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ABSTRACT 14 

 15 
Croplands contribute to greenhouse gas emissions but also have the potential to mitigate climate change through 16 

soil carbon storage. However, there is a lack of tools based on objective observations for assessing cropland C 17 

budgets at the plot scale over large areas. Such tools would allow us to more precisely establish the contribution 18 

of an agricultural plot to net CO2 emissions according to the plot management and identify levers for improving 19 

the C budget. In this study, we present a diagnostic regional modelling approach, called SAFY-CO2, that 20 

assimilates high spatial and temporal resolution (HSTR) optical remote sensing data in a simple crop model and 21 

evaluate the performance of this approach in quantifying crop production and the main components of the annual 22 

carbon budget for winter wheat. 23 

 24 

The SAFY-CO2 model simulates daily crop development (biomass, partition to leaves, etc.), the components of 25 

net ecosystem CO2 fluxes, and the annual yield and net ecosystem carbon budget (NECB).  26 

Multi-temporal green area index (GAI) maps derived from HSTR data from the Formosat-2 and SPOT satellites 27 

were used to calibrate the light-use efficiency and phenological parameters of the model. Data from the literature 28 

were used to set a priori values for a set of model parameters, and a large dataset of in situ data was used for 29 

model validation. This dataset includes 8 years of eddy-covariance net CO2 flux measurements and GAI, 30 

biomass and yield data acquired at 2 instrumented sites in southwest France. Biomass and yield data from 16 31 

fields in the study area between 2005 and 2014 were also used for validation. 32 

The SAFY-CO2 model is able to reproduce both GAI dynamics (RRMSE=14%, R²=0.97) and biomass 33 

production and yield (RRMSE of 27% and 21%, respectively) with high precisions under contrasting climatic, 34 

environmental and management conditions. Additionally, the net CO2 flux components estimated by the model 35 

generally agreed well with in situ data and presented very good and significant correlations (RMSE of 1.74, 1.13 36 

and 1.29 gC.m-2.d-1 for GPP, Reco and NEE, respectively; R² of 0.90, 0.75 and 0.85 for GPP, Reco and NEE, 37 

respectively) over the 8 studied years. This study also highlights the importance of accounting for post-harvest 38 

vegetative events (spontaneous re-growth, weed development and cover crops) for an accurate calculation of the 39 

annual net CO2 flux. This approach requires a limited number of input parameters for estimating yield and net 40 
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CO2 flux components, which is promising for regional/global-scale applications based on Sentinel 2-like data; 41 

however, the approach requires plot-scale data concerning organic amendments and straw management 42 

(exportation) in animal farming systems to calculate field C budgets. 43 

 44 

1. INTRODUCTION 45 

Agricultural lands occupy nearly 12% of Earth’s terrestrial surface. They not only contribute to but also affect 46 

climate change because climatic conditions and water resources affect crop production (Smith et al., 2005). 47 

Additionally, the global food demand is increasing and may continue to increase for decades, driven by the 48 

increasing global population and per capita income that are anticipated through the middle of the next century 49 

(Tilman et al., 2011). 50 

It is in this context that the ‘4 per mille Soils for Food Security and Climate’ initiative was launched at COP21, 51 

with the aspiration to increase global soil organic matter stocks by 4 per 1000 (or 0.4%) per year as a 52 

compensation for part of the global emissions of greenhouse gases by anthropogenic sources and to increase 53 

food security (Chabbi et al., 2017; Minasny et al., 2017). Since then, this initiative has induced a wide debate in 54 

the scientific community concerning its feasibility (Baveye et al., 2018; Poulton et al., 2018), and it has been 55 

recognized that such an increase in soil organic carbon (SOC) is likely achievable in soils that are being actively 56 

managed for agriculture at a rate of increase that may not be achievable everywhere (Chabbi et al., 2017; Lal, 57 

2016; Minasny et al., 2017; Pellerin et al., 2019). This debate illustrates the need for tools that can estimate 58 

changes in cropland SOC and identify potential levers to increase it. Currently, quantifying the net ecosystem 59 

carbon budgets (NECB) of croplands at regional or global scales remains difficult because of the heterogeneous 60 

character of agricultural landscapes, which have numerous plots with varied management practices and 61 

environmental conditions. This character results in uncertainties when assessing the impacts of specific 62 

management practices on the cropland NECB (Osborne et al., 2010) and when determining whether croplands 63 

are carbon sinks or sources (Ciais et al., 2010; West et al., 2010). 64 

Indeed, the general biogeochemical models (such as SPA (Williams et al., 1996), Ecosys (Grant et al., 2007), 65 

Isba-Ags (Calvet et al., 1998), ORCHIDEE (Krinner et al., 2005), and ORCHIDEE-STICS (Gervois et al., 66 

2008)) that are commonly used to simulate the carbon cycle in terrestrial ecosystems are not suited to account for 67 

the specificities and complexities of agro-ecosystems, particularly the effect of management practices. In 68 

contrast, the agronomic models or so-called crop models (e.g., CERES (Gabrielle et al., 1998) or STICS (Brisson 69 

et al., 1998)) that account for management and pedoclimatic effects are primarily designed for simulating crop 70 

development and production (net primary production (NPP), yield) at the plot scale. However, unlike our 71 

approach, these models require information regarding management practices, which makes them less suitable for 72 

large spatial scale applications. 73 

Several studies have demonstrated the benefit of assimilating remote sensing data into regional-scale crop 74 

models (Sus et al., 2013; Wu et al., 2012). In particular, the combination of high spatial and temporal resolution 75 

(HSTR) remote sensing data with crop models can provide, at the field scale over large areas, a timely and 76 

accurate picture of crop development (Claverie et al., 2012; Hadria et al., 2010), cropland photosynthesis (Wang 77 

et al., 2012; Wolanin et al., 2019) and net CO2 fluxes (Revill et al., 2013; Sus et al., 2013). Among others, the 78 

SAFY (Duchemin et al., 2008; Claverie et al., 2012) and SAFY-WB (Battude et al., 2017; Duchemin et al., 79 

2015) crop models constitute coherent frameworks for estimating biomass, yield production and water 80 



requirements. These models describe the main biophysical processes underlying crop production by using 81 

climatic data and assimilate green area index (GAI) dynamic maps derived from remote sensing to avoid the 82 

need for management data, which makes them well suited for large-scale studies. In this work, we modified the 83 

SAFY model to simulate the components of the net ecosystem exchange (NEE) and to evaluate the potential of 84 

this approach for calculating cropland annual carbon budgets. The resulting model, called SAFY-CO2, is 85 

described and evaluated against in situ data. The objectives of this study are as follows: 86 

1- To assess the potential of an approach combining HSTR remote sensing data and a simple crop model 87 

to quantify the components of the NEE and of the annual NECB for winter wheat plots in contrasting 88 

climatic and management conditions. 89 

2- To address the potentialities and limitations of such an approach in the perspective of future regional- or 90 

global-scale applications. 91 

To fulfil our objectives, GAI maps derived from HSTR optical data (Formosat-2 and SPOT satellites) from 2006 92 

to 2014 in southwestern France were used to constrain the photosynthetic light-use efficiency and phenological 93 

parameters of the model. Consequently, the simulated crop phenology agreed well with the satellite observations, 94 

which is essential for correctly estimating CO2 fluxes and carbon budgets (Grant et al., 2007; Huang et al., 2009; 95 

Wattenbach et al., 2010). 96 

A validation of the simulated CO2 fluxes (photosynthesis, ecosystem respiration and NEE) was performed 97 

against eddy-covariance flux measurements that were carried out over two flux sites (Béziat, 2009) in the study 98 

area. 99 

In the next section of the manuscript, the study area, experimental datasets and satellite database are presented. 100 

The following section describes the SAFY-CO2 mathematical formulations, the parameterization and calibration 101 

procedure and the method for computing the annual NECB. The inputs required to run the model as well as the 102 

validation procedure are also detailed. Section 4 is dedicated to the results. The biomass and yield results are 103 

presented first, followed by the flux estimate results and finally the annual C budgets. Section five discusses the 104 

potentialities, the limitations and potential improvements of such an approach in the perspective of future 105 

regional- or global-scale applications. The paper ends with a conclusion concerning the main results, limitations 106 

and insights into future developments. 107 

 108 

2. MATERIALS 109 

2.1. Study area 110 

The study area is part of the Regional Spatial Observatory [http://www.cesbio.ups-tlse.fr/fr/osr.html] located 111 

next to Toulouse in southwest France which includes 2 instrumented agricultural sites, Auradé (FR-Aur) and 112 

Lamasquère (FR-Lam) (Figure 1). Those two sites belong to the Integrated Carbon Observation System (ICOS) 113 

network [https://www.icos-ri.eu /] for observations of surface fluxes (CO2, latent and sensible heat fluxes). The 114 

region has a temperate climate, with an annual mean precipitation of approximately 655 mm and an annual mean 115 

temperature of 12.9°C (measured by Meteo France at the Toulouse-Blagnac station between 1961 and 1990; see 116 

http://www.infoclimat.fr/climatologie/index.php). Agricultural activity occupies almost 90% of the landscape, 117 

and winter wheat is the main cultivated crop (covering approximately 20% of the total surface area). Sown from 118 

mid-October until the beginning of December, winter wheat is harvested from mid-June until the end of July, 119 

and straw is usually incorporated into the soil. 120 



2.1.1 Soil characteristics 121 

The nature of the soils of the study area is shaped by 122 

the Garonne River. The Garonne River flows from the 123 

South to the North on the east side of the study area. It 124 

has spread sediments over a 15 km wide area along its 125 

western side resulting in vast terraces of heterogeneous 126 

soils called “boulbènes” and “terrefort” characterized 127 

by low-permeability and composed of a silt layer of 128 

variable thickness over stony clay soils. The geology is 129 

old quaternary and the main lithology is old alluviums. 130 

The area west of the terraces is characterized by a hilly 131 

landscape, consisting of hills and slopes resulting from 132 

the erosion of the oldest terraces. Further west the 133 

landscape is hilly over hundreds of kilometres and the 134 

soils become more calcareous with deposits formed of 135 

marl and clayey molasses with limestone. 136 

The heterogeneous character of the soils of the study 137 

area is illustrated (Figure 2) by the texture 138 

measurements (fractions of clay, silt and sand) 139 

collected on the flux sites and on a network of fields 140 

within the footprint of the satellite images during the 141 

year 2018 (see also https://soilgrids.org/ for predicted soil classification of the study area). The texture 142 

Figure 1: The upper right 

corner shows the location of 

the study site in southwestern 

France, as well as the 

footprint of Formosat-2 (green 

square) and Spot (orange 

square) images (in 2014 and 

2012, respectively). The 

SPOT-4 false color image used 

as the background shows the 

flux sites of FR-Aur and FR-

Lam (zoomed areas), the 

network of fields sampled for 

biomass and yield during the 

2011 field campaign (yellow 

points), and the SAFRAN 

meteorological grid (black 

crosses). 

