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Abstract

Lattice structures are periodic porous bodies which are becoming popular since they are a good
compromise between rigidity and weight and can be built by additive manufacturing techniques.
Their optimization has recently attracted some attention, based on the homogenization method,
mostly for compliance minimization. The goal of our two-parts work is to extend lattice optimiza-
tion to stress minimization problems in 2-d. The present first part is devoted to the choice of a
parametrized periodicity cell that will be used for structural optimization in the second part of
our work. In order to avoid stress concentration, we propose a square cell micro-structure with a
super-ellipsoidal hole instead of the standard rectangular hole often used for compliance minimiza-
tion. This type of cell is parametrized in 2-d by one orientation angle, two semi-axis and a corner
smoothing parameter. We first analyse their influence on the stress amplification factor by perform-
ing some numerical experiments. Second, we compute the optimal corner smoothing parameter for
each possible micro-structure and macroscopic stress. Then, we average (with specific weights) the
optimal smoothing exponent with respect to the macroscopic stress. Finally, to validate the results,
we compare our optimal super-ellipsoidal hole with the Vigdergauz micro-structure which is known
to be optimal for stress minimization in some special cases.

1 Introduction

Limiting the maximum stress value that could appear in a structural domain is a crucial issue in
mechanical engineering. Indeed many undesired effects, like damage, plasticity and fracture, may
appear if the maximum stress exceeds a certain threshold value. For this reason it is very important
that the design of structures takes into account the control of some measure or norm of the stress field.
Typically, an optimal design process takes into account some stress constraint or directly minimizes
the point-wise maximum stress or some approximating averaged norm. It turns out that this problem
is extremely hard to solve.

Many different approaches have been developed to solve it. Based on the SIMP method (Solid
Isotropic Material with Penalization), the early work [1] proposed a relaxation of the stress constraint
for avoiding the singularity problem. However the stress constraints were considered point-wise which
makes the problem intractable as the mesh size increases. To deal with this aspect, in [2], the point-
wise constraint was substituted by a finite Lp-norm (p = 4 in the examples). A comprehensive review
of the topic and a SIMP-based interpolation for dealing with the singularity problem is presented in
[3]. More recently, compliant mechanisms were optimized in [4] for stress constraints with a finite
Lp-norm (p = 12). Typically, in the SIMP approach for stress minimization, two different material
interpolations are used: one for the constitutive tensor (usually the elasticity tensor is proportional to
ρp where ρ is the material density) and another one for the stress evaluation. The first interpolation
is known, in some cases, to correspond to real microstructures. However, the second interpolation
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(for the stress) cannot be interpreted in terms of homogenized stresses for the previous, or any other,
micro-structures.

An alternative to the use of SIMP and intermediate densities is the level-set method. This was
demonstrated in [5] where a Lp-norm (p = 10) of the stress was minimized for 2-d and 3-d examples.
Instead of using the classical shape derivative, the authors of [6] proposed a variant of the level-
set algorithm based on the notion of topological derivative. In [7], the authors also used a level-
set algorithm for multiple load cases and proposed different stress criteria in different regions of the
structure. Of course, other approaches are also possible like combining the Non-Uniform Rational
Basis Spline (NURBS) hyper-surfaces framework with the SIMP method, as in [8], [9], [10], which are
devoted to the design of periodic microstructures.

In any case, these previous works, either with the SIMP or the level-set approach, were focusing
on macroscopic structures. They did not consider domains with fine details or, more precisely, in such
cases they would require significantly fine meshes. Consequently, for computational cost reasons these
methods cannot be applied to the so-called lattice materials which are finely graded structures with
a porous microstructure. Lattice materials recently appear as a serious alternative to more classical
materials since they can be built thanks to the most advanced additive manufacturing technologies.
The goal of the present work is to propose an homogenization method for stress minimization applied
to these lattice structures. Homogenization is known to be a convenient theory to describe averaged
of effective behaviour of graded structures or composite materials and has been successfully used in
topology optimization since many years (see the textbook [11] for a brief history of this method). The
homogenization method has already been applied for some stress optimization problems. For example,
[12] maximized the torsional rigidity of functional graded composite materials made by a matrix with
fibres inclusions, [13] extended the previous theory by additionally solving its corresponding inverse
homogenization problem and [14] used composites (rank-n laminates) for minimizing the stress norm. A
key point in these contributions is that homogenization theory does not only define averaged or effective
properties for the elastic properties but also introduce the concept of corrector terms for approaching
the true stress and strain tensors in an heterogeneous medium, beyond the simple homogenized or
averaged stress or strain tensor. In particular, it yields the notion of amplification stress factors, or
amplificators, which corrects the averaged macroscopic stress in order to have a reliable evaluation of the
local microscopic stress concentration. Indeed, it is well known that microscopic heterogeneities may
cause stress concentrations. Thus, in contrast with interpolation approaches like the SIMP method,
[14] proposed a mechanically sound evaluation of microscopic stress effects. However, the stress norm
used was not very large (Lp with p = 2) and the final shapes are intrinsically multi-scale (use of
rank-n laminates) and thus hard to manufacture. Actually these previous works were concerned with
the stress optimization of macroscopic structures, through a penalization approach which eliminates
intermediate densities.

On the contrary, the present work is interested in lattice structures which are porous materials with
varying macroscopic material densities. Following the pioneer work [15], it fits in the framework of
the so-called de-homogenization method, which has recently been applied in [16], [17] for compliance
minimization of lattice structures. The main feature of the de-homogenization method is that, after
optimizing an homogenized model based on a parametrized and orientable periodicity cell, it recon-
structs a globally smooth, graded and curved lattice, which is near optimal. The main novelty of our
work is to extend this de-homogenization approach to stress minimization problems, introducing the
additional ingredient of stress amplification factors. Let us acknowledge that there are other works on
stress constraints in the optimization of lattice structures (see e.g. [18] and [19]). However, they do not
consider the orientation of the cells as a design variable and they do not rely on the de-homogenization
approach.

Let us describe in some more details the de-homogenization method of [16], [17], [15] which is a
very efficient technique for designing lattice structures. This method consists in pre-computing first the
homogenized properties of a family of micro-structures parametrized by a few geometrical variables.
Then, a standard macroscopic optimization problem is solved in terms of these geometrical variables
in combination with the orientation of the micro-structure. Finally, a de-homogenization technique
is used for describing the global structure in terms of a porous microscopic geometry with a clear
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interface and full details. As already mentioned, we extend these previous works to the context of
stress minimization. Note that some promising results can already be found in [20]. Our contribution
is split in two parts. Part I focuses on the design of an appropriate periodic microstructure in 2-d which,
apart from being nearly optimal for stress minimization, perfectly fits in the framework of [16], [17],
[15]. On the other hand, Part II [21] is devoted to the optimization of a plane macroscopic structure
for stress minimization, where at each point the design variables are the geometric parameters and the
orientation of an underlying periodic cell (the optimal super-ellipsoidal hole, obtained in the present
Part I).

The 2-d periodic microstructure proposed in the present work are merely nearly optimal for several
reasons. First, to define a notion of optimality a proper cost, i.e., a measure of stress, must be defined.
There are several possibilities: to take into account the full stress tensor, only its deviatoric part, some
scalar criterion like von Mises or Tresca or to consider the maximum value or some Lp norm. Here we
choose the maximum value, in the periodic cell, of the Frobenius norm of the full stress. These stresses
are computed by solving the so-called cell problem with periodic boundary condition and imposed
averaged or homogenized stress. Second, for manufacturability reasons, we seek a simple periodicity
cell, parametrized by just a few parameters. Restricting our search to periodic cells excludes other
microstructures, like rank-n laminates, which are known to be optimal for compliance minimization but
are unfortunately multi-scale and thus hard to manufacture. We also restrict ourselves to a single hole
inside a square cell, which ensures that neighboring cells connect perfectly even if the hole parameters
are varying. Finally, for computational efficiency, as well as manufacturability reasons, we limit the
number of parameters although, in theory, it could be possible to freely optimize the hole’s boundary.
Our choice is a super-ellipsoidal hole in a square cell. Clearly other choices of the unit cell would
have been possible which could lead to more optimal properties, at the expense of more involved
parametrizations. In other words, our choice is a compromise between simplicity and optimality. Note
that, if the resulting plane lattices are built horizontally by additive manufacturing techniques, there is
no restriction due to our choice of closed holes in terms of overhang constraints or de-powdering after
the building process. Although the present paper focuses on 2-d microstructures, the methodology can
be extended to the 3-d case. This has already been done for compliance minimization in [16], where
the parametrized cell is a type of cubic lattice. For stress minimization, one could imagine a similar
microstructure with rounded corners. Furthermore, it is well-known that the optimal shape of a hole
for this type of problem depends on the applied load, namely on the averaged or homogenized stress.
However, for the sake of simplicity in the optimization process of Part II, we decide to find a periodic
microstructure which is independent of the applied stress. Therefore, we apply an averaging process
to find a microstructure which is nearly optimal for a whole family of stresses and not merely for one
load. On the same token, to reduce the dependence of the microstructure to the imposed stress, we
choose to always orientate the unit cell (or similarly the corresponding orthotropic effective Hooke’s
tensor) with the principal axis of the imposed stress. This orientation is known to be optimal for
compliance minimization by a result of Pedersen [22]. Although it is not obvious that it is also optimal
for stress minimization, it makes sense from a mechanical point of view. Above all, eliminating the
pure shear component of the applied stress, by orientating accordingly the micro-structure, induces
a drastic simplification of the optimization process. Of course, in principle it is possible to keep the
orientation angle as a design variable and to apply a gradient algorithm for its optimization. We refer
to Remark 1 for a discussion on this issue.

There are already some works in shape optimization for stress minimization featuring super-
ellipsoidal holes, most notably [23] and [24]. In the former, a level-set representation of the geometry
is combined with an XFEM (Extended Finite Element Method) formulation to deal with the sharp
interface. Additionally, the optimal micro-structure is solved in terms of the volume fraction and the
macroscopic strain. In the latter, the authors used a SIMP-based approach and the goal is to find
the optimal semi-axis ratio and corner smoothing parameter to minimize the maximum stress for a
micro-structure with a given volume fraction and loaded by a certain macroscopic strain (or stress).
Here our goal is different since we want to design an optimal micro-structure which depends only on
the volume fraction and on the geometrical variables and not on the applied macroscopic stress.

