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ABSTRACT

Extreme multi-label classification (XMC) and Neural Architecture
Search (NAS) are research topics, which have gain a lot of interest
recently. While the former deals in supervised learning problems
with extremely large number of labels in text and NLP domain,
the latter has been mainly applied to much smaller tasks, mainly
in image processing. In this study, we extend the scope of NAS
to (XMC) tasks. We propose a neuro-evolution approach, that has
been found most suitable for a variety of tasks. The proposed NAS
method automatically finds architectures that give competitive
results to the state of the art (and superior to other methods) with
faster convergence. Furthermore, the weights of the architecture
blocks have been analyzed to give insight on the importance of the
various operations that have been selected by the method.
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1 INTRODUCTION

The main objective in XMC is to learn classifiers which can tag
data with a set of relevant labels from an extremely large set of all
possible labels. Machine learning problems consisting of hundreds
of thousand labels are common in various domains such as tagging
in large encyclopedias, product categorization for e-commerce [2],
hash-tag suggestion in social media [4], and image-classification
[8]. It has been demonstrated that, the framework of XMC can also
be leveraged to effectively address ranking problems arising in bid-
phrase suggestion in web-advertising and suggestion of relevant
items for recommendation systems [6].

Various deep learning algorithms have been proposed in recent
years for XMC using convolutional networks (XML-CNN in [10]),
recurrent networks [11], and attention mechanism (AttentionXML

n [16]). Even though these techniques have been relatively suc-
cessful, the neural architecture design phase is complex and often
requires human prior, with a good knowledge of the field and the
data.

Over the last few years, NAS research has paved the way for
the creation of dedicated neural architectures for a given task. In
the literature, various methods and algorithms have been studied,
among them some approaches use Reinforcement Learning (RL)
as done by [17]. In order to speed up the search phase [13] have
combined RL and weight sharing. We can also find among the
other techniques some uses evolution mechanism [15] or based
on the Bayesian optimization [7]. Large part of the studies, on
NAS has focused on search algorithms for a small number of tasks
(eg. image classification) and none of this have been applied on
XMC before. In this study we propose XMCNAS, a NAS based method
to automatically design architecture for the task of XMC, using
a minimal prior knowledge. To evaluate our solution we use 3
large scale XMC datasets with an increasing number of labels. The
discovered architecture gives competitive results with respect to
the state of the art on the proxy dataset with a faster convergence.
Then we transfer the best performing architecture to other datasets
and evaluate it. We can summarize our contributions as following:

e We propose a domain specific candidate operation set for
the NLP domain, with various operations which can act as
different information extractor.
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e In order to see which operation extracts information effi-
ciently, we have examined the impact of operations on the fi-
nal results by using a linear combination of trainable weights
assigned at each operation output.

o The best derived architecture is more complex than the cur-
rent state of the art one [16], but converge up to twice faster,
with a similar training time. Moreover this architecture has
shown competitive results with the state of the art

2 METHODS

In the following section we describe XMCNAS. Our approach is based
on 3 main components: i) the embedding of the text, ii) the archi-
tecture search, and iii) the classification of the output. These three
components form a pipeline in which components i) and iii) are
fixed (i.e. be present in all networks) and are excluded from the
search task. First, we present the search space and architecture
search algorithm used. Then, we describe components i) and iii).

D—@—0—@
—@—@

Figure 1: Illustration of an architecture, with 6 layers. Node
0 represents the embedding layer. The numbers is the sam-
pling order of the layers. The limit on the maximum number
of previous layers that can be used as input is set to 5. In this
example, therefore, layer 6 could only take as input nodes 1
to 5. We illustrate different operations with different colors.

2.1 The search space

For the search space we use a macro architecture. The whole net-
work can be represented as a Direct Acyclic Graph (DAG) of K
nodes, each node is an operation that are sequentially sampled.
Each node can take only one input among the last 5 previous node.
We initialize the set of previous with the embedding layer (i.e. the
first 5 operations can take the embedding as input). For the can-
didate operation set, we have selected the most commonly used
operations in NLP, which consist of a mix of convolutional, recur-
rent and pooling layers. We have defined four different versions
of 1D-Convolutional layer, with a kernel size of 1, 3, 5 and 7 re-
spectively. The convolution with kernel = 1 is comparable to a
feed-forward layer. All convolution layers use a stride of 1 and use
padding to maintain a coherent shape if necessary. We use two
type of pooling layers which compute the average or the maxi-
mum over a filter size, the size of the filter 3 for both. As with
convolution, pooling layers uses a stride of 1 and uses padding if
necessary. We use as recurrent layers the two most commonly used
versions, which are namely the Gated Recurrent Unit (GRU) [3]
and the Long-Short Term Memory (LSTM) [5], which are able to
capture long term dependencies. Specifically, we use bi-directional
LSTM and GRU. Figure 1 illustrate an example of graph.

