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Abstract

The assembly of suitably designed van der Waals (vdW) heterostructures represents

a new approach to produce artificial systems with engineered electronic properties.

Here, we apply this strategy to realize synthetic semimetals based on vdW interfaces

formed by two different semiconductors. Guided by existing ab-initio calculations, we

select WSe2 and SnSe2 mono and multilayers to assemble vdW interfaces, and demon-

strate the occurrence of semimetallicity by means of different transport experiments.

Semimetallicity manifests itself in a finite minimum conductance upon sweeping the

gate over a large range in ionic liquid gated devices, which also offer spectroscopic capa-

bilities enabling the quantitative determination of the band overlap. The semimetallic
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state is additionally revealed in Hall effect measurements by the coexistence of electrons

and holes, observed by either looking at the evolution of the Hall slope with sweeping

the gate voltage or with lowering temperature. Finally, semimetallicity results in the

low-temperature metallic conductivity of interfaces of two materials that are them-

selves insulating. These results demonstrate the possibility to implement a state of

matter that had not yet been realized in vdW interfaces, and represent a first step

towards using these interfaces to engineer topological or excitonic insulating states.

Keywords

van der Waals heterostructures, semimetal, band overlap, ionic liquid gating, 2D materials

The possibility to assemble heterostructures of different two-dimensional (2D) van der

Waals (vdW) materials1 without any constraint imposed by the need to match their lat-

tices discloses unprecedented opportunities to realize artificial systems2,3 hosting novel elec-

tronic states. Known examples include the modification of the band structure of graphene

placed onto hexagonal boron nitride,4–6 the drastic enhancement of spin-orbit interaction

in graphene on semiconducting transition metal dichalcogenide (TMD) substrates,7–12 the

occurrence of superconductivity in twisted bilayer graphene,13–16 and the appearance of cor-

related insulating states in gate-doped twisted TMD bilayers.17,18 Many more interesting

artificial systems can be envisioned, because vdW interfaces allow 2D materials hosting dis-

tinct electronic phenomena –such as superconductivity,19,20 magnetism,21–26 charge density

waves,27–29 and more – to be brought in contact, within sub-nanometer distances.

Here we demonstrate how vdW interfaces can be used to realize synthetic semimetals,

by stacking on top of each other two atomically thin semiconductors with a suitable band

alignment. The strategy is similar to that employed recently to assemble vdW interfaces

acting as artificial semiconductors30–32 with a controlled band-gap (see Fig. 1(a)). Realizing

a semimetallic state requires the bottom of the conduction band in one of the semiconductors
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to be lower in energy than the top of the valence band in the other (see shaded bands profiles

in Fig. 1(b)), so that the conduction and valence bands of the two materials overlap in energy.

Under these conditions, charge is transferred from one material to the other, causing both

bands to be partially filled. The Fermi level is then positioned in the energy interval in which

the two bands overlap, turning the interface of two insulating 2D materials into a conductor,

due to the simultaneous presence of electrons and holes.

Semimetals of this type are expected to exhibit interesting phenomena, depending on

details of the interfacial electronic structure. If the overlapping bands of the constituent

materials are both centered at the Γ-point, for instance, the interface should host a 2D

quantum spin Hall state. Indeed, in this case the situation is analogous to that of III-V

InAs/GaSb heterostructures,33–35 with the advantage that in vdW interfaces, the atomic

thickness of the constituent 2D materials can strongly enhance wavefunction overlap and

hybridization effects between the two layers, resulting in a much larger gap between the

inverted bands (for this to occur, strong spin-orbit interaction needs to be present, which

is the case for the 2D materials that we consider36–38). If the band overlap does not occur

at the same position in k-space, coupling between electrons and holes in the two layers

can still occur, but is predominantly mediated by Coulomb interaction. In this regime,

theory39 predicts the system to undergo a transition to an excitonic insulating state, in

which electrons and holes are bound together, forming neutral excitons that do not carry

current. Such an excitonic insulating state has not been observed to occur spontaneously in

natural semiconducting materials, and vdW interfaces offer a new platform for its search.