Figure 2: Surface texture measurements (FR-

Lam in red, FR-Aur in blue and field campaign 

in black) displayed on USDA classification, with 

the following classes: clay (Cl), silty clay (SiCl), 

sandy clay (SaCl), clay loam (ClLo), silty clay 

loam (SiClLo), sandy clay loam (SaClLo), loam 

(Lo), silty loam (SiLo), sandy loam (SaLo), silt 

(Si), loamy sand (LoSa), sand (Sa). 



measurements are presented within the USDA triangle (United States Department of Agriculture, Figure 2). 143 

With fractions between 9 and 50% for the clay, between 25 and 72% for the silt and between 12 and 55% for the 144 

sand, the observed contents cover wide ranges of each component. On average, the texture is composed of 48% 145 

of silt and 26% of clay and sand, illustrating the dominance of silt fraction within the study area. FR-Lam soil is 146 

more clayey than the FR-Aur one and thus less permeable. As FR-Lam is located on the terraces near a river 147 

flood can occur after heavy rainfall. As the FR-Aur site is located on a hillside, its soil is heterogeneous and its 148 

depth vary from 1 to more than 2 m. 149 

 150 

2.2. In situ data 151 

The FR-Aur and FR-Lam sites have been intensively monitored since 2005. Micrometeorological, 152 

meteorological, soil and vegetation measurements are performed since then (see Béziat et al., 2009 for more 153 

details). Both sites have similar climatic conditions but different soil properties (see 2.1.1), topography and 154 

agricultural management practices. Winter wheat was cultivated throughout 8 cropping years, 2005-2006, 2009-155 

2010, 2011-2012 and 2013-2014 at FR-Aur and 2006-2007, 2008-2009, 2010-2011 and 2012-2013 at FR-Lam. 156 

To facilitate the reading of this paper, we will identify each site-year by the three first letters of the site followed 157 

by the harvest year (e.g., AUR2006 for the site-year 2005-2006 at Auradé). 158 

The FR-Aur field (23.5 ha) is located on a hillside area near the Garonne River terraces and is characterized by a 159 

rapeseed/winter-wheat/sunflower/winter-wheat rainfed rotation that only receives mineral fertilizers. Only the 160 

grain is exported. The FR-Lam field (23.8 ha) is part of an experimental farm for milk and chicken production 161 

owned by the Purpan engineering school EIP (Ecole d’Ingénieurs de Purpan). It is characterized by a 162 

maize/winter-wheat rotation that is used to feed livestock and provide litter. Therefore, nearly all aboveground 163 

biomass is exported as grain and straw for winter wheat, and irrigated maize is harvested when it is still green for 164 

silage. Both organic and mineral fertilizers are applied. 165 

A field campaign was conducted in June-July 2011 in 16 winter wheat fields to obtain spatially distributed in situ 166 

biomass and yield data (referred to as the '2011 field campaign’). The selection of fields was based on the 167 

analysis of the intra- and inter-field variability of the Normalized Difference Vegetation Index (NDVI derived 168 

from the Formosat-2 and SPOT optical images of April) to monitor a wide range of vegetation development. 169 

Crop biomass and yield measurements were performed just before the harvest. 170 

 171 

2.2.1.  GAI, biomass and yield data 172 

Year Site/ESU Date of sowing Date of harvest
Vegetation after 

harvest (nature)
GAI Biomass Grain yield

Flux and 

meteorological 

measurements

2006 AUR 27/10/2005 29/06/2006 Yes (weeds/re-growth) 9 9 F Yes

2007 LAM 18/10/2006 15/07/2007 No 11 11 F Yes

2009 LAM 19/11/2008 13/07/2009 Yes (weeds) 8 8 F Yes

2010 AUR 19/11/2009 12/07/2010 No 5 5 F Yes

LAM 03/11/2010 02/07/2011 Yes (re-growth) 5 5 F Yes

Field Campaign - - - - 16 D No

2012 AUR 21/10/2011 14/07/2012 No 5 5 F Yes

2013 LAM 29/10/2012 22/07/2013 Yes (cover-crop) 5 5 F Yes

2014 AUR 26/10/2013 10/07/2014 No 5 5 F Yes

2011

Table 1: Overview of the in situ data collected from 2005 until 2014, agricultural practices (dates of 

sowing harvest, etc.), and presence and type of vegetation during the fallow period. F: provided by 

farmer, D: destructive measurements. 



During the vegetative cycle, the crop development at the experimental sites was regularly monitored using 173 

destructive measurements of GAI and dry aboveground mass (DAM) (see Béziat, 2009 for protocol), while yield 174 

data were provided by the farmers that cultivate the two flux sites. Farmer’s data are often a mean of the yield at 175 

several fields surrounding the instrumented sites. 176 

During the 2011 field campaign, biomass and yield data were collected from 16 fields according to the VALERI 177 

sampling protocol [http://w3.avignon.inra.fr/valeri/]. The samples were collected from five homogeneous square 178 

subplots inside the 16 Elementary Sampling Units (ESUs) of 20×20 m2. The subplots sampled in each ESU were 179 

located in the ESU centre and corners. For each subplot, 4 rows with lengths of 50 cm and an inter-row distance 180 

of 13 cm were collected, which resulted in a sampling surface area of 0.25 m². The samples were dried and 181 

weighed, and the destructive grain yield was measured after threshing. The mean and associated standard 182 

deviations of the five subplots were calculated for each ESU. 183 

Table 1 summarizes, for each year, the number and the kind of data that were acquired and it specifies if 184 

spontaneous regrowth, cover crop or weed development occurred or not after harvest for each year. 185 

 186 

2.2.2. Flux and meteorological measurements 187 

Turbulent fluxes of CO2, water vapor (evapotranspiration and latent heat), sensible heat and momentum were 188 

measured continuously using the eddy-covariance (EC) method (Aubinet et al., 1999; Baldocchi, 2003; 189 

Moncrieff et al., 1997). The EdiRe software (Robert Clement, © 1999, University of Edinburgh, UK) was used 190 

to calculate the turbulent fluxes. The NEE was calculated as the sum of turbulent CO2 fluxes and changes in CO2 191 

storage under the EC devices. Flux filtering, quality controls and gap filling were performed following the 192 

CarboEurope-IP recommendations ([www.carboeurope.org], see Béziat et al., (2009) for more details). The NEE 193 

was partitioned into gross primary production (GPP) and ecosystem respiration (Reco) components according to 194 

the method proposed by Reichstein et al., (2005) and adapted by Béziat et al., (2009) for croplands (a process 195 

that could lead to over- or underestimations of the two components of the NEE). During the periods of bare soil, 196 

the GPP was set to 0, and the measured NEE fluxes only represented the Reco component. Finally, the net 197 

ecosystem production (NEP) was derived from the annual integration of the NEE values. Synchronously, the 198 

standard meteorological variables were recorded at each experimental site and included different radiation 199 

components (i.e., direct and diffuse components of incoming global radiation). After pre-processing, the semi-200 

hourly fluxes and meteorological data were integrated or averaged at a daily time scale to be consistent with the 201 

model time step. Note that because of instrument failure, there was a 3-month gap in the flux measurements at 202 

the beginning of 2011 at FR-Lam. 203 

For the '2011 field campaign' simulations, the SAFRAN meteorological data produced by Météo-France (Durand 204 

et al., 1993) are used. The SAFRAN data provide the air temperature, incoming global radiation, precipitation, 205 

and relative air humidity 2 m above the ground and the wind speed 10 m above the ground based on weather 206 

station measurements and modelling. The data are available every 6 h over an 8 km spatial resolution grid. The 207 

daily means of these climatic variables are calculated for each 2011 campaign field using bilinear interpolation. 208 

The other simulations are performed using the climatic data recorded at the instrumented sites. 209 

During the studied years, the climatic conditions were very contrasted. The 2006-2007 cropping year was 210 

characterized by a mild winter resulting in strong vegetation developments while water stress occurred at the end 211 

of the 2005-2006 cropping season due to very low spring rainfall (86 mm at FR-Aur compared to 197 mm on 212 



average over all studied years, see Béziat et al., 2009). The 2008-2009 autumn was characterized by heavy 213 

rainfall (cumulated precipitation of 192 mm during 2009 fall at FR-Lam compared to 154 mm in average 214 

between 2006 and 2014 at the same site) following the sowing, delaying crop emergence and resulting in very 215 

low biomass and yield production. The 2009-2010 cropping year was close to average in terms of precipitations 216 

and temperatures except during winter as temperatures were below the average (5.1°C at FR-Aur compared to 217 

6.6°C on average) and were negative during several days resulting in two cumulated weeks delaying the crop 218 

development. In 2010-2011, the winter and spring were very dry (precipitation of 93 and 103 mm at FR-Lam in 219 

winter and spring respectively compared to 169 and 208 mm on average) delaying, crop development while hot 220 

temperatures in spring (average temperature of 16.5°C at FR-Lam during 2011 spring compared to 15.7°C on 221 

average during this period between 2006 and 2014) accelerated the development and the senescence. The 222 

cropping season 2011-2012 was characterized by a cold winter (mean temperature of 5.9°C at FR-Aur compared 223 

to an average of 6.6°C) during which low precipitations occurred (86 mm instead of 162 mm on average). In 224 

2012-2013 heavy rainfall during winter and spring (323 and 296 mm at FR-Lam in winter and spring) coupled 225 

with hot temperatures in summer (21.1°C compared to a mean of 20.5°C) led to high biomass production. 226 

Finally, the cropping year 2013-2014 was characterized by its warm winter (8.1°C against 6.6°C on average) 227 

allowing the crop to start early in the season.  228 

 229 

2.3. Satellite data and products 230 

2.3.1. Multi-satellite optical images 231 

This study uses an extensive dataset of HSTR from several satellites. Because of the spatial and temporal 232 

resolution of this dataset, and also as the bands necessary for this study are available from Sentinel-2 we consider 233 

that their combined used in this modelling exercise is representative of what could be achieved with Sentinel 2. 234 

Figure 3 presents a chronogram of the satellite images used in this study between 2006 and 2014. The images 235 

from those different satellites were combined to better monitor crop development and to reduce the gaps between 236 

successive observations. Nevertheless, the presence of clouds and/or shadows reduced the number of useful 237 

images. For instance, only one cloud-free SPOT image (April 26th) was available from mid-February until mid-238 

June 2008; consequently, this site-year was not processed in the present study. 239 

The high spatial resolution images provided by Formosat-2 (F2, 155 images) and Spot-2/4/5 (80 images) were in 240 

Figure 3: Timeline of the images acquired by Formosat-2 (green) and SPOT-2/4/5 (orange) 



the optical domain (multispectral mode). The F2 images were characterized by a spatial resolution of 8 m 241 

(footprint of 24×24 km2) and were acquired at the same viewing angle (±45°) in four narrow wavelengths (blue, 242 

green, red and near-infrared) (Chern et al., 2008). The SPOT images were characterized by spatial resolutions of 243 

20 m (Spot-2/4) and 10 m (Spot-5) covering an area of 60 × 60 km2. The images were acquired at two incidence 244 

angles (75° and 102°) in at least three wavelengths (green, red, and near-infrared), with the medium-infrared 245 

wavelength for SPOT-4/5 (Arnaud and Leroy, 1991). 246 

Surface reflectances were derived from the satellite data using the KALIDEOS processing chain 247 

[http://kalideos.cnes.fr] for atmospheric, radiometric and geometric corrections. The mean geometric correction 248 

accuracy was close to 0.2 pixels (LaFrance, Lenot, Ruffel, Cao, & Rabaute, 2012), which is satisfactory for the 249 

surface area of the studied fields. 250 

The combined use of images acquired by different satellites was important to increase the number observations 251 

per cropping year (see Figure 3). The comparison of the reflectances or of the NDVIs derived from different 252 

sensors, including Formosat-2 and SPOT, acquired at close dates over various crops, had highlighted the good 253 

performances of the processing chain and the limited effect of the sensor type (Battude et al., 2016; R. Fieuzal et 254 

al., 2017). 255 

 256 

2.3.2. From image reflectance to GAI estimates 257 

The seasonal dynamic maps of GAI were derived from the surface reflectances using the BV-NNET tool 258 

