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Abstract

In this paper, the Cauchy problem for a Friedrichs system on a globally hyperbolic manifold
with a timelike boundary is investigated. By imposing admissible boundary conditions, the
existence and the uniqueness of strong solutions are shown. Furthermore, if the Friedrichs
system is hyperbolic, the Cauchy problem is proved to be well-posed in the sense of Hadamard.
Finally, examples of Friedrichs systems with admissible boundary conditions are provided.
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1 Introduction

The Cauchy problem for hyperbolic partial differential equations on curved spacetimes has been
and continues to be at the forefront of scientific research. While for a generic spacetime the well-
posedness of the Cauchy problem cannot be expected, in the class of globally hyperbolic manifolds
(with empty boundary) it has been proved that any hyperbolic PDE admits a unique smooth
solution which depends continuously on the smooth Cauchy data, see the founding article [61]
as well as [5, 8]. Even though globally hyperbolic spacetimes have plenty of applications to
physics, there exist also important and interesting situations which require the spacetimes to
have a non-trivial boundary. For example, experimental setups for studying the Casimir effect
confine quantum field theories between several metal plates, which may be modeled theoretically
by introducing timelike boundaries to the system. From a PDE viewpoint, this suggests that
the Cauchy problem could be well-posed once suitable boundary conditions are introduced. In
the last two decades, the well-posedness of the mixed initial-boundary problem for hyperbolic
operators has been investigated in different geometric settings: see e.g. [16,65] for general surveys,
[3, 26, 29, 41, 49, 53, 68, 69] for asymptotically anti-de Sitter spacetimes, [27, 28, 47] for the Klein-
Gordon, the Maxwell and the Dirac operator on stationary spacetimes and [39, 57] for the case
of Dirac operator on globally hyperbolic spacetimes.

The aim of this paper is to prove well-posedness of the Cauchy problem, not only for hyperbolic
PDE on globally hyperbolic manifolds with timelike boundary (cf. Definition 2.1), but for a larger
class, known as Friedrichs systems (cf. Definition 2.5). Friedrichs systems were developed by
K.O. Friedrichs in [50,52] and include a large variety of PDE. The classical Dirac operator is an
example and many second-order PDEs (like wave equations and the heat equation) can be reduced
to a Friedrichs system. Our first main result is the existence of strong solutions for the forward
Cauchy problem for Friedrichs system coupled with future admissible boundary conditions (cf.
Definition 2.13).

Theorem 1.1 (Strong solutions). Let M be a globally hyperbolic manifold with timelike boundary
and let t : M → R be a Cauchy temporal function. For any 0 < T ∈ R denote with MT :=
t−1((0, T )) a time strip. Let S be a Friedrichs system with constant characteristic and denote
with GB a future admissible boundary condition. Then, there exists a strong solution of the
Cauchy problem 




SΨ = f ∈ Γc(E|MT

)

Ψ|Σ0
= h ∈ Γc(E|Σ0

)

Ψ|∂M ∈ B := ker(GB) .

(1.1)

Furthermore, if the bilinear form ≺ σS(dt) · | · ≻p is positive definite on Ep for every p ∈ ΣT, then
the solution is unique.

While full regularity of the strong solution cannot be expected for a generic Friedrichs system
even for smooth Cauchy data (see Section 4.3 for more details), our second main result shows
that the backward and the forward Cauchy problem for symmetric hyperbolic systems coupled
with admissible boundary condition is well-posed.
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Theorem 1.2 (Smooth solutions). Let M be a globally hyperbolic manifold with timelike boundary
and let S be a symmetric hyperbolic system of constant characteristic. Assume B = (B+,B−) to
be an admissible boundary condition for S. Let Σ0 be any smooth spacelike Cauchy hypersurface
of M. Then, for all f ∈ Γc(E) and h ∈ Γc(E|Σ0

) satisfying the compatibility conditions (4.3) and
(4.4) up to any order, there exists a unique Ψ ∈ Γ(E) satisfying the Cauchy problem





SΨ = f

Ψ|Σt0
= h

Ψ|∂M∩J+(Σ0)
∈ B+

Ψ|∂M∩J−(Σ0)
∈ B−

(1.2)

and the map (f, h) 7→ Ψ sending a pair (f, h) ∈ Γc(E)×Γc(E|∂M) to the solution Ψ ∈ Γ(E) of (1.2),
is continuous.

Roughly speaking, condition (4.3) up to some finite order k ensures that, when the support
of initial data meets the boundary of Σ0, the solution of the Cauchy problem is Ck.

Showing the well-posedness of the Cauchy problem is not the end of the story: Indeed an
explicit construction of the evolution operator (as in [20–24] for the case of empty boundary)
and a propagation of the singularity theorem should to be investigated. Clearly, the well-
posedness of the Cauchy problem will guarantee the existence of Green operators (cf. Propo-
sition 5.1) which play a pivotal role in the algebraic approach to linear quantum field theory,
see e.g. [17, 54] for textbooks, [6, 7, 10, 48, 58] for recent reviews, [12–15] for homotopical ap-
proaches and [18–20, 30–35, 40, 45, 46] for some applications. Indeed, they fully characterize the
space of solutions of a symmetric hyperbolic system [4, 31], they implement the canonical com-
mutation/anticommutation relations typical of any linear quantum field theory [6, 10], and their
difference, dubbed the casual propagator or Pauli-Jordan commutator, can be used to construct
quantum states, see e.g. [11, 30,40,45,46,48].

Our strategy to prove the well-posedness of the Cauchy problem is as follows: first we derive
a suitable energy inequality for a Friedrichs system in Section 3 which will be employed in
Section 4.1 to show existence and uniqueness of weak solutions. In Section 4.2 we shall prove that
any weak solution is actually a strong solution. This will be achieved by localizing the problem
and then using the theory of mollifiers, see e.g. [63]. In Section 4.3, we discuss the regularity
of solutions of symmetric hyperbolic systems and in Section 5 we prove the well-posedness of
the Cauchy problem. Finally in Section 6 and Section 7 we provide some examples of Friedrichs
systems with admissible boundary conditions.
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Notation and convention

- The symbol K denotes one of the elements of the set {R,C}.

- M := (M, g) is a globally hyperbolic n+1-dimensional manifold with timelike boundary ∂M
and we adopt the convention that g has the signature (−,+, . . . ,+).

- t : M → R is a Cauchy temporal function and MT := t−1(0, T ) is a time strip.

- n is the outward unit normal vector to ∂M.
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- ♭ : TM → T∗M and ♯ : T∗M → TM are the musical isomorphisms.

- E is a K-vector bundle over M with N -dimensional fibers, denoted by Ep for p ∈ M, and
endowed with a Hermitian fiber metric ≺ · | · ≻p .

- Γc(E),Γsc(E) resp. Γ(E) denote the spaces of compactly supported, spacelike compactly
supported resp. smooth sections of E.

- S is a symmetric system of constant characteristic and S† denotes the formal adjoint operator
with respect to the fiber metric ≺ | ≻p.

- GB and GB† are (future) admissible boundary conditions for S and S† respectively and
B := kerGB and B† := kerGB† .

2 Geometric preliminaries

Let M be a connected, oriented, time-oriented smooth manifold with boundary. We assume M to
be endowed with a smooth Lorentzian metric g. Here and in the following we shall assume that
the boundary is timelike, i.e. the pullback of g with respect to the natural inclusion ι : ∂M → M

defines a Lorentzian metric ι∗g on the boundary. In the class of Lorentzian manifolds with timelike
boundary, those called globally hyperbolic provide a suitable background where to analyze the
Cauchy problem for hyperbolic operators.

Definition 2.1. [2, Definition 2.14] A globally hyperbolic manifold with timelike boundary is
a (n + 1)-dimensional, oriented, time-oriented, smooth Lorentzian manifold M with timelike
boundary ∂M such that

(i) M is causal, i.e. there are no closed causal curves;

(ii) for every point p, q ∈ M, J+(p)∩ J−(q) is compact, where J+(p) (resp. J−(p)) denotes the
causal future (resp. past) of p (resp. q).

Remark 2.2. In case of an empty boundary, this definition agrees with the standard one, see
e.g. [9, Section 3.2] or [8, Section 1.3].

Recently, Aké, Flores and Sánchez gave a characterization of globally hyperbolic manifolds
with timelike boundary:

Theorem 2.3 ( [2], Theorem 1.1). Any globally hyperbolic manifold with timelike boundary admits
a Cauchy temporal function t : M → R with gradient tangent to ∂M. This implies that M splits
into R× Σ with metric

g = −β2dt2 + ht

where β : R × Σ → R is a smooth positive function, ht is a Riemannian metric on each slice
Σt := {t} × Σ varying smoothly with t, and these slices are spacelike Cauchy hypersurfaces with
boundary ∂Σt := {t} × ∂Σ, namely achronal sets intersected exactly once by every inextensible
timelike curve.

2.1 Friedrichs systems of constant characteristic

Let E → M be a Hermitian vector bundle over a globally hyperbolic manifold with timelike bound-
ary M, namely a K-vector bundle with finite rank N endowed with a nondegenerate Hermitian
fiber metric ≺ · | · ≻p : Ep × Ep → K.

Definition 2.4. A linear differential operator S : Γ(E) → Γ(E) of first order is called a symmetric
system over M if

4



(S) The principal symbol σS(ξ) : Ep → Ep is hermitian with respect to ≺ · | · ≻p for every
ξ ∈ T∗

pM and for every p ∈ M.

Additionally, we say that S is hyperbolic respectively positive if it holds:

(H) For every future-directed timelike covector τ ∈ T∗
pM, the bilinear form ≺ σS(τ) · | · ≻p is

positive definite on Ep for every p ∈ M;

(P) For any Cauchy hypersurface Σt ⊂ M, the quadratic form φ 7→≺ ℜe(S† + S)φ |φ ≻ on Σt

is uniformely bounded from below by a positive scalar multiple ct, depending continuously
on t, of the quadratic form φ 7→≺ φ |φ ≻, which is assumed to be positive definite.

Definition 2.5. We call Friedrichs system, any symmetric system S which is hyperbolic or
positive. Furthermore, we say that S is of constant characteristic if dim kerσS(n

♭) is constant. In
particular, if σS(n

♭) has maximal rank we say that S is nowhere characteristic.

Remark 2.6. Notice that Definition 2.4 depends on the fiber metric ≺ · | · ≻p.

Example 2.7. Consider the n+ 1-dimensional Minkowski spacetime

M = R× R
n η = −dt2 +

n∑

j=1

dx2j

and let E := M× C
N be a trivial vector bundle with the canonical fiber metric ≺ · | · ≻CN . Any

linear differential operator S : Γ(E) → Γ(E) of first order reads in a point p ∈ M as

S := A0(p)∂t +

n∑

j=1

Aj(p)∂xj
+ C(p)

where the coefficients A0, Aj , C are N × N matrices, with N being the rank of E, depending
smoothly on p ∈ M. In these coordinates, Condition (S) in Definition 2.4 reduces to

A0 = A†
0 and Aj = A†

j

for j = 1, . . . , n, where † is the complex conjugate of the transposed matrix. Condition (H) and
(P) can be stated respectively as follows:

(A0 +
n∑

j=1

αjAj) > 0 is positive definite for
n∑

j=1

α2
j < 1 ,

ℜe(C + C† − ∂t(
√
gA0)√
g

−
n∑

j=1

∂xj
(
√
gAj)√
g

) is positive definite,

where g is the absolute value of the determinant of the Lorentzian metric.

As we shall see in Section 6.2, a prototype example of a first order system is the so-called
classical Dirac operator. In this setting, the naturally defined fiber metric on the spinor bundle
is indefinite rather than Hermitian. It turns out that assuming the fiber metric to be positive-
definite is not a loss of generality for a symmetric hyperbolic system.

