in out in out in out und und und out in ××× ×××

ℓ3 in out out out in out in out in und und und und und ×××

ℓ4 in out out in out in out in out und und und und und ×××

ℓ5 in out out und und und und und und und und und und und ××× ×××

ℓ6 in out out und und und und und und und und und out in ×××
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