(Biophysical Variables Neural NETwork, Baret et al., (2007)), which consists of a trained artificial neural 259 

network (ANN) using the outputs of a radiative transfer model (PROSAIL Jacquemoud et al., (2009)). ANNs 260 

were first trained with the wide range of conditions estimated by the radiative transfer model. Then, the trained 261 

network was used to predict the GAI from satellite reflectances. The GAI estimates derived from F2 and SPOT 262 

reflectances were compared to non-destructive measurements based on digital hemispherical photographs 263 

collected over a range of crops (Demarez et al., 2008) and showed a determination coefficient of R² = 0.86 and 264 

an absolute root mean square error (RMSE) of approximately 0.5 m2.m-2 (Veloso, 2014). Battude et al., (2016) 265 

also compared BV-NNET derived GAI from several satellites, including SPOT and Formosat-2. They showed 266 

very good correlation (R=0.92 and RRMSE=23%) and performances that were similar to the ones found in the 267 

literature (Berjón et al., 2013; Bsaibes et al., 2009; Duan et al., 2014). The BV-NNET procedure did not include 268 

the aggregation of the leaves, which can lead to the underestimation of GAI during periods of strong vegetation 269 

development (Claverie et al., 2012). GAI estimates were finally averaged considering all the pixels of the studied 270 

plots after the application of an offset of 10 m to avoid edge effects and to consider only the GAI of the 271 

considered crop. 272 

 273 

3. METHODOLOGY 274 

3.1. The SAFY-CO2 model 275 

The SAFY-CO2 model (Figure 4) was adapted from the SAFY model (Simple Algorithm for Yield Estimates; 276 

Duchemin et al., 2008) to simulate the components of the net CO2 fluxes and the cropland annual carbon budget. 277 

SAFY is a daily time step crop model that simulates the temporal evolution of GAI, DAM and final grain yield 278 

(YLD) by considering two climatic input variables: incoming global radiation and mean temperature. This 279 

approach is based on Monteith and Moss's (1977) light-use efficiency theory, which links the production of the 280 



total DAM with the photosynthetically active portion of the solar radiation (PAR) absorbed by the plant. In 281 

SAFY, the ratio of photosynthesis to autotrophic respiration is assumed to be constant when estimating the DAM 282 

from the absorbed PAR (APAR). The SAFY model has been extensively used for the estimation of biomass and 283 

yield in contrasting climatic conditions and crop types (Battude et al., 2016; Claverie et al., 2012; Duchemin et 284 

al., 2015, 2008; Fieuzal et al., 2011). 285 

Conversely, in SAFY-CO2, the GPP is first estimated as a function of the APAR. Then, the components of the 286 

biomass (above and below ground) and the corresponding components of the net CO2 fluxes and annual carbon 287 

budget are calculated. In this section, the main formalisms and equations of the model are presented and the 288 

parameters are detailed in the tables. Each table summarized the notations, the values or the ranges and the 289 

methods for estimating the parameters for the winter wheat crop and the post-harvest vegetative events.  290 

First, the model computes photosynthesis (GPP) [eq.1] as a function of the incoming global radiation (Rg), the 291 

climatic efficiency (εc), the fraction of APAR by the plant (fAPAR) [eq.1.1], the temperature stress function (fT) 292 

[eq.1.2], the effective efficiency of the conversion of absorbed radiation to fixed CO2 through plant 293 

Figure 4: Schematic representation of the assimilation procedure of GAI derived from high resolution 

satellite optical images for the calibration of the agro-meteorological model SAFY-CO2 by minimizing 

difference between satellite derived (SAT) and simulated (SIM) GAI. Also the figure shows the 

procedure for estimating the crop biomass, the components of the net CO2 fluxes (GPP, RECO, NEE) 

and the annual carbon budgets (NECB) over a cropping season (see Tables 2 to 6 and equations 1 to 

11.3.1 for more details concerning the processes simulated and the parameters). 

 



photosynthesis (fELUE) [eq.1.3], and a multiplicative coefficient (sR10) [eq.1.4.1 and 1.4.2], which takes into 294 

account the decline in canopy photosynthetic capacity during the senescence phase (see Béziat, 2009). sR10 is 295 

set to 1 until senescence begins [eq.1.4.1] and then defined as the ratio between the GAI of the previous day and 296 

the maximum seasonal GAI value multiplied by the corrective factor CS. The senescence phase first acts on the 297 

lower portion of the plant (closer to the soil) and then acts on the higher canopy elements. Thus, the actual 298 

phenological senescence may be greater than the phenological senescence detected by satellite observations, 299 

which thus requires a corrective factor. Therefore, the CS coefficient is included in the computation of sR10 to 300 

correct for the effects of senescence over simulated fluxes. The effects of diffuse global radiation over canopy 301 

photosynthesis are not always considered in crop models when estimating crop productivity. However, 302 

measurements, including the measurements at our flux sites, have indicated that the efficiency is very sensitive 303 

to the diffuse components of incoming global radiation (Béziat, 2009; Hollinger et al., 1998; Roderick et al., 304 

2001). An effective light-use efficiency function is thus defined to account for the fraction of diffuse global 305 

radiation (see 3.2). Because diffuse incoming radiation Rdf is not often measured in the field, the De Jong (1980) 306 

approach was used to estimate the Rdf/Rg ratio over the study area from the top of the canopy and the top of the 307 

atmosphere radiation data. 308 ��� = �� ∗ �� ∗ 	
�
� ∗ 	���� ∗ 	���� ∗ ��10 1 	
�
� = 1 − ���������∗� !� 1.1 

                	���� = 1 − " �#$���%�#$���&'()*
for   +,- < � < /01 1.2.1 

                	���� = 1 − " �#$���%�#$���&%�)*
for  /01 < � < +�2  1.2.2 	���� = 0 for  � < +,- or +�2 < � 1.2.3 

	���� = ����� ∗ ���"34536∗7897: )
 1.3 ��10 = 1 from sowing to senescence 1.4.1 

            ��10 = � !� !&%�∗;< from senescence to harvest 1.4.2 

Description Notation Unit Value/Range Method Source 

Climatic efficiency �� - 0.48 Literature 
Varlet-

Grancher 
(1982) 

Light-interception 
coefficient 

=>21 - 0.76 Literature Veloso (2014) 

Minimal temperature for 
growth 

+,- °C 0 Literature 
(Porter and 

Gawith, 1999) 
Maximal temperature for 

growth 
+�2 °C 37 Literature 

(Porter and 
Gawith, 1999) 

Optimal temperature for 
growth 

/01 °C 20 Literature 
(Porter and 

Gawith, 1999) 

Polynomial degree ? - 2 Literature 
Duchemin et 

al., 2008 
Corrective factor over 

GPP during senescence 
@� - 1.2 Flux data - 

Effective light-use 
efficiency parameter a 

����� gC.MJ-1 

[0.8-1.05] 
[0.5-0.8] (post-

harvest 
vegetative 

events) 

Calibration - 

Effective light-use 
efficiency parameter b 

����A - 1.34 Flux data 
See 

supplementary 
material 

Table 2. List of SAFY-CO2 model parameters for calculating the GPP 



The NPP is then derived from the difference between the GPP and the autotrophic respiration (Ra) [eq.2], which 309 

was separated into two components: maintenance respiration (Rm) and growth respiration (Rgr) (McCree, 1974) 310 

[eq.3]. Rm is calculated from the NPP of the previous day and a maintenance coefficient mR [eq.3.1], which 311 

corresponds to the fraction of maintenance respiration per NPP unit. Because Rm responds strongly to the 312 

temperature (Amthor, 2000), it was estimated using a “Q10 type” equation (Van’t Hoff, 1898) [eq.3.1.1]. In this 313 

equation, R10 is the reference respiration at 10°C. Rgr is calculated using the method described by Amthor (1989) 314 

and improved by Choudhury (2000), as shown in eq.3.2. The constant Yg is the growth conversion efficiency. 315 

 B�� = ��� − �� 2 �� = �+ + ��D 3 �+ = B�� ∗ E7 ∗ ��10 3.1 E7 = �FG ∗ HFGI�%�FGFG J 3.1.1 ��D = K1 − L�M ∗ ���� − �+� 3.2 
 316 

Finally, the total NPP is divided into root (NPPr, [eq.4.1]) and aerial (NPPa, [eq.4.2]) components, estimated by 317 

considering a root-to-shoot ratio (RtS) in accordance with the method proposed by Baret et al., (1992) [eq.5]. In 318 

this equation, SMT is the sum of temperature, D0 is the emergence date and DS is the first day of the spiking 319 

stage. 	NG is the extrapolated value of the root fraction 	N at emergence, 	NO is the asymptotic value of 	N, and c 320 

is the relative rate of decrease. The DAM is estimated by dividing the NPPa by the coefficient Cveg, which 321 

represents the plant carbon content [eq.6]. 322 

 B��D = B�� ∗ �TU 4.1 B��� = B�� ∗ �1 − �TU�  4.2 

�TU = 	N = 	NO + �	NG − 	NO� ∗ �����VWX�YZY<�WX�YZWX�Y<�WX�YZ [
 

5 

\
] = B���@^>�  6 

Once the biomass computed, the grain yield and GAI can be estimated, as in the SAFY version. The GAI is the 323 

sum of the GAI of the previous day and the positive and negative change in GAI of the current day [eq.7]. Leaf 324 

production and leaf senescence are controlled by a growing degree-day approach. The positive increment 325 

[eq.7.1] is the product of a function of leaf partitioning [eq.7.1.1], the specific leaf area parameter and the daily 326 

Table 3. List of SAFY-CO2 model parameters for calculating autotrophic respiration 

Description Notation Unit Value/Range Method Source 
Maintenance respiration 

parameter: Q10 
HFG - 2 Literature Amthor 2000 

Maintenance respiration 
parameter: R10 

�FG gC/gDM 0.0025 literature Béziat 2009 

Growth respiration 
conversion efficiency 

parameter 
L� - 0.74 Literature Amthor 1989 

Table 4. List of SAFY-CO2 model parameters for calculating the aboveground and the belowground mass 

Description Notation Unit Value/Range Method Source 
Root fraction parameters 	G − 	O − _ - 0.63 / 0.11 / 1.48 Literature Baret et al., 1992 

Carbon content coefficient @^>� gC/gveg 0.46 Literature Béziat 2009 

Day of plant emergence \G day 

[20th Oct-15th 
Jan] 

[end of main 
crop-31th Dec] 
(post-harvest 

vegetative 
events) 

Calibration - 



DAM production. The negative increment, which is only evaluated from the beginning of senescence, depends 327 

on the two senescence parameters Sena and Senb [eq.7.2]. The grain yield estimation [eq.8] depends on the total 328 

biomass production at the end of the vegetative period (DAMmax) and a constant harvest index HI (see 3.2). 329 ∆�
a = �
a + ∆�
ab − ∆�
a� 7 ∆�
ab = ∆\
] ∗ �c ∗ U�
 7.1 �c = 1 − �c� ∗ ����de6∗WX�� 7.1.1 

∆�
a� = �
a ∗ U] − U�f�U�fA  7.2  Lg�ch = \
]+�2 ∗ ia 8 

 330 

The NEE is calculated as the difference between the NPP and the carbon losses due to heterotrophic respiration 331 

(Rh) [eq.8]. Rh is calculated using a Q10 first-order exponential equation (Delogu, 2013). Rhref is the reference 332 

respiration at 0°C, and expb*10 is equal to Q10. 333 

The ecosystem respiration is defined as the sum of Ra and Rh [eq.10]. 334 B�� = B�� − �j 8 �j = k ∗ ���A∗�< 9 k = �jl�9  9.1 