The paper is organized as follows. Section 2 recalls the necessary results of homogenization in order
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to define, not only the homogenized or effective Hooke’s law, but also the corrector terms which, upon
suitable averaging, yields the stress amplification factors. In Section 3 the super-ellipsoidal hole in a
square periodicity cell is precisely defined. In Section 4, some numerical experiments are performed to
gain insight on the super-ellipsoidal geometry. Section 5 is our main result where we numerically solve
the material design problem of minimizing the maximum stress. Finally, Section 6 is a discussion of
the Vigdergauz micro-structure and a comparison with our optimal super-ellipsoidal hole. Finally, let
us conclude this introduction by recalling that the proposed super-ellipsoidal hole will be used in Part
II of our work [21] to optimize a macroscopic lattice structure for stress minimization.

2 Setting of the problem

2.1 Stress minimization for classical shapes.

Let us consider a smooth working domain D ⊂ RN (in practice N = 2 or 3) and the reference
configuration of an elastic body Ω ⊂ D. The part of the boundary of the domain where the shape Ω is
clamped is denoted by ΓD, while the part where the surface external force g is applied is denoted by
ΓN . It is assumed that ΓD and ΓN are subsets of ∂D and are fixed for any Ω ⊂ D. The volumetric
external force is denoted by f . Then, the associated linear elasticity problem is to find the displacement
u ∈ H1(Ω;RN ) such that

−div (Ae(u)) = f in Ω,
u = 0 on ΓD,

Ae(u) · n = g on ΓN ,
Ae(u) · n = 0 on Γ = ∂Ω \ (ΓD ∪ ΓN ),

(1)

where A corresponds to the elasticity constitutive tensor. The strain tensor is defined as usual by the
symmetric gradient e(u) = ∇su = (∇u + (∇u)T )/2. The stress tensor is σ = Ae(u). Introducing a
space K of admissible shapes (for example smooth open subsets of D, the boundary of which contains
ΓD and ΓN ), the stress minimization problem is defined by

min
Ω∈K

∫
Ω
|σ|pdx

such that
∫

Ω
dx = V ∗,

(2)

where V ∗ stands for a given target shape volume. The stress are obtained from solving (1) and the
exponent is p ∈ [2,∞). We use in this work the euclidean norm |σ| =

√
σ : σ, but other norms

(i.e. Von Mises) are also possible. Note that in general, problem (2) is expected to be ill-posed since
domains with the same volume but with structure details of smaller length scale may always decrease
the cost function [11]. To circumvent this inconvenient, we may relax problem (2) by incorporating
composites shapes and by understanding the notion of convergence in a weaker sense, in the sense of
homogenization.

2.2 Homogenization and correctors

Let us briefly recall how problem (2) can be relaxed by homogenization, as already explained in [14].
We start by some classical results of homogenization theory (see [11] for details). To simplify the
analysis, the shape optimization problem is approximated by a two-phase optimal design problem.
More precisely, the elasticity tensor A in (1) is now denoted by A1 and the void part D \ Ω is filled
with a weak or ersatz material with elasticity tensor A0 << A1. The characteristic function of the
subdomain occupied by phase A1 is called χ(x) (it takes the value 1 in the phase A1 and 0 outside).

H-convergence. Homogenization theory is concerned with sequences of shapes or two-phase mix-
tures. Let χε be a sequence of characteristic functions in L∞(D; {0, 1}) and let Aε be its corresponding
sequence of constitutive tensors, defined by

Aε = (1− χε)A0 + χεA1, (3)
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to which we associate the displacements uε solution of the elasticity problem
−div (Aεe(uε)) = f in D,

uε = 0 on ΓD,
Aεe(uε) · n = g on ΓN ,
Aεe(uε) · n = 0 on Γ = ∂D \ (ΓD ∪ ΓN ),

(4)

and the corresponding stress tensor σε = Aεe (uε). Then, the main result of H-convergence theory (see
Theorem 1.2.16 of [11]) states that there exists a sub-sequence, still denoted by ε, a limit material
density ρ ∈ L∞(D; [0, 1]) and a limit homogenized tensor A∗ ∈ L∞(D;RN4

), such that

χε ⇀ ρ weakly* in L∞(D; [0, 1]),

Aε
H−→ A∗ in the sense of H-convergence,

(5)

where the H-convergence is defined as the two following convergences

uε ⇀ u weakly in H1(D;RN ),

σε ⇀ σ weakly in L2
(
D;RN2

)
,

where σ = A∗e (u) and u is the displacement solution of the homogenized elasticity problem
−div (A∗e(u)) = f in D,

u = 0 on ΓD,
A∗e(u) · n = g on ΓN ,
A∗e(u) · n = 0 on Γ = ∂D \ (ΓD ∪ ΓN ).

(6)

In (5) ρ represents the volume fraction of A1 and A∗ represents the homogenized constitutive tensor, or
simply homogenized tensor, of the composite. Because the above results are only weak convergences,
it is not possible to prove convergence of the associated sequence of stress objective functions. More
precisely, one can only deduce that

lim inf
ε→0

∫
D
|σε|p dx ≥

∫
D
|σ|pdx, (7)

where, in most cases, the inequality is strict. To circumvent this limitation and obtain a strong
convergence of the stresses, corrector tensors have to be introduced.

Corrector tensor in homogenization. According to Lemma 1.3.38 and Theorem 1.3.39 of [11]
there exists a sequence of fourth order tensors W ε, called correctors, with the following properties

W ε ⇀ I4 weakly in L2
(
D;RN4

)
,

AεW ε ⇀ A∗ weakly in L2
(
D;RN4

)
,

(8)

where I4 is the fourth order identity tensor, and such that

e (uε)−W εe(u) → 0 strongly in L1
(
D;RN2

)
,

σε −AεW εA∗
−1
σ → 0 strongly in L1

(
D;RN2

)
.

(9)

In other words, corrector tensors allow us to move from weak to strong convergence of the strains and
stresses. If the homogenized displacement u is smooth enough, the L1 strong convergence in (9) can
be improved in a L2 strong convergence. Regarding the convergence of the stress σε, following [14], its
corrector is called an amplification tensor, defined as

P ε = AεW εA∗
−1
, (10)

which satisfies P ε⇀I4 weakly in L2
(
D;RN4

)
and, in view of equation (9), yields σε−P εσ → 0 strongly

in L1
(
D;RN2

)
.

Unfortunately, to improve (7) and obtain an equality instead of an inequality, a Lp strong conver-
gence is required which cannot be deduced in full generality for any p > 2. Therefore, from now on, we
shall restrict ourselves to periodic homogenization where the corrector results can be further improved.
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2.3 Periodic homogenization and correctors

Since H-convergence theory provides no explicit formulae for computing the correctors and amplifi-
cation tensors, we restrict ourselves to periodic homogenization. The main interest of the periodic
case is the availability of such explicit formulae and a better convergence framework which allows us
to improve (7) and define a relaxed or homogenized objective function. The main assumption of the
periodic setting is that the sequence of characteristic functions χε is defined as a periodic function

χε(x) = χ
(x
ε

)
, (11)

where χ(y) is a Y -periodic function, with the unit cube Y = (−0.5, 0.5)N and ε > 0 is the (small)
period of χε. The variable y = x/ε is called fast variable and is defined in the domain Y . In the
periodic setting, it is not any longer necessary (for technical reasons) to consider a two-phase mixture
and, from now on, we come back to the original setting where the ersatz material is void, A0 = 0, and
the material phase is A1 = A. In the unit cell Y , material A occupies the subset Y0 and Y \ Y0 is a
hole with boundary Γint. Thus, the material tensor is defined in Y by

A(y) =

{
A y ∈ Y0,

0 y ∈ Y \ Y0.

Periodic homogenization is simpler than the fully general theory of homogenization because the notion
of H-convergence can be made more explicit by using two-scale asymptotic expansions (see e.g. [11]
for further details). We now recall the main results of interest for our purpose. In particular, correc-
tors, homogenized and amplification tensors can be computed explicitly by solving the so-called cell
problems.

Cell problem. For given indices 1 ≤ i, j ≤ N , the cell problem is usually defined as follows: find
the periodic solution wij of

−div (A (eij + e (wij))) = 0 in RN0 ,
A (eij + e (wij)) · n = 0 on Γint,

y 7→ wij(y) Y0 − periodic ,
(12)

where the tensor eij = 1
2 (ei ⊗ ej + ej ⊗ ei) is one element of the canonical basis of symmetric matrices.

The solution wij is called a corrector function. Equation (12) is posed in the periodic domain RN0
which is obtained by periodic repetition of the cell Y0 in the full space RN . Note that, because of
the periodicity of the solution wij , it is enough to solve this equation in a single cell Y0. To give a
mathematically precise meaning to (12), let us introduce the subspace H1

#

(
Y0;RN

)
of all functions

u ∈ H1(Y0;RN ) which are periodic, i.e., with traces equal on opposite sides of the unit cell Y0. The
cell problem admits the following weak form: find wij ∈ H1

#

(
Y0;RN

)
such that

∀φ ∈ H1
#

(
Y0;RN

) ∫
Y0

Ae (wij) : e(φ) +

∫
Y0

Aeij : e(φ) = 0, (13)

which admits a unique solution up to a rigid body motion (a translation in this case). The correctors
yield an explicit formula for the homogenized constitutive tensor as follows

A∗ijkl =

∫
Y0

A (eij + e (wij)) : ekldy ∀ i, j, k, l ∈ {1, ..., N}, (14)

or equivalently, using the weak form (13),

A∗ijkl =

∫
Y0

A (eij + e (wij)) : (ekl + e (wkl)) dy .

The connection with the previous corrector tensor W ε defined in (8) is as follows

W ε(x) = W
(x
ε

)
with Wijkl(y) =

{
I4
ijkl + e (wij)kl (y), y ∈ Y0,

0 y ∈ Y \ Y0.
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Similarly, the previous amplification tensor P ε = AεW εA∗−1, defined by (10), reduces to

P ε(x) = P
(x
ε

)
with P (y) =

{
AW (y)A∗−1 y ∈ Y0,

0 y ∈ Y \ Y0.

One advantage of the periodic setting is that the strong convergence in (9) can be improved, at least
under the assumption that the homogenized solution u is smooth and that boundary layer effects can
be neglected (this is the case for rectangular domains D for which it is known that boundary layers
decay exponentially fast inside the domain [25]). More precisely, under these assumptions, one can
prove, for any p ≥ 1,

σε − P εσ → 0 strongly in Lp
(
D;RN

2
)
. (15)

This convergence property is crucial to pass to the limit in the objective function and improve (7).
In the sequel, we shall use the (more explicit) notation

σloc(y) = P (y)σ (16)

for the microscopic stress in the unit periodicity cell Y0 created by a constant macroscopic stress σ.
In numerical practice, given σ, one first define the macroscopic strain tensor eσ = (A∗)−1σ, then
one computes the solution wσ(y) of the cell problem (12) where eij is replaced by eσ and finally
σloc(y) = A(y)e(wσ)(y).