2.2 The search algorithm

As NAS algorithm, we use the regularized evolution as described
in [15], which briefly consists in, the initialization of a trained
population with architectures constructed randomly from sampled
operations and then trained and evaluated. Sample randomly N
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Figure 2: I. Architectures are constructed from randomly
sampled operations and then trained and evaluated, II. Sam-
ple randomly N architectures, and rank them by Preci-
sion@5 obtained on test set. The best performing one is se-
lected for mutation, III. The newly mutated architecture, is
trained, evaluated and placed in the trained population. The
oldest architecture is removed from the population.

architectures, rank them by Precision@5 obtained on test set. The
best performing one is selected for mutation, then the newly mu-
tated architecture, is trained, evaluated and placed in the trained
population. The oldest architecture is removed from the population.
We chose this approach because it allows us to have a fine vision of
the impact of each operation on the final result. Regarding mutation,
we use the same as those defined by [15]:
e Randomly choose an input of an node in the network and
change it by a new input.
e Randomly choose an operation in the networks and change
it by a newly sampled.
In order to see the impact of the number of layers on the final
results, a third mutation, corresponding to the addition of a new
layer, has been introduced. The choice among these mutations
is random. Moreover, we combine these mutation with a linear
combination of weights on the output of each layer. The weights
of those combination are learned during the training process. The
figure 2 is a visualization of the algorithm.

2.3 Embedding, Attention and classification
modules

The network is made up of certain parts that are fixed namely the
embedding, attention and classification modules.

2.3.1 Embedding. The embedding layer produces a fixed length
representation, which means each words is transformed to a vector.
We use the pre-trained embedding GloVe![12], with no fine-tuning
during the training.

2.3.2 Attention module. Similarly as done in [16], we use a self-
attention mechanism based on the one demonstrated in [9]. The
purpose of the attention process helps to catch the important part
of the text.

2.3.3 Classification module. The classification module is composed
of 2 or 3 fully connected layers, and an output layer that classifies
output into different labels.

3 FINDINGS

In this section we present the findings we got during this study.
First, we present the datasets used. Then, we show the study we

!http://nlp.stanford.edu/data/wordvecs/glove.840B.300d.zip
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Table 1: Statistics of XMC datasets considered in our experiments. L: # of classes.

Dataset # of Training # of Test examples L Avg. of class labels Avg. size of classes
examples per example

EURLex-4K 15,539 3,809 3,993 25.73 5.31

Wiki10-31k 14,146 6,616 30,938 8.52 18.64

AmazonCat-13K 1,186,239 306,782 13,330 448.57 5.04

conducted on the impact of the operations. Finally, we describe the
XMCNAS discovered architecture, and the results we achieve with
this architecture.

3.1 Datasets and evaluation metrics

We conducted our study on three of the most popular XMC bench-
mark datasets downloaded from the XMC repository?. These datasets
are considered large scale, with the number of class labels varying

from 4,000 to 30,000, which are listed from smallest to largest (in

term of number of labels) by EURLex-4K, AmazonCat-13K, and

Wiki10-31K summarized in Table 1. We followed the same prepro-
cessing pipeline as used in [16]. As evaluation metrics we used

the Precision at k denoted by P@k, and the normalized discounted

cumulative gain at k denoted by nDCG@k [6]. Both metrics are

standard and widely used in the state of the art references.

3.2 Analysis of operation importance

During the search phase, we perform a weight analysis of the linear
combination of output of each operation, and whether different
operations combine effectively. Moreover, to extend this study we
analyze the impact of i) the numbers of layers and ii) the opera-
tions when networks become deeper. Throughout the study, we
scale the results of each layer with trainable weights of the linear
combination.

Combination of operations: The purpose of this study is to de-
termine which operation is the most important in the first layers.
We have observed, in this analysis, that operation pairs of same
kind, tend to have nearly equal weights (around 0.5 on each). How-
ever, some trends could be observed in the case of the combination
of two convolutions, the one with larger kernel size have higher
weights. This effect is particularly pronounced in the case of the
kernel size of 1, which reflects the necessity of sequence modeling
blocks at that level. In the case of mixed operations (BiLSTM and
Convolution combined), it turned out that BiLSTM operations sys-
tematically have higher weights, on average 0.7 for the BiLSTM.
More generally, our results show that architectures which contain
BiLSTM at the first layer perform better ( P@5 € [0.59, 0.62]). Com-
pared to convolution based where the P@5 is a little less performing
(P@5 € [0.56,0.58]). This indicates that the result is mainly based
on the long-term dependencies captured by the BiLSTM rather than
the local feature combinations generated by convolution.