HFG = �ℎ�n + 10��ℎ�n� = k ∗ ���A∗��<bFG�
k ∗ ���A∗��<� = ���A∗FG 9.2 

�>�/ = �� + �j 10 
 335 

3.2. Model parameterization and calibration 336 

The parameters of the SAFY-CO2 model are set using one of the following three options: i) literature 337 

sources, ii) multi-site in situ measurements and iii) optimization using the time series of satellite-derived GAI. 338 

The parameters in the first two categories are set as equal for all of the investigated fields and years of study (see  339 

equations 1 to 10 and Tables 2 to 6), while the parameter of the third category are optimized. Parameter b of the 340 

exponential function in the relationships between ELUE and Rdf/Rg [eq.1.3] is fixed to 1.34 based on field data 341 

(i.e., CO2 fluxes and meteorological data) acquired over several years for contrasting climatic, soils, and 342 

management conditions at 5 European instrumented sites, including ours (Lonzee, BE; Auradé, FR; Grignon, 343 

Table 5. List of SAFY-CO2 model parameters for calculating the leaf biomass production, the yield and the 

senescence 

Description Notation Unit Value/Range Method Source 
Harvest index  ia - 0.45 Literature (Dai et al., 2016) 

Specific leaf area U�
 m2.g-1 [0.005 – 0.04] Calibration - 

Partition-to-leaf function 
parameter a �c�  - [0.01-0.5] Calibration - 

Partition-to-leaf function 
parameter b �cA  - [0.0001-0.02] Calibration - 

Sum of temperature for 
senescence U�f�  °C 

[1045-2000] 
[100-900] (post-

harvest 
vegetative 

events) 

Calibration - 

Rate of senescence U�fA  °C.day-1 [103-2.104] Calibration - 

Table 6. List of SAFY-CO2 model parameters for calculating the heterotrophic respiration 

Description Notation Unit Value/Range Method Source 
Heterotrophic respiration 

parameter: Rhref 
�jl�9  gC.m-2.d-1 0.34 Literature 

(Suleau et al., 
2011) 

Heterotrophic respiration 
parameter: Q10 

HFG  - 2.3 Literature 
(Suleau et al., 

2011)  
Conversion factor of Ta into 

Ts T  - 1.07 ICOS sites data - 



FR; Lamasquère, FR; Oensingen, CH; see Supplementary Material). This parameter is set to a generic value to 344 

facilitate the large-scale application of the approach. 345 

The parameters in the third category are set using an iterative minimizing method with a RMSE 346 

objective function between satellite-based GAI and SAFY-CO2 GAI estimates. This procedure aims at 347 

determining the values of parameter “a” of the fELUE function [eq.1.3] and 6 phenological parameters, i.e., the 348 

day of plant emergence (D0), the specific leaf area (SLA), the two parameters of the partition-to-leave function 349 

(Pla, Plb), the sum temperature for senescence (Sena) and the rate of senescence (Senb). 350 

The minimization procedure, applied to each simulations (i.e. each cropping year and each field), is 351 

based on an adapted version of the Nelder-Mead simplex method (Lagarias et al., 1998), which considers a priori 352 

boundaries for each parameter to constrain the solutions within realistic parameter intervals. The minimization 353 

process runs the model, computes a cost function (in this case the RMSE derived from the comparison between 354 

the estimated and the remote sensed GAI) and iteratively updates the values of parameters to converge to the 355 

best parameter combination, coinciding with the lowest cost function value. To reduce the probability of local 356 

minima, a global approach is applied that runs the optimization process 30 times, with different a priori 357 

conditions for each parameter. A set of the parameters with the best solution is considered (i.e., lower RMSE for 358 

the GAI estimates). The number of optimization runs is set to 30, based on a sensibility analysis, so that the best 359 

combination of parameters is always retrieved, while avoiding unnecessary runs. 360 

The optimization process requires boundaries for the parameters to calibrate (Pla, Plb, Sena, Senb, SLA, 361 

ELUEa, D0). These boundaries are first estimated based on a literature review. Then, a sensitivity analysis of the 362 

model is conducted to adjust these boundaries using a grid search. The ranges of the parameters are discretized, 363 

and all possible combinations are simulated (more than 3 million simulations). Then, the outputs are compared to 364 

the outputs obtained by optimizations performed using the adapted simplex method described above and the 365 

same parameter boundaries. This comparison allows us to do the following. 366 

1- Verify that the adjusted boundaries reproduce all plant development conditions, with the constraint 367 

of a limited dispersion in the outputs. 368 

2- Validate the efficiency of the adapted version of the simplex in retrieving the best set of parameters. 369 

Compared to SAFY, the SAFY-CO2 version considers the biomass production of re-growth, weeds and 370 

cover crops (hereafter called post-harvest vegetative events) and their effect on the CO2 fluxes and annual C 371 

budgets. Indeed, these post-harvest events can have an important impact on the NEE (Béziat et al., 2009; Ceschia 372 

et al., 2010; Poeplau and Don, 2015) and thus on the NECB. Therefore, the model is adapted to simulate these 373 

events without the distinction of their nature (i.e., spontaneous re-growth, weeds or cover crop). 374 

In a first attempt to estimate the effects of post-harvest vegetative events on the net CO2 flux 375 

components and ultimately on the annual NECB, the same parameterization considered for winter wheat is also 376 

considered for all post-harvest vegetative events. For the studied years, when the satellite-derived GAI indicates 377 

the presence of vegetation on the field after harvest (i.e., AUR2006, LAM2009, LAM2011, and LAM2013), the 378 

model is first run to simulate the main crop. Then, a second optimization is performed on the vegetation 379 

following the main crop, optimizing ELUEa and the 6 phenological parameters. The boundaries of parameters 380 

Sena, D0 and ELUEa are changed compared to those fixed for winter wheat, while the ranges of the 4 other 381 

parameters remain the same. 382 

 383 



3.3. From daily net ecosystem CO2 fluxes, NEE to the annual net ecosystem carbon budget, NECB 384 

To compute the annual NECB [eq.11], carbon input (Cinp) and export (Cexp) terms are added to the annual 385 

cumulated NEE (i.e., the NEP) [eq.11.1]. The NEP is the carbon absorbed or released by the field (through 386 

photosynthesis and respiration processes) over a cultural year, a positive NEP indicates that cumulated soil and 387 

autotrophic respiration are higher than cumulated photosynthesis, meaning that the field loses carbon towards the 388 

atmosphere and vice versa. The value of NEP is computed from October 1st to September 30th because this 389 

period usually corresponds to the agricultural cropping year in Europe (Ceschia et al., 2010). The term Cinp 390 

represents the amount of C that is brought to the field as organic fertilizer (only at FR-Lam in this study) and as 391 

seeds. Since Cinp could not be simulated, the Cinp values provided by the farmer as well as analysis of the organic 392 

fertilizer C content (Béziat et al., 2009), were used to calculate the NECB at LAM. 393 

Cexp generally corresponds to the yield [eq.11.2] in the study area, as typically, only grain is exported from the 394 

field (e.g., FR-Aur). However, in some cases, straws are also exported from the field (e.g., FR-Lam). From the 395 

perspective of regional-scale applications, this term (strawexp) is estimated as a function of the total straw 396 

biomass (strawtot), which corresponds to the final aboveground biomass (DAMmax) minus the final grain yield 397 

[eq.11.3]. The sc parameter [eq.11.3.1] is estimated from in situ data during the 2011 field campaign and set to 398 

0.3. 399 

 B�@o = B�� + @>20 − @,-0 
11 

B�� = p B��qG�rW>01
F<�s�1  11.1 

@>20 = Lg�ch ∗ @^>� 11.2 @>20 = @^>� ∗ �Lg�ch + �\
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 400 

3.4. Model implementation and validation strategy 401 

The proposed approach requires several types of input data, which are taken into account at different stages of 402 

the modelling process or during the calculation of the carbon budgets. To run the model, meteorological data (Rg 403 

and Tair), soil parameters (heterotrophic respiration parameters) and plant parameters (some being fixed and 404 

some being calibrated (see Table 2 to 6 for more details) are needed. The model can simulate the output 405 

variables only with those information, however, in the absence of calibration process, the estimates are very 406 

likely to be erroneous. To correctly simulate the crop development and thus get meaningful outputs, the satellite 407 

derived GAI is used to calibrate Pla, Plb, Sena, Senb, ELUEa, SLA and Do. Once the calibration process achieved, 408 

the parameters are set for each field and climatic year allowing to reproduce the vegetation dynamic (GAI, 409 

DAM, YLD) as well as the CO2 fluxes (GPP, Reco, NEE). Because at this stage, only remote sensing data and 410 

crop maps are needed, the approach can be up-scaled easily. Nevertheless assessing carbon budgets demand 411 

additional data that are not easily available at plot scale over large areas yet. The two additional input data 412 

needed are: the amount of C imported (Cinp) to the plot (as seeds and eventually as organic amendments), and an 413 

information on whether straw are exported from the plot or not. These two inputs allow to estimate the NECB 414 

[eq. 11]. 415 

The validation strategy relies on different types of datasets. Concerning the GAI, the comparison of the model 416 

output with the satellite derived GAI is not really a validation since the later is used to calibrate the model but 417 



rather a verification of the model’s ability to reproduce vegetation dynamic. To evaluate the performances of the 418 

model to simulate biomass, data from the instrumented ICOS flux sites and from the 2011 field campaign are 419 

considered. For yield validation, only the results from the 2011 field campaigns are presented (covering a range 420 

of values from 1.87 to 8.93 t.ha-1) as the annual yields provided by the farmer at the two instrumented sites may 421 

be averages of several fields from the farm and therefore present high uncertainties (see Béziat et al., 2009). 422 

These validations are presented in section 4.1.1. 423 

To evaluate the performance of the model in terms of CO2 flux simulations we used the data from the two ICOS 424 

sites (FR-Lam and FR-Aur). The use of very contrasted climatic years and management regimes at FR-Lam and 425 

FR-Aur (see section 2.2.2) makes our validation approach more robust. Those results are presented in section 426 

4.1.2.  427 

Among the objectives of the present study, assessing annual carbon budget is the most challenging. Indeed, the 428 

performances of the model to simulate both the NEP and the amount of biomass exported at harvest must be 429 

quite high to compute NECB as those two terms are usually of opposite sign and partly compensate each other. 430 

A small absolute error on one of those two terms will end up in a large absolute error on the NECB. Section 431 

4.2.1 presents the ability of the model to reproduce the cumulated NEE, which leads to the NEP. Then sections 432 

4.2.2 and 5 present and discuss, respectively, the capability of the model to assess the NECB.   433 

 434 

4. RESULTS  435 

4.1. Evaluation of the overall model performances 436 

4.1.1. GAI, DAM and yield estimates 437 

Figure 5 shows an overview of the statistical performances of the model in estimating GAI and DAM by 438 

Figure 5: Statistical performances (relative root mean square errors and coefficients of determination 

correspond to the bars and dots, respectively) associated with the estimation of the GAI (green) and 

DAM (red) for winter wheat at the Auradé (even-numbered years) and Lamasquère (odd-numbered 

years) sites. 



