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Abstract—A brief comparison of two time-frequency (TF)
reassignment methods is provided in this paper. Both techniques
use the short-time Fourier transform (STFT), however, they
can be formulated and computed differently. The first classical
method is based on the fast Fourier transform (FFT), while
the second one uses a recursive filter bank which, in turn, can
be more efficient due to a lower time delay and a reduced
computational complexity. Thanks to the proposed methodology,
a real-time computation of the spectrogram and the reassigned
spectrogram can be obtained. Hence, the reassignment method
allows an almost ideal localization of the micro-Doppler signature
components in a TF distribution to be obtained. Both approaches
are presented, investigated, and validated using real-life radar
signals in the form of micro-Doppler signatures originating from
different targets.

Index Terms—Time-frequency analysis, micro-Doppler, short-
time Fourier transform (STFT), reassignment, real-time.

I. INTRODUCTION

In recent years, micro-Doppler analysis has become one of
the fundamental techniques in target recognition and classifica-
tion [1], [2], [3], [4], [5]. This is the result of a relatively simple
analysis of the narrowband signal in the baseband, which
allows fast algorithms to be applied. Moreover, targets that re-
flect radar signals may have individual radar signatures, which
in consequence allow for their fast and precise classification.
Excellent examples are micro-Doppler signatures of drones
[6], people [7] and animals [8]. Typically, micro-Doppler sig-
natures are obtained through TF analysis. A common method
for this purpose is the STFT. However, this technique suffers
from a limited resolution on the TF distribution resulting from
the Heisenberg-Gabor uncertainty principle [9]. Additionally,
the resolution depends on the analysis parameters (e.g. the
number of frequency bins, analysis window length, etc.). Fur-
thermore, these parameters are related to the signal character
which can change in time, thus the micro-Doppler signature
may have poor resolution if the initial analysis parameters are
badly conditioned.

In the literature, several enhancement techniques of the
STFT have been proposed such as reassignment and syn-
chrosqueezing with their respective extensions [9], [10], [11],
[12], [13], [14]. In general, thanks to these techniques a strong
energy concentration of the signal in the TF plan can be
obtained, which allows more accurate estimation and decom-
position of multicomponent signals. The synchrosqueezing is

a variant of the reassignment method which provides invert-
ible concentrated TF distribution and can be combined with
additional processing, e.g. filtering, components extraction,
among others. As shown in [15], the reassignment method
can be successfully used for micro-Doppler signal analysis
and can significantly improves the readability of a spectro-
gram. However, the usual FFT-based approach can suffer
from several limitations and trade-off which exclude this
technique from being applied in real-time systems. Recently,
an efficient alternative implementation of this method was
proposed in [16] where the recursive version of the reassigned
and synchrosqueezed STFT was introduced. Hence, this paper
proposes to investigate and to compare together the classical
FFT-based STFT and the recursive filter-bank-based STFT in
terms of results and of computational efficiency, when applied
in real-time applications in modern radar systems.

The paper is organized as follows: Section II covers the TF
reassignment theory, including the FFT-based and recursive
approaches. Numerical results obtained using the real-life
radar micro-Doppler signals are presented in Section III. In
Section IV, a short discussion is provided that explains the
differences in both versions of the technique. The summary
and conclusions, as well as future plans, are provided in
Section V.

II. TIME-FREQUENCY REASSIGNMENT

A. Principle

The reassignment method is a sharpening technique which
was first introduced by Kodera et al. [9] to improve the
readability of TF representations. It can be viewed as a
post-processing operation which moves the values of the
considered TF distribution to new coordinates according to
(t, ω) 7→ (t̂(t, ω), ω̂(t, ω)), where t̂ and ω̂ are expected to be
closer to the true support of the analyzed signal. In [10], Auger
and Flandrin generalized this method to any TF distribution
belonging to the Cohen class, such as the spectrogram that is
computed from the STFT.