Our goal here is to show that a semimetallic state can indeed be realized in vdW inter-

faces formed by two different 2D semiconductors, and to demonstrate experimentally all its

basic characteristic features: the presence of band overlap, the coexistence of electrons and

holes, and the metallic nature of transport. Identifying suitable constituent semiconductors

to assemble a semimetallic vdW interface is not straightforward, because for most semicon-

ducting 2D materials the relative band offset is too small to bridge their band gap and create
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Figure 1: (a) Schematics of the bands of an artificial semiconductor, i.e., a vdW interface
formed by 2D semiconductors A and B, such that at the interface the conduction band is
determined by A and the valence band by B. (b) Left: expected band alignment at interfaces
formed by WSe2 and either ZrS2 or SnSe2. According to Refs 40 and 41 these systems exhibit
either a band overlap (shaded bands in the diagram), or a small gap (full color bands in the
diagram). Right: schematics of band dispersion for SnSe2, ZrS2 and WSe2, showing that the
maximum and minimum of the valence and conduction band occur at different position in
k-space (shaded and full bands –exhibiting either a band overlap or a small gap– correspond
to the prediction of Refs 40 and 41. The inset shows the schematics of the Brillouin Zone
of these materials. (c) and (d) Optical microscope images of individual semiconductor and
their of interfaces, as indicated in the legends of each image (the scale bar is 10 µm).
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a band overlap. To guide our search, we rely on ab-initio calculations reported in the litera-

ture, discussing the electronic structure of interfaces based on combinations of monolayers of

many different vdW semiconductors. In particular, the results of Zhang et al.40 and Koda et

al.41 suggest that monolayers of WSe2 and SnSe2 or of WSe2 and ZrS2 should yield either a

band overlap or a small band gap (see Fig. 1(b)). If sufficiently small, the presence of a gap

between two monolayers does not necessarily represent a problem, because selecting bi or

trilayers of these same materials can then likely allow a finite band overlap at the interface to

be achieved (simply because the band gap of most 2D semiconductors under consideration

decreases significantly upon increasing their thickness). These combinations of 2D materials

are therefore promising to realize synthetic semimetallic systems. Nevertheless, since the

precision of ab-initio calculations for the quantitative determination of material band gaps

and of their band alignment is limited, it remains to be seen whether experimentally these

interfaces behave as predicted theoretically (indeed, in recent work where a band overlap

was expected based on theoretical predictions, no sign of a semimetallic state was found in

the experiments42).

To verify experimentally the occurrence of an interfacial semimetallic state we perform

different types of transport measurements. To this end, we realize devices with nano-

fabricated metallic contacts attached to the interfaces, and equip them with ionic liquid

gates, to allow the accumulation of very large densities of charge carriers (either electrons or

holes). Thanks to their very large geometrical capacitance these devices also enable spectro-

scopic measurements, as we explain in more details below. Examples of exfoliated layers of

WSe2, SnSe2 and ZrS2 used in our experiments are shown in Fig. 1(c) and (d), together with

the images of the resulting vdW interfaces. Fig. 2 shows both the schematics of ionic liquid

gated field-effect transistor (FET) devices (Fig. 2(c)) as well as optical microscope images

of different interface devices with attached metallic contacts (insets of Fig. 2(d) and (e)).

In practice, devices were realized using exfoliated layers of different thickness, ranging from

monolayer (1L) to six-layers (6L) (the sources of the bulk crystals used for exfoliation are
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listed in the supplementary information). Exfoliation and interface assembly were done with

the aid of a motorized stage in a nitrogen-filled glove box (< 0.1 ppm O2 and H2O) in order

to avoid any material deterioration (for ZrS2 this is essential, as processing this material

in air causes substantial degradation). The procedures used to assemble the interfaces, to

attach contacts, and to apply the ionic liquid (P14-FAP) are by now rather conventional and

are described in detail in the supplementary information.

As a first characterization step, for some of the as-assembled interfaces we performed

photoluminescence (PL) spectroscopy measurements prior to attaching electrical contacts.