comparing the estimates with 439 

satellite-derived GAI and 440 

destructive biomass 441 

measurements for the FR-Aur 442 

(even-numbered years) and 443 

FR-Lam (odd-numbered 444 

years) sites in the 8 445 

cultivation years. In addition, 446 

Figures 6a and 6b present 447 

scatter plots of these two 448 

variables, distinguishing 449 

observations performed 450 

during the entire studied 451 

period (2006-2014) at the two 452 

flux sites and measurements 453 

collected during the 2011 454 

field campaign. At the flux 455 

sites, the GAI relative root mean square errors (RRMSEs, i.e., RMSE normalized by the mean observed value) 456 

range between 6 and 24% (for the years 2014 and 2007, respectively), while the determination coefficients (R²) 457 

are between 0.919 and 0.998 (for the years 2009 and 2014, respectively, Figure 5). When also considering fields 458 

from the 2011 campaign (Figure 6a), the GAI is reproduced by the model with a very high R² (0.97) and with 459 

almost no bias (0.004 m².m-2). The magnitude of this performance confirms that the model allows the correct 460 

interpolation of the GAI derived from remote sensing, as has already been demonstrated in previous studies 461 

(Duchemin et al., 2015; Fieuzal et al., 2011; Hadria et al., 2010). 462 

On average, the model also reproduces the DAM with good precision. When considering all investigated fields 463 

across the studied years (Figure 6b), the RMSE, RRMSE and R2 were 201 g.m-2, 26.6% and 0.90, respectively. 464 

These performances are consistent with those achieved using the SAFY model (maize and sunflower had 465 

RMSEs of 252 and 145 g.m-2, respectively, and RRMSEs of 24.7 and 39.1%, respectively, in Claverie et al., 466 

2012), as well as the performances of other models such as the APSIM-wheat model (Asseng et al., 1998) and 467 

STICS (Brisson et al., 2002), which estimated winter wheat biomass with R² of 0.90 and 0.78, respectively, and 468 

RMSEs of 0.101 and 0.266 kg.m-2, respectively. Nevertheless, the performances are more scattered when 469 

analysing annual statistics (Figure 5). Indeed, the DAM RRMSE values are between 11 and 39.2% (for the years 470 

2007 and 2013, respectively), while the R² values are between 0.945 and 0.998 (for the years 2012 and 2006, 471 

respectively). In general, the modelling approach tends to underestimate the highest biomass values at the end of 472 

the season (observed at LAM2011, AUR2012, LAM2013 and AUR2014). The highest levels of errors, for the 473 

DAM in 2012 and 2013, correspond to the strongest vegetation developments of 1960 g.m-2 and 2298 g.m-2, 474 

respectively, reached at the end of the crop season. Those DAM underestimations are caused by the 475 

underestimation of the effective GAI produced by BV-NNET for the highest values since the clumping effect is 476 

not accounted for (Claverie et al., 2012). This issue will be further discussed in Section 5.2. 477 

On average, yields (only data from the 2011 field campaign are analysed here, see 2.2.1) are estimated with good 478 

Figure 6: Comparison 

between the observed and the 

estimated crop variables (GAI, 

DAM and yield) over the crop 

period. Sites refer to FR-Lam 

and FR-Aur. 



precision (RMSE=1.02 t.ha-1, RRMSE=21.5%, R²=0.78), but underestimations are observed for the highest 479 

observed values. These underestimations are directly related to the DAM underestimations described above, as 480 

yield is estimated as a fraction of the final biomass. Nevertheless, the yield-estimation performances of SAFY-481 

CO2 are similar to those of SAFY (Duchemin et al., 2008) and STICS (Brisson et al., 2002) for wheat, with R² 482 

values of 0.64 and 0.65, respectively, and RMSEs of 0.5 and 1.6 t.ha-1, respectively. 483 

 484 

4.1.2. Components of the net CO2 fluxes: daily GPP, Reco and NEE 485 

In this section, the components of the net CO2 fluxes simulated by SAFY-CO2 are compared to the measured 486 

NEE at the FR-Aur and FR-Lam flux sites and with the GPP and Reco estimated following the partitioning of 487 

NEE. For the 8 investigated cropping years, the model performances are evaluated in terms of the error (RMSE) 488 

and correlation (R²) (see Figure 7). These statistical parameters are also calculated for the following periods of 489 

each cropping year (see Figure 8): 490 

1- From the beginning of the cropping year (October 1st) until the emergence of the crop 491 

2- From the emergence of the crop until the maximum vegetation 492 

3- From the maximum vegetation until harvest 493 

4- From harvest until the end of the cropping year (September 30th) 494 

4.1.2.1 GPP estimates 495 

When considering the whole vegetative periods (i.e., crop development and post-harvest vegetative events) of 496 

the 8 site-years, the simulated GPP dynamics agree well with the measurements, showing R² values between 497 

0.82 (LAM2011) and 0.94 (LAM2007) and RMSEs between 1.34 (LAM2009) and 2.39 (LAM2011) gC.m-2.d-1. 498 

In 2011, however, the simulated GPP during crop development showed poor statistics. A strong development of 499 

Figure 7: Statistical performances (root mean square errors and coefficients of determination are bars 

and dots, respectively) associated with the estimations of the daily GPP, Reco and NEE for the 8 winter 

wheat cropping years (October 1st to September 30th) at FR-Aur (even-numbered years) and FR-Lam 

(odd-numbered years). 



vegetation occurred in early 2011, while no flux data were recorded between January 1st and March 31th. 500 

Consequently, the CO2 fluxes were gap filled, and thus, the simulated GPP is underestimated over this period, 501 

leading to low R² and high RMSE values. 502 

During crop development (growth and senescence, excluding post-harvest vegetative events), the simulated GPP 503 

shows R² values between 0.86 and 0.96 and RMSE values between 0.90 and 2.79 gC.m-2.d-1. These periods are 504 

well reproduced by the model, the growth period shows slightly better performances than the senescence period. 505 

This trend can be explained by two phenomena: i) the underestimation of the simulated GPP during senescence 506 

due to the abovementioned limits of remote-sensed GAI (underestimation due to saturation effects) coupled with 507 

the potential lack of remote sensing observations, which prevents the correct reproduction of GPP during the 508 

senescence phase and ii) the presence of weeds growing inside the senescent crop (the understorey vegetation 509 

often observed at FR-Lam), which are undetectable by the satellite but still impact the flux measurements (see 510 

Temporal Evolution of LAM2013 in section 4.1.2).  511 

Considering the post-harvest period, only site-years with significant vegetative events are considered (i.e., weeds 512 

for AUR2006 and LAM2009, spontaneous crop re-growth for LAM2011 and cover crops for LAM2013). The 513 

values of the R2 between the simulated and observed GPP are lower during this period than during the crop 514 

development period for several reasons. First, at this stage, the same parameterization as the winter wheat 515 

parameterization is used for simulating the different types of post-harvest vegetative events (except concerning 516 

the parameters calibrated based on GAI satellite estimates – see section 3.2). Second the post-harvest vegetation 517 

is characterized be higher spatial heterogeneity than winter wheat, leading to likely divergence between observed 518 

and simulated CO2 fluxes. Indeed the footprint of the EC system is probably not fully representative of the entire 519 

field simulated by the model. Nevertheless, the overall performances of the model always increase when post-520 

harvest vegetative event are considered. 521 

 522 

4.1.2.2 Reco estimates 523 

Overall, the ecosystem respiration follows the same dynamics as the GPP but in an attenuated way (i.e., the 524 

Figure 8: Boxplot of the pluriannual determination coefficients (R²) and the pluriannual root mean 

square errors (RMSEs) of the simulated GPP, Reco and NEE in the before-crop, crop-growth, crop-

senescence, and post-harvest periods for the 8 cropping years of winter wheat at AUR and LAM. Only 

the years with post-harvest vegetative events (2006-2009-2011-2013) are considered for the boxplot of 

the post-harvest GPP.  



differences between bare-soil and vegetative periods are smaller). The simulated Reco dynamics are in good 525 

agreement with the observations, as shown in Figure 7. The annual RMSE values range from 0.82 (LAM2009) 526 

to 1.67 (LAM2013) gC.m-2.d-1, and the R2 values range from 0.58 (LAM2013) to 0.84 (LAM2014). 527 

The mean annual performances of the model in estimating Reco are lower than those in estimating GPP but are 528 

consistent with other studies that aim to estimate ecosystem respiration in agricultural fields. Zhan et al. (2019) 529 

found R² values between 0.84 and 0.87 and RMSEs between 1.52 and 1.65 gC.m-2.d-1 for a maize-soybean 530 

system, while Lohila et al., (2003) estimated the total ecosystem respiration of barley with a simple soil 531 

temperature-dependent model with good precision (R² between 0.71 and 0.79). A more detailed analysis of our 532 

results shows that the Reco is always well estimated during the crop growing periods, showing R² values between 533 

0.88 and 0.95, while the statistical performances are lower in other periods than in the crop growing period 534 

(Figure 8). One explanation for this difference is that the formulation for estimating heterotrophic respiration is 535 

too simplistic to reproduce some of the processes occurring in the soil, especially after harvest. This issue will be 536 

further discussed in Section 5.2. 537 

Additionally, for GPP, the presence of weeds growing inside the senescent crop, which is hardly detectable by 538 

the considered satellite but still impacts flux measurements (see the temporal evolution of LAM2013 in section 539 

4.1.2.4), cannot be considered in our modelling approach. On the other hand, the good performances during the 540 

crop growing periods indicate that the model accurately reproduces autotrophic respiration, which can represent 541 

80% of the Reco during the crop season (Béziat, 2009). The modelled Reco estimates are thus satisfactory 542 

considering the simplicity of its representation as well as the limited number of inputs in this crop modelling 543 

approach. 544 

4.1.2.3 NEE estimates 545 

The daily dynamics of the NEE are well reproduced by the SAFY-CO2 model even when GPP and Reco are 546 

underestimated, since the errors of the two components compensate for each other (either because the 547 

partitioning process overestimates the in situ data or because the model underestimates the crop development, 548 

which affects both GPP and Reco). The model that shows good performances over the cropping year in terms of 549 

errors and correlations, with RMSEs between 1.09 (AUR2006) and 1.59 (LAM2011) gC.m-2.d-1 and R2 values 550 

between 0.78 (LAM2011) and 0.90 (AUR2012). The model achieves better performances during the vegetative 551 

stages than during fallow periods (as is the case for GPP and Reco due to the reasons mentioned above). 552 

In order to compare the performances of SAFY-CO2 to simulate NEE with other agronomical or land surface 553 

models, our results were confronted to those presented by Wattenbach et al., (2010). In their study, they 554 

compared the performances of DNDC (Li et al., 2005, 1994, 1992), ORCHIDEE-STICS (de Noblet-Ducoudré et 555 

al., 2004; Gervois et al., 2008), SPA (Williams et al., 1996) and CERES-EGC (Gabrielle et al., 2006; Lehuger et 556 

al., 2009) in reproducing the GPP, Reco and NEE for several site-years, including the AUR2006 crop season. 557 

SPA and SAFY-CO2 outperformed the other approaches by reproducing the dynamics of the cumulated NEE, 558 

with R² values of 0.993 and 0.995, respectively. In terms of errors, SAFY-CO2 and CERES-EGC showed the 559 

lowest RMSEs, 33.6 gC.m-2 and 44.16 gC.m-2, respectively.  560 

4.1.2.4 Temporal evolution 561 

We decided to show the performances of SAFY-CO2 in simulating the time courses of the GPP, Reco and NEE 562 

for three contrasting site-years (AUR2006, LAM2009 and LAM2013) among the eight cultivation years. The 563 



objectives here are i) to identify potential sources of errors in the GPP and Reco estimates that can affect the NEE 564 

and the net annual CO2 fluxes (NEP) and therefore the NECB estimates, ii) to verify whether the proposed 565 

approach is robust for varying soils, management practices and climatic years and iii) to analyse the potential of 566 

this approach to simulate contrasting post-harvest vegetative events. 567 

 568 

• Auradé 2006 569 

The 2006 cropping year at FR-Aur (grain farm) is characterized by very clear sky conditions and strong 570 

radiation, little precipitation in spring (23.4, 29.7 and 32.8 mm of rain during April, May and June, respectively, 571 

in 2006; in contrast, the monthly means in these months over the 8 years of the study and both sites are 64.1, 572 