Lemma 2.8. Let E be a K-vector bundle endowed with an indefinite nondegenerate sesquilinear
fiber metric ≺ · | · ≻p and let S be a symmetric hyperbolic system with respect to ≺ · | · ≻p. The
operator Sβ := σS(dt)

−1S is a symmetric hyperbolic system with respect to the positive-definite
Hermitian fiber metric

〈· | ·〉β := β ≺ σS(dt) · | · ≻p , (2.1)

where β : M → R
+ is chosen on account of Theorem 2.3. Moreover, for any boundary space B,

the Cauchy problem for the operator Sβ is equivalent to the Cauchy problem for S.
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Proof. On account of Properties (S),the fiber metric (2.1) is a Hermitian fiber metric. In partic-
ular, for any ξ ∈ T∗

pM it holds

〈σS(ξ) · | ·〉β = 〈σS(dt)−1σS(ξ) · | ·〉β
= β ≺ σS(ξ) · | · ≻p

= β ≺ · |σS(ξ)· ≻p

= β ≺ · |σS(dt)σS(dt)−1σS(ξ)· ≻p

= 〈· |σS(dt)−1σS(ξ)·〉β
= 〈· |σS(ξ)·〉β ,

where we used Property (S) in the second and fourth equalities. Moreover, any solution of the
Cauchy problem for S is a solution of the Cauchy problem for Sβ where the right-hand side is
given by ( 1βσS(dt)

−1f, h).

From now on, every time symmetric hyperbolic systems will come into play, the positive def-
inite inner product which will be involved will be 〈· | ·〉β from Lemma 2.8. It will be denoted by
≺ · | · ≻ in order to keep notations simple.

The reader may wonder whether a symmetric system can be assumed to enjoy property
(P). With the next lemma, we shall see that, at least on relatively compact subdomains, any
symmetric hyperbolic system can be transformed into a symmetric positive system such that the
corresponding Cauchy problems remain equivalent.

Lemma 2.9. Let M be a globally hyperbolic manifold with timelike boundary. Let t be a Cauchy
temporal function and denote with MT a time strip, i.e. MT := t−1(t0, t1). Finally let S be a
symmetric hyperbolic system. Then, for all t0, t1 ∈ R and for any λ ∈ R, the Cauchy problem for
the symmetric system Kλ : Γ(E|MT

) → Γ(E|MT

) defined by

Kλ := S+ λσS(dt)

is equivalent to the Cauchy problem for S, namely





KλΨ̃ = f̃

Ψ̃|Σ0 = h̃

Ψ̃ ∈ B

⇐⇒





SΨ = f

Ψ|Σ0 = h

Ψ ∈ B,

where f̃ = e−λtf, h̃ = h and Ψ̃ = e−λtΨ. Moreover, for any relative compact set U ⊂ M, there
exists a constant λ ≡ λ(U) such that Kλ is a positive symmetric system.

Proof. For every Ψ ∈ Γ(E) and for every t ∈ R, we have

Kλ(e
−λtΨ) = (S+ λσS(dt)) (e

−λtΨ)

= σS(de
−λt)Ψ + e−λt (S+ λσS(dt))Ψ

= −λe−λtσS(dt)Ψ + e−λt (S+ λσS(dt))Ψ

= e−λt
SΨ,

which shows the correspondence between the Cauchy problems for S and Kλ. By assumption,
S + S† is a zero-order operator and Ψ 7→≺ σS(dt)Ψ |Ψ ≻p is positive definite on E, therefore on
every compact subset of M there exists a sufficiently large real λ (depending on the compact set)
such that the operator Kλ + Kλ

† = S+ S† + 2λσS(dt) is positive definite.
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Remark 2.10. Actually the assumptions of Lemma 2.9 may be weakeaned as follows: it is
namely sufficient to assume S to be symmetric, i.e. with σS(ξ)

∗ = σS(ξ) for all ξ ∈ T∗M, and
the family of pointwise quadratic forms Ψ 7→≺ σS(dt)Ψ |Ψ ≻ to be uniformely bounded from
below by a positive constant to get the result. However those assumptions are equivalent to S

being symmetric hyperbolic for a perturbed Lorentzian metric ḡ on M. For by continuity the
quadratic form Ψ 7→≺ σS(dt)Ψ |Ψ ≻ remains positive definite for all ξ in an open neighborhood
of dt in T∗M. We may assume without loss of generality that neighborhood to be an open cone in
T∗M which is contained in the set of future timelike covectors for g and which depends smoothly
on the base-point. Now modifying the original metric g only in ∂t-direction, it is possible to
obtain a new Lorentzian metric ḡ such that its set of future timelike covectors coincides with
– or at least is in contained in – the above cone neighborhood. We may choose the same time
orientation for that new metric ḡ. Since its future cone is contained in the one of g, the new
Lorentzian metric is globally hyperbolic (any timelike curve for ḡ is a timelike curve for g) and S

becomes a symmetric hyperbolic operator on (M, ḡ) by definition. For the general discussion of
perturbations of globally hyperbolic metrics, we refer to e.g. [2, Sec. 4.2].

We conclude this section, by deriving the Green identity for any first-order linear differential
operator. To this end, consider the scalar product defined by

(Φ |Ψ)M :=

∫

M

≺ Φ |Ψ ≻ volM , (2.2)

for all Ψ,Φ ∈ Γ(E) such that suppΨ ∩ suppΦ is compact, where volM is the metric-induced
volume element.

Lemma 2.11. Let M be a manifold with Lipschitz boundary ∂M and S be any first-order linear
differential operator acting on sections of some Hermitian vector bundle E over M. Denote by S†

the formal adjoint of S. Then for every Φ ∈ Γc(E|M),

ℜe
(
(SΦ |Φ)M − (Φ |S†Φ)M

)
= ℜe(Φ |σS(n♭)Φ)∂M , (2.3)

where n is the outward unit normal vector to ∂M and ♭ : TM → T∗M denotes the musical iso-
morphism. If furthermore S is symmetric i.e., its principal symbol is Hermitian, then (2.3) holds
without taking the real parts on both sides.

Proof. Let ∇ be any metric covariant derivative on E. Let b0, . . . , bn be a local tangent frame
which is synchronous at the point under consideration, i.e. ∇bj = 0, and denote with b∗0, . . . , b

∗
n

the dual basis. In such basis, the operator S and its formal adjoint S† read as

S =
n∑

j=0

σS(b
∗
j )∇bj + C , S

† =
n∑

j=0

−σS(b∗j )†∇bj −∇bj

(
σS(b

∗
j )

†
)
+ C† ,

where C is some zero-order operator. Consider now the real n-form on M given by

ω :=

n∑

j=0

ℜe ≺ σS(b
∗
j )Φ |Φ ≻p bjyvolM (2.4)

where y denotes denotes the insertion of a tangent vector into the first slot of a form. By
straightforward computation we get

dω = ℜe
n∑

j=0

(
≺ ∇bj(σS(b

∗
j ))Φ |Φ ≻p + ≺ σS(b

∗
j )∇bjΦ |Φ ≻p

− ≺ Φ | − σS(b
∗
j )

†∇bjΦ ≻p

)
volM

= ℜe
(
≺ SΦ |Φ ≻p − ≺ Φ |S†Φ ≻p

)
volM.
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Using Stokes’ theorem for manifolds with Lipschitz boundary we obtain (2.3). Note that n∗ = nb

along ∂M because of n being spacelike.

Remark 2.12. In case S is symmetric, the differential form ω defined above is real, therefore we
obtain (2.3) without the real parts on both sides.

2.2 Admissible boundary conditions

In this paper we are interested in sections subject to certain linear homogeneous boundary con-
ditions, depending of course if we want to solve the forward or the backward Cauchy problem.
We begin by fixing a Cauchy surface Σ0 := t−1({0}) where we shall assign the initial data. To
define these boundary conditions we associate with each boundary point q ∈ ∂M a pair of lin-
ear subspaces (B±)q ⊂ Eq whose dimensions are the same at all points of ∂M and which vary
smoothly with q. In particular, we shall focus on a class introduced by Friedrichs and Lax-Phillips
in [52,60], dubbed admissible boundary conditions.

Definition 2.13. A smooth linear bundle map GB+ : E|∂M → E|∂M is said to be a future admissible
boundary condition for a first-order Friedrichs system S if

(i-f) the pointwise kernel B+ of GB+ is a smooth subbundle of E|∂M ;

(ii-f) the quadratic form Ψ 7→≺ σS(n
♭)Ψ |Ψ ≻p is positive semi-definite on B+ ;

(iii-f) the rank of B+ is equal to the number of pointwise non-negative eigenvalues of σS(n
♭)

counting multiplicity.

Similarly we say that GB− : E|∂M → E|∂M is past admissible if

(i-p) the pointwise kernel B− of GB− is a smooth subbundle of E|∂M ;

(ii-p) the quadratic form Ψ 7→≺ σS(n
♭)Ψ |Ψ ≻p is negative semi-definite on B−;

(iii-p) the rank of B− is equal to the number of pointwise non-positive eigenvalues of σS(n
♭)

counting multiplicity.

The pair B = (B+,B−) is called the admissible boundary space or admissible boundary condition
for S.

Remark 2.14. The role of B+ and B− will become apparent when looking for energy estimates
for symmetric hyperbolic S, see Theorem 3.2. It turns out that B+ (resp. B−) is only needed in
the future (resp. past) of the chosen Cauchy hypersurface Σ0.

Notice that if ≺ · | · ≻ is not positive definite, by Lemma 2.8 the new symmetric hyper-
bolic system Sβ together with the Hermitian positive-definite fiber metric 〈· | ·〉β can be defined
such that the Cauchy problems for both Sβ and S become equivalent. In particular, being an
admissible boundary condition for Sβ is equivalent to be admissible for S. Indeed it holds

〈σSβ
(n♭)Ψ |Ψ〉β =≺ σS(n

♭)Ψ |Ψ ≻ .

Conditions (ii-f) and (ii-p) are equivalent to require that the boundary conditions are maximal
with respect to properties (iii-f) and (iii-p) respectively, see [59, Theorem D.1], namely no smooth
vector subbundles (B′)± of E exist that properly contains B± and such that for all Φ′ ∈ (B′)+
and Φ′′ ∈ (B′)−

≺ σS(n
♭)Φ′ |Φ′ ≻≥ 0 ≺ σS(n

♭)Φ′′ |Φ′′ ≻≤ 0

holds. The fact that we do not assume σS(n
♭) to be invertible (which is the case in [59, App. D])

does not play any role. As a consequence, note that ker(σS(n
♭)) ⊂ B+ ∩ B−.
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Definition 2.15. Let GB be a future or past admissible boundary condition for a given first-
order Friedrichs system S on E. Assume S to be of constant characteristic along ∂M. The
adjoint boundary condition G

†
B
is defined as the pointwise orthogonal projection onto σS(n

♭)(B).
In particular,

B
† := ker(G†

B
) =

(
σS(n

♭)(B)
)⊥

.

If B† = B then we say that B is a self-adjoint future/past admissible boundary space.

Similarly to [59, Theorem D.2], it can be shown that, if B is a future admissible boundary
condition for instance, then the quadratic form Φ 7→≺ σS(n

♭)Φ |Φ ≻p is negative semi-definite
on B†, whose rank coincides with the number of nonpositive eigenvalues of σS(n

♭) counted with
multiplicities. Namely ker(σS(n

♭)) must be contained in B by its maximality property, so that,
pointwise,

dim(B†) = dim(E|∂M)− dim(B) + dim(ker(σS(n
♭)) ∩ B)

= dim(E|∂M)− dim(B) + dim(ker(σS(n
♭))),

which is precisely the number of nonpositive eigenvalues of σS(n
♭) counted with multiplicities.

This in turn implies that B† is maximal such that Φ 7→≺ σS(n
♭)Φ |Φ ≻p is negative semi-definite

on B†, because pointwise any subbundle containing B† and enjoying the same property cannot
intersect the subbundle spanned by the eigenvectors associated to the positive eigenvalues of
σS(n

♭) in a nontrivial way. Therefore it must have the same dimension as – and therefore coincide
with – B†. As a consequence, if B is future admissible for a given Friedrichs systems S, then B†

is future admissible for S†. Moreover, by construction of B†, for all (Ψ,Φ) ∈ B×∂M B† it holds

≺ σS(n
♭)Ψ |Φ ≻p= 0 .