Homogenized stress norm minimization. Once all the necessary ingredients of homogenization
theory are introduced, one can define the homogenized version of the stress minimization problem. For
any given periodic characteristic function χ(y) (defining the perforated unit cell Y0), the associated
sequence χε, defined by (11), satisfies

χε ⇀ ρ =
∫
Y χ(y) dy weakly* in L∞(D; [0, 1]),

Aε
H−→ A∗ in the sense of H-convergence,

where A∗ is given by (14). Furthermore, because of (15), one can replace, up to small remainders, σε

by P εσ, which yields

lim
ε→0

∫
D
|σε|pdx = lim

ε→0

∫
D

(P εσ : P εσ)p/2dx,

where the limit can easily be computed since P ε is a periodically oscillating sequence

lim
ε→0

∫
D

(P εσ : P εσ)p/2dx =

∫
D

∫
Y0

(P (y)σ(x) : P (y)σ(x))p/2 dydx.

We introduce a notation for this limit

Pp(σ) =

∫
Y0

(P (y)σ : P (y)σ)p/2 dy, (17)

which, for p an even integer, is an homogeneous polynomial of degree p with respect to the entries
of σ. Note that all homogenized quantities, namely A∗, ρ and P depend solely on the Y -periodic
characteristic function χ. Therefore, the periodic homogenized stress minimization problem is

min
χ

∫
D
Pp(σ)dx

such that
∫
D
ρdx = V ∗,

(18)

where σ = A∗e(u) is the stress associated to the solution u of the homogenized problem (6). Problem
(18) is a partial relaxation of the original optimization problem (2) because it does not feature all
possible composite materials but only those ones obtained by periodic homogenization. In [14] a
different partial relaxation was introduced, relying on so-called sequential laminates. In any case,
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a full relaxation is not available because the set of all composite materials obtained by a general
homogenization process is yet unknown in the elasticity setting.

A crucial remark is to acknowledge the fact that, although periodic homogenization was discussed
here only for the case of a purely periodic characteristic function χ(y), it is perfectly legitimate to
consider macroscopically modulated periodic functions, like χ(x, y). In other words, the cell problems
and the homogenized properties may vary from point to point in the working domain D and thus
depend on x (this is the strategy followed for example in [16]).

2.4 Stress amplification tensor.

The goal of this subsection is to compute the operator Pp defined by (17). For simplicity, the exponent
p is assumed to be an even integer. The case p = 2 is the simplest one and, introducing the fourth
order tensor

P(2)(y) = P T (y)P (y) = A∗−1W (y)A(y)A(y)W (y)A∗−1, (19)

it is easily deduced that

P2(σ) =

(∫
Y0

P(2)(y)dy

)
σ : σ. (20)

The cases p > 2 are much more involved. Indeed, in full generality one expects that

Pp(σ) = P∗p ·
(
σ ⊗ · · · ⊗ σ

)
, (21)

where P∗p is a 2p-order tensor with entries given by averages of p-powers of entries of P(2)(y). This
tensor P∗p is called the homogenized stress amplification tensor. It is indeed an amplification factor
because, in view of (7), it satisfies

Pp(σ) ≥ |σ|p.

To obtain the components of the tensor P∗p , the idea is to rewrite the tensor product (21), or (17),
as an integral of a sum of products between P(2)(y) and σ ⊗ σ. From now on we restrict ourselves to
the 2-d case, although all formulae below can easily be generalized to the 3-d case, at the expense of
heavier notations. Using Voigt notations in 2-d, we have

P (y)σ : P (y)σ = P(2)(y)σ : σ =
[
σ11σ22σ12

]
P(2)

1111
P(2)

1122
P(2)

1112

P(2)
1122

P(2)
2222

P(2)
1222

P(2)
1112

P(2)
1222

P(2)
1212



σ11

σ22

σ12

, (22)

where the components of the tensor P(2) are defined by

P(2)
1111

= P 2
1111

+ P 2
2211

+ P 2
1211

,

P(2)
2222

= P 2
1122

+ P 2
1222

+ P 2
2222

,

P(2)
1212

= P 2
1112

+ P 2
2212

+ P 2
1212

,

P(2)
1122

= P1111P1122 + P2211P2222 + P2212P1222 ,

P(2)
1112

= P1111P1112 + P2211P2212 + P1211P1212 ,

P(2)
1222

= P1122P1112 + P2222P2212 + P1222P1212 .

Finally, (22) can be rearranged as a scalar product between 6-th dimensional vectors

P (y)σ : P (y)σ =
[
P(2)

1111
P(2)

2222
P(2)

1212
2P(2)

1122
2P(2)

1112
2P(2)

1222

]


σ11σ11

σ22σ22

σ12σ12

σ22σ12

σ11σ12

σ11σ22

 = P (2) · σ(2). (23)
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Stress norm through multinomials. Recall the multinomial theorem

(x1 + · · ·+ x6)p/2 =
∑
|α|=p/2

(
p/2
α

)
xα where

(
p/2
α

)
=

(p/2)!

α1! · · ·α6!
,

and xα = xα1
1 xα2

2 · · ·x
α6
6 for α ∈ N6 and x ∈ R6. Furthermore if x = yz in the sense that xi = yizi,

1 ≤ i ≤ 6, we introduce the notation yα · zα = yα1
1 · · · y

α6
6 zα1

1 · · · z
α6
6 . Using this notation for y = P (2)

and z = σ(2), the amplification tensor can be written as

Pp(σ) =
∑
|α|=p/2

(
p/2
α

)(∫
Y0

(
P (2)

)α
dy

)
·
(
σ(2)

)α
= P∗p ·

(
σ ⊗ · · · ⊗ σ

)
, (24)

where each entry of σ ⊗ · · · ⊗ σ is homogeneous of degree p. The entries of P∗p are deduced from (24).
In the simplest case of p = 2, the number of entries is Np = 6. However, as the exponent is increased
p = {4, 8, 16}, this number increases exponentially Np = {21, 126, 1287}.

3 Super-ellipsoidal holes for stress minimization

Now, the goal is to design a micro-structure parametrized with a small number of variables such that
its corresponding amplification tensor P∗p entries are minimized.

3.1 Description of the geometry

For simplicity, in this work we propose a square cell micro-structure with a super-ellipsoidal hole in
order to minimize stress concentrations. Although more sophisticated micro-structure could be used,
we decided to choose the super-ellipse as a suitable compromise between simplicity and efficiency. On
the one hand, this geometry generalizes both the square/rectangle and the circle/ellipse geometries
and includes intermediate holes that continuously varies from one to the other. On the other hand,
considering a single hole inside a square cell ensures that neighboring cells connect perfectly even if the
hole parameters are different. Additionally, the topology is easy to represent via an explicit level-set
function which is important for the de-homogenisation procedure (see [16]). By using the super-ellipse
geometry, it is possible to conveniently round the corners of the square in order to minimize the
maximum stress. On the other hand, for adequate values of the parameters, the super-ellipsoidal hole
has some resemblance with the Vigdergauz micro-structure which is proven to be optimal in some
cases when minimizing the maximum stress [26] (see Section 6 for more details). Note that some other
recent works [23, 24] have also proposed to use super-ellipses in shape optimization.

Super-ellipse geometry description. The micro-structure of a unitary square cell Y = (−0.5, 0.5)2

with a super-ellipsoidal hole may be explicitly described as

Y0 =
{
ψ(y) < 0; ∀y ∈ Y

}
,

where ψ is the following level-set function

ψ (y) =

(
y1

m1/2

)q
+

(
y2

m2/2

)q
− 1. (25)

The super-ellipse is centered at the origin and its semi-axis are m1/2 and m2/2, while the exponent
q can be seen as a smoothing corner parameter. From now on, q is called the smoothing exponent,
restricted to the values q ≥ 2.

Super-ellipse volume fraction. Another well-known advantage of a square micro-structure with a
super-ellipsoidal hole is that the volume fraction can be explicitly computed by

ρ =

∫
Y0

dy = 1− c(q)m1m2 with c(q) =
Γ
(

1 + 1
q

)2

Γ
(

1 + 2
q

) , (26)

where Γ is the gamma function.
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Super-ellipsoidal hole examples in a unitary square cell. A wide range of shapes can be
obtained by just changing the parameters of the super-ellipsoidal hole. Examples of particular interest
range from small circles or ellipses, which are well known to be optimal for compliance minimization in
the limit of small holes [26]), to rectangular holes with one of the semi-axis attaining its maximum value
(rank-1 laminate case). These and other examples of the family of micro-structures we are considering
in this work are shown in Figure 1.

Figure 1: Examples of different super-ellipsoidal holes. From left to right, first line: (i) m1 = m2 = 0.1;
q = 2; (ii) m1 = m2 = 0.1; q = 32; (iii) m1 = 0.99; m2 = 0.2; q = 32; (iv) m1 = 0.99; m2 = 0.2; q = 2.
Second line: (i) m1 = m2 = 0.6; q = 2; (ii) m1 = m2 = 0.85; q = 4; (iii) m1 = m2 = 0.7; q = 32; (iv)
m1 = m2 = 0.99; q = 32.

Limit cases. Special attention must be paid to the limit cases of super-ellipsoidal holes. Certainly,
the micro-structure rigidity becomes singular when the super-ellipsoidal hole touches the square cell
boundary, more specifically when mi → 1 for i = 1 or 2. Since we are interested in optimal micro-
structure, there is no restriction in introducing bounds on the geometrical parameters, mLi ≤ mi ≤ mUi.
From now on, we take in all the examples mLi = 0 and mUi = 0.99. This upper bound will ensure the
invertibility of the stiffness matrix in the corresponding macroscopic problem [21]. Furthermore, with
such a bound the perforated cells are always properly meshed. In this work we use the Mmg library,
which is available in [27] and fully described in [28].