61.1 and 95.4 mm, respectively) and several re-growth/weed events occurring after harvest. For this site-year 573 

(Figure 9a), the model correctly reproduces the GPP and the Reco in terms of errors (RMSEs of 1.38 and 0.87 574 

gC.m-2.d-1, respectively) and dynamics (R² of 0.92 and 0.78, respectively). Consequently, the NEE for this year 575 

is accurately estimated (RMSE and R² of 1.09 and 0.88, respectively). Nevertheless, the modelled GPP is 576 

slightly overestimated after maximum development and at the beginning of senescence (Figure 9a). This 577 

overestimation could be related to the water stress conditions observed after the maximum GAI was reached 578 

(Béziat et al., 2013) that cannot be fully considered by the model. Moreover, spontaneous re-growth and weeds 579 

developed twice after harvest. The first event led to increases in the observed GPP and Reco just after harvest and 580 

was interrupted by soil work on July 31. The second vegetative event occurred from mid-August until late 581 

September 2006 and was interrupted by soil work on September 29. In a first attempt, we simulate only one 582 

vegetation cycle after harvest, so the two events are simulated as one (see red dashed line in Figure 9a); as a 583 

consequence, GPP and Reco are overestimated. NEE estimates during this period are improved (RMSE from 1.22 584 

to 0.93 gC.m-2.d-1) by accounting for weed/re-growth development. 585 

 586 

• Lamasquère 2009 587 

The 2008-2009 cropping season at FR-Lam (milk and chicken production farm) was characterized by strong 588 

rains in November and December that saturated the soil, causing poor emergence and late winter wheat 589 

development. Additionally, weeds developed before harvest during the winter wheat senescence. The GPP 590 

dynamics for LAM2009 are well reproduced, with an R² of 0.89. Additionally, Reco and NEE present R² values 591 

of 0.78 and 0.81, respectively, over the cultivation year. The errors of the GPP, Reco and NEE are also low, 592 

showing RMSE values of 1.34, 0.82 and 1.14 gC.m-2.d-1, respectively. However, during May 4, peaks are 593 

observed in measurements (13 days in total) that are not reproduced by the model. This divergence between 594 

simulated and observed GPP comes from the underestimation of the fELUE for days with high radiation and 595 

very clear sky conditions. After harvest (from mid-July to mid-September), the presence of weeds in the field is 596 

highlighted by the measured GPP dynamics. As for 2006, the dynamics and the range of the simulated post-597 

harvest GPP and Reco are not correctly reproduced by the model since the parameterization is the same as that for 598 

winter wheat, and many phenomena are not considered (i.e., priming effect, nitrogen or water stress, etc.). 599 

Nevertheless, accounting for weeds in the model allows a better estimation of the NEE (RMSEs decreasing from 600 

1.7 to 1.14 gC.m-2.d-1). 601 

 602 



• Lamasquère 2013 603 

We present the results of FR-Lam over the LAM2013 cropping year because it is the only site-year during which 604 

a cover crop was grown. Indeed, in 2013 at FR-Lam, after the harvest of the winter wheat, white mustard was 605 

sown on the 21st of August and incorporated in the soil on the 4th of December. Unlike re-growth and weed 606 

development, the development of the cover crop is rather homogeneous in the field and follows a growing cycle 607 

Figure 9a: Temporal evolution of the measured (in blue) and estimated (in red or red dashed lines) 

GPP, Reco and NEE for 2 site-years (AUR2006 and LAM2009). The red/red dashed lines represent the 

simulations that do/do not account for re-growth and weed events. The yellow envelopes represent the 

daily standard deviation of the 10 (/30) best simulations (i.e. smaller RMSE GAI error). The vertical 

dashed lines define the cropping year. 



that is correctly reproduced by the model, in addition to the CO2 fluxes (RMSE = 0.68 gC.m-2.d-1 and R² = 0.88 608 

for GPP; RMSE = 1.14 gC.m-2.d-1 and R² = 0.62 for NEE). 609 

LAM2013 is also marked by an early winter wheat development that benefited from good climatic and soil 610 

conditions for emergence. Therefore, the final biomass is high (2298 g.m-2) compared to that of other years 611 

(mean and standard deviation over the 8 studied years: 1566 +/- 453 g.m-2). This site-year is also characterized 612 

by weeds that developed during the senescence of winter wheat. These weeds could not be observed by the 613 

considered satellites, and the model was not able to simulate their effects on the CO2 fluxes (particularly on the 614 

GPP and the Reco) observed just before and after harvest. The difference between the observed and simulated 615 

NEE dynamics is small, either because the “observed” GPP and Reco partly balanced each other or because the 616 

increases in the “observed” Reco and GPP are caused by errors in the NEE partitioning process. 617 

 618 

4.2. From the cumulated NEE to yearly carbon budget 619 

4.2.1. Analysis of the cumulated NEE dynamics 620 

For the sake of conciseness, the analysis of the temporal behaviour of the cumulated NEE focuses on the same 621 

site-years (i.e., AUR2006 and LAM2009). These values are presented from October 1st until September 30th of 622 

the following year because this period corresponds to the agricultural cropping year in our area. The analysis of 623 

the cumulated NEE dynamics measured by the flux towers and modelled by SAFY-CO2 allowed for the 624 

identification of the CO2 net assimilation and release phases (Figure 10). A negative slope in the cumulated NEE 625 

curve (i.e., corresponding to net assimilation, with GPP>Reco) is observed during the growing season and during 626 

crop re-growth or weed or cover crop development. A positive slope (i.e., corresponding to CO2 release, with 627 

Figure 9b: Temporal evolution of the measured (in blue) and estimated (in red or red dashed lines) 

cumulated GPP, Reco and NEE for LAM2013. The red/red dashed lines represent the simulations that 

do/do not account for the cover crop. The yellow envelopes represent the daily standard deviation of 

the 10 (/30) best simulations (i.e. smaller RMSE GAI error). The vertical dashed lines define the 

cropping year. 



GPP<Reco) is observed during the bare-soil periods and the senescence stages. 628 

The modelled cumulated NEE for AUR2006 slightly diverges from the observations before the growing season 629 

because of the underestimation of the simulated Reco during this period. The effect of the overestimation of the 630 

GPP at the end of the growing stage and beginning of the senescence stage (as discussed above) leads to an 631 

underestimation of the maximum simulated cumulated NEE value. 632 

Finally, the slope becomes positive after harvest (when there is no more GPP). The modelled cumulated NEE is 633 

well estimated when re-growth and weeds considered (red dashed line) and diverges when they are not 634 

considered in the model (red solid line). 635 

In 2009, the simulated cumulated NEE matches well with the observations before and during the vegetative 636 

period. Indeed, over this period, the model reproduces the GPP and the Reco well, leading to a good estimation of 637 

the NEE. After harvest, not considering weeds causes the model to diverge from the observations, as in 2006, 638 

while modelling post-harvest vegetation development attenuates this bias (even if the simulated weed growth 639 

starts later here than on the field). 640 

When the post-harvest vegetative events are simulated, the difference between the observed and the simulated 641 

NEP is improved from 95 and 140 gC.m-2 to 33 and 16 gC.m-2 for AUR2006 and LAM2009, respectively. 642 

These results emphasize the need to include the effects of re-growth events, weeds and cover crops in the model 643 

because they represent non-negligible contributions to the NEP, which in turn could have an important impact on 644 

the final annual NECB values. 645 

 646 

4.2.2. Carbon budget over 8 agricultural seasons of winter wheat 647 

The NECB model estimates and its components (NEP, Cexp) are compared with those of the eight site-year 648 

measurements (Table 7). In this table, the effects of post-harvest vegetative events on NEE and NECB are 649 

considered. For FR-Lam, the Cinp is prescribed for the calculation of the modelled NECB, as the amount of C 650 

input as organic manure cannot be estimated by remote sensing. Also, Cinp corresponding to the amount of seeds 651 

brought to the plots are prescribed for both sites (even if very small compared to the other terms). The NEP 652 

values estimated by SAFY-CO2, which vary from -191 gC.m-2.yr-1 (LAM2009) to -486 gC.m-2.yr-1 (LAM2011), 653 

are generally close to the measured values, which vary from -208 gC.m-2.yr-1 (LAM2009) to -410 gC.m-2.yr-1 654 

Figure 10: Temporal evolution of the measured (in blue) and estimated (in red and red dashed lines) 

daily values of the GPP, Reco and NEE for 2 site-years: a) AUR2006 and b) LAM2009. The red/red 

dashed lines represent the simulations that do/do not account for re-growth and weed events. The 

yellow envelope represents the daily standard deviation of the 10 (/30) best simulations (i.e. smaller 

GAI RMSE).    



(LAM2011). Table 7 shows that for all site-years, winter wheat is a CO2 sink, and the model is able to reproduce 655 

the inter-annual variability in this sink activity. The years showing the largest difference in terms of NEP are 656 

AUR2014, AUR2012 and LAM2013, with differences of 30%, 24% and 22%, respectively, compared to 657 

observations. For AUR2014, this difference can be explained in different ways. First, the senescent phase is not 658 

well reproduced by the model because only one satellite image was available during this period, leading to an 659 

overestimation of the GPP. Second, after harvest, an increase in Rh is observed and is not reproduced by the 660 

model. This is due to the incorporation of straw into the soil, which leads to an increase in the soil microbial 661 

activity. The difference observed for AUR2012 is partly due to two post-harvest increases in Rh (priming effect) 662 

that could not be reproduced by the model. The first event, occurring at the beginning of July, was induced by 663 

rainfall. The second event followed ploughing that occurred at the beginning of August. Moreover, the NEP 664 

values of two of the three site-years where significant re-growth vegetative events occurred (during the cultural 665 

year) are better estimated once the re-growth is considered. Indeed, for AUR2006 and LAM2009, the differences 666 

between the simulated and observed NEP values are -30 and -68%, respectively, before taking re-growth into 667 

account and +10 and -7.8%, respectively, after taking re-growth into account. For LAM2011, NEP is first 668 

underestimated (-21%) and then overestimated (+19%). 669 

The analysis of the amount of carbon exported from the ecosystem at harvest (Cexp) shows that this amount 670 

varies considerably from one site-year to another. The simulated Cexp varies from 253 gC.m-2.yr-1 (AUR2010) to 671 

436 gC.m-2.yr-1 (LAM2013), while the observations range from 204 gC.m-2.yr-1 (AUR2010) to 488 gC.m-2.yr-1 672 

(LAM2013). Cexp values are often larger at FR-Lam than at FR-Aur due to the export of grain and straw and the 673 

model tends to overestimate the Cexp. The differences between the observations and model estimates of Cexp vary 674 

between 5% and 46%. However, the comparison of the modelled Cexp and the observed Cexp should be performed 675 

with caution since the precision of the yield provided by the farmer is questionable (especially at the Lamasquère 676 

site where most of the straws are exported) since those values are averaged over several fields of the farm (see 677 

section 2.2.1.). For this reason, Béziat et al. (2009) concluded that the uncertainty of in situ Cexp is often higher 678 

than the uncertainty of the NEP at our sites. For AUR2012, for instance, the Cexp estimated from the farmer’s 679 

data is 223 gC.m-2.yr-1, while our destructive measurements encompassing over 30 subplots of 3.75*10-2 m2 in 680 

the field suggest a Cexp of 406+/-53 gC.m-2.yr-1. When analysing the performance of the model against our own 681 

destructive field samples, the model generally performs much better (see Figure 6b and 6c). This indicates that 682 

our modelling approach may perform better for estimating Cexp (and therefore NECB) than what is presented in 683 