2.3 The forward and the backward Cauchy problem

The backward Cauchy problem for a symmetric hyperbolic system S is equivalent to the forward
Cauchy problem for −S on the time-reversed underground spacetime:

Lemma 2.16. Let t : M → R be a Cauchy temporal function with gradient tangent to the boundary
on a given globally hyperbolic spacetime with timelike boundary M. Let S be any symmetric hy-
perbolic system of constant characteristic along ∂M and with admissible boundary space (B+,B−)
along ∂M.
Then S̄ := −S is symmetric hyperbolic on M̄, which is M with the same metric but with reversed
time orientation. Moreover, (B−,B+) is an admissible boundary space for S̄ along ∂M.

Proof. A 1-form ξ ∈ T∗M̄ = T∗M is future-oriented causal on M̄ if and only if it is past-oriented
causal on M. Therefore, if ξ is future-oriented causal on M̄, then σS̄(ξ) = σS(−ξ) is a pointwise
positive definite endormorphism of E because −ξ is future-oriented on M. This shows the first
statement.
The second statement follows from the fact that the outward unit normal n to ∂M does not
change when the time orientation is reversed, so that, if ψ 7→≺ σS(n

♭)ψ |ψ ≻ is positive (resp.
negative) semi-definite on some subbundle of E|∂M , then ψ 7→≺ σ

S̄
(n♭)ψ |ψ ≻= − ≺ σS(n

♭)ψ |ψ ≻
is negative (resp. positive) semi-definite on that same subbundle.

As a consequence of Lemma 2.16, given any symmetric hyperbolic system S on M with ad-
missible boundary space (B+,B−) and given any f ∈ Γc(E) as well as h ∈ Γc(E|Σ0

), solving





Su = f on M

u|Σ0
= h on Σ0

u|
J
+
M

(Σ0)∩∂M
∈ B+ along J+

M
(Σ0) ∩ ∂M

u|
J
−
M

(Σ0)∩∂M
∈ B− along J−

M
(Σ0) ∩ ∂M

(2.5)
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on M is equivalent to solving





−Su = −f on M̄

u|Σ0
= h on Σ0

u|
J
+
M̄

(Σ0)∩∂M
∈ B− along J+

M̄
(Σ0) ∩ ∂M̄

u|J−(Σ0)∩∂M
∈ B+ along J−

M̄
(Σ0) ∩ ∂M̄

(2.6)

on M̄: a section u of E solves (2.5) on M if and only if u solves (2.6) on M̄.

3 Energy Inequality

In this section we derive a suitable energy inequality for Friedrichs systems in any time strip
MT := t−1((0, T )). By denoting with ‖ · ‖L2(E|MT

) the norm corresponding to the scalar product

(· | ·)MT
defined by Equation (2.2), the main result of this section is the following.

Theorem 3.1 (Energy Inequality). Let M be a globally hyperbolic manifold with timelike bound-
ary, let t : M → R be a Cauchy temporal function. Let MT be the time strip MT := t−1((0, T )).
Let S be a Friedrichs system and denote by S† the formal adjoint operator. Assume M to be
Cauchy-compact when S is symmetric hyperbolic. Finally denote by GB a future admissible bound-
ary condition and by G

†
B
the adjoint boundary condition. Then there exists a positive constant

C̃ = C̃(MT) such that, for all Φ ∈ Γc(E|MT

) satisfying Φ|Σ0 = 0, Φ|ΣT
= 0 and Φ|∂MT

∈ B†|MT
,

‖Φ‖L2(E|MT

) ≤ C̃‖S†Φ‖L2(E|MT

) . (3.1)

Furthermore, if the bilinear form ≺ σS(dt) · | · ≻p is positive definite on Ep for every p ∈ ΣT,

then there exists a constant D̃ = D̃(MT) > 0 such that, for all Ψ ∈ Γ(E|MT

) ∩L2(E|MT
) satisfying

Ψ|Σ0 = 0 and Ψ|∂MT
∈ B|MT

,

‖Ψ‖L2(E|MT

) ≤ D̃‖SΨ‖L2(E|MT

) . (3.2)

Before proving our claim, we need some preliminary results on symmetric hyperbolic systems.
Let t : M → R be a Cauchy temporal function and set Σp

t := J−(p) ∩ Σt for p ∈ M. Recall that
〈· | ·〉β denotes the normalized Hermitian scalar product (2.1) from Lemma 2.8. Let | · |β be the
corresponding norm. Finally, let dµt be the volume density of Σt.

Theorem 3.2 (Energy estimates for symmetric hyperbolic systems). Let M be a globally hy-
perbolic manifold with timelike boundary and let S be a symmetric hyperbolic system of constant
characteristic. Then, for each p ∈ M and all t0, t1 ∈ R with t0 ≤ t1 there exists a constant
C = C(p, t0, t1) > 0 such that

∫

Σp
t1

|Ψ|2βdµt1 ≤ CeC(t1−t0)

∫ t1

t0

∫

Σp
s

|SΨ|2βdµsds+ eC(t1−t0)

∫

Σp
t0

|Ψ|2βdµt0 (3.3)

holds for each Ψ ∈ Γ(E) satisfying Ψ|∂M ∈ kerGB, where GB is a future admissible boundary
condition for S. In particular, C = C(t0, t1) if M is Cauchy-compact.

Proof. We shall reduce to the proof of [4, Theorem 5.3]. To this end, let us define the subset
K := J−(p) ∩ t−1([t0, t1]) ⊂ M and consider the n-differential form defined by Equation (2.4).
Stokes’ theorem for manifold with Lipschitz boundary yields

∫

K

dω =

∫

∂K

ω =

∫

Σp
t1

ω −
∫

Σp
t0

ω +

∫

K∩∂M
ω +

∫

Y

ω
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where Y := ∂J−(p) ∩ t−1([t0, t1]). In order to reduce our proof to the one of [4, Theorem 5.3] we
only need to show that ∫

K∩∂M
ω ≥ 0 .

We choose a positively oriented orthonormal tangent basis b0, b1, . . . , bn of TqM in such a way
that b0 = − 1

β∂t and b1 = n, so that the restriction of ω to ∂M is given by

ι∗ω =≺ σS(n
♭)Ψ |Ψ ≻p nyvolK∩M =≺ σS(n

♭)Ψ |Ψ ≻ volK∩∂M .

Therefore ∫

K∩∂M
ω =

∫

K∩∂M
≺ σS(n

♭)Ψ |Ψ ≻p volK∩∂M .

Since Ψ|∂M ∈ B|MT
, property (i-f) of Definition 2.13 implies that the r.h.s. of the last identity is

nonnegative, which concludes the proof.

Combining Theorem 3.2 with Lemma 2.16, we immediately obtain that if there exists a
solution to the Cauchy problem (1.1) it must be unique and it propagates with at most the speed
of light. We recall this results for the sake of completeness.

Proposition 3.3 (Uniqueness and finite speed of propagation for symmetric hyperbolic system).
Let M be a globally hyperbolic manifold with timelike boundary and let S be a symmetric hyperbolic
system of constant characteristic coupled with admissible boundary conditions. If there exists
Ψ ∈ Γ(E|MT

) satisfying the Cauchy problem (1.1) then it is unique and it propagates with at most
the speed of light, i.e. its support is contained inside the region

V :=
(
J
(
supp f

)
∪ J(supp h)

)
,

where J(·) denote the causal future of a set.

supp f

supp f
supp h

p•
q•

V ∩ T

J−(p) Σ0

ΣT

Figure 1: Finite propagation of speed – V ∩ T.

Proof. Assume q ∈ J+(Σ0) and consider any point p outside the region V ∩ MT, with MT :=
t−1(0, T ) – cf. Figure 1. This means that there is no future-directed causal curve starting
in supp f ∪ supp h, entirely contained in V ∩ MT, which terminates at p. As a consequence,
f|J−(p) ≡ 0 and h|J−(p)∩Σ0

≡ 0. Therefore, by Theorem 3.2, it follows that Ψ vanishes in J−(p).
The case q ∈ J−(Σ0) is obtained with the time reversal (see also Lemma 2.16). Hence, Ψ

vanishes outside V.
Assume that there exist Ψ and Φ satisfying the same Cauchy problem (1.1). Then Ψ − Φ ∈

Γ(E|MT

) is a solution of (1.1) with f = 0 and h = 0. As we have already shown, the supports of
Ψ and Φ are contained in V ∩MT. Therefore, we can use Theorem 3.2 to conclude that Ψ − Φ
vanishes identically.
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We notice that, as in the boundaryless case, solving the Cauchy problem associated to a
symmetric hyperbolic system for Cauchy-compact or arbitrary globally hyperbolic manifolds with
timelike boundary are equivalent.

Proposition 3.4. Let M be a Cauchy-noncompact globally hyperbolic manifold with timelike
boundary and let (M, g) = (R×Σ0,−β2dt2 ⊕ ht) be a splitting as in Theorem 2.3. If, for a given
symmetric hyperbolic system S on M, the Cauchy problem (1.1) can be solved on (R×U,−β2dt2⊕
ht) for any relatively compact domain with smooth boundary U ⊂ Σ0 and any admissible boundary
condition along ∂U , then so can it on M itself.

Proof. The proof virtually coincides with that of [5, Theorem 3.7.7]. Let f, h be the Cauchy data
in (1.1) and set K := supp (f) ∪ supp (h) ⊂ M. Then K is a compact subset of M and therefore
is included in some MT = (0, T ) × Σ0 for some real 0 < T . Let Σ̂ be the projection onto Σ0 of
the compact subset JM(K) ∩ ([0, T ] × Σ0) w.r.t. the splitting M = R × Σ0. Then there exists
a relatively compact open neighborhood U of Σ̂ in Σ0 with smooth boundary ∂U . Note that
part of the boundary of U is contained in ∂M and it is only on that part that the support of the
solution to (1.1) may meet ∂U . Consider now M′ := R×U with metric g′ := −β2dt2 ⊕ ht, where
U is the closure of U in Σ0. Then M′ is a new Lorentzian manifold and is globally hyperbolic
because of U being compact: it can be directly shown that every inextendible timelike curve in
M′ meets U exactly once; the main point is that, on U , all metrics ht for t in a compact interval
are uniformly equivalent to some fixed metric. We refer to the proof of [8, Lemma A.5.14] that
can be adapted to our situation. Now M′ is a Cauchy-compact globally hyperbolic manifold with
timelike boundary, therefore there exists a unique solution ψ to the Cauchy problem (1.1) on
M′

T
:= (0, T )×U . Since by finite propagation speed the support of Ψ is contained in J(K)∩M′

T
,

it meets ∂M′ only along ∂M and, since by construction Ψ must vanish along the rest of ∂U , the
section Ψ can be considered as a section of E on MT. Therefore there exists a solution Ψ to (1.1)
on MT. Uniqueness holds on MT as well since it holds on M′

T
. Since this holds for any 0 < T ∈ R,

we obtain global existence and uniqueness of solutions to (1.1) on M.

Remark 3.5. Assume S to be a symmetric hyperbolic system on a globally hyperbolic manifold
with noncompact Cauchy hypersurfaces. On account of Proposition 3.4, to solve the Cauchy
problem for S in a time strip MT it is enough solving it on [0, T ]×U , where U is compact. Since
[0, T ] × U is compact, then Lemma 2.9 guarantees the existence of a suitable λ such that the
operator Kλ is a symmetric positive system and it has an equivalent Cauchy problem. Summing
up, the Cauchy problem for a symmetric hyperbolic system S on a globally hyperbolic manifold M

with non-compact Cauchy surfaces can be solved if the Cauchy problem for Kλ can be solved on
[0, T ]×U . Therefore, we may prove existence and uniqueness for the Cauchy problem for S via the
auxiliary operator Kλ for sufficiently large λ. Note that this works only if M is Cauchy-compact.

We now have all the ingredients to prove Theorem 3.1.

Proof of Theorem 3.1. First, the proof of Theorem 3.1 for a symmetric hyperbolic system on a
Cauchy-compact globally hyperbolic manifold is an immediate consequence of Theorem 3.2 since
it suffices to integrate (3.3) on [0, T ] after choosing −S† – which is again symmetric hyperbolic –
instead of S.