B. FFT-based method

The STFT provides a function of time t and of frequency
ω = 2πf of a signal x using a differentiable analysis window



Fig. 1: Graphical illustration of the TF reassignment technique. The
left-hand image presents a TF distribution (e.g. a spectrogram) of the
linear chirp, the red arrows denote the reassignment operators, and
the reassigned spectrogram obtained using Eq. (4) is presented on
the right.

h(t). It can be defined as:

Fhx (t, ω) =

∫ +∞

−∞
x(τ)h(t−τ)∗e−jωτ dτ = Mx(t, ω)ejΦ

h
x(t,ω)

(1)
where j2 = −1 and z∗ is the complex conjugate of z.
This transform allows one to compute the spectrogram of the
analysis signal defined as |Fhx (t, ω)|2.

According to [10], the reassignment operator of the spec-
trogram can be related to the phase Φhx(t, ω) leading to the
following expressions of the reassignment operators:

t̂(t, ω) = −∂Φhx
∂ω

(t, ω) = t− Re
(
FThx (t, ω)

Fhx (t, ω)

)
, (2)

ω̂(t, ω) = ω +
∂Φhx
∂t

(t, ω) = ω + Im
(
FDhx (t, ω)

Fhx (t, ω)

)
(3)

where Th(t) = th(t) and Dh(t) = dh
dt (t) are modified

versions of the original analysis window h.
The last step of the reassignment consists in moving the

values of the spectrogram to obtain a sharpened representation
called the reassigned spectrogram, expressed as:

Rhx(t, ω) =

∫∫
R2

|Fhx (t, ω)|2δ(t− t̂(t, ω))δ(ω−ω̂(t, ω)) dtdω.

(4)
where δ(t) denotes the Dirac distribution. The discretization
process based on the rectangle method leads to the following
approximation Fhx [n,m] ≈ Fhx (nTs,

2πm
MTs

), Ts = 1
Fs

being
the sampling period, n ∈ Z standing for the time indices, and
m ∈ [−M/2; +M/2] corresponding to the discrete frequency
bin. Hence, each vertical slice of the resulting discrete-time
STFT Fhx [n,m] can be computed efficiently using the FFT
algorithm [17].

C. Recursive method
The STFT as defined in Eq. (1) can be expressed as a

linear convolution product between the analyzed signal x and a
complex valued impulse response of a bandpass filter centered
on ω, g(t, ω) = h(t)ejωt:

ygx(t, ω) =

∫ +∞

−∞
g(τ, ω)x(t− τ) dτ = |ygx(t, ω)|ejΨ

g
x(t,ω) (5)

=

∫ +∞

−∞
x(τ)h(t− τ)ejω(t−τ) dτ (6)

= Fhx (t, ω)ejωt = Mh
x (t, ω)ej(Φ

h
x(t,ω)+ωt). (7)

Since Mh
x (t, ω) = |ygx(t, ω)| and Φhx(t, ω) = Ψg

x(t, ω)−ωt,
the reassignment operator can be reworded as [16]:

t̂(t, ω) = t− ∂Ψg
x

∂ω
(t, ω) = t− Re

(
yTgx (t, ω)

ygx(t, ω)

)
, (8)

ω̂(t, ω) =
∂Ψg

x

∂t
(t, ω) = Im

(
yDgx (t, ω)

ygx(t, ω)

)
(9)

with Tg(t, ω) = tg(t, ω) and Dg(t, ω) = ∂g
∂ω (t, ω).

In [16], [18], a specific analysis window is introduced and
allows an implementation in terms of a recursive infinite
impulse response (IIR) filtering when discretized:

hk(t) =
tk−1

T k(k − 1)!
e−t/T U(t), (10)

gk(t, ω) = hk(t)ejωt =
tk−1

T k(k − 1)!
ept U(t) (11)

with p = − 1
T + jω, k ≥ 1 the filter order, T the time spread

of the window and U(t) the Heaviside step function.
Using the impulse invariance method, the z-transform of the

filter gk(t, ω) allows one to compute the filter coefficients as:

Gk(z, ω) = TsZ {gk(t, ω)} =

k−1∑
i=0

biz
−i

1 +

k∑
i=1

aiz
−i

, (12)

with the z-transform Z {f(t)} =
∑+∞
n=0 f(nTs)z

−n, the filter
coefficients ai = Ak,i (−α)

i, bi = 1
Lk(k−1)!