Super-ellipse parametrization. To minimize the number of cell parameters, we decide to choose
the "best" smoothing exponent q for every value of the parameters m1 and m2. This optimal value of q
is given by an optimization process described below. Special care is required because this optimization
has a tendency to minimize the volume and not to properly round the corners of the super-ellipse.
Thus, a volume fraction constraint has to be enforced when solving the optimization problem. See
section 5.1 for more details. Then, we replace variables (m1,m2) by the semi-axis ratio ξ and the
volume fraction ρ. Those variables are defined by

ξ = arctan (m1/m2) and ρ = 1− c(q)m1m2. (27)

Using the arctan function allows us to bound the domain of the semi-axis parameter ξ. Alternatively,
the converse relations are:

m1 =

√
1− ρ

c(q) tan(ξ)
and m2 =

√
(1− ρ) tan(ξ)

c(q)
. (28)

Additionally, note that the upper bound on mi implies the following non-linear bounds

ξmin(ρ, q) = ξ2(mU2
, q, ρ) ≤ ξ ≤ ξ1(mU1

, q, ρ) = ξmax(ρ, q),

where the functions ξ1 and ξ2 are defined as

ξ1(m1, q, ρ) = arctan

(
m1c(q)

1− ρ

)
and ξ2(m2, q, ρ) = arctan

(
1− ρ
m2c(q)

)
. (29)
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Thus, for a given smoothing exponent q, the ranges of the semi-axis and volume fraction are ξ ∈
[ξmin(ρ, q), ξmax(ρ, q)] and ρ ∈ [ρmin(q), 1] where ρmin(q) = 1 − c(q)mU1

mU2
. We call this set the

admissible space

Vad(q) =
{

(ξ, ρ)| ξ ∈ [ξmin(ρ, q), ξmax(ρ, q)] and ρ ∈ [ρmin(q), 1]
}
. (30)

Note that the admissible space Vad(q = 2) for an elliptic hole cannot achieve a complete void in the unit
cell structure since the minimal volume fraction is about ρmin(q = 2) ∼ 0.2. Instead, the admissible
space Vad(q = 32) for an almost rectangular hole achieves ρmin(q = 32) ∼ 0.02. In particular, q = 32
provide the most elongated holes and the lowest volume fraction micro-structures. This has a strong
impact on most of the topology optimization problems since usually one of the objectives is to reduce
the volume of the structure. Note that the largest admissible space is precisely the one for almost
rectangular holes, Vad(q = 32). In Figure 2 are precisely plotted the admissible space for almost
rectangular holes Vad(q = 32) and for elliptic holes Vad(q = 2).
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Figure 2: Admissible design space Vad(q). Clearly, the almost rectangular case Vad(q = 32) (left image)
is larger than the ellipsoidal case Vad(q = 2) (right image). Note that the rectangular admissible design
Vad(q = 32) is larger than the ellipsoidal one Vad(q = 2).

Note that in this parametrization no orientation of the hole is considered. This is because, according
to the optimization strategy of [16], the orientation of the entire square cell will be optimized in the
macroscopic topology optimization problem. More details will be given in Part II [21].

3.2 Mesh-size dependency

Certainly, mesh-size effects may appear when minimizing any measure of the stress. It is well-known
that the stress values may tend to infinity at some points (for example, corners) as the mesh-size tends
to zero. Since the super-ellipsoidal hole looks like a rectangular hole when the smoothing exponent
q goes to infinity, there may be very large point-wise values of the stress in such a case. In Figure 3
we plot the microscopic stress σloc

11 (y), defined by (16), for a uniaxial horizontal stress tensor σ11 = 1,
σ22 = 0 and σ12 = 0. Indeed for a rectangular hole, the maximum stress diverges when refining the
mesh, as expected. On the contrary, for a rounded corner (corresponding to q = 4), the maximum
stress remains bounded under mesh refinement. For simplicity, in this work, we use a high quality
conformal mesh (provided by the open-source software Mmg [28]) to properly describe the perforated
cell. We found that it was accurate for evaluating the maximum stress. Other different numerical
techniques like filtering [24] or the use of XFEM formulation [23] are also possible. All our numerical
results are obtained with a similar mesh size, fine enough to capture the round corners. In this section,
as well as in the entire paper, we consider an isotropic elasticity tensor A = 2µI4 +(κ−µ)I2⊗I2 where
I4 and I2 correspond to the fourth and second order identity tensors. The shear and bulk modulus in
2-d are defined by µ = E

2(1+ν) and κ = E
2(1−ν) and the values of the Young modulus and Poisson ratio

are taken as E = 1 and ν = 1/3.

11



Figure 3: Mesh convergence of the microscopic stress σloc
11 (y) when applying a macroscopic stress load

σ11 = 1, σ22 = 0 and σ12 = 0 to a square micro-structure with a rectangular and a super-ellipsoidal
hole (q = 4). The mesh sizes are h ∈ {0.1, 0.05, 0.0025, 0.00125}.

4 Numerical Experiments

In order to get some insight and understand the nature of the problem, we conduct in this section two
different numerical experiments. In the first experiment, we study the homogenized and amplification
factor for p = 2 when considering rectangular or ellipsoidal holes. In the second experiment, we move
towards larger stress exponents p ≥ 2, but this time for different intermediate super-ellipsoidal holes.
For simplicity, we only show here a brief summary of the numerical experiments. A detailed and more
exhaustive study is reported in the supplementary material of this work [29].

4.1 First numerical experiment: p = 2or rectangular and ellipsoidal holes

We compare the homogenized tensors, as well as the stress amplification tensors with p = 2, for the
two simplest cases: rectangular and ellipsoidal holes. Note that the symmetry of the rectangular and
ellipsoidal holes provides orthotropic homogenized fourth order tensors.

Homogenized tensor. In Figure 4, we show all the homogenized tensor entries for both the rect-
angular and ellipsoidal holes in the admissible design space Vad(q). Note that comparing in the space
(ξ, ρ) rather than in the space (m1,m2) allow us to compare holes with the same volume fraction.
For a full comparison in the space (m1,m2), see the first experiment in the supplementary material
[29]. We first observe in Figure 4 that both entries A1122 and A1212 monotonically increases with the
volume fraction ρ. For a given volume fraction ρ, the larger values of A1122 and A1212 are obtained
at symmetric holes (ξ = π/4). Alternatively, the entries A1111 and A2222 clearly increases with the
design variables m1 and m2 rather than with the volume fraction ρ (see the supplementary material
[29]). We also see that, for a fixed volume fraction ρ, the more horizontally elongated the hole (like a
rank-1 laminate, with ξ → ξUB), the larger the component A1111. A similar result holds for A2222 with
vertical holes.

Amplification tensor. The influence of considering rectangular or ellipsoidal holes on the stress
norm may be easily identified through the amplificator entries. Since some amplificator entries may
blow up to infinity for small volume fractions, for clarity purposes in Figure 5, the inverse of the stress
amplification tensor P−1

2 is plotted in the admissible design spaces Vad(q = 2) and Vad(q = 32). Note
that since P2 ≥ I in the sense of fourth order tensor, its inverse is bounded from above. In Figure 5,
we observe that the component (P−1

2 )1122 has a concave dependency with ρ and has a maximum value
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Figure 4: Entries of the homogenized tensor A∗ for all possible rectangular (top line) and ellipsoidal
(bottome line) holes.

Figure 5: Inverse of amplification tensor P2 for all possible rectangular (top line) and ellipsoidal (bottom
line) holes.

around ρ ∼ 0.8. The component (P−1
2 )1212 increases monotonically with ρ and depends weakly on ξ.

Symmetric holes have larger (P−1
2 )1212. Alternatively, as reported in the supplementary material [29],

the (P−1
2 )1111 and (P−1

2 )2222 depends mainly on the m1 and m2 variables directly. For a given volume
fraction ρ, we also see that the larger values of (P−1

2 )1111 is when considering horizontally elongated
holes (like rank-1 laminates). We also observe that the variation of the amplificator entries with
(ξ, ρ) variables for rectangular and ellipsoidal holes are similar. However their values are considerably
different. In general, we observe that for small holes ellipsoidal and rectangular holes behave similar
and for large holes rectangular holes are preferred, specially for elongated ones (m1 → 1 or m2 → 1).
A quantitative and exhaustive comparison is reported in the supplementary material [29].

4.2 Second numerical experiment:p ≥ 2

In this second numerical experiment, we move to general super-ellipses (2 ≤ q ≤ 32) and consider
stress norm exponents p ≥ 2.
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Figure 6: Plot of the local stress field σloc
11 (y) for an uni-axial horizontal macroscopic stress tensor

σ = [1 0 0]. In each row, the case with lowest maximum value of the stress is inscribed in a black
box. Rectangular holes with smoothed corners are preferred for large holes. More rounded (ellipsoidal)
holes are preferred for intermediate holes.

Maximum stress norm. First, we study the maximum stress norm for symmetric (m1 = m2)
representative super-ellipses for two different volume fraction. The idea is to observe the influence of
the smoothing exponent parameter q in the maximum stress norm. In Figure 6, we show the σloc

11 (y)
component when the cell is loaded with a macroscopic stress σ = [1 0 0]. We observe that circles
(q = 2) and rectangles (q = 32) are far from optimal. Circular holes suffers from imposing areas
with very small thickness which entails large stress concentrations. Alternatively, squares suffers from
imposing infinite curvature in the corners which entails also large stress values. Super-ellipsoidal holes
have usually smaller maximum stress when considering intermediate smoothing exponent q values. For
example, for ρ = 0.3, the optimal exponent is around q = 8 and for ρ = 0.7 is q = 4. In Figure 6,
the optimal values are inscribed in a black box. Roughly speaking, optimal exponents evidenced that
large stresses are more spatially distributed (larger red areas in Figure 6). See the second experiment
of the supplementary material [29] for a more exhaustive study with smaller volume fraction ρ and
different macroscopic stress. This representative example evidenced the importance of selecting an
optimal smoothing parameter q for minimizing the maximum stress norm.

Figure 7: Entries of the stress amplification tensor Pp for intermediate elongated super-ellipsoidal holes
with 2m1 = m2 and ρ = 0.7. While the case p = 2 includes the shear components, the three other
figures do not consider shear terms. For example, the case [1 1 0 0 0 2] represents the amplificator
entry that corresponds to (σ11σ11)1(σ22σ22)1(σ12σ12)0(σ22σ12)0(σ11σ12)0(σ11σ22)2 = σ4

11σ
4
22.
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Amplification tensor entries. Now we study the influence of using different super-ellipsoidal holes
on the stress norm with an increasing sequence of stress norm exponent p. More specifically, we analyse
the values of the amplificator entries for p = 2, p = 4 and p = 8. In the left image of Figure 7, we plot
all the amplificator entries with p = 2. We observe that the shear components are the largest ones.
This is not a surprise and we recall that in Part II [21], following [16], we align the micro-structure
with the principal stresses and consequently shear entries become irrelevant. Thus, for simplicity, in
the middle and left images of Figure 7, we plot no shear components. In Figure 7, we observe an
exponential increase of the number of amplificator entries when increasing the stress norm exponent p.
We also see that, after shear effects, the larger entries (for this elongated super-ellipsoidal hole) come
from pure traction cases. We recall that the amplificator entries are identified through the monomial
terms. For example the case [1 1 0 0 0 2] in the horizontal axis of the right image in Figure 7 represents
the amplificator entry that corresponds to (σ11σ11)1(σ22σ22)1(σ12σ12)0(σ22σ12)0(σ11σ12)0(σ11σ22)2 =
σ4

11σ
4
22. A more exhaustive study is also reported in the second experiment of the the supplementary

material [29]. We clearly observe that intermediate smoothing exponent q entails smaller values of
the amplificator entries. Specially, as we increase the stress norm exponent p. This means again that
rectangular and ellipsoidal holes are not optimal and confirms the need of optimizing the smoothing
exponent q for minimizing the stress norm.