Let S be now a symmetric positive system of constant characteristic. By Lemma 2.11, Green
identity reads

(Φ |SΦ)MT
− (S†Φ |Φ)MT

= (Φ |σS(n♭)Φ)∂MT

where (· | ·)∂MT
is the induced L2-product on ∂MT. By adding 2(S†Φ |Φ)MT

and using that S is a
symmetric positive system we thus obtain

(Φ |σS(n)Φ)∂MT
+ 2(S†Φ |Φ)MT

= (Φ | (S + S
†)Φ)MT

≥ c(Φ |Φ)MT
, (3.4)
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for some c > 0, where we used condition (P) in Definition 2.4. Since Φ ∈ B†|MT
, by definition of

adjoint boundary space we have
(Φ |σS(n)Φ)∂MT

≤ 0

Therefore, (3.4) reduces to
c(Φ |Φ)MT

≤ 2(Φ |S†Φ)MT

and by the Cauchy-Schwarz inequality we obtain the desired inequality.
Let us now assume furthermore that the bilinear forms ≺ σS(n0) · | · ≻p and ≺ σS(nT) · | · ≻p

are positive definite on Ep for every p ∈ Σ0 resp. ΣT. Using again the Green identity and arguing
as above we can conclude that

−(Ψ |σS(n♭)Ψ)∂MT
+ 2(SΨ |Ψ)MT

= (Ψ | (S + S
†)Ψ)MT

≥ c(Ψ |Ψ)MT
,

for some c > 0, where we used condition (P) in Definition 2.4. This time the sesquilinear form
(Ψ |σS(n)Ψ)∂MT

is positive definite, since Ψ ∈ B|MT
and Ψ|Σ0 = 0 by assumption. Using again

the Cauchy-Schwarz inequality, we obtain the desired inequality.

4 L2-well-posedness in a time strip

The aim of this section is to prove the L2-well-posedness of the Cauchy problem for a Friedrichs
system of constant characteristic in a time stripMT := t−1((0, T )) for 0 < T ∈ R. We shall achieve
our goal in three steps: first, we shall prove the existence and uniqueness of weak solutions.
Second, we shall prove that any weak solution can be approximated by a sequence of smooth
sections by means of a localization procedure. Finally, we shall discuss the regularity of strong
solutions.

To this end, let ‖ · ‖L2(E|MT

) be the norm corresponding to the scalar product (2.2) and denote

L2-completion of Γc(E|MT

) by

L2(E|MT

) :=
(
Γc(E|MT

), (. | .)MT

)(. | .)MT .

4.1 Weak solutions

Definition 4.1. We call Ψ ∈ L2(E|MT

) a weak solution to the Cauchy problem (1.1) if the relation

(Φ | f)MT
= (S†Φ |Ψ)MT

holds for all Φ ∈ Γc(E|MT
) satisfying Φ|Σ0 = 0, Φ|ΣT

= 0 and Φ|∂M ∈ B†|MT
.

Theorem 4.2 (Weak existence). Let M be a globally hyperbolic manifold with timelike boundary
and let t : M → R be a Cauchy temporal function. For any 0 < T ∈ R denote with MT := t−1(0, T )
a time strip. Let finally S be a Friedrichs system and denote with GB a future admissible boundary
condition. Assume M to be Cauchy-compact when S is symmetric hyperbolic. Then there exists
a weak solution Ψ ∈ L2(E|MT

) to the Cauchy problem (1.1) restricted to MT.

Proof. By Theorem 3.1, we get that for every Φ ∈ Γc(E|MT

) satisfying Φ|Σ0 = 0, Φ|ΣT
= 0 and

Φ|∂M ∈ B†|MT
it holds

‖Φ‖L2(E|MT

) ≤ C̃‖S†Φ‖L2(E|MT

) . (4.1)

The latter inequality implies that the kernel of the operator S† acting on

dom S
† := {Φ ∈ Γc(E|MT

) | Φ|Σ0 = 0, Φ|ΣT
= 0, Φ|∂M ∈ B

†|MT
}
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is trivial. Let now ℓ : S†(dom S†) → C be the linear functional defined by

ℓ(Θ) = (Φ | f)MT

where Φ satisfies S†Φ = Θ. By the energy inequality (4.1), ℓ is bounded:

ℓ(Θ) =(Φ | f)MT
≤ ‖f‖L2(E|MT

) ‖Φ‖L2(E|MT

)

≤C̃‖f‖L2(E|MT

)‖S†Φ‖L2(E|MT

) = C̃‖f‖T‖Θ‖L2(E|MT

),

where in the first inequality we used the Cauchy-Schwarz inequality. Then ℓ can be extended to
a continuous functional defined on the L2-completion of S†(dom S†) denoted by H ⊂ L2(E|MT

).
Finally, by Riesz’s representation theorem, there exists an element Ψ ∈ L2(E|MT

) such that

ℓ(Θ) = (Θ |Ψ)MT
.

for all Θ ∈ S†(domS†). Thus, we obtain

(Φ | f)MT
= ℓ(Θ) = (Θ |Ψ)MT

= (S†Φ |Ψ)MT

for all Φ ∈ domS†, which proves the existence of a weak solution Ψ.

Note that weak solutions from Definition 4.1 have no reason to be unique since the Hilbert
space H from the proof of Theorem 4.2 does not coincide in general with L2(E|MT

).1

4.2 Strong solutions

Definition 4.3. We call Ψ ∈ L2(E|MT

) a strong solution of the initial-boundary value prob-

lem (1.1) if there exists a sequence of sections Ψk ∈ Γ(E|MT

) ∩ L2(E|MT

) such that Ψk|∂M ∈ B|MT

on ∂MT and

‖Ψk −Ψ‖L2(E|MT

)
k→∞−−−→ 0 and ‖SΨk − f‖L2(E|MT

)
k→∞−−−→ 0.

In order to show that any weak solution is a strong solution, we begin by localizing the
problem. Hence, consider an open covering {Uj}j of MT and let ϕj be a smooth partition of
unity subordinated to Uj.

Lemma 4.4. A section Ψ ∈ L2(E|MT

) is a weak solution of the Cauchy problem (1.1) if and only
if for any j, Ψj := ϕjΨ is a weak solution of





SΨj = fj := ϕjf+ σS(dϕj)Ψ

Ψj|Σ0 = hj := ϕjh

Ψj|∂M ∈ B|MT
.

(4.2)

Proof. To verify our claim, suppose Ψ satisfies SΨ = f in a weak sense, i.e. for any Φ ∈ Γc(E|MT

)

satisfying Φ|∂M ∈ B†|MT
, and Φ|Σ0

= 0, it holds (S†Φ |Ψ)T = (Φ | f)T . Using (Φ |ϕjΨ)MT
=

(ϕjΦ |Ψ)MT
and then Leibniz rule, it follows that

(S†Φ |Ψj)MT
= (ϕjS

†Φ |Ψ)MT
= (S†(ϕjΦ) |Ψ)MT

− ((S†ϕj)Φ |Ψ)MT
=

= (ϕjΦ | f)MT
+ (σS(dϕj)Φ |Ψ)MT

= (Φ |ϕj f+ σS(dϕj)Ψ)MT

This shows that Ψj is a weak solution of the Cauchy problem 4.2. Conversely, suppose that Ψj

is a weak solution of the Cauchy problem (4.2). Then by summing over j and using
∑

j dϕj = 0,
we find that a weak solution Ψ =

∑
j Ψj is a weak solution of SΨ = f.

1We thank Alexander Strohmaier for pointing a mistake out in the first version of the paper.
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Definition 4.5. Let U ⊂ MT be a compact subset in MT. We say that Ψ ∈ L2(E|U) is a locally
strong solution of the Cauchy problem (1.1) if there exists a sequence of sections Ψk ∈ Γ(E|U)
such that Ψk |∂M ∈ B|MT

on ∂MT ∩ U and

‖Ψk −Ψ‖L2(E|U
)

k→∞−−−→ 0 and ‖SΨk − f‖L2(E|U
)

k→∞−−−→ 0.

The strategy for the existence of strong solutions is the following. First, it suffices to prove the
existence of such solutions on compact subdomains of MT; then considering an exhaustion of MT

by compact subsets (Kp)p≥0 and associated cutoff functions χp ∈ C∞
c (MT, [0, 1]) with χp|Kp

= 1,
the fact that each χpΨ is a strong solution associated to χpf on Kp implies at the limit as p→ ∞
that Ψ is a strong solution associated to f on MT. Second, each compact set can be covered
by finitely many arbitrarily small open sets, therefore the existence of strong solutions can be
localized to small coordinate neighbourhoods, which is what we do next.

We concentrate on points in the boundary p ∈ ∂M ∩MT (the other points will even be easier
to handle since we do not have to care about boundaries) and firstly define a convenient chart as
follows, compare also Figure 2: Let Σp be the Cauchy surface of MT to which p belongs to. For

•
p

• ̺(t)

v

Σp

Σ̺(t)

B̂ε(p)

B̂ε(̺(t))

Σ̂p

Σ̺̂(t)

Figure 2: Fermi coordinates on each Cauchy surface.

q ∈ ∂M∩MT let Σ̂q := Σq ∩ ∂M∩MT be the corresponding Cauchy surface in the boundary. Let
̺ : [0, T ] → ∂M ∩MT be the timelike geodesic in ∂M ∩MT starting at p with velocity v ∈ Tp∂M

where v is a normalized, future-directed, timelike vector perpendicular to Σ̂p in ∂M ∩MT. Let

B̂ε(̺(t)) be the ε-ball in ∂Σ̺̂(t) around ̺(t). On these balls we choose geodesic normal coordinates

κ̂t : B
n−1
ε (0) ⊂ R

n−1 → B̂ε(̺(t)). Moreover, inside each Σ̺(t) we choose Fermi coordinates with

base B̂ε(̺(t)). Thus, we obtain a chart in Σ̺(t) around ̺(t) as

κ̃t : B
n−1
ε (0)× [0, ε] ⊂ R

n → Uε(B̂ε(̺(t)))

(y, z) 7→ exp
⊥,Σ̺(t)

κ̂t(y)
(z)

where Uε(B̂ε(̺(t))) := {q ∈ Σ̺(t) | distΣ̺(t)
(q, B̂ε(̺(t)) ≤ ε}, exp⊥,Σ̺(t)

κ̂t(y)
(z) is the normal exponen-

tial map in Σ̺(t) starting at κ̂t(y) with velocity perpendicular to Σ̺̂(t) = ∂Σ̺(t) pointing in the
interior and with magnitude z. Putting all this together we obtain a chart

κp : [0, T ] ×Bn−1
ε (0)× [0, ε] ⊂ R

n+1 → Up :=
⋃

t∈[0,ε]

Uε(B̂ε(̺(t))) ⊂ MT

(t, y, z̄) 7→ κ̃t(y, z̄).

For us here, the only purpose of those charts is to specify coordinates such that near the point
p the Cauchy problem is close enough to the Minkowski standard form.

Next we prove that weak solutions are strong solutions.
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Proposition 4.6. Let M be a globally hyperbolic manifold with timelike boundary and let t : M →
R be a Cauchy temporal function. For any 0 < T ∈ R denote with MT := t−1(0, T ) a time
strip. Let finally S be a Friedrichs system and denote with GB a future admissible boundary
condition. Assume M to be Cauchy-compact when S is symmetric hyperbolic. Then any weak
solution Ψ ∈ L2(E|MT

) to the Cauchy problem (1.1) restricted to MT is a strong solution.

Proof. On account of the above discussion, it is enough to check that any weak solution in
the coordinate neighbooorhood chosen above is a strong solution. For every such coordinate
neighbourhood κp, a symmetric positive system S has the form

S = σS(dt)∂t +

n−1∑

j=1

σS(dx
j)∂xj + σS(dz)∂z + C(t, y, z)

for some zero-order operator C. Therefore, in case the coordinate patch meets ∂MT, [63, Theorem
8] ensures that any weak solution is a strong solution. In case the coordinate patch does not
meet ∂MT, then using the classical results of Friedrichs [51] we can conclude. Recall that, by
Proposition 3.4, if S is a symmetric hyperbolic system, then M may be assumed to be Cauchy-
compact.

We are finally in the position to prove our first main result.