Cinp

SIM OBS Diff Diff OBS SIM OBS Diff Diff SIM OBS Diff Diff

[%] [gC/m²/yr] [%] [%]

AUR2006 -355 -322 ± 20 -33 10 -6.25 ± 1.88 270 216 ± 56 54 25 -94 -113 ± 60 19 -17

LAM2007 -302 -371 ± 33 69 -19 -389 ± 95.4 387 322 ± 29 65 20 -304 -439 ± 105 135 -31

LAM2009 -191 -208 ± 19 17 -8 -150 ± 45 293 279 ± 25 14 5 -48 -78 ± 55 30 -38

AUR2010 -253 -301 ± 47 48 -16 -6.25 ± 1.88 253 204 ± 53 49 24 -6 -102 ± 71 96 -94

LAM2011 -486 -410 ± 45 -76 19 -166 ± 49.8 400 355 ± 32 45 13 -252 -221 ± 74 -31 14

AUR2012 -362 -293 ± 34 -69 24 -6.25 ± 1.88 326 223 ± 20 103 46 -41 -76 ± 40 35 -46

LAM2013 -421 -345 ± 32 -76 22 -178 ± 53.4 436 488 ± 40 -52 -11 -163 -36 ± 74 -127 355

AUR2014 -316 -243 ± 34 -73 30 -6.25 ± 1.88 285 214 ± 67 71 33 -31 -29 ± 75 -2 6

Site-Year

NEP Cexp NECB

[gC/m²/yr] [gC/m²/yr] [gC/m²/yr]

77

-56.1

0.66

RMSE [gC/m²/yr]

RMSE [%]
SIM vs. OBS

All Sites
-

RMSE [gC/m²/yr]

RMSE [%]

R²

61

21.3

0.83R²

RMSE [gC/m²/yr]

RMSE [%]

R²

61

-19.7

0.58

Table 7: Annual net ecosystem carbon budgets (NECB) and their components (NEP, Cinp, Cexp) 

derived from the in-situ (OBS) and modelled (SIM) data for 8 site-years. Uncertainties on observations 

are also shown (for more details see Béziat et al., 2009). 



Table 7. 684 

The NECB estimated from in situ data or from SAFY-CO2 characterize all of the site-years as carbon sinks. The 685 

modelled NECB estimates vary from -304 gC.m-2.yr-1 (LAM2007) to -6 gC.m-2.yr-1 (AUR2010), while the in situ 686 

NECB estimates vary from -439 gC.m-2.yr-1 (LAM2007) to -29 gC.m-2.yr-1 (AUR2014). The FR-Lam site-years 687 

present the greatest variations between years, and the carbon inputs (NEP + Cinp) are stronger than those of FR-688 

Aur, partly because of organic fertilization.  689 

As shown in Table 7, the relative differences between the modelled and in-situ NECB vary from 6% (AUR2014) 690 

to 355% (LAM2013). In absolute terms, these differences vary from 2 gC.m-2.yr-1 (AUR2014) to 135 gC.m-2.yr-1 691 

(LAM2007) but the sign of NECB is always similar between both approaches. Regarding all simulated years, the 692 

model shows RMSE of 77 gC.m-2.yr-1. Note however that, the modelled NECB match to that observed for five 693 

simulated years out of eight if the uncertainties are considered. Indeed, the uncertainties on the in-situ NECBs 694 

(derived from uncertainties on the observed NEP, Cinp, Cexp) range from 40 to 105 gC.m-2.d-1. These results 695 

highlight the importance of precisely estimating each of the terms that compose the NECB to obtain accurate 696 

estimations of the annual crop carbon budgets (both with the in-situ and the modelling approaches). 697 

 698 

5. DISCUSSION 699 

5.1. Performances and benefits of our approach  700 

In this study, our objective is to evaluate the potential of high resolution GAI products assimilation into a simple 701 

crop model for simulating the biomass, the yield, the net CO2 fluxes components and the annual C budget of 702 

winter wheat crops at plot scale. The main advantage of this approach is that it requires few input data and little 703 

or no external information about management practices. Also, even with a limited number of equations and 704 

parameters compared to more complex crop models that require data on management practices, SAFY-CO2 705 

achieves equivalent or better performances regarding estimates of key components of the C budget: CO2 fluxes, 706 

biomass and yield (see sections 4.1.1. and 4.1.2.).  707 

Next, we demonstrated the ability of the model to reproduce winter wheat dynamics, production and CO2 fluxes 708 

under contrasted climatic and management conditions with the same parametrization. It shows the ability of such 709 

a remote sensing driven diagnostic approach (e.g. for calculating GPP) to account implicitly for the main stresses 710 

(N, drought, temperature…) and the main crop development limiting factors.  711 

Finally, our methodology allows accounting for the effect of post-harvest spontaneous re-growth, weeds and 712 

cover crops on the CO2 fluxes. As showed by Ceschia et al., (2010) this is essential for estimating accurately 713 

cropland C budgets and only remote sensing based approaches allow characterizing the dynamics and the spatial 714 

heterogeneity of the various post-harvest vegetative events. Therefore, in spite of a generic parameterization of 715 

the SAFY-CO2 model for those post-harvest vegetative events, the overall performances of the model for 716 

simulating CO2 fluxes and C budgets always increase when they are accounted for. The performances should 717 

improve thanks to the higher temporal resolution of the Sentinel missions. Next step could be to apply a specific 718 

parametrization, depending on the nature of those events or on their species composition (e.g. for cover crops), 719 

provided that the information is given by the farmer or can be retrieved by remote sensing (e.g. through cover 720 

crop classification).  721 

 722 



5.2. Potential limitations of this approach and drawbacks for large scale application 723 

The first main limitation of this approach based on optical remote sensing is that gaps in optical remote sensing 724 

observations during crucial periods of the crop development could lead to wrong estimates of the GAI dynamics, 725 

biomass and CO2 fluxes or could even make our approach inoperative (e.g. in 2007-2008). Fortunately, recent 726 

Sentinel 2 satellite missions provide observations at high spatial resolution (10m) every 5 days all over the globe 727 

which could partially solve this problem. Also, it was shown that the combined use of optical and Synthetic 728 

Aperture Radar (SAR) satellite data, like Sentinel 1, can overcome this issue (see Ameline et al., 2018; Baup et 729 

al., 2019; Betbeder et al., 2016; Remy Fieuzal et al., 2017; Revill et al., 2013). Indeed, the signal of the SAR 730 

satellites is not affected by clouds and they can even observe the surface at night. Another limitation of this 731 

optical remote sensing approach is that it cannot detect understorey vegetation (e.g. weeds) and their effect on 732 

the CO2 fluxes. Here again SAR data may overcome this issue as microwave signal are associated to deeper 733 

penetration capabilities (compared to optical reflectance), depending on the considered wavelength, and 734 

providing a valuable information on vegetation structure and water content (Brown et al., 2003). 735 

The second main limitation of this approach concerns the availability of plot scale information regarding straw 736 

management and organic fertilization. Those practices cannot be detected or quantified by remote sensing at this 737 

stage and therefore the uncertainty on the C budgets estimates in areas where animal farming occurs is high. This 738 

issue may be overcome in the future if data from the Farm Management Information Systems (FMIS) become 739 

more easily and more widely accessible. Another limitation for applying our approach concerns the size and the 740 

shape of the agricultural plots. As mentioned above, the contours of the plots must be eroded so that the signal is 741 

not influenced by surrounding landscape elements. Thus, we consider that for plots below 0.5-1 ha, GAI 742 

products may not be of good enough quality to apply our approach. Also high resolution GAI and crop maps are 743 

needed in our approach. In Europe, the later can be obtained via the Land Parcel Identification System (LPIS) 744 

and both data inputs should be available in a near future via the High Resolution Layers Copernicus Land 745 

Monitoring Service (https://land.copernicus.eu/pan-european/high-resolution-layers). The last limitation of our 746 

approach is that it cannot be used for forecasting, since it is based on satellite observations, although it is 747 

possible to test the effect of some scenarii on the C budgets (e.g. accounting or not for the effects of the post-748 

harvest vegetative events or for the impact of exporting or not the straw from the plot).  749 

Of course the question of the transposability of our approach and of its domains (spatial and temporal) of validity 750 

should be considered with caution. Indeed, the current parametrization of the SAFY-CO2 model is adapted to the 751 

pedoclimatic conditions where it has been set and it should be adapted to other crop species. Also the boundaries 752 

of the calibrated winter wheat phenological parameters are set for our pedoclimatic conditions. Applying this 753 

approach to areas where winter wheat has different periods of emergence and senescence would require to 754 

redefine those boundaries (e.g. in Northern countries). Note however that 1) the future High Resolution 755 

Phenology Copernicus Land Monitoring Service should provide, all over Europe since 2017, the dates of 756 

emergence and end of the growing for the crops and cover crops at plot scale for each cropping year by the end 757 

of this year and that 2) the transposability of the original SAFY model has already been tested in contrasted 758 

pedoclimatic conditions (France, Mexico and Morocco; see (Claverie et al., 2012; Duchemin et al., 2015, 2008; 759 

respectively) and for different crop species (corn, soybean, sunflower and wheat).  760 

Also, the parametrisation of the Q10 based approach for estimating heterotrophic respiration is well adapted to 761 

the type of soils and climates similar to the ones found in our area of study but it should probably be adapted to 762 



other soil types (e.g. organic or sandy soils) and climatic conditions. Still, with a similar approach, Delogu et al., 763 

(2017) obtained good Rh estimates (RMSE comprised between 0.15 and 0.73 gC.m-2.d-1 and R² between 0.42 and 764 

0.92 depending on the site) over contrasted pedoclimatic conditions. Another potential issue concerning our 765 

approach relates to the simplistic method for estimating Rh which should be considered as a first step for 766 

estimating Rh. In the future, this method could be improved, with little changes in the formalisms, by considering 767 

a R10 parameter that depends on top soil slow carbon content as it is proposed in Delogu et al., (2017). Another 768 

step of improvement could be to account for the priming effect following the incorporation of fresh organic 769 

matter into the soil (Kuzyakov et al., 2000). Indeed, with our modelling approach we could already estimate the 770 

amount of crop residues, cover crop, weeds and spontaneous re-growth incorporated in the soil. However 771 

accounting for the effect of organic fertilization is not an option at this stage, since this kind of information is not 772 

yet available at plot scale over large areas. For similar reasons, we did not account for the effect of soil work on 773 

soil respiration and also because it was shown that it has no significant effect on soil respiration (Eugster et al., 774 

2010) and no clear effect on SOC mineralisation (e.g. in Dimassi et al., 2014; Powlson et al., 2016; Virto et al., 775 

2012). Also, a potential drawback of our approach for estimating Rh is that the effect of the soil water content is 776 

not accounted for. As for the SAFY model (Battude et al., 2017; Duchemin et al., 2015), we have already tested 777 

the coupling of a soil water module (FAO56; Allen et al., 1998) to the SAFY-CO2 model (see Veloso, 2014). 778 