4.3 Outcome from numerical experiments

After these two numerical experiments, the following conclusions are in order.

(i) For large size holes: rectangles (with rounded corners) are preferred (see Figure 6).

(ii) For medium size and elongated (ξ → ξUB or ξ → ξLB ) holes, rectangles (with rounded corners)
are also preferred (see supplementary material [29]).

(iii) For medium size symmetric holes (ξ ∼ π/4), circular and super-ellipsoidal holes with small
smoothing exponent q behaves better than rectangular holes (see Figure 6).

(iv) For small holes, rectanglular and ellipsoidal holes behave similar (see Figure 7 and supplementary
material [29]).

(v) The optimal smoothing exponent depends clearly on the applied macroscopic stress.

(vi) The numerical results also suggest that, in most of the situations, intermediate values of q are
better than 2 or 32, i.e. pure ellipsoidal or rectangular holes.

All these outcomes are a guide for the following optimization of the exponent q of the super-ellipsoidal
hole.

5 Optimal micro-structure for stress minimization

This optimal design problem is decomposed in three steps. In a first step, for a given applied macro-
scopic stress σ, a given volume fraction ρ and a given semi-axis ratio ξ, the smoothing exponent q is
optimized for minimizing the maximum local stress by solving the optimization problem (33). Note
that, since the macroscopic stress is aligned with the microstructure and its amplitude is irrelevant in
linearized elasticity, this stress is parametrized by a single scalar parameter φ in (35). The optimal
smoothing exponent q∗ = q∗(ξ, ρ, φ) thus depends on three quantities (ξ, ρ, φ). In a second step, the
optimal exponent q∗ is averaged with respect to φ, the stress parameter. The average is not uniform
but weighted with a bias in terms of ξ. It is expected that the macroscopic optimization of Part II will
favor holes which are more elongated in the direction of the largest principal stress. Indeed, such an op-
timal behaviour is precisely quantified for rank-2 laminates in 2-d compliance minimization [11]. Here,
for stress minimization we propose a kernel to average q∗(ξ, ρ, φ) with respect to φ with more emphasis
on values which are more likely to appear for a given ξ. Finally, in a third step, the resulting average
optimal exponent qN (ξ, ρ) is approximated by a simple analytic formula, obtained by a least-square
problem. In other words, this three-step process delivers a family of nearly optimal microstructures
depending on solely two parameters: their volume fraction ρ and an anisotropy parameter ξ (semi-axis
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ratio). They do not depend on the applied stress but they have been designed to be quite optimal for
macroscopic stresses which are likely to appear in the macroscopic optimization of Part II.

5.1 Optimization problem

The results of Section 4 outlined that the optimal smoothing exponent q for minimizing the maximum
stress depends on many parameters. Let us now systematize the insight obtained from these numerical
experiments by solving the following optimization problem: given a semi-axis ratio ξ, a volume fraction
ρ and a given loading macroscopic stress σ, find the optimal smoothing exponent and the semi-axis
parameters (q∗,m1,m2) ∈ Uad which minimize

min
(m1,m2,q)∈Uad

max
y∈Y0

{
|σloc(y)|2 = P (y)σ : P (y)σ

}
, (31)

where σloc(y), which depends on (σ,m1,m2, q), is the microscopic stress defined by (16) for a constant
macroscopic stress σ (its precise computation is explained in Section 2.3). The space of admissible
smoothing exponent q and semi-axis parameters mi is defined as

Uad =
{
q ∈ Q,m1 ∈M1,m2 ∈M2, arctan(

m1

m2
) = ξ and 1− c(q)m1m2 = ρ, ∀(ξ, ρ) ∈ Vad(q)

}
,

where Q = [qmin, qmax],Mi = [mLi,mUi] and Vad(q) is defined by (30). We recall that the dependency
of the cost with respect to the design variables comes from the definition of the cell Y0 as

Y0 =
{
y ∈ Y ; ψ(y,m1,m2, q) < 0

}
, (32)

where ψ(y,m1,m2, q) is the level-set that defines the super-ellipsoidal hole (see Section 3.1). Although
problem (31) features three independent variables, its two constraints on ρ and ξ allow us to compute
explicitly m1 and m2, for a given q. Therefore, in the end (31) becomes the following one variable
minimization problem

min
q∈Qm

max
y∈Y0

{
|σloc(y)|2 = P (y)σ : P (y)σ

}
, (33)

where the admissible space is defined as Qm = [qLB, qUB]. The values qLB,qUB are obtained taking into
account that mi ∈Mi = [mLi,mUi] by solving

c(qLB)−max

(
(1− ρ)

mL1
tan(ξ)

,
(1− ρ) tan(ξ)

mL2

, c(qmin)

)
= 0,

c(qUB)−min

(
(1− ρ)

mU1
tan(ξ)

,
(1− ρ) tan(ξ)

mU2

, c(qmax)

)
= 0,

(34)

for all (ξ, ρ) ∈ Vad(q) where c(q) is the function defined in (26) for computing the volume fraction.
Since c(q) is an increasing monotone function, we obtain the values of the bounds qLB and qUB by solving
equation (34) with a simple bisection method. Concerning the stress σ in (33), we recall that in this
approach, the micro-structure is aligned according to the principal stress, avoiding shear effects.

Remark 1 The orientation of the unit cell is considered as a macroscopic design variable which will
be used in the macroscopic optimization problem of Part II [21]. Based on Pedersen work [22] for
compliance minimization, the orientation is updated during the optimization process by aligning the unit
cell with the principal stress axis, see [16], [17] for example. This is an optimal choice for compliance
minimization but not necessarily for stress minimization. However, our numerical experience is that
applying Pedersen orientation rule guarantees in almost all cases a decrease of the objective function
and is thus a very efficient scheme because of its low computational cost.

Therefore, in the optimization of the smoothing exponent q, we do not consider shear stress, namely
we assume σ12 = 0. Additionally, note that since this work is limited to linear elasticity, the macroscopic
stress norm plays no role. This would not be the case for non-linear elasticity. Consequently σ is
parametrized (in Voigt notation) just by the stress angle φ as

σ = [σ11 = sin(φ) σ22 = cos(φ) σ12 = 0]. (35)

16



Solving the optimization problem (33) provides the optimal smoothing exponent q∗(ξ, ρ, φ). Since the
objective function in (33) is a maximum value and thus is non-differentiable, we solve the optimization
problem (33) with the standard successive parabolic interpolation algorithm combined with a golden
section search [30]. In full generality the stress angle φ is defined in [0, 2π] (with implicit periodicity
condition), but changing φ in φ+π simply amounts to change the sign of σ, which leaves invariant the
objective function in (31) and (33). Therefore, the stress angle is limited to the [0, π] interval and

q∗(ξ, ρ, φ) = q∗(ξ, ρ, ϕ(φ))

where ϕ is defined as

ϕ(φ) =

{
φ 0 ≤ φ ≤ π,
φ− π π ≤ φ ≤ 2π.

(36)

Thus, in practice, instead of q∗(ξ, ρ, φ), we directly compute q∗(ξ, ρ, ϕ). To do so, we solve problem
(33) by sampling the admissible space Vad(q) with 400 points. Instead of uniformly sampling Vad(q),
we uniformly discretize m1 ∈ [mL1

,mU1
] and m2 ∈ [mL2

,mU2
] with 20 points and we use equations (27)

(with q = 32) to obtain the 400 (ξ, ρ) sample points. The following bounds are set: mL1
= mL2

= 0.01,
mU1

= mU2
= 0.99, qmin = 2 and qmax = 32. The cell Y0 is discretised with an unstructured triangular

mesh of typical size h = 0.01. As an example, Figure 8a displays the convergence of the cost in (33)
for ξ = π/4 (m1 = m2), ρ = 0.15 and φ = π/4 (σ11 = σ22) and the optimal super-ellipsoidal hole. Our
experience is that in all cases, the algorithm converges in roughly 20 ∼ 30 iterations.

(a) Convergence history of the max
stress norm (p =∞)

(b) Variation of Jp(q) for several
norm exponents p

(c) Convergence under mesh
refinement (h→ 0) for the max

stress norm (p =∞)

Figure 8: Optimization of the stress norm Jp(q) for ξ = π/4 (m1 = m2), ρ = 0.15 and φ = π/4
(σ11 = σ22). In (b) the optimal super-ellipsoid exponent q∗ is indicated with a square dot.

Remark that exchanging φ with π/2−φ amounts to rotate the stress tensor by π/2 (or exchanging
the roles of σ11 and σ22). Since the super-ellipsoidal hole has cubic symmetry, rotating it by π/2 is
equivalent to exchanging the roles of the semi-axis valuesm1 andm2, namely exchanging ξ with π/2−ξ.
Therefore, we deduce q∗(ξ, ρ, φ) = q∗(π/2 − ξ, ρ, π/2 − φ), which halves the amount of computations
to obtain the optimal exponent q∗. In total, we optimized (in parallel) 400 types of microstructures
for 40 load stress angle φ values (uniformly distributed). In total, we solved 16000 cases and each
optimization problem has taken around 100 seconds of computation.