PL spectra measured on 1L-WSe2/1L-SnSe2 and 1L-WSe2/3L-ZrS2 are shown in Fig. 2(a)

and 2(b) (red lines), together with the spectrum of the WSe2 layer in the corresponding

samples (green lines; we have not detected any measurable PL signal from neither the SnSe2

nor the ZrS2 layers, both of which are indirect gap semiconductors). For the 1L-WSe2/1L-

SnSe2 sample a nearly complete quenching of the PL signal is seen in the interface region

(compare the red and the green line in Fig. 2(a)), indicating the presence of a non radiative

decay path for photo-excited electron-hole pairs. This should indeed be expected if the band

alignment gives rise to a semimetallic interfacial state, since transferring of carriers from the

valence band of WSe2 to the conduction band of SnSe2 prevents radiative recombination

within the WSe2 layer. In the WSe2/ZrS2 interface, instead, the intensity of the WSe2

peak has comparable spectral weight as in the bare WSe2 layer (Fig. 2(b); in the interface

the peak is split, likely because the presence of some excess charge allows the formation of

trions). Therefore, PL measurements provide a first indication that the band alignment in

WSe2/SnSe2 –but not in WSe2/ZrS2– may allow the realization of an interfacial semimetallic

state.

Important indications as to the nature of the interfacial band structure can be obtained

by transport measurements as a function of gate voltage, in transistor devices gated with

an ionic liquid (see Fig. 2(c)). In such a device, a change in gate voltage (δVG) induces

both a change in chemical potential (δEF ) and in electrostatic potential (δφ), which in the
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Figure 2: (a) Photoluminescence (PL) spectra of a 1L-WSe2/1L-SnSe2 interface (red curve)
and of the individual constituent 1L-WSe2 layer (green curve). In both spectra, the peak
at 1.65 eV originates from recombination of the A-exciton in 1L-WSe2. As compared to
the isolated constituent 1L-WSe2, in the interface the PL intensity is nearly completely
quenched. (b) PL spectra of a 1L-WSe2/3L-ZrS2 (red curve) and of the isolated constituent
1L-WSe2 (green curve). In this case, the intensity of the PL from the interface and from
the constituent monolayer are comparable (the double peak observed in the interface region
likely originates from trion formation). (c) Schematics of an ionic-liquid gated device, with
source and drain contacts on all the separate parts of the structure (i.e., the two constituent
semiconductors and their interface). The schematics of the electrical circuit used to perform
FET measurements is also shown. (d) Two-terminal conductance (G2p) as a function of ionic-
liquid gate voltage (VG) in a 1L-WSe2/3L-ZrS2 interface, exhibiting ambipolar transport. (e)
Two-terminal conductance (G2p) as a function of ionic-liquid gate voltage (VG) measured on
a 1L-WSe2/1L-SnSe2 interface (red curve) and on the constituent 1L-WSe2 (cyan curve).
In (d) and (e) the red dash-dotted lines indicate how the respective transfer curves are
extrapolated to extract the threshold voltages for electron and hole conduction. The insets
in (d) and (e) show optical microscope images of the devices used in the measurements (the
scale bar is 10 µm). All measurements were done at room temperature (since at below 270K
the ionic liquid freezes).
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geometry of a parallel plate capacitor is given by δφ = e2δn
CG

(δn is the induced variation

of accumulated charge density and CG the geometrical capacitance between gate and FET

channel). These different quantities are related as:

eδVG = δEF + eδφ = δEF +
e2δn

CG
(1)

For an ionic liquid FET, the gate capacitance CG is extremely large. If the Fermi energy is

swept through the material band gap, so that δn ' 0 (in the absence of defects, δn nominally

vanishes, since there are no states available inside the gap to accumulate charge), the last

term e2δn
CG

can be neglected. It follows that in this regime eδVG = δEF , i.e., a change in gate

voltage directly corresponds to a change in position of the Fermi level. It is this relation

that enables the use of ionic liquid gated FETs to perform spectroscopic measurements.

Specifically, when VG equals the threshold voltages V e
th/V

h
th for electron/hole accumulation,

the Fermi level is located at the conduction/valence band edge, and we have e(V e
th−V h

th) = ∆.

That is: the difference in threshold voltages for electron and hole accumulation provides a

direct measurement of the material band gap. We have repeatedly used this technique in

the past to measure the band gap of mono and multilayers of many different semiconducting

TMDs43–46 (as well as their band offsets32) and obtained precise and reproducible result.