Bk−1,k−i−1α
i

with α = epTs , L = T/Ts. Bk,i =
∑i
j=0(−1)jAk+1,j(i+1−

j)k denotes the Eulerian numbers and Ak,i =

(
k
i

)
= k!

i!(k−i)!

the binomial coefficients. Hence, yk[n,m] ≈ ygkx (nTs,
2πm
MTs

)
can be computed from the sampled analyzed signal x[n] by a
standard recursive equation:

yk[n,m] =

k−1∑
i=0

bi x[n− i]−
k∑
i=1

ai yk[n− i,m]. (13)

The z-transform of the other specific impulse responses can
be computed as functions of Gk(z, ω) at different orders k ≥ 1
as:

TsZ{Tgk(t, ω)} = kTGk+1(z, ω) (14)

TsZ {Dgk(t, ω)} =
1

T
Gk−1(z, ω) + pGk(z, ω) (15)

with Gk(t, ω) = 0,∀k < 1. The resulting recursive reassigned
spectrogram is then provided by using the discrete-time ex-
pression of Eq. (4) with Fhx [n,m] = ygx[n,m]e−j2π

mn
M .

A graphical illustration of the reassignment technique is
depicted in Fig. 1 and holds true for both implementations
presented in this section. Thanks to the "energy gathering"
properties of this method, a significant energy concentration
over the TF plane can be achieved. In the next section, real-life
radar signals are processed and compared.



III. NUMERICAL EXPERIMENTS

Here, the authors compare the TF distributions provided
by the methods presented in Section II when applied on
discretized real-life signals.

A. Materials
The analyzed signals were collected by the frequency

modulated continuous wave (FMCW) XY-DemoRad System
developed by XY-Sensing Ltd. [15], [19]. Two different targets
were recorded using two available radar analog frontends:
• A walking human was recorded using a K-band radar

frontend with the carrier frequency 24 GHz, 1 GHz
bandwidth, and 1 kHz sweep repetition rate,

• A flying drone was recorded using an mm-band radar
frontend with the carrier frequency 121 GHz, 2 GHz
bandwidth, and 2 kHz sweep repetition rate.

In both cases the beat signal was distributed on the range-
time plane. Then, for each sweep the range cell in which the
object was located in the particular moment (given sweep)
was determined. The set of single range cells for each sweep
formed a signal with a sampling rate Fs imposed by the sweep
repetition rate Fs = 1 kSa/s and Fs = 2 kSa/s for each case
respectively.

A direct signal was extracted from a range cell in which the
observed target was located in each particular moment. This
waveform constituted the considered micro-Doppler signal,
allowing further TF processing to be performed.

B. Implementation details

In order to show the usability of the proposed techniques,
echoes from a walking human and from a drone were pro-
cessed using both the recursive and FFT-based approaches to
compute a spectrogram and a reassigned spectrogram. In the
experiment, the FFT-based method uses a Gaussian analysis
window parameterized by a time-spread denoted σ such as
h(t) = 1√

2πσ
e−

t2

2σ2 . The details of the method parameters
for each investigated signal are presented in Table I. These
parameters were empirically chosen to provide good TF rep-
resentation for each signal. Matlab codes of these methods can
be found as parts of the ASTRES toolbox [21].

Table I: Processing parameters for two considered techniques and
two different signals. H – hop size (stride) in samples, M – number
of points along frequency axis, σ – time-spread of the analysis
Gaussian window, k – filter order, T – time spread of the filter.