Variation of the optimal super-ellipsoidal exponent q with the norm exponent p. Although
in problem (33) we considered the p = ∞ norm, other choices of p are also possible. For a general
p ≥ 2, the stress norm is defined as

Jp(q) =

(∫
Y0

|σloc(y)|p
)1/p

. (37)
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The variation of the stress norm with the optimal smoothing exponent q for different values of p is
precisely represented in Figure 8b. The square markers shown in Figure 8b point the minimum value
of the stress norm Jp(q). We observe that in this case, for all norm exponent p the optimal holes
are neither an ellipsoidal nor a rectangular hole but a super-ellipsoidal hole with an exponent q in
the range (12; 18). Additionally, the optimal value q∗ of the super-ellipsoidal exponent does not vary
monotonically with the norm exponent p. Note also that for small values of p, Jp(q) is almost flat.
Thus, for small p, the optimal value of q is not very relevant since any other value of q will give similar
values of Jp(q) Most importantly, the stress norm Jp(q) has larger variations with respect to q for higher
values of the norm exponent p. Thus, for large values of p, which is in general the case of interest, the
optimization process with respect to q becomes crucial. This example shows that considering p = ∞
for designing the optimal super-ellipsoidal hole is an appropriate choice. Note that for large norm
exponent p, some oscillations appear in the graph of Jp(q): they are due to numerical discretization
errors as explained in the next paragraph.

Convergence under mesh refinement of the optimal super-ellipsoidal exponent. Another
aspect to consider when minimizing the stress norm is the mesh size h, specially for large values of
p. In Figure 8c the maximum stress norm J∞(q) is plotted for different mesh sizes. As expected, the
value of J∞(q) strongly depends on h for large values of q but is well computed for smaller values, say
q ≤ 20. However, it turns out that in this situation the optimal exponent q∗ does not depend much on
the mesh size h. Even better, the function J∞(q) is rather flat around its minimal value which implies
that a small error in the choice of the optimal smoothing exponent q∗ entails merely a small change
in the max stress norm. However, in other situations where the J∞(q) is flat almost everywhere, the
mesh discretization plays, as we will see, an important role on choosing the optimal q∗. Prompted by
these observations, in all our computations, we use h = 0.01.

5.2 Averaging with respect to stress values

The optimal exponent q∗(ξ, ρ, σ) clearly depends not only on the geometrical parameters (ξ, ρ) but also
on the applied macroscopic stress σ. Recall that σ is parametrized by a stress angle φ in (35). In this
work, one of the goals is precisely to obtain a parametrized optimal geometry independent of the applied
stress. This requirement is made for simplicity or for manufacturing reasons, as explained in [16] or
[17]. The idea of the optimal design strategy in Part II [21] of our work is to use a simple parametrized
family of unit cells, thus independent of the stress tensor. For that purpose, the optimal smoothing
exponent q∗(ξ, ρ, σ) has to be averaged in terms of the stress. This averaging process should not be
uniform and must take into account that the resulting cells Y0 will be used in an optimal design process.
More precisely, the macroscopic structural optimization of Part II will favor some values of (ξ, ρ) for
given stress σ. For example, it is well known that for compliance minimization the thickness of the
"walls" of the micro-structure should be proportional to the stress that it has to sustain in its direction.
This is rigorously proved for rank-2 laminates in 2-d [11] and it is a numerical evidence for rectangular
holes in a square cell [31]. Note that this fact is different from the optimal orientation of orthotropic
materials [22] which is already taken into account by taking σ12 = 0. Intuitively, the macroscopic
optimization algorithm will tend to propose large/elongated rectangular holes when dealing with pure
traction stresses and more symmetric holes when dealing with more hydrostatic loads.

Therefore, it is likely that micro-structures which have a semi-axis ratio m1/m2 will be favored
by the structural optimization process at places where the stress tensor ratio |σ11|/|σ22| has similar
values. Note that the ratio σ11/σ22 may be positive or negative, so its absolute value is close to m1/m2

if φ ∼ ξ or φ ∼ π−ξ. In other words, the average of q∗(ξ, ρ, φ) is performed with a non-uniform weight
in terms of φ, which is proportional to how close is the ratio of the principal stresses with the semi-axis
ratio ξ and π − ξ. Then, we propose to compute the averaged optimal smoothing exponent as follows

qN (ξ, ρ) =
1

2

∫ 2π

0
P (φ− ξ)q∗(ξ, ρ, ϕ(φ))dφ+

1

2

∫ 2π

0
P (φ− (π − ξ))q∗(ξ, ρ, ϕ(φ))dφ, (38)

where P (φ) is the Gaussian probability function, with parameter s > 0 (in the sequel s = 0.1), defined
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by

P (φ) =
1√

2πs2
exp−

φ2

2s2 .

In (38) it is implicitly assumed that the functions of φ are 2π-periodic. In particular, the symmetry
property (36) is used to define ϕ(φ) and thus the optimal smoothing exponent is well defined for
φ ∈ [0, 2π] although it has been explicitly computed only for ϕ ∈ [0, π]. The fast decrease of the
Gaussian probability function, due to the small value of parameter s, allows us to truncate P (φ) to
0 when |φ| ≥ π/8, without any loss of accuracy. Similarly, the standard deviation of the optimal
smoothing exponent is defined as

sq(ξ, ρ) =
1

2

∫ 2π

0
P (φ− ξ) |q∗(ρ, ξ, ϕ(φ))− qN (ρ, ξ)|2 dφ

+
1

2

∫ 2π

0
P (φ− (π − ξ)) |q∗(ρ, ξ, ϕ(φ))− qN (ρ, ξ)|2 dφ.

(39)

In Figure 9, we plot in blue some optimal smoothing exponent q∗ for different sample points (ξ, ρ) of
the admissible design space Vad(q) and in black the mean value qN computed according to (38). We
also plot the micro-structure with the optimal super-ellipsoidal hole for different stress angles φ and
its corresponding macroscopic stress load. In red, the Gaussian probability function centered on ξ and
π − ξ is displayed.

Figure 9: In blue: optimal smoothing exponent q∗(ξ, ρ, φ) for different super-ellipsoidal holes as a
function of the stress angle φ. In red: Gaussian probability functions to average the optimal smoothing
exponent according to (38). In black: averaged optimal smoothing exponent qN (ξ, ρ).

In the left image of Figure 9, which corresponds to a small horizontal and elongated super-ellipsoidal
hole, we observe that the optimal smoothing exponent is almost constant (around a value of 15) for all
stress cases, except for a strong oscillation near φ = π/2, which corresponds to a horizontal traction
stress load case. This is because, as can be seen in Figure 8b, for φ ∼ π/2 the stress norm J∞(q)
is almost flat with respect to the smoothing exponent q and consequently the mesh discretization
artificially determines the optimal smoothing exponent. The weighted mean value qN (ξ, ρ) of the
smoothing exponent, from now on called averaged smoothing exponent, is the horizontal black line,
which is clearly very close to the blue curve of the optimal smoothing exponent q∗(ξ, ρ, φ).

In the second left image of Figure 9, which corresponds to a small and quite symmetric super-
ellipsoidal hole, the optimal smoothing exponent is again roughly constant, except for one peak around
φ ∼ (π − ξ), and its averaged value is smaller than the previous one for the horizontal hole. Again,
this is due to the flatness of the stress norm function with respect to the smoothing exponent. In this
case, the standard deviation is larger.

In the third and fourth left images of Figure 9, which correspond to two large super-ellipsoidal
holes, one symmetric and the other vertical, the optimal smoothing exponent is almost constant for
all stress angles. Its value is small for the first case and large for the second one. Thus, in both cases,
the mean value qN (ξ, ρ) is a very accurate approximation (small standard deviation). Overall, we may
conclude that: (i) elongated (|ξ − π/4| >> 1) super-ellipsoidal holes entail large value of the optimal
smoothing exponent q∗, while on the contrary quite symmetric (|ξ−π/4| << 1) super-ellipsoidal holes
yield small values of q∗; (ii) the optimal smoothing exponent q∗ depends weakly on the macroscopic
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stress load in the sense that it is almost constant except for one peak or oscillation; (iii) even when the
standard deviation of the optimal smoothing exponent q∗ is large, the stress norm of the mean value
J∞(qN ) is very similar to the stress norm of the optimal exponent J∞(q∗) because the stress norm
function J∞(q) is very flat. Consequently, averaging (non-uniformly) the optimal smoothing exponent
q∗ in terms of the macroscopic stress load is a suitable and reasonable simplification.

5.3 Regularized smoothing exponent for the super-ellipsoidal hole

Behaviour of the averaged smoothing exponent. After solving the optimization problem (33),
delivering the optimal smoothing exponent q∗(ξ, ρ, σ), the weighted average, presented in (38), is
applied to get the averaged smoothing exponent qN (ξ, ρ). We now investigate the behaviour of qN (ξ, ρ)
with respect to its variables. The first row of Figure 10 displays the standard deviation of qN , the
averaged smoothing exponent qN and its regularization qA in the (ξ, ρ)-plane. Note that these three
plots are symmetric with respect to the vertical line ξ = π/4 because tan(π/2− ξ) = 1/ tan(ξ), which
amounts to exchangem1 andm2, i.e. to rotate by π/2 the microstructure. The second row of Figure 10
displays the same quantities in the (m1,m2)-plane. Recall that (28) relates m1 and m2 with (qN , ξ, ρ).
In Figure 10b is plotted the averaged smoothing exponent qN (ξ, ρ). We first observe that for extreme

(a) Standard deviation sq(ξ, ρ) of
the optimal smoothing exponent

(b) Averaged smoothing exponent
qN (ξ, ρ)

(c) Regularized optimal smooth-
ing exponent qA(ξ, ρ)

(d) Standard deviation
sq(m1,m2) of the optimal
smoothing exponent

(e) Averaged smoothing exponent
qN (m1,m2)

(f) Regularized optimal smooth-
ing exponent qA(m1,m2)

Figure 10: Averaged smoothing exponent and its regularization.

values of the semi-axis, ξ → ξLB(ρ) or ξ → ξUB(ρ) (see their precise definitions in (5.3) below), namely
for very elongated holes, the value of qN is very large and thus the averaged super-ellipsoidal holes are
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rectangular holes (with slightly rounded corners). The dependency of qN with the size of the hole for
quite symmetric holes (ξ close to π/4) features three different regimes. When the hole is very large
(small ρ), rectangular holes with rounded corners are preferred (large qN ). For intermediate size holes
(ρ ∼ [0.2, 0.9]), rounded holes (small qN ) are preferred. For very small holes (large ρ), although some
oscillations appear, rectangular holes with rounded corners (large qN ) seems to be preferred.

In Figure 10a the standard deviation sq(ξ, ρ) is displayed, allowing to quantify the averaging of the
optimal smoothing exponent q∗. Clearly, the averaged value qN is a significantly accurate representation
of the optimal smoothing exponent q∗ for a large range of super-ellipsoidal sizes (ρ ∈ [ρmin, 0.7]). For
small super-ellipsoidal holes (ρ ∈ [0.7, 1]), especially when they are elongated (ξ → ξLB or ξ → ξUB), the
optimal smoothing exponent significantly varies when considering different stress load cases. However,
the experiments showed us that these oscillations have a limited impact since the stress norm function
J∞(q) is flat in these situations.