Here, we apply the same technique to WSe2/SnSe2 and WSe2/ZrS2 and their constituents

(see Fig. 2(d,e) and Fig. (3))

To illustrate the principle of the technique, we start by discussing measurements on ionic

liquid gated WSe2 monolayer FET, nominally identical to devices that have been used in

the past to determine the band gap of this material.32,47 The two-terminal conductance G2p

measured as a function of VG (see cyan curve in Fig. 2(e)) shows clear ambipolar transport.

The conductivity is high for negative VG, when the Fermi level is located in the valence band

of 1L-WSe2, it vanishes in an extended interval of gate voltage (corresponding to having

EF located in the band gap of 1L-WSe2), and increases again as VG is sufficiently large to
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shift EF into the conduction band. The dashed-dotted lines show how the linear parts of

the G2p(VG) are extrapolated to zero, to extract the threshold voltages for electron and hole

conduction. From their difference we obtain the band gap of 1L-WSe2, ∆WSe2 ≈ 2.1 eV (if

the analysis is performed by plotting G2p as a function of reference potential and not of VG –

as we discussed multiple times elsewhere43,48,49– the quantitatively precise value ∆WSe2 ' 1.9

eV47 is obtained; see supplementary information). The exact same procedure can be applied

to the interfacial regions, enabling the interface band gap to be determined.32 Fig. 2(d) shows

analogous G2p(VG) data measured on a 1L-WSe2/3L-ZrS2, showing a behavior qualitatively

similar to that of 1L-WSe2, i.e., G2p(VG) vanishes over an extended interval of gate voltages.

This implies the existence of a finite band gap at the interface ∆WSe2−ZrS2 ≈ 0.9 eV and

makes us conclude that WSe2/ZrS2 does not exhibit semimetallicity.
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Figure 3: Two-terminal conductance G2p as a function of ∆VG = VG− VGmin, the difference
between applied gate voltage (VG) and the gate voltage corresponding to the conductance
minimum (VGmin), for WSe2/SnSe2 interfaces with different layer thickness (as indicated in
the legend). The data show that the observed behavior is very robust (as measurements are
done in a two-terminal configuration, a systematic analysis of the value of the conductance at
the minimum is prevented by the possible presence of a contact resistance). All measurements
were done at room temperature, to avoid freezing of the ionic liquid.
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The behaviour observed in 1L-WSe2/1L-SnSe2 interfaces is distinctly different, as illus-

trated by their two probe conductivity σ2p that remains finite for all values of VG. Fig.

2(e) shows that for negative VG the conductivity nearly overlaps with the conductivity of

the WSe2 monolayer measured on the same device (the structure contains multiple contacts

that enable measuring separately the WSe2/SnSe2 interface and the WSe2 layer, see the

inset of Fig. 2(e)), it reaches a minimum value of G2p ' 2µS, and then increases again for

positive VG values. No extended interval of gate voltage is present in which G2p vanishes as

observed in WSe2 (see cyan curve in Fig. 2(e)) or in WSe2/ZrS2 interfaces (see Fig. 2(d)).

The observed qualitative behavior –expected from a semimetal or a zero-gap semiconductor

such as graphene– is robust and was observed in all WSe2/SnSe2 interfaces that we studied,

irrespective of the thickness of the constituent layers, as illustrated by the measurements per-

formed on different devices shown in Fig. 3. These observations provide a direct indication

of the absence of a sizable band gap in WSe2/SnSe2, confirming the conclusion suggested by

the quenching of PL observed in 1L-WSe2/1L-SnSe2 discussed above.

With the aim to probe the electronic properties of WSe2/SnSe2 interfaces more in detail,

we fabricated a structure enabling the two constituent layers and their interface to be probed

separately with multiterminal measurements done on a same device. The structure consists

of two large exfoliated crystals of 3L-WSe2 and a 4L-SnSe2 that are partially stacked on top

of each other, in such a way that also the two constituent layers can be contacted (see Fig.

4(a)). For both layers and for the interface the nano-fabricated contacts do not only enable

the longitudinal conductivity to be measured, but also the Hall resistance. All parts of the

structure are immersed into a droplet of ionic liquid that covers a common gate electrode. To

avoid the possibility of material degradation, we took care to cover with a hBN monolayer

the part of the SnSe2 layer not covered by WSe2.