Proof of Theorem 1.1. To prove our claim it remains to show that, when (Ψ |σS(n)Ψ)∂MT
is

positive definite, then any strong solutions are unique. But this is a direct consequence of the
energy estimate (see Theorem 3.2). Indeed, suppose that there exists two strong solutions Ψ1

and Ψ2. Then their difference Ψ := Ψ1 −Ψ2 solves the homogeneous Cauchy problem, i.e. f = 0
and Ψ|Σ0 = 0. This implies that

‖Ψ‖L2(E|MT
) ≤ D̃‖SΨ‖L2(E|MT

) = D̃‖f‖L2(E|MT
) = 0 .

This ends the proof of Theorem 1.1.

4.3 Differentiability of the solutions for symmetric hyperbolic systems

It is well-known that the Cauchy problem for the backward heat equation is not well-posed. This
is because an initial data for the backward heat equation is a final condition for the forward heat
equation. The latter equation has a smoothening effect on the initial data, i.e. the solution is
smooth even if the initial data is only continuous. It is easy to understand that, there exists a class
of smooth initial data for the backward heat equation generating non-smooth solutions. Since the
heat equation can be reduced to a symmetric positive system (cf. Section 7.2), we cannot expect
the existence of smooth solutions for a generic symmetric positive system. Hence, in this section
we shall only focus only on the subclass of symmetric hyperbolic systems. In particular, we shall
see that, if the Cauchy data (f, h) are smooth and a compatibility condition is imposed, then the
strong solution is actually smooth. To this end, let t : M → R be a Cauchy temporal function
with gradient tangent to the boundary, as in Theorem 2.3, and write the symmetric hyperbolic
system S as

S = σS(dt)∇t − H

where H is a first-order linear differential operator which differentiates only in the directions
that are tangent to Σ and where ∇ is any fixed metric connection for ≺ · | · ≻. Finally let
GB+ , GB− : E|∂M −→ E|∂M be future and past admissible boundary conditions for S, in particular
B± := ker(GB±) defines the future resp. past admissible boundary space for S along ∂M. The
compatibility conditions of order k ≥ 0 for h ∈ Γ(E|Σ0

) and f ∈ Γ(E) read

k∑

j=0

(k)!

j!(k − j)!

(
∇j

tGB+

)∣∣∣
∂Σ0

hk−j = 0, (4.3)
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and
k∑

j=0

(k)!

j!(k − j)!

(
∇j

tGB−

)∣∣∣
∂Σ0

hk−j = 0, (4.4)

where the sequence (hk)k of sections of E|∂Σ0
is defined inductively by h0 := h and

hk :=

k−1∑

j=0

(k − 1)!

j!(k − 1− j)!
Hj |∂Σ0

hk−1−j +∇k−1
t

(
σ−1
S

(dt)f)|∂Σ0
for all k ≥ 1,

where Hj := [∇t,Hj−1] and H0 := σS(dt)
−1H.

Notation 4.7. We denote the space of data which satisfy the compatibility conditions as

Γ(E|MT

)× Γ(E|Σ0
) := {(f, h) ∈ Γ(E|MT

)× Γ(E|Σ0
) | (4.3) and (4.4) hold } .

The compatibility conditions (4.3) and (4.4) up to order k must be fulfilled in order for the
solution of the Cauchy-problem, if it exists, to be Ck. Those conditions are sufficient for nowhere
characteristic symmetric hyperbolic systems [64]. However, if the symmetric hyperbolic system
is of nonvanishing constant characteristic, full regularity of the solution cannot be expected in
general, see e.g. [67]. In that case, as shown in [63], there exists a good notion of tangential
regularity. Given the Cauchy hypersurface Σ0 ⊂ M where the initial condition is fixed, we
say that a vector field X ∈ Γ(TΣ0) is tangential to ∂Σ0 if and only if X|∂Σ0

∈ Γ(T∂Σ0), i.e.

g(X, n)q = 0 for every q ∈ ∂Σ0. We denote the space of tangential vector fields as

Xtan(Σ0) := {X ∈ Γ(TΣ0) | g(X, n)q = 0 for all q ∈ ∂Σ0} .

As in [66], we define – at least in the case where M is Cauchy-compact, otherwise a metric along
Σ0 has to be fixed – for any m ≥ 0 the anisotropic Sobolev space Hm

∗ (E|Σ0
) as

Hm
∗ (E|Σ0

) :=
{
φ ∈ L

2(E|Σ0
), ∇X1 · · · ∇Xh

∇X′
1
· · · ∇X′

k
φ ∈ L

2(E|Σ0
)

∀X1, . . . ,Xh,X
′
1, . . . ,X

′
k

}
,

whereX1, . . . ,Xh,X
′
1, . . . ,X

′
k are smooth tangent vector fields on Σ0 withX1, . . . ,Xh ∈ Xtan(Σ0),

X ′
1, . . . ,X

′
k /∈ Xtan(Σ0) as well as h + 2k ≤ m. The space Hm

∗ (E|Σ0
) can be endowed with a

Hilbert-space structure, see [66, p. 673]. It is easy to see that Hm
∗ (E|Σ0

) ⊂ H [m
2
](E|Σ0

), in
particular Hm

∗ (E|Σ0
) embeds continuously into the space Γp(E|Σ0

) of Cp sections of E|Σ0
as soon

as m > n
2 + p by the Sobolev embedding theorem for compact manifolds with C1 boundary, see

e.g. [1, Ch. V]. For the sake of completeness, we recall part of Secchi’s main result [66, Theorem
2.1] in our context: Fix any integers m ≥ 2[n2 ] + 6 and 1 ≤ s ≤ m. Assume Σ0 to be compact
with smooth boundary and of nonzero and nonmaximal constant characteristic w.r.t. a symmetric
hyperbolic system S on M. Let GB to be a future admissible boundary condition for S along ∂M.
Given f ∈ ⋂s

j=0H
j([0,T],Hs−j

∗ (Σ0)) and h ∈ Hs
∗(Ω), assume that the compatibility conditions

(4.3) are satisfied up to order s − 1 and that hj ∈ Hs−j
∗ (Σ0) for all j = 0, . . . , s − 1. Then there

exists a unique Ψ ∈ ⋂s
j=0 Γ

j([0,T],Hs−j
∗ (Σ0)) solution of the initial boundary value problem

SΨ = f on MT, Ψ|Σ0
= h and Ψ|∂M ∈ B|MT

. Note in particular that, if f, h are smooth on M, then

so must be Ψ because it lies in Γj
(
[0, T ],Γp(E|Σ0

)
)
for any j, p.

Theorem 4.8. Let M be a globally hyperbolic manifold with timelike boundary and let S be a
symmetric hyperbolic system of constant characteristic. If the data (f, h) are smooth and satisfy the
compatibility conditions (4.3) and (4.4), then the strong solution Ψ of the Cauchy problem (1.1)
lies in Γ(E|MT

).
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Proof. First let p ∈ ∂M ∩ΣT for some and let ̺ : [0,T] → ∂M be a timelike curve with ̺(0) ∈ Σ0

and p = ̺(T). We fix ε > 0 such that we have Fermi coordinates on a “cube” U̺(t) around
̺(t) as in Section 4.2 for all t ∈ [0,T]. This is always possible since the image of ̺ is compact

and everything depends smoothly on the base point. For Ũp :=
⋃

t∈[0,T]

U̺(t) we know that the

compatibility conditions (4.3) and (4.4) are fulfilled along Σ0 by assumption. Thus, [66, Theorem
2.1] tells us that the strong solution Ψ lies in Γ(E|

Ũp
). If S is nowhere characteristic, Ψ is

actually smooth on account of [64, Theorem 3.1]. For p ∈ M \ ∂M we choose a timelike curve
̺ : [0,T] → M \ ∂M with ̺(0) ∈ Σ0 and p = ̺(T) and proceed as before. It is even easier since we
can just use geodesic normal coordinates in the Cauchy hypersurfaces around each ρ(t).

5 Global well-posedness

Up to now we have obtained a strong solution in any time strip MT in Theorem 1.1 and showed
that, if the Cauchy data (f, h) fulfill the compatibility condition (4.3), then the solution is actually
smooth (cf. Theorem 4.8). We can now easily put everything together to obtain global well-
posedness of the Cauchy problem for a symmetric hyperbolic system of constant characteristic.

Proof of Theorem 1.2. Fix h ∈ Γc(E|Σ0
). On account of Theorem 4.2, for any T ∈ [0,∞) there

exists a weak solution ΨT to the Cauchy problem (1.1) in the time strip MT := t−1([0, T ]). By
Theorem 4.8, we get in particular that ΨT is smooth in the time strip MT . By uniqueness of
the solution, we get ΨT1 |t−1[0,T1] = ΨT2 |t−1[0,T1] for all T1 ≤ T2 ∈ [0,∞). By combining a similar
argument for negative time with Lemma 2.16, we get existence of solutions for negative times.
Finally, the stability of the Cauchy problem follows by [4, Section 5], the fact that we have a
boundary condition playing no role in the proof.

A byproduct of the well-posedness of the Cauchy problem is the existence of Green operators:

Proposition 5.1. A symmetric hyperbolic system of constant characteristic on a globally hyper-
bolic manifold with timelike boundary coupled with an admissible boundary condition is Green-
hyperbolic, i.e., there exist linear maps, called advanced/retarded Green operator respectively,
G± : Γc(E) → Γsc,B±(E) satisfying

(i) S ◦ G±f = f for all f ∈ Γc(E) and G± ◦ Sf = f for all f ∈ Γc,B±(E);

(ii) supp (G±f) ⊂ J±(supp f) for all f ∈ Γc(E) ,

where J± denote the causal future (+) and past (−) and Γ♯,B±(E) ⊂ Γ♯(E), ♯ ∈ {sc, c} denotes the
space of smooth sections on E (with ♯ support property) which fulfill the B±-boundary condition.

Proof. Let f ∈ Γc(E). We choose t0 ∈ R such that supp f ⊂ J+(Σt0). By Theorem 1.2, there
exists a unique solution Ψ = Ψ(f) to the Cauchy problem





SΨ = f

Ψ|Σt0
= 0

Ψ|∂M ∈ B+.

We set G+f := Ψ and notice that S ◦G+f = SΨ = f. Note that by the finite speed of propagation,
(cf. Proposition 3.3), G+f ∈ Γsc,B+(E). Moreover, G+ ◦ SΨ = G+f = Ψ which shows (i). By
Proposition 3.3, we obtain suppG+f ⊂ J+(supp f) and this concludes the proof of (ii) for G+.
The existence of the retarded Green operator G− is proven analogously.
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6 Examples of symmetric hyperbolic systems

6.1 The Euler momentum equation

We briefly discuss an elementary example of a symmetric hyperbolic system where the notion
of future and past admissible boundary conditions is essential. Most of what we present here is
inspired from [64, Example p.305], [5, Exercise 3.9.22] and can be found in [38].

We consider M := R×Σ with metric g := −dt2⊕h, where (Σn, h) is an arbitrary Riemannian
manifold with nonempty boundary. Let E := π∗2TΣ → M be the tangent bundle of Σ pulled
back onto M via the second canonical projection π2 : M → Σ. Given any section u0 of E, that is,
any possibly time-dependent smooth vector field along Σ, we define the so-called linearized Euler
operator

S := ∂t +∇u0 +∇·u0

acting on sections of E. Because of σS(ξ) = ξ(∂t + u0) · Id for every ξ ∈ T∗M, the operator S is
symmetric and is hyperbolic if and only if h(u0, u0) ≤ 1 everywhere on M. Denoting by n the
outward unit normal to ∂M, we have σS(n

♭) = h(n, u0) · Id = 〈n, u0〉 · Id , so that S is of constant
characteristic as soon as 〈n, u0〉 vanishes either identically or nowhere along ∂M:

1. If 〈n, u0〉 > 0 along ∂M, then S is nowhere characteristic along ∂M and the only possible
future and past admissible conditions for S along ∂M are B+ = E|∂M and B− = {0}.

2. If 〈n, u0〉 = 0 along ∂M, then S is of constant characteristic and the only possible future
and past admissible conditions for S along ∂M are B± = E|∂M .