Such a coupling allows accounting for soil water content effects on photosynthesis and on heterotrophic 779 

respiration, and requires that accurate data concerning soil properties (e.g. texture, depth) at the plot scale are 780 

available. Unfortunately, the current products mapping soil properties (e.g. GlobalSoilMap, SoilGrids) either 781 

have a too coarse resolution for our area of study (250 m, for SoilGrids) or have too little accuracy to meet the 782 

needs of a SAFY-CO2 – soil water module coupled approach at plot scale (e.g. the performances of 783 

GlobalSoilMap in France are R² = 0.27 and RMSE = 128 g.kg-1 for clay content). Therefore, in the perspective 784 

of up-scaling our current approach for estimating annual cropland C budgets, we chose to rely only on currently 785 

available and sufficiently accurate data at plot scale. This is the reason why we chose a simple Q10 approach for 786 

estimating heterotrophic respiration at this stage. Of course, if this choice is likely suitable for plot scale annual 787 

C budget estimates, at crop rotation scale or over longer periods of study, the coupling of the SAFY-CO2 model 788 

with a soil organic matter model (e.g. RothC, Coleman and Jenkinson, 1996; AMG, Saffih-Hdadi and Mary, 789 

2008) should be considered. Such a step would benefit from 1) the improvement of the current soil products (e.g. 790 

GlobalSoilMap) which could be achieved by developing the current methods of inversion based on high 791 

resolution multi-spectral or hyperspectral remote sensing data (see Castaldi et al., 2019; Vaudour et al., 2019) 792 

and 2) from an easier and more systematic access to the FMIS data. 793 

Another limitation of our modelling approach is that it tends to underestimate the highest biomass values at the 794 

end of the season and therefore also the yield, impacting the C budgets estimates. These underestimations may 795 

be partly due to the underestimation of satellite-derived GAI (Claverie et al., 2012). In such a context, the 796 

assimilation of both GAI derived from optical images and dry biomass estimated from SAR images into the 797 

agro-meteorological model overcomes the limitation, as presented by Betbeder et al., (2016) in the specific case 798 

of soybean. Furthermore, taking into account the clumping effect in radiative transfer model would make it 799 

possible to limit the underestimation of GAI values (derived from optical images) when vegetation becomes 800 

dense. 801 

Still, we show that, within the limit of its domain of application, our approach was able to reproduce correctly 802 



the GAI, biomass and CO2 flux dynamics and it was able to estimate the NEP with a satisfactory level of 803 

accuracy. The relatively large error of prediction on the C budgets (mean RMSE of 77 gC.m-2.yr-1 and rRMSE of 804 

56 %) has to be tempered considering the uncertainties on the NECB calculated from the in-situ data. Indeed, 805 

besides the inherent uncertainties on the NEP associated to measurements errors and data processing, there is a 806 

strong uncertainty on the in-situ Cexp term for the two ICOS sites as mentioned previously. Considering the 807 

resulting uncertainties on the in-situ NECB, we conclude that the modelled NECB match the observations for 808 

five years out of eight. Also, section 4.1.2.4 showed that the model was able to estimate the yield with a rather 809 

good precision, suggesting that the error on the NECB could be reduced when comparing our estimates with in-810 

situ NECB calculated with more accurate yield data. Still, even if SAFY-CO2 provided accurate estimations of 811 

the annual components of the NECB we cannot claim at this stage that the model can reproduce accurately 812 

carbon budgets, especially over the long term. More accurate in-situ data, a larger dataset of validation and/or 813 

simulations on longer periods evaluated against estimates of soil C stock changes based on soil analysis would 814 

be needed to conclude. 815 

Of course other approaches allowing to estimate carbon budget exist, such as soil organic matter models which 816 

are designed to simulate the evolution of soil C stocks. The two most widely used and validated SOM are Roth-817 

C (Coleman and Jenkinson, 1996) and CENTURY (Parton et al., 1987). Those models estimate soil C stock 818 

changes have been evaluated against long term experiments. Contrary to the proposed approach, they need 819 

information about soil texture, management practices or residue quality. Their relative error in estimating soil C 820 

stock changes is comprised between 2-30% (Falloon and Smith, 2006; Guo et al., 2007; Smith et al., 1997) for 821 

Roth-C model and between 1.8-16.4% for CENTURY (Cong et al., 2014; Falloon and Smith, 2003). These 822 

results, which are more accurate than those achieved with SAFY-CO2 model should be tempered by the fact that 823 

they represent two different approaches, requiring different input and designed for different purposes and time-824 

scales. 825 

Also, as in other studies (Ceschia et al., 2010; Schmidt et al., 2012) our results showed that for all cropping years 826 

the plots behave as a net CO2 sinks and our results concerning the potential C storage of winter wheat crop are 827 

consistent with other studies (e.g. Aubinet et al., 2009; Ceschia et al., 2010). In addition, our results show that, in 828 

soils with low SOC content, post-harvest vegetative events (e.g. cover crops) increase soil organic carbon 829 

storage which is consistent with other studies (Kaye and Quemada, 2017; Pellerin et al., 2019; Poeplau and Don, 830 

2015; Tribouillois et al., 2018).  831 

Finally, in spite of the limitations and potential drawbacks of this approach, it seems to be a good compromise 832 

for estimating the components of the annual C budgets over large areas at this stage and we think that it offers 833 

great perspectives of development and applications at large scale thanks to the new satellite missions and 834 

Copernicus services. 835 

 836 

6. CONCLUSION 837 

In this work, we demonstrate the potential of high-resolution remote sensing data assimilation in a semi-physical 838 

crop model (SAFY-CO2) to successfully provide estimates of some of the main components of cropland annual 839 

carbon budgets (i.e., net CO2 flux components and yield). While this modelling approach is promising because it 840 

requires few input parameters and no management data for estimating crop production and net CO2 fluxes, this 841 

approach should be considered a first step for filling the gap in obtaining spatially explicit representation of the 842 



main components of cropland carbon budgets at the regional scale for a crop rotation or longer. Indeed, the main 843 

limitation of this approach is that, in areas concerned with animal farming, the calculation of the carbon budget 844 

requires data on i) organic amendments and ii) the fraction of straw exported at harvest, which presently cannot 845 

be retrieved by remote sensing at this stage. The second main limitation relates to the fact that the simple Q10 846 

based approach for estimating heterotrophic respiration does not allow us to estimate accurately the C budget for 847 

periods longer than the cropping year. For longer periods of study, the benefit of coupling our model with a soil 848 

module should be investigated. Another limitation concerns the availability of satellite observations, since our 849 

approach is data driven. However, because of recent HTRS satellite missions (Sentinel 2 and Landsat-7&8), this 850 

type of approach could be generalized and more accurate and robust. Synthetic aperture radar satellites (e.g., 851 

Sentinel 1) could also be used to overcome cloudy conditions (Veloso et al., 2017). In addition, our results show 852 

that the performance of the model in estimating net CO2 fluxes and thus C budgets are significantly improved by 853 

considering the development of weeds and crop re-growth after harvest. These events, as well as the presence of 854 

cover crops in crop rotations, are rarely or never accounted for in regional or global modelling of CO2 fluxes, 855 

although they significantly impact cropland carbon budgets. 856 

In the perspective of future global-scale applications, our approach could be strengthened (validated for a wider 857 

range of climates and management regimes) and extended to other crops by using data from international flux 858 

networks (e.g., ICOS and FLUXNET) and from recent HTRS satellite missions. 859 
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Supplementary material 1233 

S.1 Effect of diffuse radiation on the ELUE 1234 

The fraction of diffuse radiation affects photosynthesis (Béziat et al., 2009) and should be accounted for when 1235 

simulating GPP. Furthermore, because the photosynthetic rate of leaves is usually saturated under high incoming 1236 

radiation, leaves with lower irradiance will be more efficient than those with higher irradiance, and a reduction in 1237 

the volume of shade leaves within the canopy should result in an increase in the efficiency of the canopy in the 1238 

presence of low and diffuse radiation (Roderick et al., 2001). Thus, the photosynthetic efficiency is expected that 1239 

to increase as the diffuse solar radiation increases. To quantify this effect, we used data from 5 European flux 1240 

sites, including the Lamasquère and Auradé sites. The 3 other sites were Lonzee (LON) in Belgium, Grignon 1241 

(GRI, located near Paris) in France and Oensingen (OEN) in Switzerland. For all sites, the ELUE increased non-1242 

linearly with the ratio of diffuse over total global radiation. As a consequence, the relationship between the 1243 

effective light-use efficiency and the ratio between diffuse and direct radiation at ground level was defined as an 1244 

exponential function, with parameter “b” fixed to 1.34 and parameter “a” calibrated based on the assimilation of 1245 

GAI derived from satellite observations. The relationship seemed relatively generic; the correlation coefficient of 1246 

the regression was 0.63. 1247 

 1248 

 1249 

 1250 
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 1252 

Figure S.1: Relationship between the ELUE and the ratio between diffuse (Rdf) and global (Rg) 

radiation measured at 5 European flux sites (Lonzée, Grignon, Oensingen, Lamasquère & Auradé)  



S.2 Temporal evolutions of the in-situ and simulated net CO2 flux components 1253 

The purpose of this section is to compare the temporal evolutions of in-situ and simulated CO2 fluxes (GPP, Reco, 1254 

NEE and cumulated NEE) at FR-Lam and FR-Aur for the site years discussed in the text but not shown. 1255 

 1256 

 1257 

 1258 

Figure S.3.1: Temporal evolution of the measured (in blue) and estimated (in red) GPP, Reco and NEE, 

top, and cumulated NEE, bottom, for LAM2007. The yellow envelopes represent the daily standard 

deviation of the 10 (/30) best simulations (i.e. smaller RMSE GAI error). The vertical dashed lines 

define the cropping year. 



 1259 

Figure S.3.2: Temporal evolution of the measured (in blue) and estimated (in red) GPP, Reco and NEE, 

top, and cumulated NEE, bottom, for AUR2010. The yellow envelopes represent the daily standard 

deviation of the 10 (/30) best simulations (i.e. smaller RMSE GAI error). The vertical dashed lines 

define the cropping year. 
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Figure S.3.3: Temporal evolution of the measured (in blue) and estimated (in red or red dashed lines) 

GPP, Reco and NEE, top, and cumulated NEE, bottom, for LAM2011. The red/red dashed lines 

represent the simulations that do/do not account for re-growth and weed events. The yellow envelopes 

represent the daily standard deviation of the 10 (/30) best simulations (i.e. smaller RMSE GAI error). 
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Figure S.3.4: Temporal evolution of the measured (in blue) and estimated (in red lines) GPP, Reco and 

NEE, top, and cumulated NEE, bottom, for AUR2012. The yellow envelopes represent the daily 

standard deviation of the 10 (/30) best simulations (i.e. smaller RMSE GAI error). The vertical dashed 

lines define the cropping year. 
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Figure S.3.5: Temporal evolution of the measured (in blue) and estimated (in red or red dashed lines) 

cumulated NEE for LAM2013. The red/red dashed lines represent the simulations that do/do not 

account for re-growth and weed events. The yellow envelopes represent the daily standard deviation of 

the 10 (/30) best simulations (i.e. smaller RMSE GAI error). 
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Figure S.3.6: Temporal evolution of the measured (in blue) and estimated (in red lines) GPP, Reco and 

NEE, top, and cumulated NEE, bottom, for AUR2014. The yellow envelopes represent the daily 

standard deviation of the 10 (/30) best simulations (i.e. smaller RMSE GAI error). The vertical dashed 

lines define the cropping year. 