Method Parameter Human walk Drone flight

FFT
BASED

H [Sa] 1 1
M 4096 4096
σ 2.5 · 10−2 1.2 · 10−2

FILTER
BANK

k 5 11
T [s] 1.2 · 10−2 5 · 10−3

M 4096 4096

Additionally, in order to express the concentration capa-
bilities of the reassignment method the Rényi entropy was
computed as a classical measure of the TF distribution concen-
tration [22]. For the investigated cases α = 3. The outcomes
for each distribution are listed in Table II.

C. Results

Fig. 2 presents consecutive results obtained using the re-
cursive implementation of the spectrogram and the reassigned
spectrogram. For the first signal case, in which the observed
target was a receding walking human, the micro-Doppler
signature contains a strong signal from a torso oscillating
around −250 Hz as depicted in Fig. 2a. Additionally, the
waving limbs produce components in the whole observed fre-
quency space. However, due to the limited time and frequency
resolution, a precise decomposition is challenging, but the
reassigned spectrogram allowed for the direct extraction of
particular signal terms. After the processing, a straightforward
determination of the limb movement parameters is possible,
which can be used in classification issues. The same applies for
the second observed target. Drone propellers produce a typical
broadband echo spread in the Doppler frequency domain
(see Fig. 2c) which, after concentration, focuses its energy,
allowing for the precise estimation of their speed to be carried
out (Fig. 2d). Moreover, the velocity of the whole structure
can be distinguished in this way. The Rényi entropy indicates,
that the concentrated distributions occupy smaller ares on the
TF planes compared to the non-concentrated representations
of the signal. This can be deduced by analyzing Table II where
the reduced entropy of the reassigned method is presented.

Table II: The third order Rényi entropy EαR(·) before and after
concentration for the investigated methods for both signals.

Distribution EαR(·)
Human walk

EαR(·)
Drone flight

FFT
BASED

|Fhx (t, ω)|2 20.257 21.198
Rhx(t, ω) 16.456 16.8829

FILTER
BANK

|ygx(t, ω)|2 20.337 21.1693
Rgx(t, ω) 16.015 17.553

Comparable outcomes are presented in Fig. 3, where the
FFT-based method was used. Due to the different nature of
the processing pipeline, slightly different attributes in the
distribution are provided, however, in both cases the energy
concentration is significant and allows clear decomposition and
component separation to be performed. The final resolution
is directly dependent on the processing parameters and can
be freely tailored to the different signals in order to obtain
an efficient energy concentration. Also in this case the Rényi
entropy was computed in order to compare the concentration
capabilities of the methods for the second investigated signal.
Similar to the first signal also in this case the difference in the
Rényi entropy before and after concentration is about 4 bits.
This shows that both methods can be used interchangeably
with similar capacities to concentrate energy on the TF plane
which was shown for both investigated signals. Thus, the
processed signals and the outcomes confirmed the usability
of both techniques in the processing of micro-Doppler radar
signals. The next section is devoted to the discussion of the two
considered techniques from the implementation perspective.



(a) Recursive spectrogram of the echo originating from a walking
human

(b) Recursive reassigned spectrogram of the echo originating from a
walking human

(c) Recursive spectrogram of the echo originating from a drone

(d) Recursive reassigned spectrogram of the echo originating from a
drone

Fig. 2: Results for the recursive method.

(a) FFT-based spectrogram of the echo originating from a walking
human

(b) FFT-based reassigned spectrogram of the echo originating from
a walking human

(c) FFT-based spectrogram of the echo originating from a drone

(d) FFT-based reassigned spectrogram of the echo originating from
a drone

Fig. 3: Results for the classical FFT-based method.