Regularization by an analytical expression. To simplify and regularize the behaviour of the
averaged smoothing exponent qN (ξ, ρ) (shown in Figure 10b), we propose an analytic expression to
approximate and regularize qN . There are many possible ways for regularizing qN but, after some trial
and error, we choose the following procedure. First, recall that, for given ρ, the semi-axis ratio ξ varies
in the range (ξLB(ρ); ξUB(ρ)), which is defined by

ξLB(ρ) = max
(
ξ1(mL1

, qmin, ρ), ξ2(mU2
, qmax, ρ)

)
,

ξUB(ρ) = min
(
ξ1(mU1

, qmax, ρ), ξ2(mL2
, qmin, ρ)

)
.

where the functions ξ1 and ξ2 are already introduced in (29). Since qN (ξ, ρ) is symmetric with respect
to the vertical line ξ = π/4, its regularization qA(ξ, ρ) is built to have the same symmetry. It is defined
as a combination of two approximations, qξπ/4(ρ) which approximates qN (π/4, ρ), and qξUB (ρ) which
approximates qN (ξUB(ρ), ρ) (and by symmetry also qN (ξLB(ρ), ρ)), namely

qA(ξ, ρ) = (1− ξA(ξ, ρ)α) qξπ/4(ρ) + ξA(ξ, ρ)αqξUB (ρ),

where α > 0 is a parameter to be chosen and 0 ≤ ξA(ξ, ρ) ≤ 1 is defined as a rescaled version of ξ by

ξA(ξ, ρ) =
|ξ − π/4|

ξUB(ρ)− π/4
.

The upper bound approximation qξUB (ρ) is defined as a combination of the values of the aver-
aged smoothing exponent in ρmin and ρmax. Denoting qρmin = qN (ξUB(ρmin), ρmin) and qρmax =
qN (ξUB(ρmax), ρmax), we introduce

qξUB (ρ) =
(

1− ρA(ρ)β
)
qρmin + ρA(ρ)βqρmax ,

where β > 0 is a parameter to be chosen and 0 ≤ ρA(ρ) ≤ 1 is defined as

ρA(ρ) =
ρ− ρmin

ρmax − ρmin
with ρmin = 0.0199, ρmax = 0.9999.

The approximation qξπ/4(ρ) for ξ = π/4 is defined by

qξπ/4(ρ) =
Aρ2 +Bρ+ C

Dρ2 + Eρ+ 1
,

where the constants A,B,C,D and E are determined by imposing the equality qξπ/4(ρ) = qN (π/4, ρ)
at ρmin = 0.0199, ρmax = 0.9999, ρs = 0.2 and at the minimum point ρm of qξπ/4(ρ). In view of the
values of qN (ξ, ρ) in Figure 10b, we impose that qξπ/4(ρmin) = 32, qξπ/4(ρmax) = 25, qξπ/4(ρm) = 3.
The other parameters, α = 20.252, β = 0.543, ρm = 0.649 and qρs := qξπ/4(ρ) = 11.779, are obtained
by solving the least square problem

min
α,β,ρm,qρs

er =
||qN − qA(α, β, ρm, qρs)||

2

||qN ||2
with ||q||2 =

∫ ρmax

ρmin

∫ ξUB(ρ)

ξLB(ρ)
q(ξ, ρ)2dξdρ.

21



The relative error at the solution is er = 0.082. The optimal values of the constants are A ≈ 52.8,
B ≈ −82.0, C ≈ 37.4, D ≈ −6.8, E = 6.2. The regularized smoothing exponent qA in terms of (ξ, ρ)
and (m1,m2) is depicted in Figures 10c and 10f: it is quite close to the averaged smoothing exponent
qN (which is computed numerically) but with less oscillations, as could be expected. Figure 11 displays
a cross section, along the vertical line ξ = π/4, of the two exponents qA and qN , as functions of ρ.
From now on, we use the analytical smoothing exponent qA, instead of qN , for computing the optimal

Figure 11: Analytical smoothing exponent qA(ξ = π/4, ρ) and averaged smoothing exponent qN (ξ =
π/4, ρ).

super-ellipsoidal holes.

Some optimal micro-structures. For a more visual description of the proposed optimal micro-
structures, we plot in Figure 12 some of them. As observed in the numerical experiments, they
range from circular and ellipsoidal holes (for small holes) to some limit cases (large square, elongated
rectangular holes).

Figure 12: Some optimal super-ellipsoidal holes that minimize the maximum stress norm J∞.

5.4 Homogenized and amplification tensors for optimal super-ellipsoidal holes

Once optimal super-ellipsoidal holes have been obtained by the process just described and based on
maximal stress minimization, it is time to exhibit their homogenized properties.

Homogenized tensor A∗. In Figure 13, the entries of the homogenized tensor are plotted for the
super-ellipsoidal hole with smoothing exponent qA(ξ, ρ). Note that for the exponent qA, the range of
the admissible values of parameters (ξ, ρ) is identical to the admissible design space for rectangular
holes VRad. This means that when solving the macroscopic stress minimization problem, detailed in Part
II [21], (almost) void micro-structure could be considered. Due to horizontal and vertical symmetry,
the entries A∗1112 and A∗2212 are zero and therefore are not displayed in Figure 13. The entries A∗1111

and A∗2222 strongly (and monotonically) depends on m1 and m2 respectively. Instead, the entries A∗1122

and A∗1212 strongly (and monotonically) depends on the volume fraction ρ. Again for a fix volume
fraction ρ, elongated horizontal holes (m1 → 1), this is of the rank-1 nature, exhibit large values of the
entry A∗1111. The same for A∗2222 with vertical elongated holes.
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Figure 13: Entries of the homogenized tensor A∗ for the super-ellipsoidal hole with smoothing exponent
qA(ξ, ρ).

Figure 14: Inverse of the amplification tensor for the super-ellipsoidal hole with smoothing exponent
qA(ξ, ρ).

Amplification tensor with p = 2. In Figure 14 is plotted the inverse of the amplification tensor
(in the case p = 2) for the super-ellipsoidal hole with smoothing exponent qA(ξ, ρ). We observe the
strong dependency of (P−1

2 )1111 with respect to m1 and that of (P−1
2 )2222 with m2. The entry (P−1

2 )1122

has a maximum in ξ = π/4 (symmetric hole) and ρ = 0.8, while (P−1
2 )1212 is monotonically increasing

with the volume fraction ρ.

5.5 Comparing optimal super-ellipsoidal holes with rectangular holes

To quantify the gain obtained by the optimization process, we compare the optimal super-ellipsoidal
hole (featuring the smoothing exponent qA(ξ, ρ)) with a rectangular hole (or almost rectangular with
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q = 32) in terms of rigidity and stress norm.

Figure 15: Difference of the homogenized tensors between the optimal super-ellipsoidal and rectangular
holes.

Homogenized tensor A∗. In Figure 15, we plot the difference, denoted by ∆A∗, of the homogenized
tensors between the micro-structures with an optimal super-ellipsoidal hole and a rectangular hole.
Where ∆A∗ is positive, optimal super-ellipsoidal holes outperforms rectangular holes in terms of rigidity
and vice-versa. The zero level-set line, ∆A∗ = 0, is depicted in red to clearly distinguish both positive
and negative regions. We observe that in almost all situations, the optimal super-ellipsoidal hole
outperforms, in terms of rigidity, the rectangular hole. The maximum gain in terms of rigidity occurs
for symmetric holes ξ = π/4 (m1 = m2) and volume fractions around ρ = 0.8. We recall that the
limits ξ → ξUB and ξ → ξLB corresponds to the limit cases m1 → 1 and m2 → 1, namely very elongated
holes in the horizontal or vertical direction, respectively. Those very elongated holes behave like rank-1
laminates. Note that in the elongated horizontal limit case ξ → ξUB (or m1 → 1), the optimal super-
ellipsoidal hole behaves as the rectangular hole in terms of stiffness in the horizontal direction: see
∆A∗1111 when ξ → ξUB. Of course, a symmetric situation occurs for vertically elongated holes (ξ → ξLB
or m2 → 1) when looking at ∆A∗2222.

Amplification tensor. In Figure 16, we plot the difference, denoted by ∆P−1
2 , of the inverse ampli-

fication tensors between the micro-structures with an optimal super-ellipsoidal hole and a rectangular
hole. Where ∆P−1

2 is positive, optimal super-ellipsoidal holes outperforms rectangular holes since they
have a lower stress amplification tensor and vice-versa. Clearly, the gain is more marked for the en-
tries (P−1

2 )1111 and (P−1
2 )2222 than for (P−1

2 )1122 and (P−1
2 )1212 where the differences are of the order

of 10−3. According to Figure 16, the super-ellipsoidal hole outperforms the rectangular hole in most
cases. However, there is a small zone where the rectangular hole outperforms the super-ellipsoidal hole.
To understand this result, we analyse in more detail the difference of the (P−1

2 )1111 entry (symmetric
analysis for (P−1

2 )2222) in the following four cases:

• Medium size symmetric holes (ρ ∈ [0.2, 0.8], ξ ∼ π/4): in this case the optimal super-
ellipsoidal hole is clearly better than the rectangular hole because it amplifies less the stress
σloc

11 (y) when loading with an uni-axial horizontal macroscopic stress tensor σ = [1 0 0]. This is
because, the high stress are caused here only by the corners of the hole, which for the optimal
smoothing exponent case have been optimally rounded.

• Small and large size holes (ρ ∈ [0.8, ρmax] and ρ ∈ [ρmin, 0.2]): the behaviours of the optimal
super-ellipsoidal hole and of the rectangular hole are very similar.

• Medium size horizontally elongated holes (ρ ∈ [0.2, 0.8], ξ → ξUB): again for this type of
microstructure, which is like a rank-1 laminate, the behaviours of the optimal super-ellipsoidal
hole and of the rectangular hole are very similar.