FET transfer curves measured on the two individual layers and on their interface are

plotted in Fig.4b. The transfer curve of WSe2 (cyan line) exhibits a full gap, as already

discussed for the monolayer case (Fig. 2(e); being thicker than a monolayer, the gap in
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Figure 4: (a) Optical microscope image of a structure nano-fabricated to enable multi-
terminal ionic liquid gate transistor measurements to be performed separately on the interface
and on the two constituent materials. The different parts of the structures are indicated by
the arrows. The WSe2 and the SnSe2 crystals are respectively three and four layers thick;
the SnSe2 layer was capped using a monolayer h-BN to avoid material degradation (the scale
bar is 10 µm). (b) Four-terminal conductivity (σ4p) measured as a function of ionic-liquid
gate voltage (VG) on the individual WSe2 (cyan curve) and SnSe2 (olive curve) layers, as well
as on their interface (orange curve). Also in this case, σ4p(VG) shows the characteristic, gap-
less behavior of a semimetal (a minimum of conductivity, with the conductivity remaining
finite for all VG values). The red dash-dotted lines indicate how the σ4p(VG) curves are
extrapolated to zero conductivity to extract the relevant threshold voltages. It can be seen
that the threshold voltage for hole conduction in WSe2 is larger than the threshold voltage for
electron conduction in SnSe2, providing a direct observation of the presence of an interfacial
band overlap. Measurements were done at room temperature to avoid freezing of the ionic
liquid.
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3L-WSe2 is smaller, as expected). For the SnSe2 part of the device, the transfer curve (olive

line) exhibits conventional behavior, with a clear onset for electron transport below which

the conductivity vanishes (not being relevant here, we did not apply a negative gate voltage

large enough to accumulate holes, to avoid risking device degradation). In line with the

behavior shown in Fig. 2(e) and Fig. 3, the interface transfer curve (orange line) exhibits a

minimum, with the conductivity remaining finite for all value of VG. For VG ≤ −0.5V, the

σ4p(VG) curve measured on the interface overlaps almost perfectly with the corresponding

curve measured on WSe2, showing that in this range of voltages, the interfacial conductivity

originates from holes accumulated in WSe2. For VG > −0.5V the interfacial conductivity

increases upon increasing VG, and its value remains close to that measured on the SnSe2

part of the device, consistently with the notion that in this gate voltage range interfacial

transport is mediated by electrons accumulated in SnSe2. The absolute value of the interface

conductivity, however, is slightly smaller than in the individual SnSe2 layer, and so is the

slope with which σ4p increases for larger positive VG. The difference is likely due to the

capacitance between the liquid and the SnSe2 layer, which is smaller in the interface region,

since there the SnSe2 layer is separated from the liquid by a 3L-WSe2, considerably thicker

than the monolayer hBN used to protect SnSe2 in the region away from the interface. The

data therefore indicate that transport in the interface region is mediated by holes in WSe2 for

VG values sufficiently smaller than −0.5V and by electrons in SnSe2 for VG values sufficiently

larger than −0.5V, with the conductivity remaining finite for all VG values in between (i.e.,

without vanishing over an extended interval as it happens in the presence of a band gap).

At a more quantitative level, in this device we can determine the threshold voltage

V e
th−SnSe2 for electron conduction in the SnSe2 and the threshold voltage V h

th−WSe2 for hole

conduction in the WSe2, by extrapolating to zero the VG-dependent conductivity of the

respective individual layers (see red dashed-dotted lines in Fig. 4(b)). As explained above,

the threshold voltages correspond to having the chemical potential located respectively at the

conduction band edge of SnSe2 or at the valence band edge of WSe2. We see in Fig. 4(b) that

12



-2 -1 0 1 2
-30

0

30

60

90

 

WSe
2
/SnSe

2

WSe
2

(a)

-5.0 -2.5 0.0 2.5 5.0
-60

-30

0

30

60
 

R
xy

 (
Ω

)

B (T)

 -2
 -1
 -0.4

 0
 0.2
 1.8

R
xy

 (
5

T
) 

(Ω
)

VG(V)
(b)

0 100 200

-20

-10

0

10

20

30

 