3. If 〈n, u0〉 < 0 along ∂M, then S is nowhere characteristic along ∂M and the only possible
future and past admissible conditions for S along ∂M are B+ = {0} and B− = E|∂M .

From now on, we assume Σ := R
n
+ = {x = (x1, · · · , xn) ∈ R

n |xn ≥ 0} with standard Euclidean
metric and u0 to be the restriction of any nonzero parallel vector field from R

n to R
n
+. Up to

rescaling u0, we may assume that h(u0, u0) ≤ 1 on R
n
+. We fix Σ0 := {0} × Σ as a Cauchy

hypersurface in M and v0 ∈ Γ(E|Σ0
) as initial data. Consider the Cauchy problem for S:





Su = 0 on M

u|Σ0
= v0 on Σ0

u|J+(Σ0)∩∂M
∈ B+ along J+(Σ0) ∩ ∂M

u|J−(Σ0)∩∂M
∈ B− along J−(Σ0) ∩ ∂M

(6.1)

The equation Su = 0 on M with initial data u|Σ0
= v0 along Σ0 has a unique solution u which

can be explicitely written as
u(t, x) = v0(x− tu0)

for all (t, x) ∈ M. Clearly, if 〈n, u0〉 > 0 along ∂M (which is the case as soon as this inequa-
lity is satisfied at one point of ∂M), then no boundary condition can be imposed for u along
J+(Σ0) ∩ ∂M, whereas u must vanish along J−(Σ0) ∩ ∂M, otherwise there would exist infinitely
many solutions to (6.1). This is precisely what the boundary conditions B± prescribe in that
case. Analogously, if 〈n, u0〉 < 0 along ∂M, then no boundary condition can be imposed for u
along J−(Σ0) ∩ ∂M, whereas u must vanish along J+(Σ0) ∩ ∂M, otherwise the same violation of
uniqueness for solutions to symmetric hyperbolic systems occurs. If 〈n, u0〉 = 0 along ∂M, then
no boundary condition at all, whether in the past or the future of Σ0, can be imposed, which is
consistent with the fact that the curves t 7→ x− tu0 in that case run either entirely along ∂M or
in M \ ∂M.

In all three cases, the compatibility conditions (4.3) and (4.4) for the solution u only mean
that v0 vanishes along ∂Σ as well as all its time derivatives.
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6.2 The classical Dirac operator

Let (M, g) be a globally hyperbolic manifold of dimension n + 1 and assume to have a spin
structure i.e. a twofold covering map from the Spin0(1, n)-principal bundle PSpin0 to the bundle
of positively-oriented tangent frames PSO+ of M such that the following diagram is commutative:

PSpin0 × Spin0(1, n)

��

// PSpin

��
&&◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

PSO+ × SO(1, n) // PSO+ // M

The existence of spin structures is related to the topology of M. A sufficient (but not necessary)
condition for the existence of a spin structure is the parallelizability of the manifold. Therefore,
since any 3-dimensional orientable manifold is parallelizable, it follows by Theorem 2.3 that any
4-dimensional globally hyperbolic manifold admits a spin structure. Given a fixed spin structure,
one can use the spinor representation to construct the spinor bundle, i.e. the complex vector
bundle

SM := Spin0(1, n)×ρ C
N

where ρ : Spin0(1, n) → Aut(CN ) is the complex Spin0(1, n) representation and N := 2⌊
n+1
2

⌋.
The spinor bundle comes together with the following structures:

- a natural Spin0(1, n)-invariant indefinite fiber metric

≺ · | · ≻p: SpM× SpM → C;

- a Clifford multiplication, i.e. a fiber-preserving map

γ : TM → End(SM)

which satisfies for all p ∈ M, u, v ∈ TpM and ψ, φ ∈ SpM

γ(u)γ(v) + γ(v)γ(u) = −2g(u, v)IdSpM , ≺ γ(u)ψ |φ ≻p=≺ ψ | γ(u)φ ≻p .

Definition 6.1. The (classical) Dirac operator D is the operator defined as the composition of
the metric connection ∇S on SM, obtained as a lift of the Levi-Civita connection on TM, and the
Clifford multiplication:

D = γ ◦ ∇SM : Γ(SM) → Γ(SM) .

In local coordinates and with a trivialization of the spinor bundle SM, the Dirac operator
reads as

Dψ =
n∑

µ=0

εµγ(eµ)∇SM
eµ ψ

where {eµ} is a local Lorentzian-orthonormal frame of the tangent bundleTM and εµ = g(eµ, eµ) =
±1.

Proposition 6.2. The classical Dirac operator D on globally hyperbolic spin manifolds M with
timelike boundary is a nowhere characteristic symmetric hyperbolic system.

Proof. Our claim follows from [62, Proposition 2.15] and [57, Corollary 3.12].

Examples of admissible boundary conditions

The aim of this section is to test whether particular known boundary conditions for the
Dirac operator are admissible in the sense of Definition 2.13. In particular, we shall show that
the Lorentzian counterpart of the standard Riemannian boundary conditions are admissible, see
e.g. [56, Section 1.5].
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Lorentzian chirality boundary conditions. Given a so-called chirality operator G on SM,
i.e. a parallel involutive antiunitary (with respect to ≺ · | · ≻) endomorphism-field of SM that
anti-commutes with Clifford multiplication by vectors, one may define the so-called chirality
boundary space which is defined as the range of the map

πCHI :=
1

2
(Id− γ(n)G)

where γ(n) denotes Clifford multiplication for the outward-pointing unit normal along ∂M.
The map πCHI is clearly a linear projection since it satisfies π2CHI = πCHI. Furthermore, the range
of πCHI is the pointwise eigenspace of γ(n)G to the eigenvalue −1 and G exchanges that eigenspace
with the eigenspace to the eigenvalue 1 since {G, γ(n)G} = 0. Therefore, the range of πCHI has

dimension 2[
n
2 ]−1, which is the number of nonnegative – actually positive – eigenvalues of the

endomorphism σD(n
♭). Since G is skew-Hermitian with respect to the indefinite spin product

≺ · | · ≻, the complex number ≺ Gψ |ψ ≻ must be imaginary for any ψ ∈ SM|∂M, therefore we
have, for any ψ ∈ SM|∂M,

≺ σD(n
♭)πCHIψ |πCHIψ ≻ = ≺ γ(n)πCHIψ |πCHIψ ≻

= ≺ GπCHIψ |πCHIψ ≻,

whose right-hand side is simultaneously real and imaginary and hence must vanish. This proves
the chirality condition to be admissible. Analogous arguments show that the range of πCHI :=
1
2 (Id + γ(n)G) is also an admissible boundary space.

Example 6.3. An important example of a chirality operator is given by

G := i[
n
2 ]γ(e0)γ(e1) . . . γ(en) : SM −→ SM,

where (e0, e1, . . . , en) is any pointwise Lorentzian orthonormal basis of TM. Up to an imaginary
scalar factor, G is the action of the volume form of (M, g). It is easy to see that G is involutive
and parallel and that, if n is odd (i.e, M has even dimension), then G is skew-Hermitian (hence
antiunitary) with respect to ≺ · | · ≻ and anti-commutes with the Clifford action of any tangent
vector. Therefore, if M has even dimension, then G is a chirality operator in the above sense.

Riemannian chirality boundary conditions. Let G be a chirality operator as before, but
we now assume G to commute with γ(∂t) and to be unitary (with respect to ≺ · | · ≻). Consider
the projector operator

πCHI :=
1

2

(
Id +

i

β
γ(n)γ(∂t)G

)
.

Since the Riemannian Clifford multiplication on the spacelike slice Σt is related to the Lorentzian
one by

γΣt(X) ≃ ı

β
γ(X)γ(∂t) (6.2)

for all X ∈ TΣt, we can interpret the range of πCHI to be a Riemannian chirality boundary space.
Contrary to the (Lorentzian) chirality boundary condition, the map πCHI is an orthogonal pro-
jection: it clearly satisfies π2CHI = πCHI and, for any ψ,ϕ ∈ SM,

≺ πCHIψ |ϕ ≻ =
1

2
≺ ψ +

ı

β
γ(n)γ(∂t)Gψ |ϕ ≻

=
1

2

(
≺ ψ |ϕ ≻ − 1

β
≺ Gψ | ıγ(n)γ(∂t)ϕ ≻

)

=
1

2
≺ ψ |ϕ+

ı

β
γ(n)γ(∂t)Gϕ ≻

= ≺ ψ |πCHIϕ ≻ .
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Moreover, the range of πCHI is the pointwise eigenspace of
ı
βγ(n)γ(∂t)G to the eigenvalue 1 and G

exchanges that eigenspace with the eigenspace to the eigenvalue −1 since {G, i
βγ(n)γ(∂t)G} = 0.

Therefore, the range of πCHI has dimension 2[
n
2 ]−1, which is the number of nonnegative eigenvalues

of the endomorphism σD(n
♭). As another consequence of the above computation, we have, for

any ψ ∈ SM,

γ(n)πCHIψ = − ı

β
γ(∂t)GπCHIψ,

where γ(∂t)G is Hermitian with respect to ≺ · | · ≻ since [G, ∂t] = 0 by assumption. Now, for any
ψ ∈ γ(SM), we obtain

≺ σD(n
♭)πCHIψ |πCHIψ ≻ = ≺ γ(n)πCHIψ |πCHIψ ≻

= − i

β
≺ γ(∂t)GπCHIψ |πCHIψ ≻,

and the right-hand side of the last identity is simultaneously real and imaginary, therefore van-
ishes. This proves the Riemannian chirality boundary condition to be admissible. Analogous

arguments show that the range of πCHI :=
1
2

(
Id− i

βγ(n)γ(∂t)G
)
is also an admissible boundary

space.

Lorentzian MIT bag boundary conditions. Consider the so-called MIT bag boundary
space, which is defined as the range of

πMIT :=
1

2
(Id− ıγ(n)) ,

where γ(n) is again the Lorentzian Clifford multiplication for the outward-pointing unit normal
vector along ∂M. It is clear it is a pointwise linear projection whose range is the pointwise
eigenspace of ıγ(n) to the eigenvalue −1 and that is exchanged with the other eigenspace (to
the eigenvalue 1) by the Clifford multiplication of any nonzero vector that is orthogonal to n.

Therefore, the range of πMIT has dimension 2[
n
2 ]−1, which is the number of nonnegative eigenvalues

of the endomorphism σD(n
♭). Moreover, for any ψ ∈ SM|∂M,

≺ σD(n
♭)πMITψ |πMITψ ≻β = ≺ γ(n)πMITψ |πMITψ ≻

= ı ≺ πMITψ |πMITψ ≻,

which is simultaneously real and imaginary, therefore vanishes. This proves the MIT bag boun-
dary condition to be also admissible.

Analogous arguments show that the range of πMIT := 1
2 (Id + ıγ(n)) is also an admissible

boundary space.

Riemannian MIT boundary condition. We shall now present the Riemannian counterpart
of the MIT boundary condition, replacing the Clifford multiplication on M by that along each
Σt. Motivated by (6.2), consider the operator

πMIT :=
1

2

(
Id− 1

β
γ(n)γ(∂t)

)
.

As the (Lorentzian) MIT boundary condition, it is a projection whose range has dimension 2[
n
2 ]−1.

Moreover, since for any ψ ∈ SM it holds

γ(n)πMITψ =
1

β
γ(∂t)πMITψ,
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this implies

≺ σD(n
♭)πMITψ |πMITψ ≻ = ≺ γ(n)πMITψ |πMITψ ≻

=
1

β
≺ γ(∂t)πMITψ |πMITψ ≻≥ 0 .

This proves the Riemannian MIT bag boundary space to be also admissible for the forward

Cauchy problem. Notice that the range of πMIT := 1
2

(
Id + 1

βγ(n)γ(∂t)
)

is admissible for the

backward Cauchy problem since we have

≺ σD(n
♭)πMITψ |πMITψ ≻ = − 1

β
≺ γ(∂t)πMITψ |πMITψ ≻≤ 0 .