• Medium size vertically elongated holes (ρ ∈ [0.2, 0.8], ξ → ξLB): we observe that the
rectangular hole amplifies less the stress norm (with p = 2). The reason for this lower performance
of the optimal super-ellipsoidal hole is clear. In such a case, high stresses have two distinct origins:
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they are created by the corners of the hole but also by the thin horizontal ligaments which separate
the hole from the top and bottom boundary of the cell. See third image of Figure 12. Optimal
super-ellipsoidal holes smooth the corners at the cost of reducing the thickness of these thin bars.
Since the high stresses occupy a larger zone in these thin bars than around the corners, and
because these stresses are averaged by the p = 2 norm to obtain the value of P2, it turns out that
rectangular holes have a smaller stress norm despite their square corners. If we had compared the
stress amplification tensor Pp for a much larger exponent p > 2, the optimal super-ellipsoidal hole
would have superseded the rectangular hole. Eventually, it is worth noticing that, in the further
process of macroscopic optimization (using the methodology proposed in [16]), the present case
of a very elongated vertical hole loaded with an uni-axial horizontal macroscopic stress is very
unlikely to be optimal and should not appear in practice.

Figure 16: Difference of the inverse amplification tensors between the optimal super-ellipsoidal and
rectangular holes.

6 Relation with the Vigdergauz micro-structure

For minimizing the stress concentration, we proposed a super-ellipsoidal hole with an optimal smooth-
ing exponent. There is another well-known periodic micro-structure which is known to be optimal
for stress distribution which is the so-called Vigdergauz micro-structure [32]. More precisely, for a
macroscopic stress tensor with same sign principal stresses, the Vigdergauz micro-structure is the most
rigid one for compliance minimization and is also minimizing the maximal stress norm in the cell [33].
In particular, the boundary of the hole is equi-stressed and [33] proposed an implicit expression of the
boundary of the Vigdergauz micro-structure in terms of the macroscopic strains (or macroscopic stress)
and the volume fraction (apart from the material properties). More recently, Liu et al. proposed in
work [34] an alternative expression in terms of the volume fraction and another (non-intuitive) geo-
metrical variable. The goal of this section is to numerically compare our micro-structure featuring a
super-ellipsoidal hole with the Vigdergauz micro-structure. The conclusion is that they are very similar
and the differences between their shapes is negligible in practice.

Therefore, we favor super-ellipsoidal holes because the Vigdergauz micro-structures have a very
complex parametrization which is not easy to handle numerically. In fact, it is not explicit and depends
on elliptic integrals and requires finding zeros of non-linear equations. This makes the super-ellipsoidal
hole more convenient in terms of simplicity and computational cost.

Level-set description of Vigdergauz micro-structure. Let us first provide a description of the
Vigdergauz micro-structure through the zero value of a level-set function. Early work [33] described
the Vigdergauz micro-structure in terms of the macroscopic strain and volume fraction (and material)
parameters. In [34], the Vigdergauz micro-structure is described by a symmetry (non-intuitive) pa-
rameter r and the volume fraction ρ. Here, we slightly modify the parametrization of the last work
by using the semi-axis ratio ξ instead and the volume fraction parameter ρ, as we did for computing
the optimal super-ellipsoidal hole. In both works [33] and [34], a parametric description of the curve is
provided. However, this is not enough for representing the micro-structure in terms of the zero value of
a level-set function which is in general more appropriate in a topology optimization framework. In this
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work, we provide such implicit description of the micro-structure and its corresponding level-set. In the
unit square cell Y with coordinates (y1, y2), the level-set function of the Vigdergauz micro-structure is
defined as

ψv(y1, y2) =

{
ψ0 if |y1| ≤ m1

2 and |y2| ≤ m2
2 ,

c0 otherwise,
(40)

with the function ψ0(y1, y2) defined by

ψ0(y1, y2) = (1− y2
p1)(1− y2

p2)−R.

The fact that ψv is not continuous at the boundary of the inner rectangle (−m1/2,m1/2)×(−m2/2,m2/2)
does not matter here since only its sign is important. Thus, the value of c0 < 0 can be taken arbitrarily
but negative. In this work, we take c0 = −|ψ0|. The coordinates yp1 and yp2 are computed as

yp1 = F−1(
y1f1

m1/2
, r1) and yp2 = F−1(

y2f2

m2/2
, r2)

and the parameters f1 = F (
√

1−R, r1) and f2 = F (
√

1−R, r2), where R = (1 − r1)(1 − r2)/(r1r2).
The function F (t, k) is the incomplete elliptic integral of first kind defined by

F (t, k) =

∫ t

0

dx√
(1− x2) (1− kx2)

and F−1(t, k) is the Jacobi elliptic function, precisely defined as the inverse of t → F (t, k). Both
functions are implemented in almost all numerical software packages. The semi-axis parameters m1

and m2 of the Vigdergauz micro-structures can be expressed only in terms of r1 and r2 as

m1 =
1− t2

1− t1t2
s1 and m2 =

1− t1
1− t1t2

s2

where the parameters t1, t2, s1 and s2 are given by

t1 =
F (1, 1− r1)

F (1, r1)
,

t2 =
F (1, 1− r2)

F (1, r2)
,

s1 =
f1

F (1, r1)
,

s2 =
f2

F (1, r2)
.

Knowing the values of the parameters r1 and r2, we can explicitly compute the level-set function (40).
Such values are determined by imposing a priori given values for the semi-axis ratio ξ and volume
fraction ρ. This is done by solving the following two non-linear equations

tan(ξ) =
m1

m2
=

1− t2
1− t1

s1

s2
, (41)

ρ =1− t1(1− t2) + t2(1− t1)

(1− t1t2)
, (42)

with r1 and r2 as unknowns, which are bounded by 0 < r1 < 1 and 0 < r2 < 1. Note that all variables
that appear in (42) depend only on r1 and r2. In this work, we used two nested bisection loops to
solve these two non-linear equations. In Figure 17, some examples of the Vigdergauz micro-structures
are plotted which look reasonably similar to square micro-structures with a super-ellipsoidal hole.

Closest super-ellipsoidal hole. From the previous analysis the level-set function of the Vigdergauz
micro-structure ψv(ξ, ρ), defined by (40), is precisely parametrized by the semi-axis ratio ξ and the
volume fraction ρ. Recall that the level-set function of the super-ellipse ψs(q, ξ, ρ), defined in (25), was
characterized in terms of the volume fraction ρ, the semi-axis ratio ξ and the smoothing parameter q
through equation 28. Thus, our goal is to find the best q such that both micro-structures are as close
as possible in the following sense. The difference between two characteristic functions is measured
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Figure 17: Vigdergauz micro-structures examples

with the L1 norm which represents the volume of the difference set. For numerical reasons we rely
on a smoothed version of the characteristic function which is defined by the zero level-set. We use
a standard discrete (with compact support) kernel filter for the smoothing, which was introduced in
[35] and is denoted by P1 : L∞(Y, {0, 1}) → L∞(Y, [0, 1]) where Y is the micro-structure cell domain.
Thus, the optimization problem to solve is

min
q∈[qmin,qmax]

∫
Y
|ρs(ξ, ρ, q)− ρv(ξ, ρ)| (43)

where the densities functions ρs(ξ, ρ, q) and ρv(ξ, ρ) are defined as

ρs(ξ, ρ, q) = P1(χs(ξ, ρ, q)) and ρv(ξ, ρ) = P1(χv(ξ, ρ)).

Thus, they are the smoothed versions of the characteristic functions

χs(ξ, ρ, q) =

{
0 if ψs(ξ, ρ, q) > 0

1 if ψs(ξ, ρ, q) ≤ 0
and χv(ξ, ρ) =

{
0 if ψv(ξ, ρ) > 0,

1 if ψv(ξ, ρ) ≤ 0.

Since problem (43) is a minimization problem with respect the sole variable q, we use again a successive
parabolic interpolation algorithm combined with a golden section search [30]. In Figure 18, some

Figure 18: Symmetric difference between a Vigdergauz micro-structures and a square micro-structure
with a super-ellipsoidal hole (from left to right, improving value of the exponent q, from 20 to 2.316).
The relative error of the densities is given as err =

∫
Y |ρs−ρv |∫
Y |ρv |

.

intermediate and the final iterations of the optimization problem (with qmin = 2 and qmax = 32) are
shown for the hole ξ = π/8 (m2 = 2.41m1) and ρ = 0.8. A triangular mesh with 102400 P1 finite
elements with a total of 51521 nodes is used. Clearly, one can observe in Figure 18 that the Vigdergauz
micro-structure is approximated by a super-ellipsoidal hole with a very high accuracy (negligible error).
This experiment justifies the use of a super-ellipsoidal hole instead of the Vigdergauz micro-structure
when minimizing the maximum stress since we can obtain similar results but with much more simplicity.
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7 Conclusion

This is the first part of a work devoted to the optimization of lattice structures for stress minimization.
This first part focused on the design of a family of 2-d parametrized periodicity cell which are nearly
optimal for local stress minimization. These parametrized cells will be used in the second part [21] for
optimizing the macroscopic lattice structures, by using a de-homogenization technique, as presented
in [16] for compliance minimization.

We proposed in this work to optimize a square cell with a super-ellipsoidal hole. On the one hand,
it is rich enough to generalize the standard rectangular and ellipsoidal holes and on the other hand it
is simple enough to be explicitly described and further used in the de-homogenization method of Part
II [21].

Before optimizing the micro-structure, two numerical experiments were performed to gain insight in
the design process. First, we compared rectangular and ellipsoidal holes in terms of effective properties,
as well as amplification tensors, which take into account the local increase of the stress, compared to
the macroscopic stress, due to the micro-structure. Second, the amplification factors were computed
for various values of the exponent p when the stress is evaluated with an Lp norm. They confirm that
neither rectangles, nor ellipses are always optimal and that super-ellipses are a good compromise.

Our main result is the optimization of the exponent q, defining the super-ellipse for minimizing
the maximum local stress when solving a periodic cell problem, loaded by a given macroscopic stress.
For each stress load (aligned with the hole), each volume fraction and each semi-axis ratio, an optimal
super-ellipse exponent q has been found. Since the goal is to design a micro-structure which depends
only on geometric parameters and not on the applied stress, these optimal super-ellipse exponents
were averaged with respect to the applied stress with a bias towards stresses which are more likely to
appear in the macroscopic optimization of Part II. Then, for simplicity and further use, we proposed
an analytical formula for approximating the optimal averaged exponent in terms of the geometrical
parameters of the super-ellipsoidal hole. We observed a clear reduction of the stress norm (through the
amplificator tensor) of the proposed optimal super-ellipsoidal hole with respect of the rectangular hole.
As a final check of our results, we compared the optimal super-ellipsoidal hole with the Vigdergauz
micro-structure, which is known to be optimal for minimizing the maximum stress in some cases, but
is not simple enough for a systematic use in numerical computations. We numerically checked that
the Vigdergauz micro-structure can be approximated by an optimal super-ellipsoidal hole with high
accuracy.
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