R
xy

 (
5

T
) 

(Ω
)

(c)

 

0 150 300
0

2

4

6

R
sq

 (
kΩ

)

T (K)
 

 

T (K)

 VG(V):

Figure 5: Indications of semimetalliciy in WSe2/SnSe2 interfaces are found in Hall resistance
measurements performed at room temperature, as well as in the temperature dependence
of the longitudinal resistance. (a) VG dependence of the transverse resistance Rxy measured
at B = 5T on a 3L-WSe2/4L-SnSe2 interface (black squares; selected traces showing the
Hall resistance as a function of B are shown in the inset) and on the WSe2 layer (red
circles; measurements done at room temperature). For WSe2 Rxy is positive and increases
monotonically with increasing VG, as expected for hole transport. In the interface, Rxy

initially matches the data measured on the WSe2 layer, but it exhibits a non-monotonic
behavior at larger VG values, eventually reversing sign with further increasing VG. The
overall evolution of Rxy identifies three regimes –as expected for a semimetal– shaded with
different colors in (a). For −2V to −1V (blue shaded region) transport is dominated by
holes, for −1V to 0.5V (green shaded region) electrons and holes coexist, and for −0.5V
to −2V (orange shaded region) electrons dominate transport. (b) Temperature dependence
of Rxy in a 2L-WSe2/6L-SnSe2 interface measured at B = 5T and fixed VG, in the regime
where holes and electrons coexist. Rxy changes sign from positive to negative at T ' 85K,
indicating that as T is lowered the dominating type of charge carrier changes from holes to
electrons. (c) Temperature dependence of the square resistance Rsq of a 2L-WSe2/6L-SnSe2
interface, measured at fixed VG corresponding to the minimum of conductance. Rsq decreases
with lowering temperature down to 4K, exhibiting a metallic temperature dependence.
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V h
th−WSe2 > V e

th−SnSe2, allowing us to conclude directly from the experiments that the valence

band edge of WSe2 is higher in energy than the conduction band edge of SnSe2, i.e., that the

band alignment of the two materials does exhibit a band overlap. The data also provide an

estimate of the magnitude of this overlap, given by e(V h
th−WSe2 − V e

th−SnSe2) ' 80meV (with

a relatively large uncertainty, originating from the extrapolation procedure).

Having concluded that 3L-WSe2/4L-SnSe2 interfaces are indeed semimetals, we search

for the expected manifestations of the semimetallic state in their magnetic-field (B) and tem-

perature (T ) dependent transport properties. We first look at the Hall resistance measured

as a function of gate voltage (see black squares in Fig. 5(a)). Starting from large negative VG

values, i.e., when the Fermi level is in the valence band of the interface, the Hall resistance

measured at fixed applied magnetic field B = 5T (extracted from the curves shown in the

inset of Fig. 5(a)) is positive, and initially increases upon shifting VG to less negative values

(corresponding to a decrease in hole density). In this VG interval the Hall resistance coincides

with the one measured on the WSe2 layer (red circles in Fig. 5(a)), confirming that transport

in the interface is mediated by states in the valence band of WSe2. Shifting VG past −1V,

causes the Hall resistance to decrease, because in this interval of gate voltage both holes and

electrons are present. Indeed, upon increasing VG past approximately 0V, the Hall resis-

tance changes sign and becomes negative. Increasing VG further on the positive side causes

the Hall resistance to decrease only very slowly, likely because of the lower capacitance of

the ionic liquid to the SnSe2 layer (as we already mentioned, the ionic liquid is separated

from SnSe2 by the 3L-WSe2 that is relatively thick) and because exfoliated SnSe2 layers are

unintentionally electron doped (i.e., electrons are naturally present in the material at room

temperature even in the absence of any applied gate voltage, see Fig. 4(b)). Irrespective

of these details, the overall evolution of the Hall resistance as a function of VG shows the

coexistence in the interface of electrons and holes in an extended range of gate voltages,50

which is precisely the behavior expected for a semimetal. The presence of both electrons and

holes further manifests itself in the temperature evolution of the Hall resistance, as shown
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in Fig. 5(b) for the 2L-WSe2/6L-SnSe2 interface whose transfer curve is shown in Fig. 3.