IV. COMPARATIVE STUDY

A. Practical considerations

As presented in Section III-B, both approaches can provide
similar results, hence they can be interchangeably applied in
real-life systems. However, the efficiency and simplicity of
implementation on embedded platforms promote the recursive
filter bank technique. The recursive method has a lower
delay proportional to k that is the number of previous signal
samples required at each time instant to compute the current
STFT coefficients. This number is significantly lower than for
the classical FFT-based method which requires at least M
samples (M/2 previous samples for a symmetrical window)
at each instant to compute a slice of the STFT. Hence, the
recursive method allows an implementation on custom off-the
shelf processing boards widely available in the market and
embedded systems through a IIR filter process which opens
a new spectrum of possibilities for this method. Moreover,
the filter bank approach offers more adaptability and allows
to reduce the computational cost by reducing the number
of computed frequency to the region of interest when the
bandwidth of the signal is known and limited. As a result,
the number of operations through the frequency axis can be
lower than M (that is constant for the FFT approach) with the
same TF resolution. From another hand, the main advantage
of the FFT-based technique is that its precision can be reduced
in favor of calculation time. This is typically achieved by
increasing the hop size H that corresponds to the number of
samples between two successive analyzed windows to compute
the STFT. In such a case, decreasing the distribution quality
can significantly reduce the computational cost as shown in
Fig. 4. The only disadvantages of the recursive technique when
compared to the FFT-based approach, are the constrained hop
size equal to 1 that cannot be modified by the user, and the
constrained causal non-symmetrical analysis window hk which
only admits two free user-defined parameters (k and T ).

B. Computational complexity analysis

The experiments showed that the recursive approach is less
computationally demanding in comparison to the FFT-based
method. Indeed, a spectrogram calculation cost expressed in
terms of the Landau O notation for the FFT-based approach
leads to O(NM log2(M)), M being the FFT size and N
the finite-length of the analyzed signal. From another hand,
Eq. (13) allows ones to deduce that 2k+1 operations are done
to compute each point TF point, leading to the following com-
plexity O(kNM ′) where M ′ ≤M is the number of computed
frequency bins. In practice, the FFT-based method can obtain
a lower complexity when H > 1 which results in a poorer
time resolution. As a consequence, we have to process a lower
number of time samples N ′ = dN/He ≤ N (d·e standing for
the ceiling operator) leading to O(N ′M log2(M)). For both
approaches, the reassignment method requires the computation
of three STFTs in accordance with Eq. (4): the first one is
the STFT with an original window, and the two others ones
using respectively the modified windows Dh and Th. Hence,

Table III: Comparison of the computational complexity be-
tween the FFT-based and the reassigned methods.

Method Run-time complexity in units of time
FFT-based STFT O(dN/HeM log2(M))
recursive STFT O(kM ′N), with M ′ ≤M
FFT-based reassignment 3 O(dN/HeM log2(M))
recursive reassignment 3 O(kM ′N)

the computational complexities of the FFT-based and recursive
methods are summarized in Table III.

Table IV: Computation time tc for the two investigated signals and
the two considered methods.

Distribution Human walk Drone flight
FFT

BASED
|Fhx (t, ω)|2 tc = 0.105 s tc = 0.211 s
Rhx(t, ω) tc = 149.641 s tc = 436.431 s

FILTER
BANK

|ygx(t, ω)|2 tc = 1.155 s tc = 3.837 s
Rgx(t, ω) tc = 181.510 s tc = 524.022 s

In Fig. 4, the theoretical computational complexity is pre-
sented for each implementation of the reassignment method.
The considered case assumed N = 5000 Sa, window length
W = 128 Sa and three values of the hop size for the FFT-based
method: H1 = 1, H2 = 0.25·W , H3 = 0.5·W and 3 different
orders for the recursive method k = 2, 5, 10, respectively.
The computational complexity is compared for these cases. As

Fig. 4: Comparison of the computational complexity for the consid-
ered methods: FFT-based and recursive.

can be observed by analyzing Fig. 4 it is admissible to easy
manipulate the parameters to obtain high resolution or reduced
processing time. In practical considerations the choice usually
comes down to a reasonable compromise allowing sufficient
resolution in a sufficiently short time to be achieved. However,
precise values depend on the applications, e.g. the processing
time may be longer for analyzing walking people, but has to
be shorter if fast maneuvering targets are analyzed.