6.3 The geometric wave operator

Let V be a Hermitian vector bundle of finite rank and consider a normally hyperbolic operator
P : Γ(V) → Γ(V) , i.e. a 2nd-order linear differential operator with principal symbol σP defined
by

σP(ξ) = −g(ξ, ξ) · IdV ,
for every ξ ∈ T∗M. Then P can be turned into a symmetric hyperbolic system of a first order,
see e.g. [5, Remark 3.7.11]. First, there exists a unique covariant derivative ∇ on V such that
P = ∇∗∇ + c for some zero-order term c, see [8, Lemma 1.5.5]. By Theorem 2.3, the globally
hyperbolic manifold M can be written as (R × Σ,−β2dt2 + ht), where each {t} × Σ is a smooth
spacelike Cauchy hypersurface of M, the function β is smooth and positive R× Σ and (ht)t∈R is
a smooth one-parameter-family of Riemannian metrics on Σ. Then computations show that

∇∗∇ =
1

β2
∇2

∂t +
1

2β2

(
trht(∂tht)−

∂tβ
2

β2

)
∇∂t + (∇Σ)∗∇Σ − 1

2β2
∇Σ

gradht (β
2),

where ∇Σ is the restricted covariant derivative on Σ, that is, ∇Σ
Xu := ∇Xu for all X ∈ TΣ and

u ∈ Γ(V). Therefore, P can be written under the form

P =
1

β2
∇2

∂t + b0∇∂t + (∇Σ)∗∇Σ +∇Σ
b + c,

where b0 := 1
2β2

(
trht(∂tht)− ∂tβ2

β2

)
∈ C∞(R × Σ,R), b := − 1

2β2 gradht
(β2) ∈ Γ(π∗2TΣ). This

allows us to rewrite the Cauchy problem for P with boundary condition ΠB : V⊕(T∗Σ⊗V)⊕V → B





Pu = f

u|Σt0
= h

∇∂tu|Σt0
= h′

(∇V
∂tu,∇Σu, u)|∂M ∈ B

(6.3)

as a Cauchy problem for S : Γ(E) → Γ(E) with boundary condition ΠB : E → B,





SΨ := (A0∇V
∂t
+AΣ∇Σ + C)Ψ = f

Ψ|Σt0
= h

Ψ|∂M ∈ B

(6.4)

where E is the Hermitian vector bundle E := V ⊕ (T∗Σ⊗ V)⊕ V, B ∈ Γ(End(E)) and

Ψ :=



∇V

∂t
u

∇Σu
u


 , f :=



f
0
0


 , A0 :=




1
β2 0 0

0 1 0
0 0 1


 ,

23



AΣ =




0 −trht 0
−1 0 0
0 0 0


 C :=



b0 by c

0 1
2h

−1
t ∂thty R∂t,·

−1 0 0


 .

The Cauchy problem (6.4) should be read as follows: ∇∂t∇Σu is defined by

(
∇∂t∇Σu

)
X

:= ∇∂t∇Σ
Xu−∇Σ

(∇∂t
X)Σu

for all X ∈ Γ(π∗2TΣ). The term ∇ΣΨ is a section of (T∗Σ⊗V)⊕(T∗Σ⊗T∗Σ⊗V)⊕(T∗Σ⊗V) → M,
the trace coefficient contracting T∗Σ ⊗ T∗Σ of course. The coefficient 1

2h
−1
t ∂thty is more or less

the Weingarten map (or shape operator) put into the TΣ slot. The curvature tensor R is that
of ∇ and is by convention given for all X,Y ∈ TM by RX,Y = [∇X ,∇Y ] − ∇[X,Y ]. The only
difference with Bär’s expression for the first-order-operator, apart from swapping the first and
the second components of Ψ, is the vanishing of the (2, 1)-coefficient in the zero-order matrix (no
coefficient πt(·)), which plays no role anyway for conditions (S) and (H) since those deal with the
principal symbol.

Remark 6.4. Notice that, while any solution u of the Cauchy problem (6.3) gives a solution Ψ
to the Cauchy problem (6.4), the contrary does not hold. Indeed, the space of initial data for
Ψ is “too large” and some a suitable restriction has to be imposed. For further details we refer
to [5, Remark 3.7.11].

We summarize the previous observation in the following proposition.

Proposition 6.5. Any normally hyperbolic operator P on a globally hyperbolic manifold M with
timelike boundary can be reduced to a symmetric hyperbolic system S of constant characteristic
given as in (6.4).

Proof. As in [5, Remark 3.7.11], Conditions (S) and (H) can be easily checked. Moreover, by
choosing a Cauchy temporal function with gradient tangent to ∂M, it is easy to see that S is of
constant characteristic. Indeed, since

σS(n
b) =




0 −nby 0

−n♭⊗ 0 0
0 0 0


 ,

the pointwise kernel of σS(n
♭) is given by

ker(σS(n
♭)) = {0} ⊕ (n♭)⊥ ⊗ V ⊕ V,

which clearly has constant rank.

Remark 6.6. Notice that σS(n
♭) has pointwise three eigenvalues: 0 of multiplicity nk, where

n + 1 = dim(M) and k = rkR(V), 1 and −1, both of the same multiplicity k. Actually, for any
ε ∈ {±1} and for any Ψ = (Ψ1,Ψ2,Ψ3) ∈ E, we have

σS(n
♭)Ψ = −εΨ ⇐⇒ (−n♭yΨ2,−n♭ ⊗Ψ1, 0) = −ε(Ψ1,Ψ2,Ψ3)

⇐⇒





n♭yΨ2 = εΨ1

n♭ ⊗Ψ1 = εΨ2

Ψ3 = 0

⇐⇒
{

n♭ ⊗Ψ1 = εΨ2

Ψ3 = 0

⇐⇒ Ψ = (Ψ1, εn
♭ ⊗Ψ1, 0)

⇐⇒ Ψ =
((

Id⊕ εn♭⊗
)
(Ψ1), 0

)
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that is,

ker(σS(n
♭) + ε) =

(
Id⊕ εn♭⊗

)
(V)⊕ {0}.

As a consequence, since Id⊕εn♭⊗ is injective, ker(σS(n
♭)+ε) has pointwise rank k. In particular,

∑

λ≥0

dim(ker(σS(n
♭)− λ)) = (n + 1)k.

Definition 6.7. Let P be a normally hyperbolic operator. We say that B′ is an admissible
boundary space for P if there exists an admissible boundary space B for S such that the Cauchy
problems are equivalent.

Before showing some example of boundary conditions ΠB′ for P which reduce to admissible
boundary condition ΠB for S, let us state and prove the main result of this section:

Theorem 6.8. Let M be a globally hyperbolic manifold with timelike boundary and denote with
B′ an admissible boundary space for a normally hyperbolic operator P : Γ(V) → Γ(V). Then the
Cauchy problem for P is well-posed, namely for any data (f, h, h′) satisfying the compatibility
condition for any k ≥ 0, there exists a unique smooth solution u ∈ Γ(V) to the mixed initial-
boundary value problem (6.3) which depends continuously on the data (f, h, h′).

Note that, when we require (f, h, h′) to satisfy the compatibility condition (4.3) for any k ≥ 0,
we mean that the corresponding data (f, h) = ((f, 0, 0), (h′ ,∇Σh, h)) for the first-order symmetric
hyperbolic system S satisfies (4.3) for any k ≥ 0. The proof is a straightforward consequence of
Theorem 1.2.

Examples of admissible boundary conditions

The aim of this section is to test whether particular known boundary conditions for normally
hyperbolic operators P are admissible in the sense of Definition 6.7.

Neumann-like boundary conditions. We look at a particular boundary condition, namely
the condition

∇Σ
n
u = 0 (6.5)

along ∂M. We could call it the Neumann-like boundary condition. In that case, for the corre-
sponding symmetric hyperbolic systems S the boundary space B coincides with the kernel of the
pointwise projection

GB : E|∂M −→ E|∂M , GB :=




0 ny 0
0 0 0
0 0 0


 .

That kernel can be written explicitly down

ker(GB) = V ⊕ (n♭)⊥ ⊗ V ⊕ V

and direct computations shows that dim(ker(GB)) = (n + 1)k pointwise. Furthermore, for any
Ψ = (Ψ1,Ψ2,Ψ3) ∈ ker(GB),

〈σS(n♭)Ψ,Ψ〉 = 〈(−nyΨ2,−n♭ ⊗Ψ1, 0), (Ψ1,Ψ2,Ψ3)〉
= −2ℜe(〈nyΨ2,Ψ1〉) = 0

where we used nyΨ2 = ∇Σ
n
u = 0 since Ψ ∈ ker(GB). This proves (6.5) to be admissible in the

sense of Definition 6.7.
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Transparent boundary conditions. The transparent boundary condition is defined as

∇Σ
n
u = −b∇∂tu (6.6)

along ∂M for some real parameter b, see e.g. [42, Eq. (1)]. In that case, the bundle B coincides
with the kernel of the pointwise projection

GB : E|∂M −→ E|∂M , GB :=




b ny 0
0 0 0
0 0 0


 ,

that is,

B = ker(GB)

=

{(
−1

b
nyX2,X2,X3

)
| (X2,X3) ∈ T

∗Σ⊗ V ⊕ V

}

=

(
−1

b
ny · ⊕ Id

)
(T∗Σ⊗ V ) ⊕ V.

In particular, rkR(B) = (n+ 1)k, as required. Moreover, for any X = (X1,X2,X3) ∈ B,

〈σS(nb)X,X〉 = −2ℜe(〈nyX2,X1〉) =
2

b
|nyX2|2,

which is nonnegative as soon as b ≥ 0. This shows (6.6) to be admissible for the forward Cauchy
problem when b ≥ 0, while if admissible for the backward Cauchy problem if b ≤ 0.

An example of a non-admissible boundary condition.

Robin boundary condition for differential forms. In the particular situation where V =
ΛpT∗M is the bundle of differential forms on M for some p ∈ {0, 1, . . . , n + 1}, there is another
boundary condition called the Robin boundary condition. It is defined, for any p-form ω on M

by {
ι∗(nydω) = τι∗ω
ι∗(nyω) = 0

,

where τ is a real parameter. Here d denotes the exterior differential as usual and ι : ∂M −→ M

is the inclusion map. The case where τ = 0 is considered (at least by some geometric analysts)
as the “standard” generalization of the Neumann boundary condition for forms; it is usually
called “absolute boundary condition” in the literature (there are also relative ones). For Robin
boundary conditions – we let τ be any real parameter for the time being, so this includes the
absolute boundary condition – the bundle B is the kernel of the pointwise projection

GB :=




−dt ∧ (ny·) ι∗(ny·)−∑n
j=2 e

∗
j ∧ ι∗(nyejy·) −τι∗

0 0 0
0 0 ι∗(ny·)


 ,

where (ej)2≤j≤n denotes any pointwise o.n.b. of T (∂M∩Σ). Next we make B a bit more precise.