Study extension: Concerning the impact of the number of layers,
we calculated the average P@5 based on the number of layers. We
varied the number of layers of from 2 to 6, and we observed that
the averaged precision is nearly constant, regardless of the number
of layers in the network, with results similar to those obtained in
the previous paragraph. This result is corroborated by the previ-
ous analysis. We note in this configuration that the weights on

Zhttp://manikvarma.org/downloads/XC/XMLRepository.html

Embedding

Attention

Classification

Figure 3: The discovered network during our study, is com-
posed of two BiLSTM which results are concatenated, then
passed in an attention module and finally in a part of fully
connected layers.

additional layers are small compared to those that bypass it. For
example, when we have 2 layers in the network in sequential or-
der, the operations that take integration as input have a weight of
0.68, indicating that the most important information for the final
results is extracted by the layer that take embedding as input.This
trend has been observed in all experiments and suggests that, given
our operations pool, additional layers does not bring much more
information.

3.3 Discovered network

The architecture found by XMCNAS, is made of two BiLSTM which
take the embedding as input. The output of the two BiLSTM is then
concatenated along the hidden dimension, and given as input of
the attention module and finally to the classification module. The
figure 3 is an visualization of the network.

3.4 Results

In this section we present the results obtained by the XMCNAS discov-
ered network on various XMC datasets. First we present the results
obtained on the EURLex-4K dataset used for the search phase, also
named proxy dataset. Finally we evaluate the performance of this
discovered architecture, transferred on the other datasets. To train
our network we use 2 Nvidia GV100, with data parallelism training.
We compare the results of our method to the most representative
methods on XMC (with the implementation and the results pro-
vided by the authors). We compare our results with some state of
the art methods XML-CNN [10], AttentionXML-1 [16], DiSMEC
[1], and Parabel [14].

3.4.1 EURLex-4K results. On this dataset, the network got an im-
provement regarding the precision at k to the state of the art. As
presented in the left hand side of the Table 2 we got an improvement
on P@1, P@3 and P@5. A significant improvement is obtained on
precision at 3 and 5, where we get 0.738 and 0.620 respectively com-
pared to 0.730 and 0.611 before. Figure 4a presents the evolution
of P@5 and the nDCG@5 on the validation set with respect to the
number of epochs. We observe on figure 4a that our network have
a faster convergence. The results is obtained around 15 epochs and
after this point, we only get small improvement which indicates
that the network might overfit.
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Table 2: Comparison performance table on datasets. Best results are shown in bold.

EURLex-4K Wiki10-31K AmazonCat-13K
Methods P@1 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5
DiSMEC 0.832 0.703 0.587 0.841 0.747 0.659 0.938 0.791 0.640
Parabel 0.821 0.689 0.579 0.841 0.724 0.633 0.930 0.791 0.645
XML-CNN 0.753 0.601 0.492 0.814 0.662 0.561 0.932 0.770 0.614
AttentionXML-1 0.854 0.730 0.611 0.870 0.777 0.678 0.956 0.819 0.669
XMCNAS 0.858 0.738 0.620 0.849 0.772 0.681 0.951 0.813 0.664

3.4.2 Transferred architecture results. We train and evaluate the
discovered architecture following the same training procedure as
for EURLex-4K, on the two other datasets. The middle and right
hand side of table 2 show the comparison of the architecture found
by XMCNAS on EURLex-4K with others methods. We notice that
the discovered architecture transferred to larger datasets get close
results to the current state of the art. In some case we slightly
surpass the results like in the P@5 on the Wiki10-31K. Moreover
we notice in Fig. 4b the same trend as the proxy data set, that
our method has a faster convergence, this was also the case for
AmazonCat-13K. Ours results presented in table 2 on Wiki10-31K
and AmazonCat-13K are obtained in half of the epochs required by
AttentionXML-1.

Metrics
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+: XMCNAS P@5

AttentionXML-1 nDDCG@5
> AtentionXML-1 P@5

10 15
Epochs

20 25
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0z ++ XMCNAS nDCG@5

- XMCNAS P@5
AttentionXML-1 nDCG@5

-+ AttentionXML-1 P@5

10 15

Epochs

(b) Wiki10-31K
Figure 4: Plot of the nDCG@5 and P@5 on the validation set,
on two different datasets. We notice, the discovered architec-
ture have a faster convergence compared to AttentionXML-1
[16]. In the 4a our method get better final results, in 4b our
final results (around epoch 15) are close.

4 SUMMARY AND FUTURE WORK

We have presented in this work an automated method to discover
architecture for the task of XMC, based on the regularized evolu-
tion [15] and with a domain-oriented pool of operations. XMCNAS
has found architecture that provided competitive results with the

existing state of the art methods [16], and in some cases overpassed
them. Moreover, the discovered network showed faster conver-
gence rates on all datasets, despite being more complex than the
actual SoTA. Possible future steps include the development of a
method that can handle the search phase on large scale datasets,
the extension of the search space by adding attention mechanism
operation, the tuning of hyper-parameters, as well as methods to
speed up the search process.
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