Additionally, the computational time for all investigated
methods and signal is listed in Table IV. The processing time
is significant for the reassignment method, however, it should
be kept in mind, that the computation was performed using
demanding parameters (see Table I) which were raised to
improve the quality of results. For the purposes of calculations,
a computer with an Intel i7-7700HQ 2.8 GHz processor, 16
GB DDR4 RAM, an SSD hard drive, and a 64-bit Windows
10 system was used. As can be observed, the processing



time increase with the filter order which coincides with the
theoretical values presented in Table III. In practical real-time
applications the processing parameters can be reduced in order
to allow fast operation to be performed.

V. CONCLUSION AND FUTURE WORK

In this paper, a comparison of two TF reassignment tech-
niques has been presented. Both approaches allow compa-
rable outcomes to be obtained, however, their implementa-
tion methodologies are significantly different. The authors
paid special attention to the possibilities of implementing
the technique on various computing platforms enabling real-
time operation. Two real-life micro-Doppler radar signals
were processed, which proved the usability of the method
and the possibility of their application in real-life systems.
The extraction of signal components which resulted from the
presented methodology, in the opinion of the authors, should
improve the accuracy of classification and allow additional
operations on the signal to be performed, such as the filtration
of individual components. In the future, the authors intend to
develop a real-time implementation of this technique and study
the classification techniques, which could be applied to such
a TF signal representation.

The presented technique may be applied especially in
classification tasks in which the precise signal estimate can
increase the system dependability. Following this idea, the
micro-Doppler signal is transformed into the TF plane and
then concentrated using the reassignment approach that aims
at sharpening the distribution.

Fig. 5: The idea of the proposed further development of this
technique.

As illustrated in Fig. 5, the spectrogram with an improved
readability may be used in the classification block. In the
authors’ opinion, such an approach will increase the accuracy
of classification. This can be utilized in security systems,
in which the authors’ plan for further work. A promising
concept is to use a synchrosqueezing method, which instead of
relocating the energy along both time and frequency directions,
performs energy concentration in one direction [14], [20] to
allow signal enhancement and component extraction. This
approach is also one of the plans for further research in this
matter.
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Frequency Reassigned Micro-Doppler Signature Analysis Using the
XY-DemoRad System, Proc. Signal Processing Symposium (SPSympo),
Krakow, Poland, 2019, pp. 331-334.

[16] D. Fourer, F. Auger and P. Flandrin, Recursive versions of the Levenberg-
Marquardt reassigned spectrogram and of the synchrosqueezed STFT,
Proc. IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Shanghai, 2016, pp. 4880-4884.

[17] Henri J. Nussbaumer, The fast Fourier transform. FFT and Convolution
Algorithms,. Springer, Berlin, Heidelberg, 1981, pp. 80-111.

[18] G.K. Nilsen, Recursive time-frequency reassignment, IEEE Trans. Signal
Process., vol. 57, no. 8, pp. 3283–3287, Aug. 2009.

[19] P. Samczynski, K. Stasiak, D. Gromek, K. Kulpa and J. Misiurewicz, XY-
DemoRad – Novel K- and mm-Band Radar Demo Kit for Educational and
Commercial Applications, 20th International Radar Symposium (IRS),
Ulm, Germany, 2019, pp. 1-11.

[20] D. Fourer and F. Auger, Second-order Time-Reassigned Synchrosqueez-
ing Transform: Application to Draupner Wave Analysis, Proc. 27th
European Signal Processing Conference (EUSIPCO), A Coruña, Spain,
2019, pp. 1-5.

[21] D. Fourer, J. Harmouche, J. Schmitt, T. Oberlin, S. Meignen, F. Auger
and P. Flandrin, The ASTRES toolbox for mode extraction of non-
stationary multicomponent signals, Proc. 25th European Signal Process-
ing Conference (EUSIPCO), Kos, Greece, 2017, pp. 1130-1134.

[22] R. G. Baraniuk, P. Flandrin, A. J. E. M. Janssen and O. J. J. Michel,
Measuring time-frequency information content using the Renyi entropies,
in IEEE Trans. on Information Theory, vol. 47, no. 4, pp. 1391-1409,
May 2001.