It is already clear that

ker (ι∗(ny·)) = {ω ∈ V | ι∗ω = ω} = Λp
T
∗∂M,
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whose pointwise rank is

(
n
p

)
. To see what condition the first line in the above matrix GB

gives, we split any ω ∈ V as follows:

ω = n∗ ∧ ω(1) + ωT

= n∗ ∧ dt ∧ (ω(1))(t) + n∗ ∧ (ω(1))∂M∩Σ + ωT

= n∗ ∧ dt ∧ (ω(1))(t) + n∗ ∧ (ω(1))∂M∩Σ + dt ∧ (ωT )(t) + (ωT )∂M∩Σ,

where (ω(1))(t) ∈ Λp−2T∗(∂M ∩ Σ), (ω(1))∂M∩Σ, (ωT )(1) ∈ Λp−1T∗(∂M ∩ Σ) and (ωT )∂M∩Σ ∈
ΛpT∗(∂M ∩ Σ). For any X = (X1,X2,X3) ∈ B, we write X2 =

∑n
j=1 e

∗
j ⊗ ωj, where (e1 =

ν, e2, . . . , en) is a pointwise o.n.b. of TΣ and ωj ∈ V for all j ≥ 1. Then, setting Ω := −dt ∧
(nyX1)+ ι∗(X2(n))−

∑n
j=2 e

∗
j ∧ ι∗(nyX2(ej))− τι∗X3, we compute and use ι∗X3 = X3 as well as

ι∗(nyωj) = nyωj:

Ω = −dt ∧ (nyX1) + ι∗ω1 −
n∑

j=2

e∗j ∧ (nyωj)− τX3

= −dt ∧X(1)
1 + ωT

1 −
n∑

j=2

e∗j ∧ ω
(1)
j − τX3

= −dt ∧
(
dt ∧ (X

(1)
1 )(t) + (X

(1)
1 )∂M∩Σ

)
+ dt ∧ (ωT

1 )
(t) + (ωT

1 )
∂M∩Σ

−
n∑

j=2

e∗j ∧
(
dt ∧ (ω

(1)
j )(t) + (ω

(1)
j )∂M∩Σ

)
− τdt ∧ (X3)

(t) − τX∂M∩Σ
3

= −dt ∧ (X
(1)
1 )∂M∩Σ + dt ∧ (ωT

1 )
(t) + (ωT

1 )
∂M∩Σ

+dt ∧




n∑

j=2

e∗j ∧ (ω
(1)
j )(t)


−

n∑

j=2

e∗j ∧ (ω
(1)
j )∂M∩Σ − τdt ∧ (X3)

(t)

−τX∂M∩Σ
3

= dt ∧


(ωT

1 )
(t) − (X

(1)
1 )∂M∩Σ +

n∑

j=2

e∗j ∧ (ω
(1)
j )(t) − τ(X3)

(t)




+(ωT
1 )

∂M∩Σ −
n∑

j=2

e∗j ∧ (ω
(1)
j )∂M∩Σ − τX∂M∩Σ

3 .

Therefore, Ω = 0 if and only if





(ωT
1 )

(t) − (X
(1)
1 )∂M∩Σ +

∑n
j=2 e

∗
j ∧ (ω

(1)
j )(t) − τ(X3)

(t) = 0

(ωT
1 )

∂M∩Σ −∑n
j=2 e

∗
j ∧ (ω

(1)
j )∂M∩Σ − τX∂M∩Σ

3 = 0

(6.7)

This first shows that both components (ωT
1 )

(t) and (ωT
1 )

∂M∩Σ (so actually ωT
1 ) depend linearly

on other components of X, however all other components of X can be chosen arbitrarily. Thus,

the space of all X1-components has dimension

(
n+ 1
p

)
; the space of all X2-components has

dimension

(
n− 1
p− 2

)
+

(
n− 1
p− 1

)
+ (n − 1)

(
n+ 1
p

)
, the first two terms corresponding to

the components (ω
(1)
1 )(t) ∈ Λp−2T∗(∂M ∩ Σ) and (ω

(1)
1 )∂M∩Σ ∈ Λp−1T∗(∂M ∩ Σ) respectively

(actually both just correspond to ω
(1)
1 lying pointwise in Λp−1T∗∂M) and the last one to the

components ω2, . . . , ωn ∈ ΛpT∗M; and the space of all X3-components has dimension

(
n
p

)
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since X3 ∈ ΛpT∗∂M. All in all, B has rank

(
n+ 1
p

)
+

(
n

p− 1

)
+ (n− 1)

(
n+ 1
p

)
+

(
n
p

)
= (n+ 1)

(
n+ 1
p

)
,

which is exactly the rank of ker(σS(n
b)).

Now we look at the sign of the quadratic formX 7→ 〈σS(nb)X,X〉 on B. GivenX = (X1,X2,X3) ∈
B, we can express as above

〈σS(nb)X,X〉 = −2ℜe(〈nyX2,X1〉)
= −2ℜe(〈ω1,X1〉)
= −2ℜe(〈ω(1)

1 ,X
(1)
1 〉)− 2ℜe(〈ωT

1 ,X
T
1 〉)

= −2ℜe(〈(ω(1)
1 )(t), (X

(1)
1 )(t)〉)

−2ℜe(〈(ω(1)
1 )∂M∩Σ, (X

(1)
1 )∂M∩Σ〉)− 2ℜe(〈ωT

1 ,X
T
1 〉).

But, as we mentioned above, the components (X
(1)
1 )(t) of X1 and (ω

(1)
1 )(t) of ω1 (which is

itself a component of X2) can be chosen arbitrarily. Furthermore, none of the components

(ω
(1)
1 )∂M∩Σ, (X

(1)
1 )∂M∩Σ, ωT

1 ,X
T
1 depend on ((X

(1)
1 )(t), (ω

(1)
1 )(t)). Therefore whatever the value of

the real number ℜe(〈(ω(1)
1 )∂M∩Σ, (X

(1)
1 )∂M∩Σ〉) + ℜe(〈ωT

1 ,X
T
1 〉) is, and provided p ≥ 1, we can

always choose (X
(1)
1 )(t) and (ω

(1)
1 )(t) such that

〈σS(nb)X,X〉 < 0.

In case p = 0, ω = ω∂M∩Σ (all other components vanish) and hence (6.7) is equivalent to ω1 = τX3.
Therefore 〈σS(nb)X,X〉 = −2ℜe(ω1X1) which vanishes if τ = 0 (because then ω1 = 0) and whose
sign can be arbitrary if τ 6= 0, as we have already seen for condition (6.5) which coincides with
the Robin boundary condition in that case. This proves the Robin boundary condition to be
non-admissible unless p = 0 and τ = 0.

If p ≥ 1, there is actually an eigenvector of σS(n
b) associated to the eigenvalue −1 that lies

in B: choose X = (X1, n
b ⊗ X1, 0) with X1 = n∗ ∧ dt ∧ (X

(1)
1 )(t) + (n∗ + dt) ∧ (XT

1 )
(t), then

X ∈ B ∩ ker(σS(n) + 1) and therefore

〈σS(nb)X,X〉 = −|X|2 < 0

as soon as (X
(1)
1 )(t) or (XT

1 )
(1) is nonzero.

7 Examples of symmetric positive systems

7.1 Klein-Gordon operator

Let ∇ be a covariant derivative on a Hermitian vector bundle V of finite rank k over a globally
hyperbolic manifold M with timelike boundary. The Klein-Gordon operator reads as P = ∇∗∇+
m2, where m is the mass of the scalar field. It is by defintion a normally hyperbolic operator
and hence its Cauchy problem can be written as in (6.3). Unlike in Section 6.3, we can rewrite
the Cauchy problem for P in terms of the Cauchy problem for the symmetric positive system
S : Γ(E) → Γ(E), namely 




SΨ = f

Ψ|Σt0
= h

GBΨ|∂M = 0
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where GB is a boundary condition, E is the Hermitian vector bundle E := V ⊕ T∗M⊗ V and

S =

(
0 −tr
−1 0

)
∇+

(
m2 0
0 1

)
with Ψ =

(
u
∇u

)
, F =

(
f

0

)
.

As in Section 6.3, some restriction on the space of initial data for Ψ has to be imposed in order
to obtain a correspondence between the Cauchy problems.

It is not difficult to check that the principal symbol σS(ξ) is Hermitian for every ξ ∈ T∗M.
Moreover, since the trace can be seen as a contraction of tensors, the principal symbol is parallel,
i.e. ∇σS = 0 and we get

ℜe(S+ S
†) =

(
2m2 0
0 2

)
.

Hence, S is a nowhere characteristic symmetric positive system. Indeed, since

σS(n
b) =

(
0 −nby

−n♭⊗ 0

)
,

the pointwise kernel of σS(n
♭) is given by

ker σS(n
♭) = {0} ⊕ n⊥ ⊗ V ,

where n denotes again the normal vector to ∂M. Notice that σS(n
♭) has pointwise two further

eigenvalues 1 and −1 both with multiplicity k.
The net advantage of this reduction is that the Robin boundary conditions for P can be

rewritten as an admissible boundary condition for S. Note that, if P = D2 is the squared
Dirac operator on M assumed to be spin, then the Schrödinger-Lichnerowicz formula states that
P = ∇∗∇ + Scal

4 , where Scal is the scalar curvature of (M, g). If Scal is bounded below by a
positive constant on M, then by analogous arguments as those described above P can be turned
into a first-order symmetric positive system and therefore the analysis we have developed for that
category of operators can also be applied. This is particularly interesting when looking at certain
boundary conditions.

Examples of admissible boundary conditions

Robin boundary condition. The Robin boundary conditions for the Klein-Gordon operator
reads as

a∇nu− bu = 0

for some real constant parameters a, b. In that case, the bundle B coincides with the kernel of
the pointwise projection

GB :=

(
−b any
0 0

)

and it has rank k has required. For any Ψ = (Ψ0,Ψ1) ∈ kerGB it holds anyΨ1 = bΨ0. If a, b ≥ 0
or a, b ≤ 0, we get

≺ σS(n
♭)Ψ |Ψ ≻= 2ℜe ≺ nyΨ1 |Ψ0 ≻≥ 0 ,

showing that, if ab ≥ 0, then the Robin boundary conditions are admissible for the forward
Cauchy problem. Note that those Robin boundary conditions should not be confused with the
ones arising in elliptic systems such as [55, Theorem 6.31], where ab < 0 has to be assumed.
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7.2 Diffusion-reaction system

As for Section 7.1, let ∇ be a metric connection on an Hermitian vector bundle V of rank k.
Consider the diffusion-reaction operator

P := ∇∂t − tr(∇Σ∇Σ) + c

where c is a zero order term, dubbed linear reaction term. The notation here is the same as in
Section 6.3. These systems are used to model a wide range of phenomena in physics, biology,
social sciences, see e.g. ( [25,36,43,44]) and the prototype example of a diffusion-reaction system
is the heat equation, where c is set to zero. Note that this is not the usual way to handle such
evolution equations but we emphasize those equations fit into our framework.
Let us rewrite the Cauchy problem for the diffusion-reaction operator in terms of the Cauchy
problem for the first order symmetric system defined by

S =

(
1 0
0 0

)
∇∂t +

(
0 −tr
−1 0

)
∇Σ +

(
c 0
0 1

)
.

This equivalence can be obtained by setting Ψ =

(
u

∇Σu

)
. Differently from the case of the Klein-

Gordon operator treated in Section 7.1, S is not a symmetric positive system if c not positive
definite. However, we can use a similar trick as in Lemma 2.9, to obtain the Property (P) of
Definition 2.4. To this end, let us assume c to be uniformely bounded from below and chose a
positive λ such that λ− c > 0. Then the operator Kλ : Γ(E|MT

) → Γ(E|MT

) defined by

Kλ := S+ λ

(
1 0
0 0

)
.

Kλ is clearly a symmetric system. Futhermore, its Cauchy problem is equivalent to the one of S,
namely 




KλΨ̃ = f̃

Ψ̃|Σ0 = h̃

Ψ̃ ∈ B

⇐⇒





SΨ = f

Ψ|Σ0 = h

Ψ ∈ B,

where f̃ = e−λtf, h̃ = h and Ψ̃ = e−λtΨ. Indeed, we have, for every φ ∈ Γ(E) and for every t ∈ R,

Kλ(e
−λtφ) =

(
S+ λ

(
1 0
0 0

))
(e−λtφ)

= −λe−λt

(
1 0
0 0

)
φ+ e−λt

(
S+ λ

(
1 0
0 0

))
φ

= e−λt
Sφ,

Since λ − c > 0 by assumption and the principal symbol is parallel, then a straighforward com-
putations shows that Kλ is a positive symmetric system. Of course, a restriction on the class of
initial data for S, and consequently for Kλ has to be imposed to get an equivalence between the
Cauchy problem for S and the one for P.
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Examples of admissible boundary conditions

Robin boundary condition. The Robin boundary conditions for the diffusion-reaction system
reads as

a∇nu− bu = 0

for some real parameters a, b. In that case, the bundle B coincides with the kernel of the pointwise
projection

GB :=

(
−b any
0 0

)

and it has rank k has required. For any Ψ = (Ψ0,Ψ1) ∈ kerGB it holds anyΨ1 = bΨ0. As in
Section 7.1, if ab ≥ 0, we get

≺ σS(n
♭)Ψ |Ψ ≻= 2ℜe ≺ nyΨ1 |Ψ0 ≻≥ 0 ,

showing that the Robin boundary condition are admissible for the forward Cauchy problem under
that assumption.
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