Upon lowering the temperature at VG = −1V, the Hall resistance changes from positive

to negative upon cooling, as the dominating contribution to transport changes from being

given by holes at high temperature and by electrons at low temperature. This observation

confirms that electrons and holes indeed coexist at the interface.

The presence of a semimetallic state is confirmed by looking at the temperature depen-

dence of the longitudinal square resistance (Rsq) of the WSe2/SnSe2 interfaces. Fig. 5(c)

shows the square resistance measured on a 2L-WSe2/6L-SnSe2 interface gate-biased at the

conductance minimum. The square resistance decreases from just over 5kΩ at room tem-

perature to approximately 2.5kΩ at T = 4.2K, i.e. interfaces gate-biased at their minimum

conductivity exhibit a metallic temperature dependence of their resistivity as expected for a

semimetal (despite the fact that the interface is formed by two semiconducting materials).

We observed metallic temperature dependence in all our devices on which multi-terminal

measurements were performed, including devices in which the T -dependent resistivity mea-

surements were performed before placing the ionic-liquid, i.e., on the as-assembled structures.

For some structures –including 1L-WSe2/1L-SnSe2 interfaces– we only realized two-terminal

devices, not suitable to perform reliable T -dependent resistivity measurements, because of

the influence of the contact resistance (which can be large depending on the sample). Even if

for these interfaces we cannot entirely exclude that a small gap (rather than a band overlap)

is present, all measurements from which a firm conclusion can be drawn (i.e., the gate voltage

dependence of both the longitudinal and transverse resistance and the temperature depen-

dence of the longitudinal resistance in all multi-terminal devices investigated) systematically

indicate the occurrence of a semimetallic state at WSe2/SnSe2 interfaces.

We emphasize that all the transport properties that we observed in WSe2/SnSe2 interfaces

–the presence of a finite minimum of conductance, the change of sign of the Hall resistance as

a function of both gate voltage and temperature, and the metallic temperature dependence

of the longitudinal resistance at the minimum of conductance– are distinctly different from

15



those of the two constituent layers, which are large band gap semiconductors. In the absence

of any type of charge accumulation (i.e., due to chemical doping or to a suitably applied gate

voltage) WSe2 is an insulator. Even when gate-doped at sufficiently high carrier density to

exhibit metallic transport properties, WSe2 never exhibits any signature of spatially coexist-

ing electrons and holes. Similar considerations hold true for SnSe2. Past experiments51 –as

well as our work– find that exfoliated SnSe2 layers are unintentionally doped with a rather

high density of electrons, and hence show a rather high room-temperature conductivity at

VG= 0V. However, at sufficiently low temperature the square resistance exhibits an expo-

nential increase (shown in Fig. S2(a)). Additionally, as shown in Fig. 4b, gating allows

atomically thin SnSe2 layers to be completely depleted, illustrating clearly the presence of

a gap. This comparison between the WSe2/SnSe2 interfaces and the individual WSe2 and

SnSe2 layers perfectly illustrate the concept of ”synthetic semimetal”: WSe2/SnSe2 vdW in-

terfaces truly are a new system behaving in all regards as a semimetal, despite being formed

by two atomically thin crystals that are themselves large-gap semiconductors.

In summary, we have realized interfaces based on atomically thin layers of WSe2 and

SnSe2 and shown that they are semimetals. As semimetallic systems can host a variety of

interesting physical phenomena depending on microscopic details of their electronic struc-

ture, the possibility to study them using vdW interfaces is particularly attractive. Indeed,

interfaces offer an experimental control that is not available in naturally occurring semimet-

als. For instance, the spatial separation of electron and holes –hosted in the two different

layers forming the interface– enables the system to be tuned continuously through the ap-

plication of a perpendicular electric field that shifts the relative electrostatic potential of

the two layers, and to control the overlap between valence and conduction band (to either

increase it or suppress it). That is why synthetic semimetals based on van der Waals in-

terfaces of the type demonstrated in our work represent an interesting platform with very

considerable potential to reveal new physical phenomena.
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(38) Komider, K.; González, J. W.; Fernández-Rossier, J. Large spin splitting in the con-

duction band of transition metal dichalcogenide monolayers. Physical Review B 2013,

88, 245436.
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